OpenCloudOS-Kernel/drivers/mtd/nand/raw/socrates_nand.c

243 lines
5.6 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright © 2008 Ilya Yanok, Emcraft Systems
*/
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/partitions.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/io.h>
#define FPGA_NAND_CMD_MASK (0x7 << 28)
#define FPGA_NAND_CMD_COMMAND (0x0 << 28)
#define FPGA_NAND_CMD_ADDR (0x1 << 28)
#define FPGA_NAND_CMD_READ (0x2 << 28)
#define FPGA_NAND_CMD_WRITE (0x3 << 28)
#define FPGA_NAND_BUSY (0x1 << 15)
#define FPGA_NAND_ENABLE (0x1 << 31)
#define FPGA_NAND_DATA_SHIFT 16
struct socrates_nand_host {
struct nand_controller controller;
struct nand_chip nand_chip;
void __iomem *io_base;
struct device *dev;
};
/**
* socrates_nand_write_buf - write buffer to chip
* @this: NAND chip object
* @buf: data buffer
* @len: number of bytes to write
*/
static void socrates_nand_write_buf(struct nand_chip *this, const uint8_t *buf,
int len)
{
int i;
struct socrates_nand_host *host = nand_get_controller_data(this);
for (i = 0; i < len; i++) {
out_be32(host->io_base, FPGA_NAND_ENABLE |
FPGA_NAND_CMD_WRITE |
(buf[i] << FPGA_NAND_DATA_SHIFT));
}
}
/**
* socrates_nand_read_buf - read chip data into buffer
* @this: NAND chip object
* @buf: buffer to store date
* @len: number of bytes to read
*/
static void socrates_nand_read_buf(struct nand_chip *this, uint8_t *buf,
int len)
{
int i;
struct socrates_nand_host *host = nand_get_controller_data(this);
uint32_t val;
val = FPGA_NAND_ENABLE | FPGA_NAND_CMD_READ;
out_be32(host->io_base, val);
for (i = 0; i < len; i++) {
buf[i] = (in_be32(host->io_base) >>
FPGA_NAND_DATA_SHIFT) & 0xff;
}
}
/**
* socrates_nand_read_byte - read one byte from the chip
* @mtd: MTD device structure
*/
static uint8_t socrates_nand_read_byte(struct nand_chip *this)
{
uint8_t byte;
socrates_nand_read_buf(this, &byte, sizeof(byte));
return byte;
}
/*
* Hardware specific access to control-lines
*/
static void socrates_nand_cmd_ctrl(struct nand_chip *nand_chip, int cmd,
unsigned int ctrl)
{
struct socrates_nand_host *host = nand_get_controller_data(nand_chip);
uint32_t val;
if (cmd == NAND_CMD_NONE)
return;
if (ctrl & NAND_CLE)
val = FPGA_NAND_CMD_COMMAND;
else
val = FPGA_NAND_CMD_ADDR;
if (ctrl & NAND_NCE)
val |= FPGA_NAND_ENABLE;
val |= (cmd & 0xff) << FPGA_NAND_DATA_SHIFT;
out_be32(host->io_base, val);
}
/*
* Read the Device Ready pin.
*/
static int socrates_nand_device_ready(struct nand_chip *nand_chip)
{
struct socrates_nand_host *host = nand_get_controller_data(nand_chip);
if (in_be32(host->io_base) & FPGA_NAND_BUSY)
return 0; /* busy */
return 1;
}
static int socrates_attach_chip(struct nand_chip *chip)
{
mtd: rawnand: socrates: Keep the driver compatible with on-die ECC engines Following the introduction of the generic ECC engine infrastructure, it was necessary to reorganize the code and move the ECC configuration in the ->attach_chip() hook. Failing to do that properly lead to a first series of fixes supposed to stabilize the situation. Unfortunately, this only fixed the use of software ECC engines, preventing any other kind of engine to be used, including on-die ones. It is now time to (finally) fix the situation by ensuring that we still provide a default (eg. software ECC) but will still support different ECC engines such as on-die ECC engines if properly described in the device tree. There are no changes needed on the core side in order to do this, but we just need to leverage the logic there which allows: 1- a subsystem default (set to Host engines in the raw NAND world) 2- a driver specific default (here set to software ECC engines) 3- any type of engine requested by the user (ie. described in the DT) As the raw NAND subsystem has not yet been fully converted to the ECC engine infrastructure, in order to provide a default ECC engine for this driver we need to set chip->ecc.engine_type *before* calling nand_scan(). During the initialization step, the core will consider this entry as the default engine for this driver. This value may of course be overloaded by the user if the usual DT properties are provided. Fixes: b36bf0a0fe5d ("mtd: rawnand: socrates: Move the ECC initialization to ->attach_chip()") Cc: stable@vger.kernel.org Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20210928222258.199726-9-miquel.raynal@bootlin.com
2021-09-29 06:22:47 +08:00
if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN)
chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
return 0;
}
static const struct nand_controller_ops socrates_ops = {
.attach_chip = socrates_attach_chip,
};
/*
* Probe for the NAND device.
*/
static int socrates_nand_probe(struct platform_device *ofdev)
{
struct socrates_nand_host *host;
struct mtd_info *mtd;
struct nand_chip *nand_chip;
int res;
/* Allocate memory for the device structure (and zero it) */
host = devm_kzalloc(&ofdev->dev, sizeof(*host), GFP_KERNEL);
if (!host)
return -ENOMEM;
host->io_base = of_iomap(ofdev->dev.of_node, 0);
if (host->io_base == NULL) {
dev_err(&ofdev->dev, "ioremap failed\n");
return -EIO;
}
nand_chip = &host->nand_chip;
mtd = nand_to_mtd(nand_chip);
host->dev = &ofdev->dev;
nand_controller_init(&host->controller);
host->controller.ops = &socrates_ops;
nand_chip->controller = &host->controller;
/* link the private data structures */
nand_set_controller_data(nand_chip, host);
nand_set_flash_node(nand_chip, ofdev->dev.of_node);
mtd->name = "socrates_nand";
mtd->dev.parent = &ofdev->dev;
nand_chip->legacy.cmd_ctrl = socrates_nand_cmd_ctrl;
nand_chip->legacy.read_byte = socrates_nand_read_byte;
nand_chip->legacy.write_buf = socrates_nand_write_buf;
nand_chip->legacy.read_buf = socrates_nand_read_buf;
nand_chip->legacy.dev_ready = socrates_nand_device_ready;
/* TODO: I have no idea what real delay is. */
nand_chip->legacy.chip_delay = 20; /* 20us command delay time */
mtd: rawnand: socrates: Keep the driver compatible with on-die ECC engines Following the introduction of the generic ECC engine infrastructure, it was necessary to reorganize the code and move the ECC configuration in the ->attach_chip() hook. Failing to do that properly lead to a first series of fixes supposed to stabilize the situation. Unfortunately, this only fixed the use of software ECC engines, preventing any other kind of engine to be used, including on-die ones. It is now time to (finally) fix the situation by ensuring that we still provide a default (eg. software ECC) but will still support different ECC engines such as on-die ECC engines if properly described in the device tree. There are no changes needed on the core side in order to do this, but we just need to leverage the logic there which allows: 1- a subsystem default (set to Host engines in the raw NAND world) 2- a driver specific default (here set to software ECC engines) 3- any type of engine requested by the user (ie. described in the DT) As the raw NAND subsystem has not yet been fully converted to the ECC engine infrastructure, in order to provide a default ECC engine for this driver we need to set chip->ecc.engine_type *before* calling nand_scan(). During the initialization step, the core will consider this entry as the default engine for this driver. This value may of course be overloaded by the user if the usual DT properties are provided. Fixes: b36bf0a0fe5d ("mtd: rawnand: socrates: Move the ECC initialization to ->attach_chip()") Cc: stable@vger.kernel.org Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20210928222258.199726-9-miquel.raynal@bootlin.com
2021-09-29 06:22:47 +08:00
/*
* This driver assumes that the default ECC engine should be TYPE_SOFT.
* Set ->engine_type before registering the NAND devices in order to
* provide a driver specific default value.
*/
nand_chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
dev_set_drvdata(&ofdev->dev, host);
res = nand_scan(nand_chip, 1);
if (res)
goto out;
res = mtd_device_register(mtd, NULL, 0);
if (!res)
return res;
nand_cleanup(nand_chip);
out:
iounmap(host->io_base);
return res;
}
/*
* Remove a NAND device.
*/
static int socrates_nand_remove(struct platform_device *ofdev)
{
struct socrates_nand_host *host = dev_get_drvdata(&ofdev->dev);
struct nand_chip *chip = &host->nand_chip;
int ret;
ret = mtd_device_unregister(nand_to_mtd(chip));
WARN_ON(ret);
nand_cleanup(chip);
iounmap(host->io_base);
return 0;
}
static const struct of_device_id socrates_nand_match[] =
{
{
.compatible = "abb,socrates-nand",
},
{},
};
MODULE_DEVICE_TABLE(of, socrates_nand_match);
static struct platform_driver socrates_nand_driver = {
.driver = {
.name = "socrates_nand",
.of_match_table = socrates_nand_match,
},
.probe = socrates_nand_probe,
.remove = socrates_nand_remove,
};
module_platform_driver(socrates_nand_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Ilya Yanok");
MODULE_DESCRIPTION("NAND driver for Socrates board");