OpenCloudOS-Kernel/drivers/powercap/intel_rapl.c

1675 lines
43 KiB
C
Raw Normal View History

/*
* Intel Running Average Power Limit (RAPL) Driver
* Copyright (c) 2013, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/types.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/log2.h>
#include <linux/bitmap.h>
#include <linux/delay.h>
#include <linux/sysfs.h>
#include <linux/cpu.h>
#include <linux/powercap.h>
#include <linux/suspend.h>
#include <asm/iosf_mbi.h>
#include <asm/processor.h>
#include <asm/cpu_device_id.h>
#include <asm/intel-family.h>
2016-04-18 06:03:01 +08:00
/* Local defines */
#define MSR_PLATFORM_POWER_LIMIT 0x0000065C
/* bitmasks for RAPL MSRs, used by primitive access functions */
#define ENERGY_STATUS_MASK 0xffffffff
#define POWER_LIMIT1_MASK 0x7FFF
#define POWER_LIMIT1_ENABLE BIT(15)
#define POWER_LIMIT1_CLAMP BIT(16)
#define POWER_LIMIT2_MASK (0x7FFFULL<<32)
#define POWER_LIMIT2_ENABLE BIT_ULL(47)
#define POWER_LIMIT2_CLAMP BIT_ULL(48)
#define POWER_PACKAGE_LOCK BIT_ULL(63)
#define POWER_PP_LOCK BIT(31)
#define TIME_WINDOW1_MASK (0x7FULL<<17)
#define TIME_WINDOW2_MASK (0x7FULL<<49)
#define POWER_UNIT_OFFSET 0
#define POWER_UNIT_MASK 0x0F
#define ENERGY_UNIT_OFFSET 0x08
#define ENERGY_UNIT_MASK 0x1F00
#define TIME_UNIT_OFFSET 0x10
#define TIME_UNIT_MASK 0xF0000
#define POWER_INFO_MAX_MASK (0x7fffULL<<32)
#define POWER_INFO_MIN_MASK (0x7fffULL<<16)
#define POWER_INFO_MAX_TIME_WIN_MASK (0x3fULL<<48)
#define POWER_INFO_THERMAL_SPEC_MASK 0x7fff
#define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
#define PP_POLICY_MASK 0x1F
/* Non HW constants */
#define RAPL_PRIMITIVE_DERIVED BIT(1) /* not from raw data */
#define RAPL_PRIMITIVE_DUMMY BIT(2)
#define TIME_WINDOW_MAX_MSEC 40000
#define TIME_WINDOW_MIN_MSEC 250
#define ENERGY_UNIT_SCALE 1000 /* scale from driver unit to powercap unit */
enum unit_type {
ARBITRARY_UNIT, /* no translation */
POWER_UNIT,
ENERGY_UNIT,
TIME_UNIT,
};
enum rapl_domain_type {
RAPL_DOMAIN_PACKAGE, /* entire package/socket */
RAPL_DOMAIN_PP0, /* core power plane */
RAPL_DOMAIN_PP1, /* graphics uncore */
RAPL_DOMAIN_DRAM,/* DRAM control_type */
2016-04-18 06:03:01 +08:00
RAPL_DOMAIN_PLATFORM, /* PSys control_type */
RAPL_DOMAIN_MAX,
};
enum rapl_domain_msr_id {
RAPL_DOMAIN_MSR_LIMIT,
RAPL_DOMAIN_MSR_STATUS,
RAPL_DOMAIN_MSR_PERF,
RAPL_DOMAIN_MSR_POLICY,
RAPL_DOMAIN_MSR_INFO,
RAPL_DOMAIN_MSR_MAX,
};
/* per domain data, some are optional */
enum rapl_primitives {
ENERGY_COUNTER,
POWER_LIMIT1,
POWER_LIMIT2,
FW_LOCK,
PL1_ENABLE, /* power limit 1, aka long term */
PL1_CLAMP, /* allow frequency to go below OS request */
PL2_ENABLE, /* power limit 2, aka short term, instantaneous */
PL2_CLAMP,
TIME_WINDOW1, /* long term */
TIME_WINDOW2, /* short term */
THERMAL_SPEC_POWER,
MAX_POWER,
MIN_POWER,
MAX_TIME_WINDOW,
THROTTLED_TIME,
PRIORITY_LEVEL,
/* below are not raw primitive data */
AVERAGE_POWER,
NR_RAPL_PRIMITIVES,
};
#define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
/* Can be expanded to include events, etc.*/
struct rapl_domain_data {
u64 primitives[NR_RAPL_PRIMITIVES];
unsigned long timestamp;
};
struct msrl_action {
u32 msr_no;
u64 clear_mask;
u64 set_mask;
int err;
};
#define DOMAIN_STATE_INACTIVE BIT(0)
#define DOMAIN_STATE_POWER_LIMIT_SET BIT(1)
#define DOMAIN_STATE_BIOS_LOCKED BIT(2)
#define NR_POWER_LIMITS (2)
struct rapl_power_limit {
struct powercap_zone_constraint *constraint;
int prim_id; /* primitive ID used to enable */
struct rapl_domain *domain;
const char *name;
u64 last_power_limit;
};
static const char pl1_name[] = "long_term";
static const char pl2_name[] = "short_term";
struct rapl_package;
struct rapl_domain {
const char *name;
enum rapl_domain_type id;
int msrs[RAPL_DOMAIN_MSR_MAX];
struct powercap_zone power_zone;
struct rapl_domain_data rdd;
struct rapl_power_limit rpl[NR_POWER_LIMITS];
u64 attr_map; /* track capabilities */
unsigned int state;
unsigned int domain_energy_unit;
struct rapl_package *rp;
};
#define power_zone_to_rapl_domain(_zone) \
container_of(_zone, struct rapl_domain, power_zone)
/* Each physical package contains multiple domains, these are the common
* data across RAPL domains within a package.
*/
struct rapl_package {
unsigned int id; /* physical package/socket id */
unsigned int nr_domains;
unsigned long domain_map; /* bit map of active domains */
unsigned int power_unit;
unsigned int energy_unit;
unsigned int time_unit;
struct rapl_domain *domains; /* array of domains, sized at runtime */
struct powercap_zone *power_zone; /* keep track of parent zone */
unsigned long power_limit_irq; /* keep track of package power limit
* notify interrupt enable status.
*/
struct list_head plist;
int lead_cpu; /* one active cpu per package for access */
/* Track active cpus */
struct cpumask cpumask;
};
struct rapl_defaults {
u8 floor_freq_reg_addr;
int (*check_unit)(struct rapl_package *rp, int cpu);
void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
u64 (*compute_time_window)(struct rapl_package *rp, u64 val,
bool to_raw);
unsigned int dram_domain_energy_unit;
};
static struct rapl_defaults *rapl_defaults;
/* Sideband MBI registers */
#define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
#define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
#define PACKAGE_PLN_INT_SAVED BIT(0)
#define MAX_PRIM_NAME (32)
/* per domain data. used to describe individual knobs such that access function
* can be consolidated into one instead of many inline functions.
*/
struct rapl_primitive_info {
const char *name;
u64 mask;
int shift;
enum rapl_domain_msr_id id;
enum unit_type unit;
u32 flag;
};
#define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) { \
.name = #p, \
.mask = m, \
.shift = s, \
.id = i, \
.unit = u, \
.flag = f \
}
static void rapl_init_domains(struct rapl_package *rp);
static int rapl_read_data_raw(struct rapl_domain *rd,
enum rapl_primitives prim,
bool xlate, u64 *data);
static int rapl_write_data_raw(struct rapl_domain *rd,
enum rapl_primitives prim,
unsigned long long value);
static u64 rapl_unit_xlate(struct rapl_domain *rd,
enum unit_type type, u64 value,
int to_raw);
static void package_power_limit_irq_save(struct rapl_package *rp);
static LIST_HEAD(rapl_packages); /* guarded by CPU hotplug lock */
static const char * const rapl_domain_names[] = {
"package",
"core",
"uncore",
"dram",
2016-04-18 06:03:01 +08:00
"psys",
};
static struct powercap_control_type *control_type; /* PowerCap Controller */
2016-04-18 06:03:01 +08:00
static struct rapl_domain *platform_rapl_domain; /* Platform (PSys) domain */
/* caller to ensure CPU hotplug lock is held */
static struct rapl_package *find_package_by_id(int id)
{
struct rapl_package *rp;
list_for_each_entry(rp, &rapl_packages, plist) {
if (rp->id == id)
return rp;
}
return NULL;
}
static int get_energy_counter(struct powercap_zone *power_zone, u64 *energy_raw)
{
struct rapl_domain *rd;
u64 energy_now;
/* prevent CPU hotplug, make sure the RAPL domain does not go
* away while reading the counter.
*/
get_online_cpus();
rd = power_zone_to_rapl_domain(power_zone);
if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
*energy_raw = energy_now;
put_online_cpus();
return 0;
}
put_online_cpus();
return -EIO;
}
static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
{
struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
*energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
return 0;
}
static int release_zone(struct powercap_zone *power_zone)
{
struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
struct rapl_package *rp = rd->rp;
/* package zone is the last zone of a package, we can free
* memory here since all children has been unregistered.
*/
if (rd->id == RAPL_DOMAIN_PACKAGE) {
kfree(rd);
rp->domains = NULL;
}
return 0;
}
static int find_nr_power_limit(struct rapl_domain *rd)
{
int i, nr_pl = 0;
for (i = 0; i < NR_POWER_LIMITS; i++) {
if (rd->rpl[i].name)
nr_pl++;
}
return nr_pl;
}
static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
{
struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
if (rd->state & DOMAIN_STATE_BIOS_LOCKED)
return -EACCES;
get_online_cpus();
rapl_write_data_raw(rd, PL1_ENABLE, mode);
if (rapl_defaults->set_floor_freq)
rapl_defaults->set_floor_freq(rd, mode);
put_online_cpus();
return 0;
}
static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
{
struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
u64 val;
if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
*mode = false;
return 0;
}
get_online_cpus();
if (rapl_read_data_raw(rd, PL1_ENABLE, true, &val)) {
put_online_cpus();
return -EIO;
}
*mode = val;
put_online_cpus();
return 0;
}
/* per RAPL domain ops, in the order of rapl_domain_type */
static const struct powercap_zone_ops zone_ops[] = {
/* RAPL_DOMAIN_PACKAGE */
{
.get_energy_uj = get_energy_counter,
.get_max_energy_range_uj = get_max_energy_counter,
.release = release_zone,
.set_enable = set_domain_enable,
.get_enable = get_domain_enable,
},
/* RAPL_DOMAIN_PP0 */
{
.get_energy_uj = get_energy_counter,
.get_max_energy_range_uj = get_max_energy_counter,
.release = release_zone,
.set_enable = set_domain_enable,
.get_enable = get_domain_enable,
},
/* RAPL_DOMAIN_PP1 */
{
.get_energy_uj = get_energy_counter,
.get_max_energy_range_uj = get_max_energy_counter,
.release = release_zone,
.set_enable = set_domain_enable,
.get_enable = get_domain_enable,
},
/* RAPL_DOMAIN_DRAM */
{
.get_energy_uj = get_energy_counter,
.get_max_energy_range_uj = get_max_energy_counter,
.release = release_zone,
.set_enable = set_domain_enable,
.get_enable = get_domain_enable,
},
2016-04-18 06:03:01 +08:00
/* RAPL_DOMAIN_PLATFORM */
{
.get_energy_uj = get_energy_counter,
.get_max_energy_range_uj = get_max_energy_counter,
.release = release_zone,
.set_enable = set_domain_enable,
.get_enable = get_domain_enable,
},
};
/*
* Constraint index used by powercap can be different than power limit (PL)
* index in that some PLs maybe missing due to non-existant MSRs. So we
* need to convert here by finding the valid PLs only (name populated).
*/
static int contraint_to_pl(struct rapl_domain *rd, int cid)
{
int i, j;
for (i = 0, j = 0; i < NR_POWER_LIMITS; i++) {
if ((rd->rpl[i].name) && j++ == cid) {
pr_debug("%s: index %d\n", __func__, i);
return i;
}
}
pr_err("Cannot find matching power limit for constraint %d\n", cid);
return -EINVAL;
}
static int set_power_limit(struct powercap_zone *power_zone, int cid,
u64 power_limit)
{
struct rapl_domain *rd;
struct rapl_package *rp;
int ret = 0;
int id;
get_online_cpus();
rd = power_zone_to_rapl_domain(power_zone);
id = contraint_to_pl(rd, cid);
if (id < 0) {
ret = id;
goto set_exit;
}
rp = rd->rp;
if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
dev_warn(&power_zone->dev, "%s locked by BIOS, monitoring only\n",
rd->name);
ret = -EACCES;
goto set_exit;
}
switch (rd->rpl[id].prim_id) {
case PL1_ENABLE:
rapl_write_data_raw(rd, POWER_LIMIT1, power_limit);
break;
case PL2_ENABLE:
rapl_write_data_raw(rd, POWER_LIMIT2, power_limit);
break;
default:
ret = -EINVAL;
}
if (!ret)
package_power_limit_irq_save(rp);
set_exit:
put_online_cpus();
return ret;
}
static int get_current_power_limit(struct powercap_zone *power_zone, int cid,
u64 *data)
{
struct rapl_domain *rd;
u64 val;
int prim;
int ret = 0;
int id;
get_online_cpus();
rd = power_zone_to_rapl_domain(power_zone);
id = contraint_to_pl(rd, cid);
if (id < 0) {
ret = id;
goto get_exit;
}
switch (rd->rpl[id].prim_id) {
case PL1_ENABLE:
prim = POWER_LIMIT1;
break;
case PL2_ENABLE:
prim = POWER_LIMIT2;
break;
default:
put_online_cpus();
return -EINVAL;
}
if (rapl_read_data_raw(rd, prim, true, &val))
ret = -EIO;
else
*data = val;
get_exit:
put_online_cpus();
return ret;
}
static int set_time_window(struct powercap_zone *power_zone, int cid,
u64 window)
{
struct rapl_domain *rd;
int ret = 0;
int id;
get_online_cpus();
rd = power_zone_to_rapl_domain(power_zone);
id = contraint_to_pl(rd, cid);
if (id < 0) {
ret = id;
goto set_time_exit;
}
switch (rd->rpl[id].prim_id) {
case PL1_ENABLE:
rapl_write_data_raw(rd, TIME_WINDOW1, window);
break;
case PL2_ENABLE:
rapl_write_data_raw(rd, TIME_WINDOW2, window);
break;
default:
ret = -EINVAL;
}
set_time_exit:
put_online_cpus();
return ret;
}
static int get_time_window(struct powercap_zone *power_zone, int cid, u64 *data)
{
struct rapl_domain *rd;
u64 val;
int ret = 0;
int id;
get_online_cpus();
rd = power_zone_to_rapl_domain(power_zone);
id = contraint_to_pl(rd, cid);
if (id < 0) {
ret = id;
goto get_time_exit;
}
switch (rd->rpl[id].prim_id) {
case PL1_ENABLE:
ret = rapl_read_data_raw(rd, TIME_WINDOW1, true, &val);
break;
case PL2_ENABLE:
ret = rapl_read_data_raw(rd, TIME_WINDOW2, true, &val);
break;
default:
put_online_cpus();
return -EINVAL;
}
if (!ret)
*data = val;
get_time_exit:
put_online_cpus();
return ret;
}
static const char *get_constraint_name(struct powercap_zone *power_zone, int cid)
{
struct rapl_domain *rd;
int id;
rd = power_zone_to_rapl_domain(power_zone);
id = contraint_to_pl(rd, cid);
if (id >= 0)
return rd->rpl[id].name;
return NULL;
}
static int get_max_power(struct powercap_zone *power_zone, int id,
u64 *data)
{
struct rapl_domain *rd;
u64 val;
int prim;
int ret = 0;
get_online_cpus();
rd = power_zone_to_rapl_domain(power_zone);
switch (rd->rpl[id].prim_id) {
case PL1_ENABLE:
prim = THERMAL_SPEC_POWER;
break;
case PL2_ENABLE:
prim = MAX_POWER;
break;
default:
put_online_cpus();
return -EINVAL;
}
if (rapl_read_data_raw(rd, prim, true, &val))
ret = -EIO;
else
*data = val;
put_online_cpus();
return ret;
}
static const struct powercap_zone_constraint_ops constraint_ops = {
.set_power_limit_uw = set_power_limit,
.get_power_limit_uw = get_current_power_limit,
.set_time_window_us = set_time_window,
.get_time_window_us = get_time_window,
.get_max_power_uw = get_max_power,
.get_name = get_constraint_name,
};
/* called after domain detection and package level data are set */
static void rapl_init_domains(struct rapl_package *rp)
{
int i;
struct rapl_domain *rd = rp->domains;
for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
unsigned int mask = rp->domain_map & (1 << i);
switch (mask) {
case BIT(RAPL_DOMAIN_PACKAGE):
rd->name = rapl_domain_names[RAPL_DOMAIN_PACKAGE];
rd->id = RAPL_DOMAIN_PACKAGE;
rd->msrs[0] = MSR_PKG_POWER_LIMIT;
rd->msrs[1] = MSR_PKG_ENERGY_STATUS;
rd->msrs[2] = MSR_PKG_PERF_STATUS;
rd->msrs[3] = 0;
rd->msrs[4] = MSR_PKG_POWER_INFO;
rd->rpl[0].prim_id = PL1_ENABLE;
rd->rpl[0].name = pl1_name;
rd->rpl[1].prim_id = PL2_ENABLE;
rd->rpl[1].name = pl2_name;
break;
case BIT(RAPL_DOMAIN_PP0):
rd->name = rapl_domain_names[RAPL_DOMAIN_PP0];
rd->id = RAPL_DOMAIN_PP0;
rd->msrs[0] = MSR_PP0_POWER_LIMIT;
rd->msrs[1] = MSR_PP0_ENERGY_STATUS;
rd->msrs[2] = 0;
rd->msrs[3] = MSR_PP0_POLICY;
rd->msrs[4] = 0;
rd->rpl[0].prim_id = PL1_ENABLE;
rd->rpl[0].name = pl1_name;
break;
case BIT(RAPL_DOMAIN_PP1):
rd->name = rapl_domain_names[RAPL_DOMAIN_PP1];
rd->id = RAPL_DOMAIN_PP1;
rd->msrs[0] = MSR_PP1_POWER_LIMIT;
rd->msrs[1] = MSR_PP1_ENERGY_STATUS;
rd->msrs[2] = 0;
rd->msrs[3] = MSR_PP1_POLICY;
rd->msrs[4] = 0;
rd->rpl[0].prim_id = PL1_ENABLE;
rd->rpl[0].name = pl1_name;
break;
case BIT(RAPL_DOMAIN_DRAM):
rd->name = rapl_domain_names[RAPL_DOMAIN_DRAM];
rd->id = RAPL_DOMAIN_DRAM;
rd->msrs[0] = MSR_DRAM_POWER_LIMIT;
rd->msrs[1] = MSR_DRAM_ENERGY_STATUS;
rd->msrs[2] = MSR_DRAM_PERF_STATUS;
rd->msrs[3] = 0;
rd->msrs[4] = MSR_DRAM_POWER_INFO;
rd->rpl[0].prim_id = PL1_ENABLE;
rd->rpl[0].name = pl1_name;
rd->domain_energy_unit =
rapl_defaults->dram_domain_energy_unit;
if (rd->domain_energy_unit)
pr_info("DRAM domain energy unit %dpj\n",
rd->domain_energy_unit);
break;
}
if (mask) {
rd->rp = rp;
rd++;
}
}
}
static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
u64 value, int to_raw)
{
u64 units = 1;
struct rapl_package *rp = rd->rp;
u64 scale = 1;
switch (type) {
case POWER_UNIT:
units = rp->power_unit;
break;
case ENERGY_UNIT:
scale = ENERGY_UNIT_SCALE;
/* per domain unit takes precedence */
if (rd->domain_energy_unit)
units = rd->domain_energy_unit;
else
units = rp->energy_unit;
break;
case TIME_UNIT:
return rapl_defaults->compute_time_window(rp, value, to_raw);
case ARBITRARY_UNIT:
default:
return value;
};
if (to_raw)
return div64_u64(value, units) * scale;
value *= units;
return div64_u64(value, scale);
}
/* in the order of enum rapl_primitives */
static struct rapl_primitive_info rpi[] = {
/* name, mask, shift, msr index, unit divisor */
PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
RAPL_DOMAIN_MSR_STATUS, ENERGY_UNIT, 0),
PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
RAPL_DOMAIN_MSR_LIMIT, POWER_UNIT, 0),
PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
RAPL_DOMAIN_MSR_LIMIT, POWER_UNIT, 0),
PRIMITIVE_INFO_INIT(FW_LOCK, POWER_PP_LOCK, 31,
RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
RAPL_DOMAIN_MSR_LIMIT, TIME_UNIT, 0),
PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
RAPL_DOMAIN_MSR_LIMIT, TIME_UNIT, 0),
PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
0, RAPL_DOMAIN_MSR_INFO, POWER_UNIT, 0),
PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
RAPL_DOMAIN_MSR_INFO, POWER_UNIT, 0),
PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
RAPL_DOMAIN_MSR_INFO, POWER_UNIT, 0),
PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
RAPL_DOMAIN_MSR_INFO, TIME_UNIT, 0),
PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
RAPL_DOMAIN_MSR_PERF, TIME_UNIT, 0),
PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
RAPL_DOMAIN_MSR_POLICY, ARBITRARY_UNIT, 0),
/* non-hardware */
PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
RAPL_PRIMITIVE_DERIVED),
{NULL, 0, 0, 0},
};
/* Read primitive data based on its related struct rapl_primitive_info.
* if xlate flag is set, return translated data based on data units, i.e.
* time, energy, and power.
* RAPL MSRs are non-architectual and are laid out not consistently across
* domains. Here we use primitive info to allow writing consolidated access
* functions.
* For a given primitive, it is processed by MSR mask and shift. Unit conversion
* is pre-assigned based on RAPL unit MSRs read at init time.
* 63-------------------------- 31--------------------------- 0
* | xxxxx (mask) |
* | |<- shift ----------------|
* 63-------------------------- 31--------------------------- 0
*/
static int rapl_read_data_raw(struct rapl_domain *rd,
enum rapl_primitives prim,
bool xlate, u64 *data)
{
u64 value, final;
u32 msr;
struct rapl_primitive_info *rp = &rpi[prim];
int cpu;
if (!rp->name || rp->flag & RAPL_PRIMITIVE_DUMMY)
return -EINVAL;
msr = rd->msrs[rp->id];
if (!msr)
return -EINVAL;
cpu = rd->rp->lead_cpu;
/* special-case package domain, which uses a different bit*/
if (prim == FW_LOCK && rd->id == RAPL_DOMAIN_PACKAGE) {
rp->mask = POWER_PACKAGE_LOCK;
rp->shift = 63;
}
/* non-hardware data are collected by the polling thread */
if (rp->flag & RAPL_PRIMITIVE_DERIVED) {
*data = rd->rdd.primitives[prim];
return 0;
}
if (rdmsrl_safe_on_cpu(cpu, msr, &value)) {
pr_debug("failed to read msr 0x%x on cpu %d\n", msr, cpu);
return -EIO;
}
final = value & rp->mask;
final = final >> rp->shift;
if (xlate)
*data = rapl_unit_xlate(rd, rp->unit, final, 0);
else
*data = final;
return 0;
}
static int msrl_update_safe(u32 msr_no, u64 clear_mask, u64 set_mask)
{
int err;
u64 val;
err = rdmsrl_safe(msr_no, &val);
if (err)
goto out;
val &= ~clear_mask;
val |= set_mask;
err = wrmsrl_safe(msr_no, val);
out:
return err;
}
static void msrl_update_func(void *info)
{
struct msrl_action *ma = info;
ma->err = msrl_update_safe(ma->msr_no, ma->clear_mask, ma->set_mask);
}
/* Similar use of primitive info in the read counterpart */
static int rapl_write_data_raw(struct rapl_domain *rd,
enum rapl_primitives prim,
unsigned long long value)
{
struct rapl_primitive_info *rp = &rpi[prim];
int cpu;
u64 bits;
struct msrl_action ma;
int ret;
cpu = rd->rp->lead_cpu;
bits = rapl_unit_xlate(rd, rp->unit, value, 1);
bits <<= rp->shift;
bits &= rp->mask;
memset(&ma, 0, sizeof(ma));
ma.msr_no = rd->msrs[rp->id];
ma.clear_mask = rp->mask;
ma.set_mask = bits;
ret = smp_call_function_single(cpu, msrl_update_func, &ma, 1);
if (ret)
WARN_ON_ONCE(ret);
else
ret = ma.err;
return ret;
}
/*
* Raw RAPL data stored in MSRs are in certain scales. We need to
* convert them into standard units based on the units reported in
* the RAPL unit MSRs. This is specific to CPUs as the method to
* calculate units differ on different CPUs.
* We convert the units to below format based on CPUs.
* i.e.
* energy unit: picoJoules : Represented in picoJoules by default
* power unit : microWatts : Represented in milliWatts by default
* time unit : microseconds: Represented in seconds by default
*/
static int rapl_check_unit_core(struct rapl_package *rp, int cpu)
{
u64 msr_val;
u32 value;
if (rdmsrl_safe_on_cpu(cpu, MSR_RAPL_POWER_UNIT, &msr_val)) {
pr_err("Failed to read power unit MSR 0x%x on CPU %d, exit.\n",
MSR_RAPL_POWER_UNIT, cpu);
return -ENODEV;
}
value = (msr_val & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
rp->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
value = (msr_val & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
rp->power_unit = 1000000 / (1 << value);
value = (msr_val & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
rp->time_unit = 1000000 / (1 << value);
pr_debug("Core CPU package %d energy=%dpJ, time=%dus, power=%duW\n",
rp->id, rp->energy_unit, rp->time_unit, rp->power_unit);
return 0;
}
static int rapl_check_unit_atom(struct rapl_package *rp, int cpu)
{
u64 msr_val;
u32 value;
if (rdmsrl_safe_on_cpu(cpu, MSR_RAPL_POWER_UNIT, &msr_val)) {
pr_err("Failed to read power unit MSR 0x%x on CPU %d, exit.\n",
MSR_RAPL_POWER_UNIT, cpu);
return -ENODEV;
}
value = (msr_val & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
rp->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
value = (msr_val & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
rp->power_unit = (1 << value) * 1000;
value = (msr_val & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
rp->time_unit = 1000000 / (1 << value);
pr_debug("Atom package %d energy=%dpJ, time=%dus, power=%duW\n",
rp->id, rp->energy_unit, rp->time_unit, rp->power_unit);
return 0;
}
static void power_limit_irq_save_cpu(void *info)
{
u32 l, h = 0;
struct rapl_package *rp = (struct rapl_package *)info;
/* save the state of PLN irq mask bit before disabling it */
rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
}
l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
}
/* REVISIT:
* When package power limit is set artificially low by RAPL, LVT
* thermal interrupt for package power limit should be ignored
* since we are not really exceeding the real limit. The intention
* is to avoid excessive interrupts while we are trying to save power.
* A useful feature might be routing the package_power_limit interrupt
* to userspace via eventfd. once we have a usecase, this is simple
* to do by adding an atomic notifier.
*/
static void package_power_limit_irq_save(struct rapl_package *rp)
{
if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
return;
smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
}
/*
* Restore per package power limit interrupt enable state. Called from cpu
* hotplug code on package removal.
*/
static void package_power_limit_irq_restore(struct rapl_package *rp)
{
u32 l, h;
if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
return;
/* irq enable state not saved, nothing to restore */
if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
return;
rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
l |= PACKAGE_THERM_INT_PLN_ENABLE;
else
l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
}
static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
{
int nr_powerlimit = find_nr_power_limit(rd);
/* always enable clamp such that p-state can go below OS requested
* range. power capping priority over guranteed frequency.
*/
rapl_write_data_raw(rd, PL1_CLAMP, mode);
/* some domains have pl2 */
if (nr_powerlimit > 1) {
rapl_write_data_raw(rd, PL2_ENABLE, mode);
rapl_write_data_raw(rd, PL2_CLAMP, mode);
}
}
static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
{
static u32 power_ctrl_orig_val;
u32 mdata;
if (!rapl_defaults->floor_freq_reg_addr) {
pr_err("Invalid floor frequency config register\n");
return;
}
if (!power_ctrl_orig_val)
iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
rapl_defaults->floor_freq_reg_addr,
&power_ctrl_orig_val);
mdata = power_ctrl_orig_val;
if (enable) {
mdata &= ~(0x7f << 8);
mdata |= 1 << 8;
}
iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
rapl_defaults->floor_freq_reg_addr, mdata);
}
static u64 rapl_compute_time_window_core(struct rapl_package *rp, u64 value,
bool to_raw)
{
u64 f, y; /* fraction and exp. used for time unit */
/*
* Special processing based on 2^Y*(1+F/4), refer
* to Intel Software Developer's manual Vol.3B: CH 14.9.3.
*/
if (!to_raw) {
f = (value & 0x60) >> 5;
y = value & 0x1f;
value = (1 << y) * (4 + f) * rp->time_unit / 4;
} else {
do_div(value, rp->time_unit);
y = ilog2(value);
f = div64_u64(4 * (value - (1 << y)), 1 << y);
value = (y & 0x1f) | ((f & 0x3) << 5);
}
return value;
}
static u64 rapl_compute_time_window_atom(struct rapl_package *rp, u64 value,
bool to_raw)
{
/*
* Atom time unit encoding is straight forward val * time_unit,
* where time_unit is default to 1 sec. Never 0.
*/
if (!to_raw)
return (value) ? value *= rp->time_unit : rp->time_unit;
else
value = div64_u64(value, rp->time_unit);
return value;
}
static const struct rapl_defaults rapl_defaults_core = {
.floor_freq_reg_addr = 0,
.check_unit = rapl_check_unit_core,
.set_floor_freq = set_floor_freq_default,
.compute_time_window = rapl_compute_time_window_core,
};
static const struct rapl_defaults rapl_defaults_hsw_server = {
.check_unit = rapl_check_unit_core,
.set_floor_freq = set_floor_freq_default,
.compute_time_window = rapl_compute_time_window_core,
.dram_domain_energy_unit = 15300,
};
static const struct rapl_defaults rapl_defaults_byt = {
.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
.check_unit = rapl_check_unit_atom,
.set_floor_freq = set_floor_freq_atom,
.compute_time_window = rapl_compute_time_window_atom,
};
static const struct rapl_defaults rapl_defaults_tng = {
.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
.check_unit = rapl_check_unit_atom,
.set_floor_freq = set_floor_freq_atom,
.compute_time_window = rapl_compute_time_window_atom,
};
static const struct rapl_defaults rapl_defaults_ann = {
.floor_freq_reg_addr = 0,
.check_unit = rapl_check_unit_atom,
.set_floor_freq = NULL,
.compute_time_window = rapl_compute_time_window_atom,
};
static const struct rapl_defaults rapl_defaults_cht = {
.floor_freq_reg_addr = 0,
.check_unit = rapl_check_unit_atom,
.set_floor_freq = NULL,
.compute_time_window = rapl_compute_time_window_atom,
};
static const struct x86_cpu_id rapl_ids[] __initconst = {
INTEL_CPU_FAM6(SANDYBRIDGE, rapl_defaults_core),
INTEL_CPU_FAM6(SANDYBRIDGE_X, rapl_defaults_core),
INTEL_CPU_FAM6(IVYBRIDGE, rapl_defaults_core),
INTEL_CPU_FAM6(IVYBRIDGE_X, rapl_defaults_core),
INTEL_CPU_FAM6(HASWELL_CORE, rapl_defaults_core),
INTEL_CPU_FAM6(HASWELL_ULT, rapl_defaults_core),
INTEL_CPU_FAM6(HASWELL_GT3E, rapl_defaults_core),
INTEL_CPU_FAM6(HASWELL_X, rapl_defaults_hsw_server),
INTEL_CPU_FAM6(BROADWELL_CORE, rapl_defaults_core),
INTEL_CPU_FAM6(BROADWELL_GT3E, rapl_defaults_core),
INTEL_CPU_FAM6(BROADWELL_XEON_D, rapl_defaults_core),
INTEL_CPU_FAM6(BROADWELL_X, rapl_defaults_hsw_server),
INTEL_CPU_FAM6(SKYLAKE_DESKTOP, rapl_defaults_core),
INTEL_CPU_FAM6(SKYLAKE_MOBILE, rapl_defaults_core),
INTEL_CPU_FAM6(SKYLAKE_X, rapl_defaults_hsw_server),
INTEL_CPU_FAM6(KABYLAKE_MOBILE, rapl_defaults_core),
INTEL_CPU_FAM6(KABYLAKE_DESKTOP, rapl_defaults_core),
INTEL_CPU_FAM6(CANNONLAKE_MOBILE, rapl_defaults_core),
INTEL_CPU_FAM6(ICELAKE_MOBILE, rapl_defaults_core),
Merge branch 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull perf updates from Ingo Molnar: "The main updates in this cycle were: - Lots of perf tooling changes too voluminous to list (big perf trace and perf stat improvements, lots of libtraceevent reorganization, etc.), so I'll list the authors and refer to the changelog for details: Benjamin Peterson, Jérémie Galarneau, Kim Phillips, Peter Zijlstra, Ravi Bangoria, Sangwon Hong, Sean V Kelley, Steven Rostedt, Thomas Gleixner, Ding Xiang, Eduardo Habkost, Thomas Richter, Andi Kleen, Sanskriti Sharma, Adrian Hunter, Tzvetomir Stoyanov, Arnaldo Carvalho de Melo, Jiri Olsa. ... with the bulk of the changes written by Jiri Olsa, Tzvetomir Stoyanov and Arnaldo Carvalho de Melo. - Continued intel_rdt work with a focus on playing well with perf events. This also imported some non-perf RDT work due to dependencies. (Reinette Chatre) - Implement counter freezing for Arch Perfmon v4 (Skylake and newer). This allows to speed up the PMI handler by avoiding unnecessary MSR writes and make it more accurate. (Andi Kleen) - kprobes cleanups and simplification (Masami Hiramatsu) - Intel Goldmont PMU updates (Kan Liang) - ... plus misc other fixes and updates" * 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (155 commits) kprobes/x86: Use preempt_enable() in optimized_callback() x86/intel_rdt: Prevent pseudo-locking from using stale pointers kprobes, x86/ptrace.h: Make regs_get_kernel_stack_nth() not fault on bad stack perf/x86/intel: Export mem events only if there's PEBS support x86/cpu: Drop pointless static qualifier in punit_dev_state_show() x86/intel_rdt: Fix initial allocation to consider CDP x86/intel_rdt: CBM overlap should also check for overlap with CDP peer x86/intel_rdt: Introduce utility to obtain CDP peer tools lib traceevent, perf tools: Move struct tep_handler definition in a local header file tools lib traceevent: Separate out tep_strerror() for strerror_r() issues perf python: More portable way to make CFLAGS work with clang perf python: Make clang_has_option() work on Python 3 perf tools: Free temporary 'sys' string in read_event_files() perf tools: Avoid double free in read_event_file() perf tools: Free 'printk' string in parse_ftrace_printk() perf tools: Cleanup trace-event-info 'tdata' leak perf strbuf: Match va_{add,copy} with va_end perf test: S390 does not support watchpoints in test 22 perf auxtrace: Include missing asm/bitsperlong.h to get BITS_PER_LONG tools include: Adopt linux/bits.h ...
2018-10-23 20:32:18 +08:00
INTEL_CPU_FAM6(ATOM_SILVERMONT, rapl_defaults_byt),
INTEL_CPU_FAM6(ATOM_AIRMONT, rapl_defaults_cht),
Merge branch 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull perf updates from Ingo Molnar: "The main updates in this cycle were: - Lots of perf tooling changes too voluminous to list (big perf trace and perf stat improvements, lots of libtraceevent reorganization, etc.), so I'll list the authors and refer to the changelog for details: Benjamin Peterson, Jérémie Galarneau, Kim Phillips, Peter Zijlstra, Ravi Bangoria, Sangwon Hong, Sean V Kelley, Steven Rostedt, Thomas Gleixner, Ding Xiang, Eduardo Habkost, Thomas Richter, Andi Kleen, Sanskriti Sharma, Adrian Hunter, Tzvetomir Stoyanov, Arnaldo Carvalho de Melo, Jiri Olsa. ... with the bulk of the changes written by Jiri Olsa, Tzvetomir Stoyanov and Arnaldo Carvalho de Melo. - Continued intel_rdt work with a focus on playing well with perf events. This also imported some non-perf RDT work due to dependencies. (Reinette Chatre) - Implement counter freezing for Arch Perfmon v4 (Skylake and newer). This allows to speed up the PMI handler by avoiding unnecessary MSR writes and make it more accurate. (Andi Kleen) - kprobes cleanups and simplification (Masami Hiramatsu) - Intel Goldmont PMU updates (Kan Liang) - ... plus misc other fixes and updates" * 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (155 commits) kprobes/x86: Use preempt_enable() in optimized_callback() x86/intel_rdt: Prevent pseudo-locking from using stale pointers kprobes, x86/ptrace.h: Make regs_get_kernel_stack_nth() not fault on bad stack perf/x86/intel: Export mem events only if there's PEBS support x86/cpu: Drop pointless static qualifier in punit_dev_state_show() x86/intel_rdt: Fix initial allocation to consider CDP x86/intel_rdt: CBM overlap should also check for overlap with CDP peer x86/intel_rdt: Introduce utility to obtain CDP peer tools lib traceevent, perf tools: Move struct tep_handler definition in a local header file tools lib traceevent: Separate out tep_strerror() for strerror_r() issues perf python: More portable way to make CFLAGS work with clang perf python: Make clang_has_option() work on Python 3 perf tools: Free temporary 'sys' string in read_event_files() perf tools: Avoid double free in read_event_file() perf tools: Free 'printk' string in parse_ftrace_printk() perf tools: Cleanup trace-event-info 'tdata' leak perf strbuf: Match va_{add,copy} with va_end perf test: S390 does not support watchpoints in test 22 perf auxtrace: Include missing asm/bitsperlong.h to get BITS_PER_LONG tools include: Adopt linux/bits.h ...
2018-10-23 20:32:18 +08:00
INTEL_CPU_FAM6(ATOM_SILVERMONT_MID, rapl_defaults_tng),
INTEL_CPU_FAM6(ATOM_AIRMONT_MID, rapl_defaults_ann),
INTEL_CPU_FAM6(ATOM_GOLDMONT, rapl_defaults_core),
Merge branch 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull perf updates from Ingo Molnar: "The main updates in this cycle were: - Lots of perf tooling changes too voluminous to list (big perf trace and perf stat improvements, lots of libtraceevent reorganization, etc.), so I'll list the authors and refer to the changelog for details: Benjamin Peterson, Jérémie Galarneau, Kim Phillips, Peter Zijlstra, Ravi Bangoria, Sangwon Hong, Sean V Kelley, Steven Rostedt, Thomas Gleixner, Ding Xiang, Eduardo Habkost, Thomas Richter, Andi Kleen, Sanskriti Sharma, Adrian Hunter, Tzvetomir Stoyanov, Arnaldo Carvalho de Melo, Jiri Olsa. ... with the bulk of the changes written by Jiri Olsa, Tzvetomir Stoyanov and Arnaldo Carvalho de Melo. - Continued intel_rdt work with a focus on playing well with perf events. This also imported some non-perf RDT work due to dependencies. (Reinette Chatre) - Implement counter freezing for Arch Perfmon v4 (Skylake and newer). This allows to speed up the PMI handler by avoiding unnecessary MSR writes and make it more accurate. (Andi Kleen) - kprobes cleanups and simplification (Masami Hiramatsu) - Intel Goldmont PMU updates (Kan Liang) - ... plus misc other fixes and updates" * 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (155 commits) kprobes/x86: Use preempt_enable() in optimized_callback() x86/intel_rdt: Prevent pseudo-locking from using stale pointers kprobes, x86/ptrace.h: Make regs_get_kernel_stack_nth() not fault on bad stack perf/x86/intel: Export mem events only if there's PEBS support x86/cpu: Drop pointless static qualifier in punit_dev_state_show() x86/intel_rdt: Fix initial allocation to consider CDP x86/intel_rdt: CBM overlap should also check for overlap with CDP peer x86/intel_rdt: Introduce utility to obtain CDP peer tools lib traceevent, perf tools: Move struct tep_handler definition in a local header file tools lib traceevent: Separate out tep_strerror() for strerror_r() issues perf python: More portable way to make CFLAGS work with clang perf python: Make clang_has_option() work on Python 3 perf tools: Free temporary 'sys' string in read_event_files() perf tools: Avoid double free in read_event_file() perf tools: Free 'printk' string in parse_ftrace_printk() perf tools: Cleanup trace-event-info 'tdata' leak perf strbuf: Match va_{add,copy} with va_end perf test: S390 does not support watchpoints in test 22 perf auxtrace: Include missing asm/bitsperlong.h to get BITS_PER_LONG tools include: Adopt linux/bits.h ...
2018-10-23 20:32:18 +08:00
INTEL_CPU_FAM6(ATOM_GOLDMONT_PLUS, rapl_defaults_core),
INTEL_CPU_FAM6(ATOM_GOLDMONT_X, rapl_defaults_core),
INTEL_CPU_FAM6(ATOM_TREMONT_X, rapl_defaults_core),
INTEL_CPU_FAM6(XEON_PHI_KNL, rapl_defaults_hsw_server),
INTEL_CPU_FAM6(XEON_PHI_KNM, rapl_defaults_hsw_server),
{}
};
MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
/* Read once for all raw primitive data for domains */
static void rapl_update_domain_data(struct rapl_package *rp)
{
int dmn, prim;
u64 val;
for (dmn = 0; dmn < rp->nr_domains; dmn++) {
pr_debug("update package %d domain %s data\n", rp->id,
rp->domains[dmn].name);
/* exclude non-raw primitives */
for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++) {
if (!rapl_read_data_raw(&rp->domains[dmn], prim,
rpi[prim].unit, &val))
rp->domains[dmn].rdd.primitives[prim] = val;
}
}
}
static void rapl_unregister_powercap(void)
{
2016-04-18 06:03:01 +08:00
if (platform_rapl_domain) {
powercap_unregister_zone(control_type,
&platform_rapl_domain->power_zone);
kfree(platform_rapl_domain);
}
powercap_unregister_control_type(control_type);
}
static int rapl_package_register_powercap(struct rapl_package *rp)
{
struct rapl_domain *rd;
char dev_name[17]; /* max domain name = 7 + 1 + 8 for int + 1 for null*/
struct powercap_zone *power_zone = NULL;
int nr_pl, ret;
/* Update the domain data of the new package */
rapl_update_domain_data(rp);
/* first we register package domain as the parent zone*/
for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
if (rd->id == RAPL_DOMAIN_PACKAGE) {
nr_pl = find_nr_power_limit(rd);
pr_debug("register socket %d package domain %s\n",
rp->id, rd->name);
memset(dev_name, 0, sizeof(dev_name));
snprintf(dev_name, sizeof(dev_name), "%s-%d",
rd->name, rp->id);
power_zone = powercap_register_zone(&rd->power_zone,
control_type,
dev_name, NULL,
&zone_ops[rd->id],
nr_pl,
&constraint_ops);
if (IS_ERR(power_zone)) {
pr_debug("failed to register package, %d\n",
rp->id);
return PTR_ERR(power_zone);
}
/* track parent zone in per package/socket data */
rp->power_zone = power_zone;
/* done, only one package domain per socket */
break;
}
}
if (!power_zone) {
pr_err("no package domain found, unknown topology!\n");
return -ENODEV;
}
/* now register domains as children of the socket/package*/
for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
if (rd->id == RAPL_DOMAIN_PACKAGE)
continue;
/* number of power limits per domain varies */
nr_pl = find_nr_power_limit(rd);
power_zone = powercap_register_zone(&rd->power_zone,
control_type, rd->name,
rp->power_zone,
&zone_ops[rd->id], nr_pl,
&constraint_ops);
if (IS_ERR(power_zone)) {
pr_debug("failed to register power_zone, %d:%s:%s\n",
rp->id, rd->name, dev_name);
ret = PTR_ERR(power_zone);
goto err_cleanup;
}
}
return 0;
err_cleanup:
/*
* Clean up previously initialized domains within the package if we
* failed after the first domain setup.
*/
while (--rd >= rp->domains) {
pr_debug("unregister package %d domain %s\n", rp->id, rd->name);
powercap_unregister_zone(control_type, &rd->power_zone);
}
return ret;
}
static int __init rapl_register_psys(void)
2016-04-18 06:03:01 +08:00
{
struct rapl_domain *rd;
struct powercap_zone *power_zone;
u64 val;
if (rdmsrl_safe_on_cpu(0, MSR_PLATFORM_ENERGY_STATUS, &val) || !val)
return -ENODEV;
if (rdmsrl_safe_on_cpu(0, MSR_PLATFORM_POWER_LIMIT, &val) || !val)
return -ENODEV;
rd = kzalloc(sizeof(*rd), GFP_KERNEL);
if (!rd)
return -ENOMEM;
rd->name = rapl_domain_names[RAPL_DOMAIN_PLATFORM];
rd->id = RAPL_DOMAIN_PLATFORM;
rd->msrs[0] = MSR_PLATFORM_POWER_LIMIT;
rd->msrs[1] = MSR_PLATFORM_ENERGY_STATUS;
rd->rpl[0].prim_id = PL1_ENABLE;
rd->rpl[0].name = pl1_name;
rd->rpl[1].prim_id = PL2_ENABLE;
rd->rpl[1].name = pl2_name;
rd->rp = find_package_by_id(0);
power_zone = powercap_register_zone(&rd->power_zone, control_type,
"psys", NULL,
&zone_ops[RAPL_DOMAIN_PLATFORM],
2, &constraint_ops);
if (IS_ERR(power_zone)) {
kfree(rd);
return PTR_ERR(power_zone);
}
platform_rapl_domain = rd;
return 0;
}
static int __init rapl_register_powercap(void)
{
control_type = powercap_register_control_type(NULL, "intel-rapl", NULL);
if (IS_ERR(control_type)) {
pr_debug("failed to register powercap control_type.\n");
return PTR_ERR(control_type);
}
return 0;
}
static int rapl_check_domain(int cpu, int domain)
{
unsigned msr;
u64 val = 0;
switch (domain) {
case RAPL_DOMAIN_PACKAGE:
msr = MSR_PKG_ENERGY_STATUS;
break;
case RAPL_DOMAIN_PP0:
msr = MSR_PP0_ENERGY_STATUS;
break;
case RAPL_DOMAIN_PP1:
msr = MSR_PP1_ENERGY_STATUS;
break;
case RAPL_DOMAIN_DRAM:
msr = MSR_DRAM_ENERGY_STATUS;
break;
2016-04-18 06:03:01 +08:00
case RAPL_DOMAIN_PLATFORM:
/* PSYS(PLATFORM) is not a CPU domain, so avoid printng error */
return -EINVAL;
default:
pr_err("invalid domain id %d\n", domain);
return -EINVAL;
}
/* make sure domain counters are available and contains non-zero
* values, otherwise skip it.
*/
if (rdmsrl_safe_on_cpu(cpu, msr, &val) || !val)
return -ENODEV;
return 0;
}
/*
* Check if power limits are available. Two cases when they are not available:
* 1. Locked by BIOS, in this case we still provide read-only access so that
* users can see what limit is set by the BIOS.
* 2. Some CPUs make some domains monitoring only which means PLx MSRs may not
* exist at all. In this case, we do not show the contraints in powercap.
*
* Called after domains are detected and initialized.
*/
static void rapl_detect_powerlimit(struct rapl_domain *rd)
{
u64 val64;
int i;
/* check if the domain is locked by BIOS, ignore if MSR doesn't exist */
if (!rapl_read_data_raw(rd, FW_LOCK, false, &val64)) {
if (val64) {
pr_info("RAPL package %d domain %s locked by BIOS\n",
rd->rp->id, rd->name);
rd->state |= DOMAIN_STATE_BIOS_LOCKED;
}
}
/* check if power limit MSRs exists, otherwise domain is monitoring only */
for (i = 0; i < NR_POWER_LIMITS; i++) {
int prim = rd->rpl[i].prim_id;
if (rapl_read_data_raw(rd, prim, false, &val64))
rd->rpl[i].name = NULL;
}
}
/* Detect active and valid domains for the given CPU, caller must
* ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
*/
static int rapl_detect_domains(struct rapl_package *rp, int cpu)
{
struct rapl_domain *rd;
int i;
for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
/* use physical package id to read counters */
if (!rapl_check_domain(cpu, i)) {
rp->domain_map |= 1 << i;
pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
}
}
rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX);
if (!rp->nr_domains) {
pr_debug("no valid rapl domains found in package %d\n", rp->id);
return -ENODEV;
}
pr_debug("found %d domains on package %d\n", rp->nr_domains, rp->id);
rp->domains = kcalloc(rp->nr_domains + 1, sizeof(struct rapl_domain),
GFP_KERNEL);
if (!rp->domains)
return -ENOMEM;
rapl_init_domains(rp);
for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++)
rapl_detect_powerlimit(rd);
return 0;
}
/* called from CPU hotplug notifier, hotplug lock held */
static void rapl_remove_package(struct rapl_package *rp)
{
struct rapl_domain *rd, *rd_package = NULL;
package_power_limit_irq_restore(rp);
for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
rapl_write_data_raw(rd, PL1_ENABLE, 0);
rapl_write_data_raw(rd, PL1_CLAMP, 0);
if (find_nr_power_limit(rd) > 1) {
rapl_write_data_raw(rd, PL2_ENABLE, 0);
rapl_write_data_raw(rd, PL2_CLAMP, 0);
}
if (rd->id == RAPL_DOMAIN_PACKAGE) {
rd_package = rd;
continue;
}
pr_debug("remove package, undo power limit on %d: %s\n",
rp->id, rd->name);
powercap_unregister_zone(control_type, &rd->power_zone);
}
/* do parent zone last */
powercap_unregister_zone(control_type, &rd_package->power_zone);
list_del(&rp->plist);
kfree(rp);
}
/* called from CPU hotplug notifier, hotplug lock held */
static struct rapl_package *rapl_add_package(int cpu, int pkgid)
{
struct rapl_package *rp;
int ret;
rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
if (!rp)
return ERR_PTR(-ENOMEM);
/* add the new package to the list */
rp->id = pkgid;
rp->lead_cpu = cpu;
/* check if the package contains valid domains */
if (rapl_detect_domains(rp, cpu) ||
rapl_defaults->check_unit(rp, cpu)) {
ret = -ENODEV;
goto err_free_package;
}
ret = rapl_package_register_powercap(rp);
if (!ret) {
INIT_LIST_HEAD(&rp->plist);
list_add(&rp->plist, &rapl_packages);
return rp;
}
err_free_package:
kfree(rp->domains);
kfree(rp);
return ERR_PTR(ret);
}
/* Handles CPU hotplug on multi-socket systems.
* If a CPU goes online as the first CPU of the physical package
* we add the RAPL package to the system. Similarly, when the last
* CPU of the package is removed, we remove the RAPL package and its
* associated domains. Cooling devices are handled accordingly at
* per-domain level.
*/
static int rapl_cpu_online(unsigned int cpu)
{
int pkgid = topology_physical_package_id(cpu);
struct rapl_package *rp;
rp = find_package_by_id(pkgid);
if (!rp) {
rp = rapl_add_package(cpu, pkgid);
if (IS_ERR(rp))
return PTR_ERR(rp);
}
cpumask_set_cpu(cpu, &rp->cpumask);
return 0;
}
static int rapl_cpu_down_prep(unsigned int cpu)
{
int pkgid = topology_physical_package_id(cpu);
struct rapl_package *rp;
int lead_cpu;
rp = find_package_by_id(pkgid);
if (!rp)
return 0;
cpumask_clear_cpu(cpu, &rp->cpumask);
lead_cpu = cpumask_first(&rp->cpumask);
if (lead_cpu >= nr_cpu_ids)
rapl_remove_package(rp);
else if (rp->lead_cpu == cpu)
rp->lead_cpu = lead_cpu;
return 0;
}
static enum cpuhp_state pcap_rapl_online;
static void power_limit_state_save(void)
{
struct rapl_package *rp;
struct rapl_domain *rd;
int nr_pl, ret, i;
get_online_cpus();
list_for_each_entry(rp, &rapl_packages, plist) {
if (!rp->power_zone)
continue;
rd = power_zone_to_rapl_domain(rp->power_zone);
nr_pl = find_nr_power_limit(rd);
for (i = 0; i < nr_pl; i++) {
switch (rd->rpl[i].prim_id) {
case PL1_ENABLE:
ret = rapl_read_data_raw(rd,
POWER_LIMIT1,
true,
&rd->rpl[i].last_power_limit);
if (ret)
rd->rpl[i].last_power_limit = 0;
break;
case PL2_ENABLE:
ret = rapl_read_data_raw(rd,
POWER_LIMIT2,
true,
&rd->rpl[i].last_power_limit);
if (ret)
rd->rpl[i].last_power_limit = 0;
break;
}
}
}
put_online_cpus();
}
static void power_limit_state_restore(void)
{
struct rapl_package *rp;
struct rapl_domain *rd;
int nr_pl, i;
get_online_cpus();
list_for_each_entry(rp, &rapl_packages, plist) {
if (!rp->power_zone)
continue;
rd = power_zone_to_rapl_domain(rp->power_zone);
nr_pl = find_nr_power_limit(rd);
for (i = 0; i < nr_pl; i++) {
switch (rd->rpl[i].prim_id) {
case PL1_ENABLE:
if (rd->rpl[i].last_power_limit)
rapl_write_data_raw(rd,
POWER_LIMIT1,
rd->rpl[i].last_power_limit);
break;
case PL2_ENABLE:
if (rd->rpl[i].last_power_limit)
rapl_write_data_raw(rd,
POWER_LIMIT2,
rd->rpl[i].last_power_limit);
break;
}
}
}
put_online_cpus();
}
static int rapl_pm_callback(struct notifier_block *nb,
unsigned long mode, void *_unused)
{
switch (mode) {
case PM_SUSPEND_PREPARE:
power_limit_state_save();
break;
case PM_POST_SUSPEND:
power_limit_state_restore();
break;
}
return NOTIFY_OK;
}
static struct notifier_block rapl_pm_notifier = {
.notifier_call = rapl_pm_callback,
};
static int __init rapl_init(void)
{
const struct x86_cpu_id *id;
int ret;
id = x86_match_cpu(rapl_ids);
if (!id) {
pr_err("driver does not support CPU family %d model %d\n",
boot_cpu_data.x86, boot_cpu_data.x86_model);
return -ENODEV;
}
rapl_defaults = (struct rapl_defaults *)id->driver_data;
ret = rapl_register_powercap();
if (ret)
return ret;
ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powercap/rapl:online",
rapl_cpu_online, rapl_cpu_down_prep);
if (ret < 0)
goto err_unreg;
pcap_rapl_online = ret;
/* Don't bail out if PSys is not supported */
rapl_register_psys();
ret = register_pm_notifier(&rapl_pm_notifier);
if (ret)
goto err_unreg_all;
return 0;
err_unreg_all:
cpuhp_remove_state(pcap_rapl_online);
err_unreg:
rapl_unregister_powercap();
return ret;
}
static void __exit rapl_exit(void)
{
unregister_pm_notifier(&rapl_pm_notifier);
cpuhp_remove_state(pcap_rapl_online);
rapl_unregister_powercap();
}
module_init(rapl_init);
module_exit(rapl_exit);
MODULE_DESCRIPTION("Driver for Intel RAPL (Running Average Power Limit)");
MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>");
MODULE_LICENSE("GPL v2");