OpenCloudOS-Kernel/arch/ia64/lib/copy_page_mck.S

189 lines
5.8 KiB
ArmAsm
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
/*
* McKinley-optimized version of copy_page().
*
* Copyright (C) 2002 Hewlett-Packard Co
* David Mosberger <davidm@hpl.hp.com>
*
* Inputs:
* in0: address of target page
* in1: address of source page
* Output:
* no return value
*
* General idea:
* - use regular loads and stores to prefetch data to avoid consuming M-slot just for
* lfetches => good for in-cache performance
* - avoid l2 bank-conflicts by not storing into the same 16-byte bank within a single
* cycle
*
* Principle of operation:
* First, note that L1 has a line-size of 64 bytes and L2 a line-size of 128 bytes.
* To avoid secondary misses in L2, we prefetch both source and destination with a line-size
* of 128 bytes. When both of these lines are in the L2 and the first half of the
* source line is in L1, we start copying the remaining words. The second half of the
* source line is prefetched in an earlier iteration, so that by the time we start
* accessing it, it's also present in the L1.
*
* We use a software-pipelined loop to control the overall operation. The pipeline
* has 2*PREFETCH_DIST+K stages. The first PREFETCH_DIST stages are used for prefetching
* source cache-lines. The second PREFETCH_DIST stages are used for prefetching destination
* cache-lines, the last K stages are used to copy the cache-line words not copied by
* the prefetches. The four relevant points in the pipelined are called A, B, C, D:
* p[A] is TRUE if a source-line should be prefetched, p[B] is TRUE if a destination-line
* should be prefetched, p[C] is TRUE if the second half of an L2 line should be brought
* into L1D and p[D] is TRUE if a cacheline needs to be copied.
*
* This all sounds very complicated, but thanks to the modulo-scheduled loop support,
* the resulting code is very regular and quite easy to follow (once you get the idea).
*
* As a secondary optimization, the first 2*PREFETCH_DIST iterations are implemented
* as the separate .prefetch_loop. Logically, this loop performs exactly like the
* main-loop (.line_copy), but has all known-to-be-predicated-off instructions removed,
* so that each loop iteration is faster (again, good for cached case).
*
* When reading the code, it helps to keep the following picture in mind:
*
* word 0 word 1
* +------+------+---
* | v[x] | t1 | ^
* | t2 | t3 | |
* | t4 | t5 | |
* | t6 | t7 | | 128 bytes
* | n[y] | t9 | | (L2 cache line)
* | t10 | t11 | |
* | t12 | t13 | |
* | t14 | t15 | v
* +------+------+---
*
* Here, v[x] is copied by the (memory) prefetch. n[y] is loaded at p[C]
* to fetch the second-half of the L2 cache line into L1, and the tX words are copied in
* an order that avoids bank conflicts.
*/
#include <linux/export.h>
#include <asm/asmmacro.h>
#include <asm/page.h>
#define PREFETCH_DIST 8 // McKinley sustains 16 outstanding L2 misses (8 ld, 8 st)
#define src0 r2
#define src1 r3
#define dst0 r9
#define dst1 r10
#define src_pre_mem r11
#define dst_pre_mem r14
#define src_pre_l2 r15
#define dst_pre_l2 r16
#define t1 r17
#define t2 r18
#define t3 r19
#define t4 r20
#define t5 t1 // alias!
#define t6 t2 // alias!
#define t7 t3 // alias!
#define t9 t5 // alias!
#define t10 t4 // alias!
#define t11 t7 // alias!
#define t12 t6 // alias!
#define t14 t10 // alias!
#define t13 r21
#define t15 r22
#define saved_lc r23
#define saved_pr r24
#define A 0
#define B (PREFETCH_DIST)
#define C (B + PREFETCH_DIST)
#define D (C + 3)
#define N (D + 1)
#define Nrot ((N + 7) & ~7)
GLOBAL_ENTRY(copy_page)
.prologue
alloc r8 = ar.pfs, 2, Nrot-2, 0, Nrot
.rotr v[2*PREFETCH_DIST], n[D-C+1]
.rotp p[N]
.save ar.lc, saved_lc
mov saved_lc = ar.lc
.save pr, saved_pr
mov saved_pr = pr
.body
mov src_pre_mem = in1
mov pr.rot = 0x10000
mov ar.ec = 1 // special unrolled loop
mov dst_pre_mem = in0
mov ar.lc = 2*PREFETCH_DIST - 1
add src_pre_l2 = 8*8, in1
add dst_pre_l2 = 8*8, in0
add src0 = 8, in1 // first t1 src
add src1 = 3*8, in1 // first t3 src
add dst0 = 8, in0 // first t1 dst
add dst1 = 3*8, in0 // first t3 dst
mov t1 = (PAGE_SIZE/128) - (2*PREFETCH_DIST) - 1
nop.m 0
nop.i 0
;;
// same as .line_copy loop, but with all predicated-off instructions removed:
.prefetch_loop:
(p[A]) ld8 v[A] = [src_pre_mem], 128 // M0
(p[B]) st8 [dst_pre_mem] = v[B], 128 // M2
br.ctop.sptk .prefetch_loop
;;
cmp.eq p16, p0 = r0, r0 // reset p16 to 1 (br.ctop cleared it to zero)
mov ar.lc = t1 // with 64KB pages, t1 is too big to fit in 8 bits!
mov ar.ec = N // # of stages in pipeline
;;
.line_copy:
(p[D]) ld8 t2 = [src0], 3*8 // M0
(p[D]) ld8 t4 = [src1], 3*8 // M1
(p[B]) st8 [dst_pre_mem] = v[B], 128 // M2 prefetch dst from memory
(p[D]) st8 [dst_pre_l2] = n[D-C], 128 // M3 prefetch dst from L2
;;
(p[A]) ld8 v[A] = [src_pre_mem], 128 // M0 prefetch src from memory
(p[C]) ld8 n[0] = [src_pre_l2], 128 // M1 prefetch src from L2
(p[D]) st8 [dst0] = t1, 8 // M2
(p[D]) st8 [dst1] = t3, 8 // M3
;;
(p[D]) ld8 t5 = [src0], 8
(p[D]) ld8 t7 = [src1], 3*8
(p[D]) st8 [dst0] = t2, 3*8
(p[D]) st8 [dst1] = t4, 3*8
;;
(p[D]) ld8 t6 = [src0], 3*8
(p[D]) ld8 t10 = [src1], 8
(p[D]) st8 [dst0] = t5, 8
(p[D]) st8 [dst1] = t7, 3*8
;;
(p[D]) ld8 t9 = [src0], 3*8
(p[D]) ld8 t11 = [src1], 3*8
(p[D]) st8 [dst0] = t6, 3*8
(p[D]) st8 [dst1] = t10, 8
;;
(p[D]) ld8 t12 = [src0], 8
(p[D]) ld8 t14 = [src1], 8
(p[D]) st8 [dst0] = t9, 3*8
(p[D]) st8 [dst1] = t11, 3*8
;;
(p[D]) ld8 t13 = [src0], 4*8
(p[D]) ld8 t15 = [src1], 4*8
(p[D]) st8 [dst0] = t12, 8
(p[D]) st8 [dst1] = t14, 8
;;
(p[D-1])ld8 t1 = [src0], 8
(p[D-1])ld8 t3 = [src1], 8
(p[D]) st8 [dst0] = t13, 4*8
(p[D]) st8 [dst1] = t15, 4*8
br.ctop.sptk .line_copy
;;
mov ar.lc = saved_lc
mov pr = saved_pr, -1
br.ret.sptk.many rp
END(copy_page)
EXPORT_SYMBOL(copy_page)