OpenCloudOS-Kernel/drivers/acpi/cppc_acpi.c

1763 lines
51 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
*
* (C) Copyright 2014, 2015 Linaro Ltd.
* Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
*
* CPPC describes a few methods for controlling CPU performance using
* information from a per CPU table called CPC. This table is described in
* the ACPI v5.0+ specification. The table consists of a list of
* registers which may be memory mapped or hardware registers and also may
* include some static integer values.
*
* CPU performance is on an abstract continuous scale as against a discretized
* P-state scale which is tied to CPU frequency only. In brief, the basic
* operation involves:
*
* - OS makes a CPU performance request. (Can provide min and max bounds)
*
* - Platform (such as BMC) is free to optimize request within requested bounds
* depending on power/thermal budgets etc.
*
* - Platform conveys its decision back to OS
*
* The communication between OS and platform occurs through another medium
* called (PCC) Platform Communication Channel. This is a generic mailbox like
* mechanism which includes doorbell semantics to indicate register updates.
* See drivers/mailbox/pcc.c for details on PCC.
*
* Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
* above specifications.
*/
#define pr_fmt(fmt) "ACPI CPPC: " fmt
#include <linux/delay.h>
#include <linux/iopoll.h>
#include <linux/ktime.h>
#include <linux/rwsem.h>
#include <linux/wait.h>
#include <linux/topology.h>
#include <acpi/cppc_acpi.h>
struct cppc_pcc_data {
struct pcc_mbox_chan *pcc_channel;
void __iomem *pcc_comm_addr;
bool pcc_channel_acquired;
unsigned int deadline_us;
unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
bool platform_owns_pcc; /* Ownership of PCC subspace */
unsigned int pcc_write_cnt; /* Running count of PCC write commands */
/*
* Lock to provide controlled access to the PCC channel.
*
* For performance critical usecases(currently cppc_set_perf)
* We need to take read_lock and check if channel belongs to OSPM
* before reading or writing to PCC subspace
* We need to take write_lock before transferring the channel
* ownership to the platform via a Doorbell
* This allows us to batch a number of CPPC requests if they happen
* to originate in about the same time
*
* For non-performance critical usecases(init)
* Take write_lock for all purposes which gives exclusive access
*/
struct rw_semaphore pcc_lock;
/* Wait queue for CPUs whose requests were batched */
wait_queue_head_t pcc_write_wait_q;
ktime_t last_cmd_cmpl_time;
ktime_t last_mpar_reset;
int mpar_count;
int refcount;
};
/* Array to represent the PCC channel per subspace ID */
static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
/* The cpu_pcc_subspace_idx contains per CPU subspace ID */
static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
/*
* The cpc_desc structure contains the ACPI register details
* as described in the per CPU _CPC tables. The details
* include the type of register (e.g. PCC, System IO, FFH etc.)
* and destination addresses which lets us READ/WRITE CPU performance
* information using the appropriate I/O methods.
*/
static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
/* pcc mapped address + header size + offset within PCC subspace */
#define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
0x8 + (offs))
/* Check if a CPC register is in PCC */
#define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
(cpc)->cpc_entry.reg.space_id == \
ACPI_ADR_SPACE_PLATFORM_COMM)
ACPI: CPPC: Assume no transition latency if no PCCT The transition_delay_us (struct cpufreq_policy) is currently defined as: Preferred average time interval between consecutive invocations of the driver to set the frequency for this policy. To be set by the scaling driver (0, which is the default, means no preference). The transition_latency represents the amount of time necessary for a CPU to change its frequency. A PCCT table advertises mutliple values: - pcc_nominal: Expected latency to process a command, in microseconds - pcc_mpar: The maximum number of periodic requests that the subspace channel can support, reported in commands per minute. 0 indicates no limitation. - pcc_mrtt: The minimum amount of time that OSPM must wait after the completion of a command before issuing the next command, in microseconds. cppc_get_transition_latency() allows to get the max of them. commit d4f3388afd48 ("cpufreq / CPPC: Set platform specific transition_delay_us") allows to select transition_delay_us based on the platform, and fallbacks to cppc_get_transition_latency() otherwise. If _CPC objects are not using PCC channels (no PPCT table), the transition_delay_us is set to CPUFREQ_ETERNAL, leading to really long periods between frequency updates (~4s). If the desired_reg, where performance requests are written, is in SystemMemory or SystemIo ACPI address space, there is no delay in requests. So return 0 instead of CPUFREQ_ETERNAL, leading to transition_delay_us being set to LATENCY_MULTIPLIER us (1000 us). This patch also adds two macros to check the address spaces. Signed-off-by: Pierre Gondois <pierre.gondois@arm.com> Reviewed-by: Sudeep Holla <sudeep.holla@arm.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2022-05-18 17:08:59 +08:00
/* Check if a CPC register is in SystemMemory */
#define CPC_IN_SYSTEM_MEMORY(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
(cpc)->cpc_entry.reg.space_id == \
ACPI_ADR_SPACE_SYSTEM_MEMORY)
/* Check if a CPC register is in SystemIo */
#define CPC_IN_SYSTEM_IO(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
(cpc)->cpc_entry.reg.space_id == \
ACPI_ADR_SPACE_SYSTEM_IO)
/* Evaluates to True if reg is a NULL register descriptor */
#define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
(reg)->address == 0 && \
(reg)->bit_width == 0 && \
(reg)->bit_offset == 0 && \
(reg)->access_width == 0)
/* Evaluates to True if an optional cpc field is supported */
#define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
!!(cpc)->cpc_entry.int_value : \
!IS_NULL_REG(&(cpc)->cpc_entry.reg))
/*
* Arbitrary Retries in case the remote processor is slow to respond
* to PCC commands. Keeping it high enough to cover emulators where
* the processors run painfully slow.
*/
#define NUM_RETRIES 500ULL
#define OVER_16BTS_MASK ~0xFFFFULL
#define define_one_cppc_ro(_name) \
static struct kobj_attribute _name = \
__ATTR(_name, 0444, show_##_name, NULL)
#define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
#define show_cppc_data(access_fn, struct_name, member_name) \
static ssize_t show_##member_name(struct kobject *kobj, \
struct kobj_attribute *attr, char *buf) \
{ \
struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \
struct struct_name st_name = {0}; \
int ret; \
\
ret = access_fn(cpc_ptr->cpu_id, &st_name); \
if (ret) \
return ret; \
\
return sysfs_emit(buf, "%llu\n", \
(u64)st_name.member_name); \
} \
define_one_cppc_ro(member_name)
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
static ssize_t show_feedback_ctrs(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
struct cppc_perf_fb_ctrs fb_ctrs = {0};
int ret;
ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
if (ret)
return ret;
return sysfs_emit(buf, "ref:%llu del:%llu\n",
fb_ctrs.reference, fb_ctrs.delivered);
}
define_one_cppc_ro(feedback_ctrs);
static struct attribute *cppc_attrs[] = {
&feedback_ctrs.attr,
&reference_perf.attr,
&wraparound_time.attr,
&highest_perf.attr,
&lowest_perf.attr,
&lowest_nonlinear_perf.attr,
&nominal_perf.attr,
&nominal_freq.attr,
&lowest_freq.attr,
NULL
};
ATTRIBUTE_GROUPS(cppc);
static const struct kobj_type cppc_ktype = {
.sysfs_ops = &kobj_sysfs_ops,
.default_groups = cppc_groups,
};
static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
{
int ret, status;
struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
struct acpi_pcct_shared_memory __iomem *generic_comm_base =
pcc_ss_data->pcc_comm_addr;
if (!pcc_ss_data->platform_owns_pcc)
return 0;
/*
* Poll PCC status register every 3us(delay_us) for maximum of
* deadline_us(timeout_us) until PCC command complete bit is set(cond)
*/
ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
status & PCC_CMD_COMPLETE_MASK, 3,
pcc_ss_data->deadline_us);
if (likely(!ret)) {
pcc_ss_data->platform_owns_pcc = false;
if (chk_err_bit && (status & PCC_ERROR_MASK))
ret = -EIO;
}
if (unlikely(ret))
pr_err("PCC check channel failed for ss: %d. ret=%d\n",
pcc_ss_id, ret);
return ret;
}
/*
* This function transfers the ownership of the PCC to the platform
* So it must be called while holding write_lock(pcc_lock)
*/
static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
{
int ret = -EIO, i;
struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
struct acpi_pcct_shared_memory __iomem *generic_comm_base =
pcc_ss_data->pcc_comm_addr;
unsigned int time_delta;
/*
* For CMD_WRITE we know for a fact the caller should have checked
* the channel before writing to PCC space
*/
if (cmd == CMD_READ) {
/*
* If there are pending cpc_writes, then we stole the channel
* before write completion, so first send a WRITE command to
* platform
*/
if (pcc_ss_data->pending_pcc_write_cmd)
send_pcc_cmd(pcc_ss_id, CMD_WRITE);
ret = check_pcc_chan(pcc_ss_id, false);
if (ret)
goto end;
} else /* CMD_WRITE */
pcc_ss_data->pending_pcc_write_cmd = FALSE;
/*
* Handle the Minimum Request Turnaround Time(MRTT)
* "The minimum amount of time that OSPM must wait after the completion
* of a command before issuing the next command, in microseconds"
*/
if (pcc_ss_data->pcc_mrtt) {
time_delta = ktime_us_delta(ktime_get(),
pcc_ss_data->last_cmd_cmpl_time);
if (pcc_ss_data->pcc_mrtt > time_delta)
udelay(pcc_ss_data->pcc_mrtt - time_delta);
}
/*
* Handle the non-zero Maximum Periodic Access Rate(MPAR)
* "The maximum number of periodic requests that the subspace channel can
* support, reported in commands per minute. 0 indicates no limitation."
*
* This parameter should be ideally zero or large enough so that it can
* handle maximum number of requests that all the cores in the system can
* collectively generate. If it is not, we will follow the spec and just
* not send the request to the platform after hitting the MPAR limit in
* any 60s window
*/
if (pcc_ss_data->pcc_mpar) {
if (pcc_ss_data->mpar_count == 0) {
time_delta = ktime_ms_delta(ktime_get(),
pcc_ss_data->last_mpar_reset);
if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
pcc_ss_id);
ret = -EIO;
goto end;
}
pcc_ss_data->last_mpar_reset = ktime_get();
pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
}
pcc_ss_data->mpar_count--;
}
/* Write to the shared comm region. */
writew_relaxed(cmd, &generic_comm_base->command);
/* Flip CMD COMPLETE bit */
writew_relaxed(0, &generic_comm_base->status);
pcc_ss_data->platform_owns_pcc = true;
/* Ring doorbell */
ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd);
if (ret < 0) {
pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
pcc_ss_id, cmd, ret);
goto end;
}
/* wait for completion and check for PCC error bit */
ret = check_pcc_chan(pcc_ss_id, true);
if (pcc_ss_data->pcc_mrtt)
pcc_ss_data->last_cmd_cmpl_time = ktime_get();
if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq)
mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret);
else
mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret);
end:
if (cmd == CMD_WRITE) {
if (unlikely(ret)) {
for_each_possible_cpu(i) {
struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
if (!desc)
continue;
if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
desc->write_cmd_status = ret;
}
}
pcc_ss_data->pcc_write_cnt++;
wake_up_all(&pcc_ss_data->pcc_write_wait_q);
}
return ret;
}
static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
{
if (ret < 0)
pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
*(u16 *)msg, ret);
else
pr_debug("TX completed. CMD sent:%x, ret:%d\n",
*(u16 *)msg, ret);
}
static struct mbox_client cppc_mbox_cl = {
.tx_done = cppc_chan_tx_done,
.knows_txdone = true,
};
static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
{
int result = -EFAULT;
acpi_status status = AE_OK;
struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
struct acpi_buffer state = {0, NULL};
union acpi_object *psd = NULL;
struct acpi_psd_package *pdomain;
status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
&buffer, ACPI_TYPE_PACKAGE);
if (status == AE_NOT_FOUND) /* _PSD is optional */
return 0;
if (ACPI_FAILURE(status))
return -ENODEV;
psd = buffer.pointer;
if (!psd || psd->package.count != 1) {
pr_debug("Invalid _PSD data\n");
goto end;
}
pdomain = &(cpc_ptr->domain_info);
state.length = sizeof(struct acpi_psd_package);
state.pointer = pdomain;
status = acpi_extract_package(&(psd->package.elements[0]),
&format, &state);
if (ACPI_FAILURE(status)) {
pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
goto end;
}
if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
goto end;
}
if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
goto end;
}
if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
goto end;
}
result = 0;
end:
kfree(buffer.pointer);
return result;
}
cppc_cpufreq: replace per-cpu data array with a list The cppc_cpudata per-cpu storage was inefficient (1) additional to causing functional issues (2) when CPUs are hotplugged out, due to per-cpu data being improperly initialised. (1) The amount of information needed for CPPC performance control in its cpufreq driver depends on the domain (PSD) coordination type: ANY: One set of CPPC control and capability data (e.g desired performance, highest/lowest performance, etc) applies to all CPUs in the domain. ALL: Same as ANY. To be noted that this type is not currently supported. When supported, information about which CPUs belong to a domain is needed in order for frequency change requests to be sent to each of them. HW: It's necessary to store CPPC control and capability information for all the CPUs. HW will then coordinate the performance state based on their limitations and requests. NONE: Same as HW. No HW coordination is expected. Despite this, the previous initialisation code would indiscriminately allocate memory for all CPUs (all_cpu_data) and unnecessarily duplicate performance capabilities and the domain sharing mask and type for each possible CPU. (2) With the current per-cpu structure, when having ANY coordination, the cppc_cpudata cpu information is not initialised (will remain 0) for all CPUs in a policy, other than policy->cpu. When policy->cpu is hotplugged out, the driver will incorrectly use the uninitialised (0) value of the other CPUs when making frequency changes. Additionally, the previous values stored in the perf_ctrls.desired_perf will be lost when policy->cpu changes. Therefore replace the array of per cpu data with a list. The memory for each structure is allocated at policy init, where a single structure can be allocated per policy, not per cpu. In order to accommodate the struct list_head node in the cppc_cpudata structure, the now unused cpu and cur_policy variables are removed. For example, on a arm64 Juno platform with 6 CPUs: (0, 1, 2, 3) in PSD1, (4, 5) in PSD2 - ANY coordination, the memory allocation comparison shows: Before patch: - ANY coordination: total slack req alloc/free caller 0 0 0 0/1 _kernel_size_le_hi32+0x0xffff800008ff7810 0 0 0 0/6 _kernel_size_le_hi32+0x0xffff800008ff7808 128 80 48 1/0 _kernel_size_le_hi32+0x0xffff800008ffc070 768 0 768 6/0 _kernel_size_le_hi32+0x0xffff800008ffc0e4 After patch: - ANY coordination: total slack req alloc/free caller 256 0 256 2/0 _kernel_size_le_hi32+0x0xffff800008fed410 0 0 0 0/2 _kernel_size_le_hi32+0x0xffff800008fed274 Additional notes: - A pointer to the policy's cppc_cpudata is stored in policy->driver_data - Driver registration is skipped if _CPC entries are not present. Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com> Tested-by: Mian Yousaf Kaukab <ykaukab@suse.de> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-12-14 20:38:23 +08:00
bool acpi_cpc_valid(void)
{
struct cpc_desc *cpc_ptr;
int cpu;
if (acpi_disabled)
return false;
for_each_present_cpu(cpu) {
cppc_cpufreq: replace per-cpu data array with a list The cppc_cpudata per-cpu storage was inefficient (1) additional to causing functional issues (2) when CPUs are hotplugged out, due to per-cpu data being improperly initialised. (1) The amount of information needed for CPPC performance control in its cpufreq driver depends on the domain (PSD) coordination type: ANY: One set of CPPC control and capability data (e.g desired performance, highest/lowest performance, etc) applies to all CPUs in the domain. ALL: Same as ANY. To be noted that this type is not currently supported. When supported, information about which CPUs belong to a domain is needed in order for frequency change requests to be sent to each of them. HW: It's necessary to store CPPC control and capability information for all the CPUs. HW will then coordinate the performance state based on their limitations and requests. NONE: Same as HW. No HW coordination is expected. Despite this, the previous initialisation code would indiscriminately allocate memory for all CPUs (all_cpu_data) and unnecessarily duplicate performance capabilities and the domain sharing mask and type for each possible CPU. (2) With the current per-cpu structure, when having ANY coordination, the cppc_cpudata cpu information is not initialised (will remain 0) for all CPUs in a policy, other than policy->cpu. When policy->cpu is hotplugged out, the driver will incorrectly use the uninitialised (0) value of the other CPUs when making frequency changes. Additionally, the previous values stored in the perf_ctrls.desired_perf will be lost when policy->cpu changes. Therefore replace the array of per cpu data with a list. The memory for each structure is allocated at policy init, where a single structure can be allocated per policy, not per cpu. In order to accommodate the struct list_head node in the cppc_cpudata structure, the now unused cpu and cur_policy variables are removed. For example, on a arm64 Juno platform with 6 CPUs: (0, 1, 2, 3) in PSD1, (4, 5) in PSD2 - ANY coordination, the memory allocation comparison shows: Before patch: - ANY coordination: total slack req alloc/free caller 0 0 0 0/1 _kernel_size_le_hi32+0x0xffff800008ff7810 0 0 0 0/6 _kernel_size_le_hi32+0x0xffff800008ff7808 128 80 48 1/0 _kernel_size_le_hi32+0x0xffff800008ffc070 768 0 768 6/0 _kernel_size_le_hi32+0x0xffff800008ffc0e4 After patch: - ANY coordination: total slack req alloc/free caller 256 0 256 2/0 _kernel_size_le_hi32+0x0xffff800008fed410 0 0 0 0/2 _kernel_size_le_hi32+0x0xffff800008fed274 Additional notes: - A pointer to the policy's cppc_cpudata is stored in policy->driver_data - Driver registration is skipped if _CPC entries are not present. Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com> Tested-by: Mian Yousaf Kaukab <ykaukab@suse.de> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-12-14 20:38:23 +08:00
cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
if (!cpc_ptr)
return false;
}
return true;
}
EXPORT_SYMBOL_GPL(acpi_cpc_valid);
bool cppc_allow_fast_switch(void)
{
struct cpc_register_resource *desired_reg;
struct cpc_desc *cpc_ptr;
int cpu;
for_each_possible_cpu(cpu) {
cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
desired_reg = &cpc_ptr->cpc_regs[DESIRED_PERF];
if (!CPC_IN_SYSTEM_MEMORY(desired_reg) &&
!CPC_IN_SYSTEM_IO(desired_reg))
return false;
}
return true;
}
EXPORT_SYMBOL_GPL(cppc_allow_fast_switch);
/**
cppc_cpufreq: replace per-cpu data array with a list The cppc_cpudata per-cpu storage was inefficient (1) additional to causing functional issues (2) when CPUs are hotplugged out, due to per-cpu data being improperly initialised. (1) The amount of information needed for CPPC performance control in its cpufreq driver depends on the domain (PSD) coordination type: ANY: One set of CPPC control and capability data (e.g desired performance, highest/lowest performance, etc) applies to all CPUs in the domain. ALL: Same as ANY. To be noted that this type is not currently supported. When supported, information about which CPUs belong to a domain is needed in order for frequency change requests to be sent to each of them. HW: It's necessary to store CPPC control and capability information for all the CPUs. HW will then coordinate the performance state based on their limitations and requests. NONE: Same as HW. No HW coordination is expected. Despite this, the previous initialisation code would indiscriminately allocate memory for all CPUs (all_cpu_data) and unnecessarily duplicate performance capabilities and the domain sharing mask and type for each possible CPU. (2) With the current per-cpu structure, when having ANY coordination, the cppc_cpudata cpu information is not initialised (will remain 0) for all CPUs in a policy, other than policy->cpu. When policy->cpu is hotplugged out, the driver will incorrectly use the uninitialised (0) value of the other CPUs when making frequency changes. Additionally, the previous values stored in the perf_ctrls.desired_perf will be lost when policy->cpu changes. Therefore replace the array of per cpu data with a list. The memory for each structure is allocated at policy init, where a single structure can be allocated per policy, not per cpu. In order to accommodate the struct list_head node in the cppc_cpudata structure, the now unused cpu and cur_policy variables are removed. For example, on a arm64 Juno platform with 6 CPUs: (0, 1, 2, 3) in PSD1, (4, 5) in PSD2 - ANY coordination, the memory allocation comparison shows: Before patch: - ANY coordination: total slack req alloc/free caller 0 0 0 0/1 _kernel_size_le_hi32+0x0xffff800008ff7810 0 0 0 0/6 _kernel_size_le_hi32+0x0xffff800008ff7808 128 80 48 1/0 _kernel_size_le_hi32+0x0xffff800008ffc070 768 0 768 6/0 _kernel_size_le_hi32+0x0xffff800008ffc0e4 After patch: - ANY coordination: total slack req alloc/free caller 256 0 256 2/0 _kernel_size_le_hi32+0x0xffff800008fed410 0 0 0 0/2 _kernel_size_le_hi32+0x0xffff800008fed274 Additional notes: - A pointer to the policy's cppc_cpudata is stored in policy->driver_data - Driver registration is skipped if _CPC entries are not present. Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com> Tested-by: Mian Yousaf Kaukab <ykaukab@suse.de> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-12-14 20:38:23 +08:00
* acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
* @cpu: Find all CPUs that share a domain with cpu.
* @cpu_data: Pointer to CPU specific CPPC data including PSD info.
*
* Return: 0 for success or negative value for err.
*/
cppc_cpufreq: replace per-cpu data array with a list The cppc_cpudata per-cpu storage was inefficient (1) additional to causing functional issues (2) when CPUs are hotplugged out, due to per-cpu data being improperly initialised. (1) The amount of information needed for CPPC performance control in its cpufreq driver depends on the domain (PSD) coordination type: ANY: One set of CPPC control and capability data (e.g desired performance, highest/lowest performance, etc) applies to all CPUs in the domain. ALL: Same as ANY. To be noted that this type is not currently supported. When supported, information about which CPUs belong to a domain is needed in order for frequency change requests to be sent to each of them. HW: It's necessary to store CPPC control and capability information for all the CPUs. HW will then coordinate the performance state based on their limitations and requests. NONE: Same as HW. No HW coordination is expected. Despite this, the previous initialisation code would indiscriminately allocate memory for all CPUs (all_cpu_data) and unnecessarily duplicate performance capabilities and the domain sharing mask and type for each possible CPU. (2) With the current per-cpu structure, when having ANY coordination, the cppc_cpudata cpu information is not initialised (will remain 0) for all CPUs in a policy, other than policy->cpu. When policy->cpu is hotplugged out, the driver will incorrectly use the uninitialised (0) value of the other CPUs when making frequency changes. Additionally, the previous values stored in the perf_ctrls.desired_perf will be lost when policy->cpu changes. Therefore replace the array of per cpu data with a list. The memory for each structure is allocated at policy init, where a single structure can be allocated per policy, not per cpu. In order to accommodate the struct list_head node in the cppc_cpudata structure, the now unused cpu and cur_policy variables are removed. For example, on a arm64 Juno platform with 6 CPUs: (0, 1, 2, 3) in PSD1, (4, 5) in PSD2 - ANY coordination, the memory allocation comparison shows: Before patch: - ANY coordination: total slack req alloc/free caller 0 0 0 0/1 _kernel_size_le_hi32+0x0xffff800008ff7810 0 0 0 0/6 _kernel_size_le_hi32+0x0xffff800008ff7808 128 80 48 1/0 _kernel_size_le_hi32+0x0xffff800008ffc070 768 0 768 6/0 _kernel_size_le_hi32+0x0xffff800008ffc0e4 After patch: - ANY coordination: total slack req alloc/free caller 256 0 256 2/0 _kernel_size_le_hi32+0x0xffff800008fed410 0 0 0 0/2 _kernel_size_le_hi32+0x0xffff800008fed274 Additional notes: - A pointer to the policy's cppc_cpudata is stored in policy->driver_data - Driver registration is skipped if _CPC entries are not present. Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com> Tested-by: Mian Yousaf Kaukab <ykaukab@suse.de> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-12-14 20:38:23 +08:00
int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
{
struct cpc_desc *cpc_ptr, *match_cpc_ptr;
cppc_cpufreq: replace per-cpu data array with a list The cppc_cpudata per-cpu storage was inefficient (1) additional to causing functional issues (2) when CPUs are hotplugged out, due to per-cpu data being improperly initialised. (1) The amount of information needed for CPPC performance control in its cpufreq driver depends on the domain (PSD) coordination type: ANY: One set of CPPC control and capability data (e.g desired performance, highest/lowest performance, etc) applies to all CPUs in the domain. ALL: Same as ANY. To be noted that this type is not currently supported. When supported, information about which CPUs belong to a domain is needed in order for frequency change requests to be sent to each of them. HW: It's necessary to store CPPC control and capability information for all the CPUs. HW will then coordinate the performance state based on their limitations and requests. NONE: Same as HW. No HW coordination is expected. Despite this, the previous initialisation code would indiscriminately allocate memory for all CPUs (all_cpu_data) and unnecessarily duplicate performance capabilities and the domain sharing mask and type for each possible CPU. (2) With the current per-cpu structure, when having ANY coordination, the cppc_cpudata cpu information is not initialised (will remain 0) for all CPUs in a policy, other than policy->cpu. When policy->cpu is hotplugged out, the driver will incorrectly use the uninitialised (0) value of the other CPUs when making frequency changes. Additionally, the previous values stored in the perf_ctrls.desired_perf will be lost when policy->cpu changes. Therefore replace the array of per cpu data with a list. The memory for each structure is allocated at policy init, where a single structure can be allocated per policy, not per cpu. In order to accommodate the struct list_head node in the cppc_cpudata structure, the now unused cpu and cur_policy variables are removed. For example, on a arm64 Juno platform with 6 CPUs: (0, 1, 2, 3) in PSD1, (4, 5) in PSD2 - ANY coordination, the memory allocation comparison shows: Before patch: - ANY coordination: total slack req alloc/free caller 0 0 0 0/1 _kernel_size_le_hi32+0x0xffff800008ff7810 0 0 0 0/6 _kernel_size_le_hi32+0x0xffff800008ff7808 128 80 48 1/0 _kernel_size_le_hi32+0x0xffff800008ffc070 768 0 768 6/0 _kernel_size_le_hi32+0x0xffff800008ffc0e4 After patch: - ANY coordination: total slack req alloc/free caller 256 0 256 2/0 _kernel_size_le_hi32+0x0xffff800008fed410 0 0 0 0/2 _kernel_size_le_hi32+0x0xffff800008fed274 Additional notes: - A pointer to the policy's cppc_cpudata is stored in policy->driver_data - Driver registration is skipped if _CPC entries are not present. Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com> Tested-by: Mian Yousaf Kaukab <ykaukab@suse.de> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-12-14 20:38:23 +08:00
struct acpi_psd_package *match_pdomain;
struct acpi_psd_package *pdomain;
int count_target, i;
/*
* Now that we have _PSD data from all CPUs, let's setup P-state
* domain info.
*/
cppc_cpufreq: replace per-cpu data array with a list The cppc_cpudata per-cpu storage was inefficient (1) additional to causing functional issues (2) when CPUs are hotplugged out, due to per-cpu data being improperly initialised. (1) The amount of information needed for CPPC performance control in its cpufreq driver depends on the domain (PSD) coordination type: ANY: One set of CPPC control and capability data (e.g desired performance, highest/lowest performance, etc) applies to all CPUs in the domain. ALL: Same as ANY. To be noted that this type is not currently supported. When supported, information about which CPUs belong to a domain is needed in order for frequency change requests to be sent to each of them. HW: It's necessary to store CPPC control and capability information for all the CPUs. HW will then coordinate the performance state based on their limitations and requests. NONE: Same as HW. No HW coordination is expected. Despite this, the previous initialisation code would indiscriminately allocate memory for all CPUs (all_cpu_data) and unnecessarily duplicate performance capabilities and the domain sharing mask and type for each possible CPU. (2) With the current per-cpu structure, when having ANY coordination, the cppc_cpudata cpu information is not initialised (will remain 0) for all CPUs in a policy, other than policy->cpu. When policy->cpu is hotplugged out, the driver will incorrectly use the uninitialised (0) value of the other CPUs when making frequency changes. Additionally, the previous values stored in the perf_ctrls.desired_perf will be lost when policy->cpu changes. Therefore replace the array of per cpu data with a list. The memory for each structure is allocated at policy init, where a single structure can be allocated per policy, not per cpu. In order to accommodate the struct list_head node in the cppc_cpudata structure, the now unused cpu and cur_policy variables are removed. For example, on a arm64 Juno platform with 6 CPUs: (0, 1, 2, 3) in PSD1, (4, 5) in PSD2 - ANY coordination, the memory allocation comparison shows: Before patch: - ANY coordination: total slack req alloc/free caller 0 0 0 0/1 _kernel_size_le_hi32+0x0xffff800008ff7810 0 0 0 0/6 _kernel_size_le_hi32+0x0xffff800008ff7808 128 80 48 1/0 _kernel_size_le_hi32+0x0xffff800008ffc070 768 0 768 6/0 _kernel_size_le_hi32+0x0xffff800008ffc0e4 After patch: - ANY coordination: total slack req alloc/free caller 256 0 256 2/0 _kernel_size_le_hi32+0x0xffff800008fed410 0 0 0 0/2 _kernel_size_le_hi32+0x0xffff800008fed274 Additional notes: - A pointer to the policy's cppc_cpudata is stored in policy->driver_data - Driver registration is skipped if _CPC entries are not present. Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com> Tested-by: Mian Yousaf Kaukab <ykaukab@suse.de> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-12-14 20:38:23 +08:00
cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
if (!cpc_ptr)
return -EFAULT;
cppc_cpufreq: replace per-cpu data array with a list The cppc_cpudata per-cpu storage was inefficient (1) additional to causing functional issues (2) when CPUs are hotplugged out, due to per-cpu data being improperly initialised. (1) The amount of information needed for CPPC performance control in its cpufreq driver depends on the domain (PSD) coordination type: ANY: One set of CPPC control and capability data (e.g desired performance, highest/lowest performance, etc) applies to all CPUs in the domain. ALL: Same as ANY. To be noted that this type is not currently supported. When supported, information about which CPUs belong to a domain is needed in order for frequency change requests to be sent to each of them. HW: It's necessary to store CPPC control and capability information for all the CPUs. HW will then coordinate the performance state based on their limitations and requests. NONE: Same as HW. No HW coordination is expected. Despite this, the previous initialisation code would indiscriminately allocate memory for all CPUs (all_cpu_data) and unnecessarily duplicate performance capabilities and the domain sharing mask and type for each possible CPU. (2) With the current per-cpu structure, when having ANY coordination, the cppc_cpudata cpu information is not initialised (will remain 0) for all CPUs in a policy, other than policy->cpu. When policy->cpu is hotplugged out, the driver will incorrectly use the uninitialised (0) value of the other CPUs when making frequency changes. Additionally, the previous values stored in the perf_ctrls.desired_perf will be lost when policy->cpu changes. Therefore replace the array of per cpu data with a list. The memory for each structure is allocated at policy init, where a single structure can be allocated per policy, not per cpu. In order to accommodate the struct list_head node in the cppc_cpudata structure, the now unused cpu and cur_policy variables are removed. For example, on a arm64 Juno platform with 6 CPUs: (0, 1, 2, 3) in PSD1, (4, 5) in PSD2 - ANY coordination, the memory allocation comparison shows: Before patch: - ANY coordination: total slack req alloc/free caller 0 0 0 0/1 _kernel_size_le_hi32+0x0xffff800008ff7810 0 0 0 0/6 _kernel_size_le_hi32+0x0xffff800008ff7808 128 80 48 1/0 _kernel_size_le_hi32+0x0xffff800008ffc070 768 0 768 6/0 _kernel_size_le_hi32+0x0xffff800008ffc0e4 After patch: - ANY coordination: total slack req alloc/free caller 256 0 256 2/0 _kernel_size_le_hi32+0x0xffff800008fed410 0 0 0 0/2 _kernel_size_le_hi32+0x0xffff800008fed274 Additional notes: - A pointer to the policy's cppc_cpudata is stored in policy->driver_data - Driver registration is skipped if _CPC entries are not present. Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com> Tested-by: Mian Yousaf Kaukab <ykaukab@suse.de> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-12-14 20:38:23 +08:00
pdomain = &(cpc_ptr->domain_info);
cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
if (pdomain->num_processors <= 1)
return 0;
cppc_cpufreq: replace per-cpu data array with a list The cppc_cpudata per-cpu storage was inefficient (1) additional to causing functional issues (2) when CPUs are hotplugged out, due to per-cpu data being improperly initialised. (1) The amount of information needed for CPPC performance control in its cpufreq driver depends on the domain (PSD) coordination type: ANY: One set of CPPC control and capability data (e.g desired performance, highest/lowest performance, etc) applies to all CPUs in the domain. ALL: Same as ANY. To be noted that this type is not currently supported. When supported, information about which CPUs belong to a domain is needed in order for frequency change requests to be sent to each of them. HW: It's necessary to store CPPC control and capability information for all the CPUs. HW will then coordinate the performance state based on their limitations and requests. NONE: Same as HW. No HW coordination is expected. Despite this, the previous initialisation code would indiscriminately allocate memory for all CPUs (all_cpu_data) and unnecessarily duplicate performance capabilities and the domain sharing mask and type for each possible CPU. (2) With the current per-cpu structure, when having ANY coordination, the cppc_cpudata cpu information is not initialised (will remain 0) for all CPUs in a policy, other than policy->cpu. When policy->cpu is hotplugged out, the driver will incorrectly use the uninitialised (0) value of the other CPUs when making frequency changes. Additionally, the previous values stored in the perf_ctrls.desired_perf will be lost when policy->cpu changes. Therefore replace the array of per cpu data with a list. The memory for each structure is allocated at policy init, where a single structure can be allocated per policy, not per cpu. In order to accommodate the struct list_head node in the cppc_cpudata structure, the now unused cpu and cur_policy variables are removed. For example, on a arm64 Juno platform with 6 CPUs: (0, 1, 2, 3) in PSD1, (4, 5) in PSD2 - ANY coordination, the memory allocation comparison shows: Before patch: - ANY coordination: total slack req alloc/free caller 0 0 0 0/1 _kernel_size_le_hi32+0x0xffff800008ff7810 0 0 0 0/6 _kernel_size_le_hi32+0x0xffff800008ff7808 128 80 48 1/0 _kernel_size_le_hi32+0x0xffff800008ffc070 768 0 768 6/0 _kernel_size_le_hi32+0x0xffff800008ffc0e4 After patch: - ANY coordination: total slack req alloc/free caller 256 0 256 2/0 _kernel_size_le_hi32+0x0xffff800008fed410 0 0 0 0/2 _kernel_size_le_hi32+0x0xffff800008fed274 Additional notes: - A pointer to the policy's cppc_cpudata is stored in policy->driver_data - Driver registration is skipped if _CPC entries are not present. Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com> Tested-by: Mian Yousaf Kaukab <ykaukab@suse.de> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-12-14 20:38:23 +08:00
/* Validate the Domain info */
count_target = pdomain->num_processors;
if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
cppc_cpufreq: replace per-cpu data array with a list The cppc_cpudata per-cpu storage was inefficient (1) additional to causing functional issues (2) when CPUs are hotplugged out, due to per-cpu data being improperly initialised. (1) The amount of information needed for CPPC performance control in its cpufreq driver depends on the domain (PSD) coordination type: ANY: One set of CPPC control and capability data (e.g desired performance, highest/lowest performance, etc) applies to all CPUs in the domain. ALL: Same as ANY. To be noted that this type is not currently supported. When supported, information about which CPUs belong to a domain is needed in order for frequency change requests to be sent to each of them. HW: It's necessary to store CPPC control and capability information for all the CPUs. HW will then coordinate the performance state based on their limitations and requests. NONE: Same as HW. No HW coordination is expected. Despite this, the previous initialisation code would indiscriminately allocate memory for all CPUs (all_cpu_data) and unnecessarily duplicate performance capabilities and the domain sharing mask and type for each possible CPU. (2) With the current per-cpu structure, when having ANY coordination, the cppc_cpudata cpu information is not initialised (will remain 0) for all CPUs in a policy, other than policy->cpu. When policy->cpu is hotplugged out, the driver will incorrectly use the uninitialised (0) value of the other CPUs when making frequency changes. Additionally, the previous values stored in the perf_ctrls.desired_perf will be lost when policy->cpu changes. Therefore replace the array of per cpu data with a list. The memory for each structure is allocated at policy init, where a single structure can be allocated per policy, not per cpu. In order to accommodate the struct list_head node in the cppc_cpudata structure, the now unused cpu and cur_policy variables are removed. For example, on a arm64 Juno platform with 6 CPUs: (0, 1, 2, 3) in PSD1, (4, 5) in PSD2 - ANY coordination, the memory allocation comparison shows: Before patch: - ANY coordination: total slack req alloc/free caller 0 0 0 0/1 _kernel_size_le_hi32+0x0xffff800008ff7810 0 0 0 0/6 _kernel_size_le_hi32+0x0xffff800008ff7808 128 80 48 1/0 _kernel_size_le_hi32+0x0xffff800008ffc070 768 0 768 6/0 _kernel_size_le_hi32+0x0xffff800008ffc0e4 After patch: - ANY coordination: total slack req alloc/free caller 256 0 256 2/0 _kernel_size_le_hi32+0x0xffff800008fed410 0 0 0 0/2 _kernel_size_le_hi32+0x0xffff800008fed274 Additional notes: - A pointer to the policy's cppc_cpudata is stored in policy->driver_data - Driver registration is skipped if _CPC entries are not present. Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com> Tested-by: Mian Yousaf Kaukab <ykaukab@suse.de> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-12-14 20:38:23 +08:00
for_each_possible_cpu(i) {
if (i == cpu)
continue;
cppc_cpufreq: replace per-cpu data array with a list The cppc_cpudata per-cpu storage was inefficient (1) additional to causing functional issues (2) when CPUs are hotplugged out, due to per-cpu data being improperly initialised. (1) The amount of information needed for CPPC performance control in its cpufreq driver depends on the domain (PSD) coordination type: ANY: One set of CPPC control and capability data (e.g desired performance, highest/lowest performance, etc) applies to all CPUs in the domain. ALL: Same as ANY. To be noted that this type is not currently supported. When supported, information about which CPUs belong to a domain is needed in order for frequency change requests to be sent to each of them. HW: It's necessary to store CPPC control and capability information for all the CPUs. HW will then coordinate the performance state based on their limitations and requests. NONE: Same as HW. No HW coordination is expected. Despite this, the previous initialisation code would indiscriminately allocate memory for all CPUs (all_cpu_data) and unnecessarily duplicate performance capabilities and the domain sharing mask and type for each possible CPU. (2) With the current per-cpu structure, when having ANY coordination, the cppc_cpudata cpu information is not initialised (will remain 0) for all CPUs in a policy, other than policy->cpu. When policy->cpu is hotplugged out, the driver will incorrectly use the uninitialised (0) value of the other CPUs when making frequency changes. Additionally, the previous values stored in the perf_ctrls.desired_perf will be lost when policy->cpu changes. Therefore replace the array of per cpu data with a list. The memory for each structure is allocated at policy init, where a single structure can be allocated per policy, not per cpu. In order to accommodate the struct list_head node in the cppc_cpudata structure, the now unused cpu and cur_policy variables are removed. For example, on a arm64 Juno platform with 6 CPUs: (0, 1, 2, 3) in PSD1, (4, 5) in PSD2 - ANY coordination, the memory allocation comparison shows: Before patch: - ANY coordination: total slack req alloc/free caller 0 0 0 0/1 _kernel_size_le_hi32+0x0xffff800008ff7810 0 0 0 0/6 _kernel_size_le_hi32+0x0xffff800008ff7808 128 80 48 1/0 _kernel_size_le_hi32+0x0xffff800008ffc070 768 0 768 6/0 _kernel_size_le_hi32+0x0xffff800008ffc0e4 After patch: - ANY coordination: total slack req alloc/free caller 256 0 256 2/0 _kernel_size_le_hi32+0x0xffff800008fed410 0 0 0 0/2 _kernel_size_le_hi32+0x0xffff800008fed274 Additional notes: - A pointer to the policy's cppc_cpudata is stored in policy->driver_data - Driver registration is skipped if _CPC entries are not present. Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com> Tested-by: Mian Yousaf Kaukab <ykaukab@suse.de> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-12-14 20:38:23 +08:00
match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
if (!match_cpc_ptr)
goto err_fault;
cppc_cpufreq: replace per-cpu data array with a list The cppc_cpudata per-cpu storage was inefficient (1) additional to causing functional issues (2) when CPUs are hotplugged out, due to per-cpu data being improperly initialised. (1) The amount of information needed for CPPC performance control in its cpufreq driver depends on the domain (PSD) coordination type: ANY: One set of CPPC control and capability data (e.g desired performance, highest/lowest performance, etc) applies to all CPUs in the domain. ALL: Same as ANY. To be noted that this type is not currently supported. When supported, information about which CPUs belong to a domain is needed in order for frequency change requests to be sent to each of them. HW: It's necessary to store CPPC control and capability information for all the CPUs. HW will then coordinate the performance state based on their limitations and requests. NONE: Same as HW. No HW coordination is expected. Despite this, the previous initialisation code would indiscriminately allocate memory for all CPUs (all_cpu_data) and unnecessarily duplicate performance capabilities and the domain sharing mask and type for each possible CPU. (2) With the current per-cpu structure, when having ANY coordination, the cppc_cpudata cpu information is not initialised (will remain 0) for all CPUs in a policy, other than policy->cpu. When policy->cpu is hotplugged out, the driver will incorrectly use the uninitialised (0) value of the other CPUs when making frequency changes. Additionally, the previous values stored in the perf_ctrls.desired_perf will be lost when policy->cpu changes. Therefore replace the array of per cpu data with a list. The memory for each structure is allocated at policy init, where a single structure can be allocated per policy, not per cpu. In order to accommodate the struct list_head node in the cppc_cpudata structure, the now unused cpu and cur_policy variables are removed. For example, on a arm64 Juno platform with 6 CPUs: (0, 1, 2, 3) in PSD1, (4, 5) in PSD2 - ANY coordination, the memory allocation comparison shows: Before patch: - ANY coordination: total slack req alloc/free caller 0 0 0 0/1 _kernel_size_le_hi32+0x0xffff800008ff7810 0 0 0 0/6 _kernel_size_le_hi32+0x0xffff800008ff7808 128 80 48 1/0 _kernel_size_le_hi32+0x0xffff800008ffc070 768 0 768 6/0 _kernel_size_le_hi32+0x0xffff800008ffc0e4 After patch: - ANY coordination: total slack req alloc/free caller 256 0 256 2/0 _kernel_size_le_hi32+0x0xffff800008fed410 0 0 0 0/2 _kernel_size_le_hi32+0x0xffff800008fed274 Additional notes: - A pointer to the policy's cppc_cpudata is stored in policy->driver_data - Driver registration is skipped if _CPC entries are not present. Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com> Tested-by: Mian Yousaf Kaukab <ykaukab@suse.de> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-12-14 20:38:23 +08:00
match_pdomain = &(match_cpc_ptr->domain_info);
if (match_pdomain->domain != pdomain->domain)
continue;
cppc_cpufreq: replace per-cpu data array with a list The cppc_cpudata per-cpu storage was inefficient (1) additional to causing functional issues (2) when CPUs are hotplugged out, due to per-cpu data being improperly initialised. (1) The amount of information needed for CPPC performance control in its cpufreq driver depends on the domain (PSD) coordination type: ANY: One set of CPPC control and capability data (e.g desired performance, highest/lowest performance, etc) applies to all CPUs in the domain. ALL: Same as ANY. To be noted that this type is not currently supported. When supported, information about which CPUs belong to a domain is needed in order for frequency change requests to be sent to each of them. HW: It's necessary to store CPPC control and capability information for all the CPUs. HW will then coordinate the performance state based on their limitations and requests. NONE: Same as HW. No HW coordination is expected. Despite this, the previous initialisation code would indiscriminately allocate memory for all CPUs (all_cpu_data) and unnecessarily duplicate performance capabilities and the domain sharing mask and type for each possible CPU. (2) With the current per-cpu structure, when having ANY coordination, the cppc_cpudata cpu information is not initialised (will remain 0) for all CPUs in a policy, other than policy->cpu. When policy->cpu is hotplugged out, the driver will incorrectly use the uninitialised (0) value of the other CPUs when making frequency changes. Additionally, the previous values stored in the perf_ctrls.desired_perf will be lost when policy->cpu changes. Therefore replace the array of per cpu data with a list. The memory for each structure is allocated at policy init, where a single structure can be allocated per policy, not per cpu. In order to accommodate the struct list_head node in the cppc_cpudata structure, the now unused cpu and cur_policy variables are removed. For example, on a arm64 Juno platform with 6 CPUs: (0, 1, 2, 3) in PSD1, (4, 5) in PSD2 - ANY coordination, the memory allocation comparison shows: Before patch: - ANY coordination: total slack req alloc/free caller 0 0 0 0/1 _kernel_size_le_hi32+0x0xffff800008ff7810 0 0 0 0/6 _kernel_size_le_hi32+0x0xffff800008ff7808 128 80 48 1/0 _kernel_size_le_hi32+0x0xffff800008ffc070 768 0 768 6/0 _kernel_size_le_hi32+0x0xffff800008ffc0e4 After patch: - ANY coordination: total slack req alloc/free caller 256 0 256 2/0 _kernel_size_le_hi32+0x0xffff800008fed410 0 0 0 0/2 _kernel_size_le_hi32+0x0xffff800008fed274 Additional notes: - A pointer to the policy's cppc_cpudata is stored in policy->driver_data - Driver registration is skipped if _CPC entries are not present. Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com> Tested-by: Mian Yousaf Kaukab <ykaukab@suse.de> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-12-14 20:38:23 +08:00
/* Here i and cpu are in the same domain */
if (match_pdomain->num_processors != count_target)
goto err_fault;
cppc_cpufreq: replace per-cpu data array with a list The cppc_cpudata per-cpu storage was inefficient (1) additional to causing functional issues (2) when CPUs are hotplugged out, due to per-cpu data being improperly initialised. (1) The amount of information needed for CPPC performance control in its cpufreq driver depends on the domain (PSD) coordination type: ANY: One set of CPPC control and capability data (e.g desired performance, highest/lowest performance, etc) applies to all CPUs in the domain. ALL: Same as ANY. To be noted that this type is not currently supported. When supported, information about which CPUs belong to a domain is needed in order for frequency change requests to be sent to each of them. HW: It's necessary to store CPPC control and capability information for all the CPUs. HW will then coordinate the performance state based on their limitations and requests. NONE: Same as HW. No HW coordination is expected. Despite this, the previous initialisation code would indiscriminately allocate memory for all CPUs (all_cpu_data) and unnecessarily duplicate performance capabilities and the domain sharing mask and type for each possible CPU. (2) With the current per-cpu structure, when having ANY coordination, the cppc_cpudata cpu information is not initialised (will remain 0) for all CPUs in a policy, other than policy->cpu. When policy->cpu is hotplugged out, the driver will incorrectly use the uninitialised (0) value of the other CPUs when making frequency changes. Additionally, the previous values stored in the perf_ctrls.desired_perf will be lost when policy->cpu changes. Therefore replace the array of per cpu data with a list. The memory for each structure is allocated at policy init, where a single structure can be allocated per policy, not per cpu. In order to accommodate the struct list_head node in the cppc_cpudata structure, the now unused cpu and cur_policy variables are removed. For example, on a arm64 Juno platform with 6 CPUs: (0, 1, 2, 3) in PSD1, (4, 5) in PSD2 - ANY coordination, the memory allocation comparison shows: Before patch: - ANY coordination: total slack req alloc/free caller 0 0 0 0/1 _kernel_size_le_hi32+0x0xffff800008ff7810 0 0 0 0/6 _kernel_size_le_hi32+0x0xffff800008ff7808 128 80 48 1/0 _kernel_size_le_hi32+0x0xffff800008ffc070 768 0 768 6/0 _kernel_size_le_hi32+0x0xffff800008ffc0e4 After patch: - ANY coordination: total slack req alloc/free caller 256 0 256 2/0 _kernel_size_le_hi32+0x0xffff800008fed410 0 0 0 0/2 _kernel_size_le_hi32+0x0xffff800008fed274 Additional notes: - A pointer to the policy's cppc_cpudata is stored in policy->driver_data - Driver registration is skipped if _CPC entries are not present. Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com> Tested-by: Mian Yousaf Kaukab <ykaukab@suse.de> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-12-14 20:38:23 +08:00
if (pdomain->coord_type != match_pdomain->coord_type)
goto err_fault;
cppc_cpufreq: replace per-cpu data array with a list The cppc_cpudata per-cpu storage was inefficient (1) additional to causing functional issues (2) when CPUs are hotplugged out, due to per-cpu data being improperly initialised. (1) The amount of information needed for CPPC performance control in its cpufreq driver depends on the domain (PSD) coordination type: ANY: One set of CPPC control and capability data (e.g desired performance, highest/lowest performance, etc) applies to all CPUs in the domain. ALL: Same as ANY. To be noted that this type is not currently supported. When supported, information about which CPUs belong to a domain is needed in order for frequency change requests to be sent to each of them. HW: It's necessary to store CPPC control and capability information for all the CPUs. HW will then coordinate the performance state based on their limitations and requests. NONE: Same as HW. No HW coordination is expected. Despite this, the previous initialisation code would indiscriminately allocate memory for all CPUs (all_cpu_data) and unnecessarily duplicate performance capabilities and the domain sharing mask and type for each possible CPU. (2) With the current per-cpu structure, when having ANY coordination, the cppc_cpudata cpu information is not initialised (will remain 0) for all CPUs in a policy, other than policy->cpu. When policy->cpu is hotplugged out, the driver will incorrectly use the uninitialised (0) value of the other CPUs when making frequency changes. Additionally, the previous values stored in the perf_ctrls.desired_perf will be lost when policy->cpu changes. Therefore replace the array of per cpu data with a list. The memory for each structure is allocated at policy init, where a single structure can be allocated per policy, not per cpu. In order to accommodate the struct list_head node in the cppc_cpudata structure, the now unused cpu and cur_policy variables are removed. For example, on a arm64 Juno platform with 6 CPUs: (0, 1, 2, 3) in PSD1, (4, 5) in PSD2 - ANY coordination, the memory allocation comparison shows: Before patch: - ANY coordination: total slack req alloc/free caller 0 0 0 0/1 _kernel_size_le_hi32+0x0xffff800008ff7810 0 0 0 0/6 _kernel_size_le_hi32+0x0xffff800008ff7808 128 80 48 1/0 _kernel_size_le_hi32+0x0xffff800008ffc070 768 0 768 6/0 _kernel_size_le_hi32+0x0xffff800008ffc0e4 After patch: - ANY coordination: total slack req alloc/free caller 256 0 256 2/0 _kernel_size_le_hi32+0x0xffff800008fed410 0 0 0 0/2 _kernel_size_le_hi32+0x0xffff800008fed274 Additional notes: - A pointer to the policy's cppc_cpudata is stored in policy->driver_data - Driver registration is skipped if _CPC entries are not present. Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com> Tested-by: Mian Yousaf Kaukab <ykaukab@suse.de> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-12-14 20:38:23 +08:00
cpumask_set_cpu(i, cpu_data->shared_cpu_map);
}
cppc_cpufreq: replace per-cpu data array with a list The cppc_cpudata per-cpu storage was inefficient (1) additional to causing functional issues (2) when CPUs are hotplugged out, due to per-cpu data being improperly initialised. (1) The amount of information needed for CPPC performance control in its cpufreq driver depends on the domain (PSD) coordination type: ANY: One set of CPPC control and capability data (e.g desired performance, highest/lowest performance, etc) applies to all CPUs in the domain. ALL: Same as ANY. To be noted that this type is not currently supported. When supported, information about which CPUs belong to a domain is needed in order for frequency change requests to be sent to each of them. HW: It's necessary to store CPPC control and capability information for all the CPUs. HW will then coordinate the performance state based on their limitations and requests. NONE: Same as HW. No HW coordination is expected. Despite this, the previous initialisation code would indiscriminately allocate memory for all CPUs (all_cpu_data) and unnecessarily duplicate performance capabilities and the domain sharing mask and type for each possible CPU. (2) With the current per-cpu structure, when having ANY coordination, the cppc_cpudata cpu information is not initialised (will remain 0) for all CPUs in a policy, other than policy->cpu. When policy->cpu is hotplugged out, the driver will incorrectly use the uninitialised (0) value of the other CPUs when making frequency changes. Additionally, the previous values stored in the perf_ctrls.desired_perf will be lost when policy->cpu changes. Therefore replace the array of per cpu data with a list. The memory for each structure is allocated at policy init, where a single structure can be allocated per policy, not per cpu. In order to accommodate the struct list_head node in the cppc_cpudata structure, the now unused cpu and cur_policy variables are removed. For example, on a arm64 Juno platform with 6 CPUs: (0, 1, 2, 3) in PSD1, (4, 5) in PSD2 - ANY coordination, the memory allocation comparison shows: Before patch: - ANY coordination: total slack req alloc/free caller 0 0 0 0/1 _kernel_size_le_hi32+0x0xffff800008ff7810 0 0 0 0/6 _kernel_size_le_hi32+0x0xffff800008ff7808 128 80 48 1/0 _kernel_size_le_hi32+0x0xffff800008ffc070 768 0 768 6/0 _kernel_size_le_hi32+0x0xffff800008ffc0e4 After patch: - ANY coordination: total slack req alloc/free caller 256 0 256 2/0 _kernel_size_le_hi32+0x0xffff800008fed410 0 0 0 0/2 _kernel_size_le_hi32+0x0xffff800008fed274 Additional notes: - A pointer to the policy's cppc_cpudata is stored in policy->driver_data - Driver registration is skipped if _CPC entries are not present. Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com> Tested-by: Mian Yousaf Kaukab <ykaukab@suse.de> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-12-14 20:38:23 +08:00
return 0;
cppc_cpufreq: replace per-cpu data array with a list The cppc_cpudata per-cpu storage was inefficient (1) additional to causing functional issues (2) when CPUs are hotplugged out, due to per-cpu data being improperly initialised. (1) The amount of information needed for CPPC performance control in its cpufreq driver depends on the domain (PSD) coordination type: ANY: One set of CPPC control and capability data (e.g desired performance, highest/lowest performance, etc) applies to all CPUs in the domain. ALL: Same as ANY. To be noted that this type is not currently supported. When supported, information about which CPUs belong to a domain is needed in order for frequency change requests to be sent to each of them. HW: It's necessary to store CPPC control and capability information for all the CPUs. HW will then coordinate the performance state based on their limitations and requests. NONE: Same as HW. No HW coordination is expected. Despite this, the previous initialisation code would indiscriminately allocate memory for all CPUs (all_cpu_data) and unnecessarily duplicate performance capabilities and the domain sharing mask and type for each possible CPU. (2) With the current per-cpu structure, when having ANY coordination, the cppc_cpudata cpu information is not initialised (will remain 0) for all CPUs in a policy, other than policy->cpu. When policy->cpu is hotplugged out, the driver will incorrectly use the uninitialised (0) value of the other CPUs when making frequency changes. Additionally, the previous values stored in the perf_ctrls.desired_perf will be lost when policy->cpu changes. Therefore replace the array of per cpu data with a list. The memory for each structure is allocated at policy init, where a single structure can be allocated per policy, not per cpu. In order to accommodate the struct list_head node in the cppc_cpudata structure, the now unused cpu and cur_policy variables are removed. For example, on a arm64 Juno platform with 6 CPUs: (0, 1, 2, 3) in PSD1, (4, 5) in PSD2 - ANY coordination, the memory allocation comparison shows: Before patch: - ANY coordination: total slack req alloc/free caller 0 0 0 0/1 _kernel_size_le_hi32+0x0xffff800008ff7810 0 0 0 0/6 _kernel_size_le_hi32+0x0xffff800008ff7808 128 80 48 1/0 _kernel_size_le_hi32+0x0xffff800008ffc070 768 0 768 6/0 _kernel_size_le_hi32+0x0xffff800008ffc0e4 After patch: - ANY coordination: total slack req alloc/free caller 256 0 256 2/0 _kernel_size_le_hi32+0x0xffff800008fed410 0 0 0 0/2 _kernel_size_le_hi32+0x0xffff800008fed274 Additional notes: - A pointer to the policy's cppc_cpudata is stored in policy->driver_data - Driver registration is skipped if _CPC entries are not present. Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com> Tested-by: Mian Yousaf Kaukab <ykaukab@suse.de> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-12-14 20:38:23 +08:00
err_fault:
/* Assume no coordination on any error parsing domain info */
cpumask_clear(cpu_data->shared_cpu_map);
cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
return -EFAULT;
}
EXPORT_SYMBOL_GPL(acpi_get_psd_map);
static int register_pcc_channel(int pcc_ss_idx)
{
struct pcc_mbox_chan *pcc_chan;
u64 usecs_lat;
if (pcc_ss_idx >= 0) {
pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
if (IS_ERR(pcc_chan)) {
pr_err("Failed to find PCC channel for subspace %d\n",
pcc_ss_idx);
return -ENODEV;
}
pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan;
/*
* cppc_ss->latency is just a Nominal value. In reality
* the remote processor could be much slower to reply.
* So add an arbitrary amount of wait on top of Nominal.
*/
usecs_lat = NUM_RETRIES * pcc_chan->latency;
pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time;
pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate;
pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency;
pcc_data[pcc_ss_idx]->pcc_comm_addr =
acpi_os_ioremap(pcc_chan->shmem_base_addr,
pcc_chan->shmem_size);
if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
pr_err("Failed to ioremap PCC comm region mem for %d\n",
pcc_ss_idx);
return -ENOMEM;
}
/* Set flag so that we don't come here for each CPU. */
pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
}
return 0;
}
/**
* cpc_ffh_supported() - check if FFH reading supported
*
* Check if the architecture has support for functional fixed hardware
* read/write capability.
*
* Return: true for supported, false for not supported
*/
bool __weak cpc_ffh_supported(void)
{
return false;
}
/**
* cpc_supported_by_cpu() - check if CPPC is supported by CPU
*
* Check if the architectural support for CPPC is present even
* if the _OSC hasn't prescribed it
*
* Return: true for supported, false for not supported
*/
bool __weak cpc_supported_by_cpu(void)
{
return false;
}
/**
* pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
* @pcc_ss_id: PCC Subspace index as in the PCC client ACPI package.
*
* Check and allocate the cppc_pcc_data memory.
* In some processor configurations it is possible that same subspace
* is shared between multiple CPUs. This is seen especially in CPUs
* with hardware multi-threading support.
*
* Return: 0 for success, errno for failure
*/
static int pcc_data_alloc(int pcc_ss_id)
{
if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
return -EINVAL;
if (pcc_data[pcc_ss_id]) {
pcc_data[pcc_ss_id]->refcount++;
} else {
pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
GFP_KERNEL);
if (!pcc_data[pcc_ss_id])
return -ENOMEM;
pcc_data[pcc_ss_id]->refcount++;
}
return 0;
}
/*
* An example CPC table looks like the following.
*
* Name (_CPC, Package() {
* 17, // NumEntries
* 1, // Revision
* ResourceTemplate() {Register(PCC, 32, 0, 0x120, 2)}, // Highest Performance
* ResourceTemplate() {Register(PCC, 32, 0, 0x124, 2)}, // Nominal Performance
* ResourceTemplate() {Register(PCC, 32, 0, 0x128, 2)}, // Lowest Nonlinear Performance
* ResourceTemplate() {Register(PCC, 32, 0, 0x12C, 2)}, // Lowest Performance
* ResourceTemplate() {Register(PCC, 32, 0, 0x130, 2)}, // Guaranteed Performance Register
* ResourceTemplate() {Register(PCC, 32, 0, 0x110, 2)}, // Desired Performance Register
* ResourceTemplate() {Register(SystemMemory, 0, 0, 0, 0)},
* ...
* ...
* ...
* }
* Each Register() encodes how to access that specific register.
* e.g. a sample PCC entry has the following encoding:
*
* Register (
* PCC, // AddressSpaceKeyword
* 8, // RegisterBitWidth
* 8, // RegisterBitOffset
* 0x30, // RegisterAddress
* 9, // AccessSize (subspace ID)
* )
*/
#ifndef arch_init_invariance_cppc
static inline void arch_init_invariance_cppc(void) { }
#endif
/**
* acpi_cppc_processor_probe - Search for per CPU _CPC objects.
* @pr: Ptr to acpi_processor containing this CPU's logical ID.
*
* Return: 0 for success or negative value for err.
*/
int acpi_cppc_processor_probe(struct acpi_processor *pr)
{
struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
union acpi_object *out_obj, *cpc_obj;
struct cpc_desc *cpc_ptr;
struct cpc_reg *gas_t;
struct device *cpu_dev;
acpi_handle handle = pr->handle;
unsigned int num_ent, i, cpc_rev;
int pcc_subspace_id = -1;
acpi_status status;
int ret = -ENODATA;
ACPI: CPPC: Only probe for _CPC if CPPC v2 is acked Previously the kernel used to ignore whether the firmware masked CPPC or CPPCv2 and would just pretend that it worked. When support for the USB4 bit in _OSC was introduced from commit 9e1f561afb ("ACPI: Execute platform _OSC also with query bit clear") the kernel began to look at the return when the query bit was clear. This caused regressions that were misdiagnosed and attempted to be solved as part of commit 2ca8e6285250 ("Revert "ACPI: Pass the same capabilities to the _OSC regardless of the query flag""). This caused a different regression where non-Intel systems weren't able to negotiate _OSC properly. This was reverted in commit 2ca8e6285250 ("Revert "ACPI: Pass the same capabilities to the _OSC regardless of the query flag"") and attempted to be fixed by commit c42fa24b4475 ("ACPI: bus: Avoid using CPPC if not supported by firmware") but the regression still returned. These systems with the regression only load support for CPPC from an SSDT dynamically when _OSC reports CPPC v2. Avoid the problem by not letting CPPC satisfy the requirement in `acpi_cppc_processor_probe`. Reported-by: CUI Hao <cuihao.leo@gmail.com> Reported-by: maxim.novozhilov@gmail.com Reported-by: lethe.tree@protonmail.com Reported-by: garystephenwright@gmail.com Reported-by: galaxyking0419@gmail.com Fixes: c42fa24b4475 ("ACPI: bus: Avoid using CPPC if not supported by firmware") Fixes: 2ca8e6285250 ("Revert "ACPI Pass the same capabilities to the _OSC regardless of the query flag"") Link: https://bugzilla.kernel.org/show_bug.cgi?id=213023 Link: https://bugzilla.redhat.com/show_bug.cgi?id=2075387 Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com> Tested-by: CUI Hao <cuihao.leo@gmail.com> Signed-off-by: Mario Limonciello <mario.limonciello@amd.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2022-07-06 02:29:14 +08:00
if (!osc_sb_cppc2_support_acked) {
pr_debug("CPPC v2 _OSC not acked\n");
if (!cpc_supported_by_cpu())
return -ENODEV;
ACPI: CPPC: Only probe for _CPC if CPPC v2 is acked Previously the kernel used to ignore whether the firmware masked CPPC or CPPCv2 and would just pretend that it worked. When support for the USB4 bit in _OSC was introduced from commit 9e1f561afb ("ACPI: Execute platform _OSC also with query bit clear") the kernel began to look at the return when the query bit was clear. This caused regressions that were misdiagnosed and attempted to be solved as part of commit 2ca8e6285250 ("Revert "ACPI: Pass the same capabilities to the _OSC regardless of the query flag""). This caused a different regression where non-Intel systems weren't able to negotiate _OSC properly. This was reverted in commit 2ca8e6285250 ("Revert "ACPI: Pass the same capabilities to the _OSC regardless of the query flag"") and attempted to be fixed by commit c42fa24b4475 ("ACPI: bus: Avoid using CPPC if not supported by firmware") but the regression still returned. These systems with the regression only load support for CPPC from an SSDT dynamically when _OSC reports CPPC v2. Avoid the problem by not letting CPPC satisfy the requirement in `acpi_cppc_processor_probe`. Reported-by: CUI Hao <cuihao.leo@gmail.com> Reported-by: maxim.novozhilov@gmail.com Reported-by: lethe.tree@protonmail.com Reported-by: garystephenwright@gmail.com Reported-by: galaxyking0419@gmail.com Fixes: c42fa24b4475 ("ACPI: bus: Avoid using CPPC if not supported by firmware") Fixes: 2ca8e6285250 ("Revert "ACPI Pass the same capabilities to the _OSC regardless of the query flag"") Link: https://bugzilla.kernel.org/show_bug.cgi?id=213023 Link: https://bugzilla.redhat.com/show_bug.cgi?id=2075387 Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com> Tested-by: CUI Hao <cuihao.leo@gmail.com> Signed-off-by: Mario Limonciello <mario.limonciello@amd.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2022-07-06 02:29:14 +08:00
}
/* Parse the ACPI _CPC table for this CPU. */
status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
ACPI_TYPE_PACKAGE);
if (ACPI_FAILURE(status)) {
ret = -ENODEV;
goto out_buf_free;
}
out_obj = (union acpi_object *) output.pointer;
cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
if (!cpc_ptr) {
ret = -ENOMEM;
goto out_buf_free;
}
/* First entry is NumEntries. */
cpc_obj = &out_obj->package.elements[0];
if (cpc_obj->type == ACPI_TYPE_INTEGER) {
num_ent = cpc_obj->integer.value;
if (num_ent <= 1) {
pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n",
num_ent, pr->id);
goto out_free;
}
} else {
pr_debug("Unexpected _CPC NumEntries entry type (%d) for CPU:%d\n",
cpc_obj->type, pr->id);
goto out_free;
}
/* Second entry should be revision. */
cpc_obj = &out_obj->package.elements[1];
if (cpc_obj->type == ACPI_TYPE_INTEGER) {
cpc_rev = cpc_obj->integer.value;
} else {
pr_debug("Unexpected _CPC Revision entry type (%d) for CPU:%d\n",
cpc_obj->type, pr->id);
goto out_free;
}
if (cpc_rev < CPPC_V2_REV) {
pr_debug("Unsupported _CPC Revision (%d) for CPU:%d\n", cpc_rev,
pr->id);
goto out_free;
}
/*
* Disregard _CPC if the number of entries in the return pachage is not
* as expected, but support future revisions being proper supersets of
* the v3 and only causing more entries to be returned by _CPC.
*/
if ((cpc_rev == CPPC_V2_REV && num_ent != CPPC_V2_NUM_ENT) ||
(cpc_rev == CPPC_V3_REV && num_ent != CPPC_V3_NUM_ENT) ||
(cpc_rev > CPPC_V3_REV && num_ent <= CPPC_V3_NUM_ENT)) {
pr_debug("Unexpected number of _CPC return package entries (%d) for CPU:%d\n",
num_ent, pr->id);
goto out_free;
}
if (cpc_rev > CPPC_V3_REV) {
num_ent = CPPC_V3_NUM_ENT;
cpc_rev = CPPC_V3_REV;
}
cpc_ptr->num_entries = num_ent;
cpc_ptr->version = cpc_rev;
/* Iterate through remaining entries in _CPC */
for (i = 2; i < num_ent; i++) {
cpc_obj = &out_obj->package.elements[i];
if (cpc_obj->type == ACPI_TYPE_INTEGER) {
cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
} else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
gas_t = (struct cpc_reg *)
cpc_obj->buffer.pointer;
/*
* The PCC Subspace index is encoded inside
* the CPC table entries. The same PCC index
* will be used for all the PCC entries,
* so extract it only once.
*/
if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
if (pcc_subspace_id < 0) {
pcc_subspace_id = gas_t->access_width;
if (pcc_data_alloc(pcc_subspace_id))
goto out_free;
} else if (pcc_subspace_id != gas_t->access_width) {
pr_debug("Mismatched PCC ids in _CPC for CPU:%d\n",
pr->id);
goto out_free;
}
} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
if (gas_t->address) {
void __iomem *addr;
if (!osc_cpc_flexible_adr_space_confirmed) {
pr_debug("Flexible address space capability not supported\n");
if (!cpc_supported_by_cpu())
goto out_free;
}
addr = ioremap(gas_t->address, gas_t->bit_width/8);
if (!addr)
goto out_free;
cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
}
} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
if (gas_t->access_width < 1 || gas_t->access_width > 3) {
/*
* 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit.
* SystemIO doesn't implement 64-bit
* registers.
*/
pr_debug("Invalid access width %d for SystemIO register in _CPC\n",
gas_t->access_width);
goto out_free;
}
if (gas_t->address & OVER_16BTS_MASK) {
/* SystemIO registers use 16-bit integer addresses */
pr_debug("Invalid IO port %llu for SystemIO register in _CPC\n",
gas_t->address);
goto out_free;
}
if (!osc_cpc_flexible_adr_space_confirmed) {
pr_debug("Flexible address space capability not supported\n");
if (!cpc_supported_by_cpu())
goto out_free;
}
} else {
if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
/* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */
pr_debug("Unsupported register type (%d) in _CPC\n",
gas_t->space_id);
goto out_free;
}
}
cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
} else {
pr_debug("Invalid entry type (%d) in _CPC for CPU:%d\n",
i, pr->id);
goto out_free;
}
}
per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
/*
* Initialize the remaining cpc_regs as unsupported.
* Example: In case FW exposes CPPC v2, the below loop will initialize
* LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
*/
for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
}
/* Store CPU Logical ID */
cpc_ptr->cpu_id = pr->id;
/* Parse PSD data for this CPU */
ret = acpi_get_psd(cpc_ptr, handle);
if (ret)
goto out_free;
/* Register PCC channel once for all PCC subspace ID. */
if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
ret = register_pcc_channel(pcc_subspace_id);
if (ret)
goto out_free;
init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
}
/* Everything looks okay */
pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
/* Add per logical CPU nodes for reading its feedback counters. */
cpu_dev = get_cpu_device(pr->id);
if (!cpu_dev) {
ret = -EINVAL;
goto out_free;
}
/* Plug PSD data into this CPU's CPC descriptor. */
per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
"acpi_cppc");
if (ret) {
per_cpu(cpc_desc_ptr, pr->id) = NULL;
kobject_put(&cpc_ptr->kobj);
goto out_free;
}
arch_init_invariance_cppc();
kfree(output.pointer);
return 0;
out_free:
/* Free all the mapped sys mem areas for this CPU */
for (i = 2; i < cpc_ptr->num_entries; i++) {
void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
if (addr)
iounmap(addr);
}
kfree(cpc_ptr);
out_buf_free:
kfree(output.pointer);
return ret;
}
EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
/**
* acpi_cppc_processor_exit - Cleanup CPC structs.
* @pr: Ptr to acpi_processor containing this CPU's logical ID.
*
* Return: Void
*/
void acpi_cppc_processor_exit(struct acpi_processor *pr)
{
struct cpc_desc *cpc_ptr;
unsigned int i;
void __iomem *addr;
int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
pcc_data[pcc_ss_id]->refcount--;
if (!pcc_data[pcc_ss_id]->refcount) {
pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
kfree(pcc_data[pcc_ss_id]);
ACPI: CPPC: Set pcc_data[pcc_ss_id] to NULL in acpi_cppc_processor_exit() When enabling KASAN and DEBUG_TEST_DRIVER_REMOVE, I find this KASAN warning: [ 20.872057] BUG: KASAN: use-after-free in pcc_data_alloc+0x40/0xb8 [ 20.878226] Read of size 4 at addr ffff00236cdeb684 by task swapper/0/1 [ 20.884826] [ 20.886309] CPU: 19 PID: 1 Comm: swapper/0 Not tainted 5.4.0-rc1-00009-ge7f7df3db5bf-dirty #289 [ 20.894994] Hardware name: Huawei D06 /D06, BIOS Hisilicon D06 UEFI RC0 - V1.16.01 03/15/2019 [ 20.903505] Call trace: [ 20.905942] dump_backtrace+0x0/0x200 [ 20.909593] show_stack+0x14/0x20 [ 20.912899] dump_stack+0xd4/0x130 [ 20.916291] print_address_description.isra.9+0x6c/0x3b8 [ 20.921592] __kasan_report+0x12c/0x23c [ 20.925417] kasan_report+0xc/0x18 [ 20.928808] __asan_load4+0x94/0xb8 [ 20.932286] pcc_data_alloc+0x40/0xb8 [ 20.935938] acpi_cppc_processor_probe+0x4e8/0xb08 [ 20.940717] __acpi_processor_start+0x48/0xb0 [ 20.945062] acpi_processor_start+0x40/0x60 [ 20.949235] really_probe+0x118/0x548 [ 20.952887] driver_probe_device+0x7c/0x148 [ 20.957059] device_driver_attach+0x94/0xa0 [ 20.961231] __driver_attach+0xa4/0x110 [ 20.965055] bus_for_each_dev+0xe8/0x158 [ 20.968966] driver_attach+0x30/0x40 [ 20.972531] bus_add_driver+0x234/0x2f0 [ 20.976356] driver_register+0xbc/0x1d0 [ 20.980182] acpi_processor_driver_init+0x40/0xe4 [ 20.984875] do_one_initcall+0xb4/0x254 [ 20.988700] kernel_init_freeable+0x24c/0x2f8 [ 20.993047] kernel_init+0x10/0x118 [ 20.996524] ret_from_fork+0x10/0x18 [ 21.000087] [ 21.001567] Allocated by task 1: [ 21.004785] save_stack+0x28/0xc8 [ 21.008089] __kasan_kmalloc.isra.9+0xbc/0xd8 [ 21.012435] kasan_kmalloc+0xc/0x18 [ 21.015913] pcc_data_alloc+0x94/0xb8 [ 21.019564] acpi_cppc_processor_probe+0x4e8/0xb08 [ 21.024343] __acpi_processor_start+0x48/0xb0 [ 21.028689] acpi_processor_start+0x40/0x60 [ 21.032860] really_probe+0x118/0x548 [ 21.036512] driver_probe_device+0x7c/0x148 [ 21.040684] device_driver_attach+0x94/0xa0 [ 21.044855] __driver_attach+0xa4/0x110 [ 21.048680] bus_for_each_dev+0xe8/0x158 [ 21.052591] driver_attach+0x30/0x40 [ 21.056155] bus_add_driver+0x234/0x2f0 [ 21.059980] driver_register+0xbc/0x1d0 [ 21.063805] acpi_processor_driver_init+0x40/0xe4 [ 21.068497] do_one_initcall+0xb4/0x254 [ 21.072322] kernel_init_freeable+0x24c/0x2f8 [ 21.076667] kernel_init+0x10/0x118 [ 21.080144] ret_from_fork+0x10/0x18 [ 21.083707] [ 21.085186] Freed by task 1: [ 21.088056] save_stack+0x28/0xc8 [ 21.091360] __kasan_slab_free+0x118/0x180 [ 21.095445] kasan_slab_free+0x10/0x18 [ 21.099183] kfree+0x80/0x268 [ 21.102139] acpi_cppc_processor_exit+0x1a8/0x1b8 [ 21.106832] acpi_processor_stop+0x70/0x80 [ 21.110917] really_probe+0x174/0x548 [ 21.114568] driver_probe_device+0x7c/0x148 [ 21.118740] device_driver_attach+0x94/0xa0 [ 21.122912] __driver_attach+0xa4/0x110 [ 21.126736] bus_for_each_dev+0xe8/0x158 [ 21.130648] driver_attach+0x30/0x40 [ 21.134212] bus_add_driver+0x234/0x2f0 [ 21.0x10/0x18 [ 21.161764] [ 21.163244] The buggy address belongs to the object at ffff00236cdeb600 [ 21.163244] which belongs to the cache kmalloc-256 of size 256 [ 21.175750] The buggy address is located 132 bytes inside of [ 21.175750] 256-byte region [ffff00236cdeb600, ffff00236cdeb700) [ 21.187473] The buggy address belongs to the page: [ 21.192254] page:fffffe008d937a00 refcount:1 mapcount:0 mapping:ffff002370c0fa00 index:0x0 compound_mapcount: 0 [ 21.202331] flags: 0x1ffff00000010200(slab|head) [ 21.206940] raw: 1ffff00000010200 dead000000000100 dead000000000122 ffff002370c0fa00 [ 21.214671] raw: 0000000000000000 00000000802a002a 00000001ffffffff 0000000000000000 [ 21.222400] page dumped because: kasan: bad access detected [ 21.227959] [ 21.229438] Memory state around the buggy address: [ 21.234218] ffff00236cdeb580: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [ 21.241427] ffff00236cdeb600: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [ 21.248637] >ffff00236cdeb680: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [ 21.255845] ^ [ 21.259062] ffff00236cdeb700: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [ 21.266272] ffff00236cdeb780: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [ 21.273480] ================================================================== It seems that global pcc_data[pcc_ss_id] can be freed in acpi_cppc_processor_exit(), but we may later reference this value, so NULLify it when freed. Also remove the useless setting of data "pcc_channel_acquired", which we're about to free. Fixes: 85b1407bf6d2 ("ACPI / CPPC: Make CPPC ACPI driver aware of PCC subspace IDs") Signed-off-by: John Garry <john.garry@huawei.com> Cc: 4.15+ <stable@vger.kernel.org> # 4.15+ Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2019-10-15 22:07:31 +08:00
pcc_data[pcc_ss_id] = NULL;
}
}
}
cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
ACPI / CPPC: Fix crash in acpi_cppc_processor_exit() First I had crashed what I bisected down to de966cf4a4fa (sched/x86: Change CONFIG_SCHED_ITMT to CONFIG_SCHED_MC_PRIO) because it made SCHED_ITMT the default. Then I run another bisect round and got here with the same backtrace: |BUG: unable to handle kernel NULL pointer dereference at (null) |IP: [<ffffffff812aab6e>] acpi_cppc_processor_exit+0x40/0x60 |PGD 0 [ 0.577616] |Oops: 0000 [#1] SMP |Modules linked in: |CPU: 3 PID: 1 Comm: swapper/0 Not tainted 4.9.0-rc6-00146-g17669006adf6 #51 |task: ffff88003f878000 task.stack: ffffc90000008000 |RIP: 0010:[<ffffffff812aab6e>] [<ffffffff812aab6e>] acpi_cppc_processor_exit+0x40/0x60 |RSP: 0000:ffffc9000000bd48 EFLAGS: 00010296 |RAX: 00000000000137e0 RBX: 0000000000000000 RCX: 0000000000000001 |RDX: ffff88003fc00000 RSI: 0000000000000000 RDI: ffff88003fbca130 |RBP: ffffc9000000bd60 R08: 0000000000000514 R09: 0000000000000000 |R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000002 |R13: 0000000000000020 R14: ffffffff8167cb00 R15: 0000000000000000 |FS: 0000000000000000(0000) GS:ffff88003fcc0000(0000) knlGS:0000000000000000 |CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 |CR2: 0000000000000000 CR3: 0000000001618000 CR4: 00000000000406e0 |Stack: | ffff88003f939848 ffff88003fbca130 0000000000000001 ffffc9000000bd80 | ffffffff812a4ccb ffff88003fc0cee8 0000000000000000 ffffc9000000bdb8 | ffffffff812dc20d ffff88003fc0cee8 ffffffff8167cb00 ffff88003fc0cf48 |Call Trace: | [<ffffffff812a4ccb>] acpi_processor_stop+0xb2/0xc5 | [<ffffffff812dc20d>] driver_probe_device+0x14d/0x2f0 | [<ffffffff812dc41e>] __driver_attach+0x6e/0x90 | [<ffffffff812da234>] bus_for_each_dev+0x54/0x90 | [<ffffffff812dbbf9>] driver_attach+0x19/0x20 | [<ffffffff812db6a6>] bus_add_driver+0xe6/0x200 | [<ffffffff812dcb23>] driver_register+0x83/0xc0 | [<ffffffff816f050a>] acpi_processor_driver_init+0x20/0x94 | [<ffffffff81000487>] do_one_initcall+0x97/0x180 | [<ffffffff816ccf5c>] kernel_init_freeable+0x112/0x1a6 | [<ffffffff813a0fc9>] kernel_init+0x9/0xf0 | [<ffffffff813acf35>] ret_from_fork+0x25/0x30 |Code: 02 00 00 00 48 8b 14 d5 e0 c3 55 81 48 8b 1c 02 4c 8d 6b 20 eb 15 49 8b 7d 00 48 85 ff 74 05 e8 39 8c d9 ff 41 ff c4 49 83 c5 20 <44> 3b 23 72 e6 48 8d bb a0 02 00 00 e8 b1 6f f9 ff 48 89 df e8 |RIP [<ffffffff812aab6e>] acpi_cppc_processor_exit+0x40/0x60 | RSP <ffffc9000000bd48> |CR2: 0000000000000000 |---[ end trace 917a625107b09711 ]--- Fix it. Fixes: 17669006adf6 (cpufreq/intel_pstate: Use CPPC to get max performance) Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> [ rjw: Subject ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-12-08 03:06:08 +08:00
if (!cpc_ptr)
return;
/* Free all the mapped sys mem areas for this CPU */
for (i = 2; i < cpc_ptr->num_entries; i++) {
addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
if (addr)
iounmap(addr);
}
kobject_put(&cpc_ptr->kobj);
kfree(cpc_ptr);
}
EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
/**
* cpc_read_ffh() - Read FFH register
* @cpunum: CPU number to read
* @reg: cppc register information
* @val: place holder for return value
*
* Read bit_width bits from a specified address and bit_offset
*
* Return: 0 for success and error code
*/
int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
{
return -ENOTSUPP;
}
/**
* cpc_write_ffh() - Write FFH register
* @cpunum: CPU number to write
* @reg: cppc register information
* @val: value to write
*
* Write value of bit_width bits to a specified address and bit_offset
*
* Return: 0 for success and error code
*/
int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
{
return -ENOTSUPP;
}
/*
* Since cpc_read and cpc_write are called while holding pcc_lock, it should be
* as fast as possible. We have already mapped the PCC subspace during init, so
* we can directly write to it.
*/
static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
{
void __iomem *vaddr = NULL;
int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
struct cpc_reg *reg = &reg_res->cpc_entry.reg;
if (reg_res->type == ACPI_TYPE_INTEGER) {
*val = reg_res->cpc_entry.int_value;
return 0;
}
*val = 0;
if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
u32 width = 8 << (reg->access_width - 1);
u32 val_u32;
acpi_status status;
status = acpi_os_read_port((acpi_io_address)reg->address,
&val_u32, width);
if (ACPI_FAILURE(status)) {
pr_debug("Error: Failed to read SystemIO port %llx\n",
reg->address);
return -EFAULT;
}
*val = val_u32;
return 0;
} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
vaddr = reg_res->sys_mem_vaddr;
else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
return cpc_read_ffh(cpu, reg, val);
else
return acpi_os_read_memory((acpi_physical_address)reg->address,
val, reg->bit_width);
switch (reg->bit_width) {
case 8:
*val = readb_relaxed(vaddr);
break;
case 16:
*val = readw_relaxed(vaddr);
break;
case 32:
*val = readl_relaxed(vaddr);
break;
case 64:
*val = readq_relaxed(vaddr);
break;
default:
pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
reg->bit_width, pcc_ss_id);
return -EFAULT;
}
return 0;
}
static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
{
int ret_val = 0;
void __iomem *vaddr = NULL;
int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
struct cpc_reg *reg = &reg_res->cpc_entry.reg;
if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
u32 width = 8 << (reg->access_width - 1);
acpi_status status;
status = acpi_os_write_port((acpi_io_address)reg->address,
(u32)val, width);
if (ACPI_FAILURE(status)) {
pr_debug("Error: Failed to write SystemIO port %llx\n",
reg->address);
return -EFAULT;
}
return 0;
} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
vaddr = reg_res->sys_mem_vaddr;
else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
return cpc_write_ffh(cpu, reg, val);
else
return acpi_os_write_memory((acpi_physical_address)reg->address,
val, reg->bit_width);
switch (reg->bit_width) {
case 8:
writeb_relaxed(val, vaddr);
break;
case 16:
writew_relaxed(val, vaddr);
break;
case 32:
writel_relaxed(val, vaddr);
break;
case 64:
writeq_relaxed(val, vaddr);
break;
default:
pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
reg->bit_width, pcc_ss_id);
ret_val = -EFAULT;
break;
}
return ret_val;
}
static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf)
{
struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
struct cpc_register_resource *reg;
if (!cpc_desc) {
pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
return -ENODEV;
}
reg = &cpc_desc->cpc_regs[reg_idx];
if (CPC_IN_PCC(reg)) {
int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
struct cppc_pcc_data *pcc_ss_data = NULL;
int ret = 0;
if (pcc_ss_id < 0)
return -EIO;
pcc_ss_data = pcc_data[pcc_ss_id];
down_write(&pcc_ss_data->pcc_lock);
if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
cpc_read(cpunum, reg, perf);
else
ret = -EIO;
up_write(&pcc_ss_data->pcc_lock);
return ret;
}
cpc_read(cpunum, reg, perf);
return 0;
}
/**
* cppc_get_desired_perf - Get the desired performance register value.
* @cpunum: CPU from which to get desired performance.
* @desired_perf: Return address.
*
* Return: 0 for success, -EIO otherwise.
*/
int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
{
return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf);
}
EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
/**
* cppc_get_nominal_perf - Get the nominal performance register value.
* @cpunum: CPU from which to get nominal performance.
* @nominal_perf: Return address.
*
* Return: 0 for success, -EIO otherwise.
*/
int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
{
return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf);
}
/**
* cppc_get_epp_perf - Get the epp register value.
* @cpunum: CPU from which to get epp preference value.
* @epp_perf: Return address.
*
* Return: 0 for success, -EIO otherwise.
*/
int cppc_get_epp_perf(int cpunum, u64 *epp_perf)
{
return cppc_get_perf(cpunum, ENERGY_PERF, epp_perf);
}
EXPORT_SYMBOL_GPL(cppc_get_epp_perf);
/**
* cppc_get_perf_caps - Get a CPU's performance capabilities.
* @cpunum: CPU from which to get capabilities info.
* @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
*
* Return: 0 for success with perf_caps populated else -ERRNO.
*/
int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
{
struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
struct cpc_register_resource *highest_reg, *lowest_reg,
*lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
*low_freq_reg = NULL, *nom_freq_reg = NULL;
u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
struct cppc_pcc_data *pcc_ss_data = NULL;
int ret = 0, regs_in_pcc = 0;
if (!cpc_desc) {
pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
return -ENODEV;
}
highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
/* Are any of the regs PCC ?*/
if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
if (pcc_ss_id < 0) {
pr_debug("Invalid pcc_ss_id\n");
return -ENODEV;
}
pcc_ss_data = pcc_data[pcc_ss_id];
regs_in_pcc = 1;
down_write(&pcc_ss_data->pcc_lock);
/* Ring doorbell once to update PCC subspace */
if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
ret = -EIO;
goto out_err;
}
}
cpc_read(cpunum, highest_reg, &high);
perf_caps->highest_perf = high;
cpc_read(cpunum, lowest_reg, &low);
perf_caps->lowest_perf = low;
cpc_read(cpunum, nominal_reg, &nom);
perf_caps->nominal_perf = nom;
if (guaranteed_reg->type != ACPI_TYPE_BUFFER ||
IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
perf_caps->guaranteed_perf = 0;
} else {
cpc_read(cpunum, guaranteed_reg, &guaranteed);
perf_caps->guaranteed_perf = guaranteed;
}
cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
perf_caps->lowest_nonlinear_perf = min_nonlinear;
if (!high || !low || !nom || !min_nonlinear)
ret = -EFAULT;
/* Read optional lowest and nominal frequencies if present */
if (CPC_SUPPORTED(low_freq_reg))
cpc_read(cpunum, low_freq_reg, &low_f);
if (CPC_SUPPORTED(nom_freq_reg))
cpc_read(cpunum, nom_freq_reg, &nom_f);
perf_caps->lowest_freq = low_f;
perf_caps->nominal_freq = nom_f;
out_err:
if (regs_in_pcc)
up_write(&pcc_ss_data->pcc_lock);
return ret;
}
EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
/**
* cppc_perf_ctrs_in_pcc - Check if any perf counters are in a PCC region.
*
* CPPC has flexibility about how CPU performance counters are accessed.
* One of the choices is PCC regions, which can have a high access latency. This
* routine allows callers of cppc_get_perf_ctrs() to know this ahead of time.
*
* Return: true if any of the counters are in PCC regions, false otherwise
*/
bool cppc_perf_ctrs_in_pcc(void)
{
int cpu;
for_each_present_cpu(cpu) {
struct cpc_register_resource *ref_perf_reg;
struct cpc_desc *cpc_desc;
cpc_desc = per_cpu(cpc_desc_ptr, cpu);
if (CPC_IN_PCC(&cpc_desc->cpc_regs[DELIVERED_CTR]) ||
CPC_IN_PCC(&cpc_desc->cpc_regs[REFERENCE_CTR]) ||
CPC_IN_PCC(&cpc_desc->cpc_regs[CTR_WRAP_TIME]))
return true;
ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
/*
* If reference perf register is not supported then we should
* use the nominal perf value
*/
if (!CPC_SUPPORTED(ref_perf_reg))
ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
if (CPC_IN_PCC(ref_perf_reg))
return true;
}
return false;
}
EXPORT_SYMBOL_GPL(cppc_perf_ctrs_in_pcc);
/**
* cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
* @cpunum: CPU from which to read counters.
* @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
*
* Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
*/
int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
{
struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
struct cpc_register_resource *delivered_reg, *reference_reg,
*ref_perf_reg, *ctr_wrap_reg;
int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
struct cppc_pcc_data *pcc_ss_data = NULL;
u64 delivered, reference, ref_perf, ctr_wrap_time;
int ret = 0, regs_in_pcc = 0;
if (!cpc_desc) {
pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
return -ENODEV;
}
delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
/*
* If reference perf register is not supported then we should
* use the nominal perf value
*/
if (!CPC_SUPPORTED(ref_perf_reg))
ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
/* Are any of the regs PCC ?*/
if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
if (pcc_ss_id < 0) {
pr_debug("Invalid pcc_ss_id\n");
return -ENODEV;
}
pcc_ss_data = pcc_data[pcc_ss_id];
down_write(&pcc_ss_data->pcc_lock);
regs_in_pcc = 1;
/* Ring doorbell once to update PCC subspace */
if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
ret = -EIO;
goto out_err;
}
}
cpc_read(cpunum, delivered_reg, &delivered);
cpc_read(cpunum, reference_reg, &reference);
cpc_read(cpunum, ref_perf_reg, &ref_perf);
/*
* Per spec, if ctr_wrap_time optional register is unsupported, then the
* performance counters are assumed to never wrap during the lifetime of
* platform
*/
ctr_wrap_time = (u64)(~((u64)0));
if (CPC_SUPPORTED(ctr_wrap_reg))
cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
if (!delivered || !reference || !ref_perf) {
ret = -EFAULT;
goto out_err;
}
perf_fb_ctrs->delivered = delivered;
perf_fb_ctrs->reference = reference;
perf_fb_ctrs->reference_perf = ref_perf;
perf_fb_ctrs->wraparound_time = ctr_wrap_time;
out_err:
if (regs_in_pcc)
up_write(&pcc_ss_data->pcc_lock);
return ret;
}
EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
/*
* Set Energy Performance Preference Register value through
* Performance Controls Interface
*/
int cppc_set_epp_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls, bool enable)
{
int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
struct cpc_register_resource *epp_set_reg;
struct cpc_register_resource *auto_sel_reg;
struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
struct cppc_pcc_data *pcc_ss_data = NULL;
int ret;
if (!cpc_desc) {
pr_debug("No CPC descriptor for CPU:%d\n", cpu);
return -ENODEV;
}
auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
epp_set_reg = &cpc_desc->cpc_regs[ENERGY_PERF];
if (CPC_IN_PCC(epp_set_reg) || CPC_IN_PCC(auto_sel_reg)) {
if (pcc_ss_id < 0) {
pr_debug("Invalid pcc_ss_id for CPU:%d\n", cpu);
return -ENODEV;
}
if (CPC_SUPPORTED(auto_sel_reg)) {
ret = cpc_write(cpu, auto_sel_reg, enable);
if (ret)
return ret;
}
if (CPC_SUPPORTED(epp_set_reg)) {
ret = cpc_write(cpu, epp_set_reg, perf_ctrls->energy_perf);
if (ret)
return ret;
}
pcc_ss_data = pcc_data[pcc_ss_id];
down_write(&pcc_ss_data->pcc_lock);
/* after writing CPC, transfer the ownership of PCC to platform */
ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
up_write(&pcc_ss_data->pcc_lock);
} else {
ret = -ENOTSUPP;
pr_debug("_CPC in PCC is not supported\n");
}
return ret;
}
EXPORT_SYMBOL_GPL(cppc_set_epp_perf);
/**
* cppc_get_auto_sel_caps - Read autonomous selection register.
* @cpunum : CPU from which to read register.
* @perf_caps : struct where autonomous selection register value is updated.
*/
int cppc_get_auto_sel_caps(int cpunum, struct cppc_perf_caps *perf_caps)
{
struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
struct cpc_register_resource *auto_sel_reg;
u64 auto_sel;
if (!cpc_desc) {
pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
return -ENODEV;
}
auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
if (!CPC_SUPPORTED(auto_sel_reg))
pr_warn_once("Autonomous mode is not unsupported!\n");
if (CPC_IN_PCC(auto_sel_reg)) {
int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
struct cppc_pcc_data *pcc_ss_data = NULL;
int ret = 0;
if (pcc_ss_id < 0)
return -ENODEV;
pcc_ss_data = pcc_data[pcc_ss_id];
down_write(&pcc_ss_data->pcc_lock);
if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0) {
cpc_read(cpunum, auto_sel_reg, &auto_sel);
perf_caps->auto_sel = (bool)auto_sel;
} else {
ret = -EIO;
}
up_write(&pcc_ss_data->pcc_lock);
return ret;
}
return 0;
}
EXPORT_SYMBOL_GPL(cppc_get_auto_sel_caps);
/**
* cppc_set_auto_sel - Write autonomous selection register.
* @cpu : CPU to which to write register.
* @enable : the desired value of autonomous selection resiter to be updated.
*/
int cppc_set_auto_sel(int cpu, bool enable)
{
int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
struct cpc_register_resource *auto_sel_reg;
struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
struct cppc_pcc_data *pcc_ss_data = NULL;
int ret = -EINVAL;
if (!cpc_desc) {
pr_debug("No CPC descriptor for CPU:%d\n", cpu);
return -ENODEV;
}
auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
if (CPC_IN_PCC(auto_sel_reg)) {
if (pcc_ss_id < 0) {
pr_debug("Invalid pcc_ss_id\n");
return -ENODEV;
}
if (CPC_SUPPORTED(auto_sel_reg)) {
ret = cpc_write(cpu, auto_sel_reg, enable);
if (ret)
return ret;
}
pcc_ss_data = pcc_data[pcc_ss_id];
down_write(&pcc_ss_data->pcc_lock);
/* after writing CPC, transfer the ownership of PCC to platform */
ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
up_write(&pcc_ss_data->pcc_lock);
} else {
ret = -ENOTSUPP;
pr_debug("_CPC in PCC is not supported\n");
}
return ret;
}
EXPORT_SYMBOL_GPL(cppc_set_auto_sel);
/**
* cppc_set_enable - Set to enable CPPC on the processor by writing the
* Continuous Performance Control package EnableRegister field.
* @cpu: CPU for which to enable CPPC register.
* @enable: 0 - disable, 1 - enable CPPC feature on the processor.
*
* Return: 0 for success, -ERRNO or -EIO otherwise.
*/
int cppc_set_enable(int cpu, bool enable)
{
int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
struct cpc_register_resource *enable_reg;
struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
struct cppc_pcc_data *pcc_ss_data = NULL;
int ret = -EINVAL;
if (!cpc_desc) {
pr_debug("No CPC descriptor for CPU:%d\n", cpu);
return -EINVAL;
}
enable_reg = &cpc_desc->cpc_regs[ENABLE];
if (CPC_IN_PCC(enable_reg)) {
if (pcc_ss_id < 0)
return -EIO;
ret = cpc_write(cpu, enable_reg, enable);
if (ret)
return ret;
pcc_ss_data = pcc_data[pcc_ss_id];
down_write(&pcc_ss_data->pcc_lock);
/* after writing CPC, transfer the ownership of PCC to platfrom */
ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
up_write(&pcc_ss_data->pcc_lock);
return ret;
}
return cpc_write(cpu, enable_reg, enable);
}
EXPORT_SYMBOL_GPL(cppc_set_enable);
/**
* cppc_set_perf - Set a CPU's performance controls.
* @cpu: CPU for which to set performance controls.
* @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
*
* Return: 0 for success, -ERRNO otherwise.
*/
int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
{
struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
struct cpc_register_resource *desired_reg, *min_perf_reg, *max_perf_reg;
int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
struct cppc_pcc_data *pcc_ss_data = NULL;
int ret = 0;
if (!cpc_desc) {
pr_debug("No CPC descriptor for CPU:%d\n", cpu);
return -ENODEV;
}
desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
min_perf_reg = &cpc_desc->cpc_regs[MIN_PERF];
max_perf_reg = &cpc_desc->cpc_regs[MAX_PERF];
/*
* This is Phase-I where we want to write to CPC registers
* -> We want all CPUs to be able to execute this phase in parallel
*
* Since read_lock can be acquired by multiple CPUs simultaneously we
* achieve that goal here
*/
if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
if (pcc_ss_id < 0) {
pr_debug("Invalid pcc_ss_id\n");
return -ENODEV;
}
pcc_ss_data = pcc_data[pcc_ss_id];
down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
if (pcc_ss_data->platform_owns_pcc) {
ret = check_pcc_chan(pcc_ss_id, false);
if (ret) {
up_read(&pcc_ss_data->pcc_lock);
return ret;
}
}
/*
* Update the pending_write to make sure a PCC CMD_READ will not
* arrive and steal the channel during the switch to write lock
*/
pcc_ss_data->pending_pcc_write_cmd = true;
cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
cpc_desc->write_cmd_status = 0;
}
cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
/*
* Only write if min_perf and max_perf not zero. Some drivers pass zero
* value to min and max perf, but they don't mean to set the zero value,
* they just don't want to write to those registers.
*/
if (perf_ctrls->min_perf)
cpc_write(cpu, min_perf_reg, perf_ctrls->min_perf);
if (perf_ctrls->max_perf)
cpc_write(cpu, max_perf_reg, perf_ctrls->max_perf);
if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg))
up_read(&pcc_ss_data->pcc_lock); /* END Phase-I */
/*
* This is Phase-II where we transfer the ownership of PCC to Platform
*
* Short Summary: Basically if we think of a group of cppc_set_perf
* requests that happened in short overlapping interval. The last CPU to
* come out of Phase-I will enter Phase-II and ring the doorbell.
*
* We have the following requirements for Phase-II:
* 1. We want to execute Phase-II only when there are no CPUs
* currently executing in Phase-I
* 2. Once we start Phase-II we want to avoid all other CPUs from
* entering Phase-I.
* 3. We want only one CPU among all those who went through Phase-I
* to run phase-II
*
* If write_trylock fails to get the lock and doesn't transfer the
* PCC ownership to the platform, then one of the following will be TRUE
* 1. There is at-least one CPU in Phase-I which will later execute
* write_trylock, so the CPUs in Phase-I will be responsible for
* executing the Phase-II.
* 2. Some other CPU has beaten this CPU to successfully execute the
* write_trylock and has already acquired the write_lock. We know for a
* fact it (other CPU acquiring the write_lock) couldn't have happened
* before this CPU's Phase-I as we held the read_lock.
* 3. Some other CPU executing pcc CMD_READ has stolen the
* down_write, in which case, send_pcc_cmd will check for pending
* CMD_WRITE commands by checking the pending_pcc_write_cmd.
* So this CPU can be certain that its request will be delivered
* So in all cases, this CPU knows that its request will be delivered
* by another CPU and can return
*
* After getting the down_write we still need to check for
* pending_pcc_write_cmd to take care of the following scenario
* The thread running this code could be scheduled out between
* Phase-I and Phase-II. Before it is scheduled back on, another CPU
* could have delivered the request to Platform by triggering the
* doorbell and transferred the ownership of PCC to platform. So this
* avoids triggering an unnecessary doorbell and more importantly before
* triggering the doorbell it makes sure that the PCC channel ownership
* is still with OSPM.
* pending_pcc_write_cmd can also be cleared by a different CPU, if
* there was a pcc CMD_READ waiting on down_write and it steals the lock
* before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
* case during a CMD_READ and if there are pending writes it delivers
* the write command before servicing the read command
*/
if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
/* Update only if there are pending write commands */
if (pcc_ss_data->pending_pcc_write_cmd)
send_pcc_cmd(pcc_ss_id, CMD_WRITE);
up_write(&pcc_ss_data->pcc_lock); /* END Phase-II */
} else
/* Wait until pcc_write_cnt is updated by send_pcc_cmd */
wait_event(pcc_ss_data->pcc_write_wait_q,
cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
/* send_pcc_cmd updates the status in case of failure */
ret = cpc_desc->write_cmd_status;
}
return ret;
}
EXPORT_SYMBOL_GPL(cppc_set_perf);
/**
* cppc_get_transition_latency - returns frequency transition latency in ns
* @cpu_num: CPU number for per_cpu().
*
* ACPI CPPC does not explicitly specify how a platform can specify the
* transition latency for performance change requests. The closest we have
* is the timing information from the PCCT tables which provides the info
* on the number and frequency of PCC commands the platform can handle.
ACPI: CPPC: Assume no transition latency if no PCCT The transition_delay_us (struct cpufreq_policy) is currently defined as: Preferred average time interval between consecutive invocations of the driver to set the frequency for this policy. To be set by the scaling driver (0, which is the default, means no preference). The transition_latency represents the amount of time necessary for a CPU to change its frequency. A PCCT table advertises mutliple values: - pcc_nominal: Expected latency to process a command, in microseconds - pcc_mpar: The maximum number of periodic requests that the subspace channel can support, reported in commands per minute. 0 indicates no limitation. - pcc_mrtt: The minimum amount of time that OSPM must wait after the completion of a command before issuing the next command, in microseconds. cppc_get_transition_latency() allows to get the max of them. commit d4f3388afd48 ("cpufreq / CPPC: Set platform specific transition_delay_us") allows to select transition_delay_us based on the platform, and fallbacks to cppc_get_transition_latency() otherwise. If _CPC objects are not using PCC channels (no PPCT table), the transition_delay_us is set to CPUFREQ_ETERNAL, leading to really long periods between frequency updates (~4s). If the desired_reg, where performance requests are written, is in SystemMemory or SystemIo ACPI address space, there is no delay in requests. So return 0 instead of CPUFREQ_ETERNAL, leading to transition_delay_us being set to LATENCY_MULTIPLIER us (1000 us). This patch also adds two macros to check the address spaces. Signed-off-by: Pierre Gondois <pierre.gondois@arm.com> Reviewed-by: Sudeep Holla <sudeep.holla@arm.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2022-05-18 17:08:59 +08:00
*
* If desired_reg is in the SystemMemory or SystemIo ACPI address space,
* then assume there is no latency.
*/
unsigned int cppc_get_transition_latency(int cpu_num)
{
/*
* Expected transition latency is based on the PCCT timing values
* Below are definition from ACPI spec:
* pcc_nominal- Expected latency to process a command, in microseconds
* pcc_mpar - The maximum number of periodic requests that the subspace
* channel can support, reported in commands per minute. 0
* indicates no limitation.
* pcc_mrtt - The minimum amount of time that OSPM must wait after the
* completion of a command before issuing the next command,
* in microseconds.
*/
unsigned int latency_ns = 0;
struct cpc_desc *cpc_desc;
struct cpc_register_resource *desired_reg;
int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
ACPI / CPPC: Fix KASAN global out of bounds warning Default value of pcc_subspace_idx is -1. Make sure to check pcc_subspace_idx before using the same as array index. This will avoid following KASAN warnings too. [ 15.113449] ================================================================== [ 15.116983] BUG: KASAN: global-out-of-bounds in cppc_get_perf_caps+0xf3/0x3b0 [ 15.116983] Read of size 8 at addr ffffffffb9a5c0d8 by task swapper/0/1 [ 15.116983] CPU: 3 PID: 1 Comm: swapper/0 Not tainted 4.15.0-rc2+ #2 [ 15.116983] Hardware name: Dell Inc. OptiPlex 7040/0Y7WYT, BIOS 1.2.8 01/26/2016 [ 15.116983] Call Trace: [ 15.116983] dump_stack+0x7c/0xbb [ 15.116983] print_address_description+0x1df/0x290 [ 15.116983] kasan_report+0x28a/0x370 [ 15.116983] ? cppc_get_perf_caps+0xf3/0x3b0 [ 15.116983] cppc_get_perf_caps+0xf3/0x3b0 [ 15.116983] ? cpc_read+0x210/0x210 [ 15.116983] ? __rdmsr_on_cpu+0x90/0x90 [ 15.116983] ? rdmsrl_on_cpu+0xa9/0xe0 [ 15.116983] ? rdmsr_on_cpu+0x100/0x100 [ 15.116983] ? wrmsrl_on_cpu+0x9c/0xd0 [ 15.116983] ? wrmsrl_on_cpu+0x9c/0xd0 [ 15.116983] ? wrmsr_on_cpu+0xe0/0xe0 [ 15.116983] __intel_pstate_cpu_init.part.16+0x3a2/0x530 [ 15.116983] ? intel_pstate_init_cpu+0x197/0x390 [ 15.116983] ? show_no_turbo+0xe0/0xe0 [ 15.116983] ? __lockdep_init_map+0xa0/0x290 [ 15.116983] intel_pstate_cpu_init+0x30/0x60 [ 15.116983] cpufreq_online+0x155/0xac0 [ 15.116983] cpufreq_add_dev+0x9b/0xb0 [ 15.116983] subsys_interface_register+0x1ae/0x290 [ 15.116983] ? bus_unregister_notifier+0x40/0x40 [ 15.116983] ? mark_held_locks+0x83/0xb0 [ 15.116983] ? _raw_write_unlock_irqrestore+0x32/0x60 [ 15.116983] ? intel_pstate_setup+0xc/0x104 [ 15.116983] ? intel_pstate_setup+0xc/0x104 [ 15.116983] ? cpufreq_register_driver+0x1ce/0x2b0 [ 15.116983] cpufreq_register_driver+0x1ce/0x2b0 [ 15.116983] ? intel_pstate_setup+0x104/0x104 [ 15.116983] intel_pstate_register_driver+0x3a/0xa0 [ 15.116983] intel_pstate_init+0x3c4/0x434 [ 15.116983] ? intel_pstate_setup+0x104/0x104 [ 15.116983] ? intel_pstate_setup+0x104/0x104 [ 15.116983] do_one_initcall+0x9c/0x206 [ 15.116983] ? parameq+0xa0/0xa0 [ 15.116983] ? initcall_blacklisted+0x150/0x150 [ 15.116983] ? lock_downgrade+0x2c0/0x2c0 [ 15.116983] kernel_init_freeable+0x327/0x3f0 [ 15.116983] ? start_kernel+0x612/0x612 [ 15.116983] ? _raw_spin_unlock_irq+0x29/0x40 [ 15.116983] ? finish_task_switch+0xdd/0x320 [ 15.116983] ? finish_task_switch+0x8e/0x320 [ 15.116983] ? rest_init+0xd0/0xd0 [ 15.116983] kernel_init+0xf/0x11a [ 15.116983] ? rest_init+0xd0/0xd0 [ 15.116983] ret_from_fork+0x24/0x30 [ 15.116983] The buggy address belongs to the variable: [ 15.116983] __key.36299+0x38/0x40 [ 15.116983] Memory state around the buggy address: [ 15.116983] ffffffffb9a5bf80: fa fa fa fa 00 fa fa fa fa fa fa fa 00 fa fa fa [ 15.116983] ffffffffb9a5c000: fa fa fa fa 00 fa fa fa fa fa fa fa 00 fa fa fa [ 15.116983] >ffffffffb9a5c080: fa fa fa fa 00 fa fa fa fa fa fa fa 00 00 00 00 [ 15.116983] ^ [ 15.116983] ffffffffb9a5c100: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 15.116983] ffffffffb9a5c180: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 15.116983] ================================================================== Fixes: 85b1407bf6d2 (ACPI / CPPC: Make CPPC ACPI driver aware of PCC subspace IDs) Reported-by: Changbin Du <changbin.du@intel.com> Signed-off-by: George Cherian <george.cherian@cavium.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-12-04 22:06:54 +08:00
struct cppc_pcc_data *pcc_ss_data;
cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
if (!cpc_desc)
return CPUFREQ_ETERNAL;
desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
ACPI: CPPC: Assume no transition latency if no PCCT The transition_delay_us (struct cpufreq_policy) is currently defined as: Preferred average time interval between consecutive invocations of the driver to set the frequency for this policy. To be set by the scaling driver (0, which is the default, means no preference). The transition_latency represents the amount of time necessary for a CPU to change its frequency. A PCCT table advertises mutliple values: - pcc_nominal: Expected latency to process a command, in microseconds - pcc_mpar: The maximum number of periodic requests that the subspace channel can support, reported in commands per minute. 0 indicates no limitation. - pcc_mrtt: The minimum amount of time that OSPM must wait after the completion of a command before issuing the next command, in microseconds. cppc_get_transition_latency() allows to get the max of them. commit d4f3388afd48 ("cpufreq / CPPC: Set platform specific transition_delay_us") allows to select transition_delay_us based on the platform, and fallbacks to cppc_get_transition_latency() otherwise. If _CPC objects are not using PCC channels (no PPCT table), the transition_delay_us is set to CPUFREQ_ETERNAL, leading to really long periods between frequency updates (~4s). If the desired_reg, where performance requests are written, is in SystemMemory or SystemIo ACPI address space, there is no delay in requests. So return 0 instead of CPUFREQ_ETERNAL, leading to transition_delay_us being set to LATENCY_MULTIPLIER us (1000 us). This patch also adds two macros to check the address spaces. Signed-off-by: Pierre Gondois <pierre.gondois@arm.com> Reviewed-by: Sudeep Holla <sudeep.holla@arm.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2022-05-18 17:08:59 +08:00
if (CPC_IN_SYSTEM_MEMORY(desired_reg) || CPC_IN_SYSTEM_IO(desired_reg))
return 0;
else if (!CPC_IN_PCC(desired_reg))
return CPUFREQ_ETERNAL;
ACPI / CPPC: Fix KASAN global out of bounds warning Default value of pcc_subspace_idx is -1. Make sure to check pcc_subspace_idx before using the same as array index. This will avoid following KASAN warnings too. [ 15.113449] ================================================================== [ 15.116983] BUG: KASAN: global-out-of-bounds in cppc_get_perf_caps+0xf3/0x3b0 [ 15.116983] Read of size 8 at addr ffffffffb9a5c0d8 by task swapper/0/1 [ 15.116983] CPU: 3 PID: 1 Comm: swapper/0 Not tainted 4.15.0-rc2+ #2 [ 15.116983] Hardware name: Dell Inc. OptiPlex 7040/0Y7WYT, BIOS 1.2.8 01/26/2016 [ 15.116983] Call Trace: [ 15.116983] dump_stack+0x7c/0xbb [ 15.116983] print_address_description+0x1df/0x290 [ 15.116983] kasan_report+0x28a/0x370 [ 15.116983] ? cppc_get_perf_caps+0xf3/0x3b0 [ 15.116983] cppc_get_perf_caps+0xf3/0x3b0 [ 15.116983] ? cpc_read+0x210/0x210 [ 15.116983] ? __rdmsr_on_cpu+0x90/0x90 [ 15.116983] ? rdmsrl_on_cpu+0xa9/0xe0 [ 15.116983] ? rdmsr_on_cpu+0x100/0x100 [ 15.116983] ? wrmsrl_on_cpu+0x9c/0xd0 [ 15.116983] ? wrmsrl_on_cpu+0x9c/0xd0 [ 15.116983] ? wrmsr_on_cpu+0xe0/0xe0 [ 15.116983] __intel_pstate_cpu_init.part.16+0x3a2/0x530 [ 15.116983] ? intel_pstate_init_cpu+0x197/0x390 [ 15.116983] ? show_no_turbo+0xe0/0xe0 [ 15.116983] ? __lockdep_init_map+0xa0/0x290 [ 15.116983] intel_pstate_cpu_init+0x30/0x60 [ 15.116983] cpufreq_online+0x155/0xac0 [ 15.116983] cpufreq_add_dev+0x9b/0xb0 [ 15.116983] subsys_interface_register+0x1ae/0x290 [ 15.116983] ? bus_unregister_notifier+0x40/0x40 [ 15.116983] ? mark_held_locks+0x83/0xb0 [ 15.116983] ? _raw_write_unlock_irqrestore+0x32/0x60 [ 15.116983] ? intel_pstate_setup+0xc/0x104 [ 15.116983] ? intel_pstate_setup+0xc/0x104 [ 15.116983] ? cpufreq_register_driver+0x1ce/0x2b0 [ 15.116983] cpufreq_register_driver+0x1ce/0x2b0 [ 15.116983] ? intel_pstate_setup+0x104/0x104 [ 15.116983] intel_pstate_register_driver+0x3a/0xa0 [ 15.116983] intel_pstate_init+0x3c4/0x434 [ 15.116983] ? intel_pstate_setup+0x104/0x104 [ 15.116983] ? intel_pstate_setup+0x104/0x104 [ 15.116983] do_one_initcall+0x9c/0x206 [ 15.116983] ? parameq+0xa0/0xa0 [ 15.116983] ? initcall_blacklisted+0x150/0x150 [ 15.116983] ? lock_downgrade+0x2c0/0x2c0 [ 15.116983] kernel_init_freeable+0x327/0x3f0 [ 15.116983] ? start_kernel+0x612/0x612 [ 15.116983] ? _raw_spin_unlock_irq+0x29/0x40 [ 15.116983] ? finish_task_switch+0xdd/0x320 [ 15.116983] ? finish_task_switch+0x8e/0x320 [ 15.116983] ? rest_init+0xd0/0xd0 [ 15.116983] kernel_init+0xf/0x11a [ 15.116983] ? rest_init+0xd0/0xd0 [ 15.116983] ret_from_fork+0x24/0x30 [ 15.116983] The buggy address belongs to the variable: [ 15.116983] __key.36299+0x38/0x40 [ 15.116983] Memory state around the buggy address: [ 15.116983] ffffffffb9a5bf80: fa fa fa fa 00 fa fa fa fa fa fa fa 00 fa fa fa [ 15.116983] ffffffffb9a5c000: fa fa fa fa 00 fa fa fa fa fa fa fa 00 fa fa fa [ 15.116983] >ffffffffb9a5c080: fa fa fa fa 00 fa fa fa fa fa fa fa 00 00 00 00 [ 15.116983] ^ [ 15.116983] ffffffffb9a5c100: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 15.116983] ffffffffb9a5c180: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 15.116983] ================================================================== Fixes: 85b1407bf6d2 (ACPI / CPPC: Make CPPC ACPI driver aware of PCC subspace IDs) Reported-by: Changbin Du <changbin.du@intel.com> Signed-off-by: George Cherian <george.cherian@cavium.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-12-04 22:06:54 +08:00
if (pcc_ss_id < 0)
return CPUFREQ_ETERNAL;
pcc_ss_data = pcc_data[pcc_ss_id];
if (pcc_ss_data->pcc_mpar)
latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
return latency_ns;
}
EXPORT_SYMBOL_GPL(cppc_get_transition_latency);