OpenCloudOS-Kernel/drivers/gpu/drm/i915/gt/intel_sseu.c

794 lines
21 KiB
C
Raw Normal View History

// SPDX-License-Identifier: MIT
/*
* Copyright © 2019 Intel Corporation
*/
#include <linux/string_helpers.h>
#include "i915_drv.h"
#include "intel_engine_regs.h"
#include "intel_gt_regs.h"
#include "intel_sseu.h"
void intel_sseu_set_info(struct sseu_dev_info *sseu, u8 max_slices,
u8 max_subslices, u8 max_eus_per_subslice)
{
sseu->max_slices = max_slices;
sseu->max_subslices = max_subslices;
sseu->max_eus_per_subslice = max_eus_per_subslice;
sseu->ss_stride = GEN_SSEU_STRIDE(sseu->max_subslices);
GEM_BUG_ON(sseu->ss_stride > GEN_MAX_SUBSLICE_STRIDE);
sseu->eu_stride = GEN_SSEU_STRIDE(sseu->max_eus_per_subslice);
GEM_BUG_ON(sseu->eu_stride > GEN_MAX_EU_STRIDE);
}
unsigned int
intel_sseu_subslice_total(const struct sseu_dev_info *sseu)
{
unsigned int i, total = 0;
for (i = 0; i < ARRAY_SIZE(sseu->subslice_mask); i++)
total += hweight8(sseu->subslice_mask[i]);
return total;
}
static u32
sseu_get_subslices(const struct sseu_dev_info *sseu,
const u8 *subslice_mask, u8 slice)
{
int i, offset = slice * sseu->ss_stride;
u32 mask = 0;
GEM_BUG_ON(slice >= sseu->max_slices);
for (i = 0; i < sseu->ss_stride; i++)
mask |= (u32)subslice_mask[offset + i] << i * BITS_PER_BYTE;
return mask;
}
u32 intel_sseu_get_subslices(const struct sseu_dev_info *sseu, u8 slice)
{
return sseu_get_subslices(sseu, sseu->subslice_mask, slice);
}
static u32 sseu_get_geometry_subslices(const struct sseu_dev_info *sseu)
{
return sseu_get_subslices(sseu, sseu->geometry_subslice_mask, 0);
}
u32 intel_sseu_get_compute_subslices(const struct sseu_dev_info *sseu)
{
return sseu_get_subslices(sseu, sseu->compute_subslice_mask, 0);
}
void intel_sseu_set_subslices(struct sseu_dev_info *sseu, int slice,
u8 *subslice_mask, u32 ss_mask)
{
int offset = slice * sseu->ss_stride;
memcpy(&subslice_mask[offset], &ss_mask, sseu->ss_stride);
}
unsigned int
intel_sseu_subslices_per_slice(const struct sseu_dev_info *sseu, u8 slice)
{
return hweight32(intel_sseu_get_subslices(sseu, slice));
}
static int sseu_eu_idx(const struct sseu_dev_info *sseu, int slice,
int subslice)
{
int slice_stride = sseu->max_subslices * sseu->eu_stride;
return slice * slice_stride + subslice * sseu->eu_stride;
}
static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice,
int subslice)
{
int i, offset = sseu_eu_idx(sseu, slice, subslice);
u16 eu_mask = 0;
for (i = 0; i < sseu->eu_stride; i++)
eu_mask |=
((u16)sseu->eu_mask[offset + i]) << (i * BITS_PER_BYTE);
return eu_mask;
}
static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice,
u16 eu_mask)
{
int i, offset = sseu_eu_idx(sseu, slice, subslice);
for (i = 0; i < sseu->eu_stride; i++)
sseu->eu_mask[offset + i] =
(eu_mask >> (BITS_PER_BYTE * i)) & 0xff;
}
static u16 compute_eu_total(const struct sseu_dev_info *sseu)
{
u16 i, total = 0;
for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
total += hweight8(sseu->eu_mask[i]);
return total;
}
static u32 get_ss_stride_mask(struct sseu_dev_info *sseu, u8 s, u32 ss_en)
{
u32 ss_mask;
ss_mask = ss_en >> (s * sseu->max_subslices);
ss_mask &= GENMASK(sseu->max_subslices - 1, 0);
return ss_mask;
}
static void gen11_compute_sseu_info(struct sseu_dev_info *sseu, u8 s_en,
u32 g_ss_en, u32 c_ss_en, u16 eu_en)
{
int s, ss;
/* g_ss_en/c_ss_en represent entire subslice mask across all slices */
GEM_BUG_ON(sseu->max_slices * sseu->max_subslices >
sizeof(g_ss_en) * BITS_PER_BYTE);
for (s = 0; s < sseu->max_slices; s++) {
if ((s_en & BIT(s)) == 0)
continue;
sseu->slice_mask |= BIT(s);
/*
* XeHP introduces the concept of compute vs geometry DSS. To
* reduce variation between GENs around subslice usage, store a
* mask for both the geometry and compute enabled masks since
* userspace will need to be able to query these masks
* independently. Also compute a total enabled subslice count
* for the purposes of selecting subslices to use in a
* particular GEM context.
*/
intel_sseu_set_subslices(sseu, s, sseu->compute_subslice_mask,
get_ss_stride_mask(sseu, s, c_ss_en));
intel_sseu_set_subslices(sseu, s, sseu->geometry_subslice_mask,
get_ss_stride_mask(sseu, s, g_ss_en));
intel_sseu_set_subslices(sseu, s, sseu->subslice_mask,
get_ss_stride_mask(sseu, s,
g_ss_en | c_ss_en));
for (ss = 0; ss < sseu->max_subslices; ss++)
if (intel_sseu_has_subslice(sseu, s, ss))
sseu_set_eus(sseu, s, ss, eu_en);
}
sseu->eu_per_subslice = hweight16(eu_en);
sseu->eu_total = compute_eu_total(sseu);
}
static void gen12_sseu_info_init(struct intel_gt *gt)
{
struct sseu_dev_info *sseu = &gt->info.sseu;
struct intel_uncore *uncore = gt->uncore;
u32 g_dss_en, c_dss_en = 0;
u16 eu_en = 0;
u8 eu_en_fuse;
u8 s_en;
int eu;
/*
* Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS.
* Instead of splitting these, provide userspace with an array
* of DSS to more closely represent the hardware resource.
*
* In addition, the concept of slice has been removed in Xe_HP.
* To be compatible with prior generations, assume a single slice
* across the entire device. Then calculate out the DSS for each
* workload type within that software slice.
*/
if (IS_DG2(gt->i915) || IS_XEHPSDV(gt->i915))
intel_sseu_set_info(sseu, 1, 32, 16);
else
intel_sseu_set_info(sseu, 1, 6, 16);
/*
* As mentioned above, Xe_HP does not have the concept of a slice.
* Enable one for software backwards compatibility.
*/
if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 50))
s_en = 0x1;
else
s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) &
GEN11_GT_S_ENA_MASK;
g_dss_en = intel_uncore_read(uncore, GEN12_GT_GEOMETRY_DSS_ENABLE);
if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 50))
c_dss_en = intel_uncore_read(uncore, GEN12_GT_COMPUTE_DSS_ENABLE);
/* one bit per pair of EUs */
if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 50))
eu_en_fuse = intel_uncore_read(uncore, XEHP_EU_ENABLE) & XEHP_EU_ENA_MASK;
else
eu_en_fuse = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) &
GEN11_EU_DIS_MASK);
for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
if (eu_en_fuse & BIT(eu))
eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
gen11_compute_sseu_info(sseu, s_en, g_dss_en, c_dss_en, eu_en);
/* TGL only supports slice-level power gating */
sseu->has_slice_pg = 1;
}
static void gen11_sseu_info_init(struct intel_gt *gt)
{
struct sseu_dev_info *sseu = &gt->info.sseu;
struct intel_uncore *uncore = gt->uncore;
u32 ss_en;
u8 eu_en;
u8 s_en;
if (IS_JSL_EHL(gt->i915))
intel_sseu_set_info(sseu, 1, 4, 8);
else
intel_sseu_set_info(sseu, 1, 8, 8);
s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) &
GEN11_GT_S_ENA_MASK;
ss_en = ~intel_uncore_read(uncore, GEN11_GT_SUBSLICE_DISABLE);
eu_en = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) &
GEN11_EU_DIS_MASK);
gen11_compute_sseu_info(sseu, s_en, ss_en, 0, eu_en);
/* ICL has no power gating restrictions. */
sseu->has_slice_pg = 1;
sseu->has_subslice_pg = 1;
sseu->has_eu_pg = 1;
}
static void cherryview_sseu_info_init(struct intel_gt *gt)
{
struct sseu_dev_info *sseu = &gt->info.sseu;
u32 fuse;
u8 subslice_mask = 0;
fuse = intel_uncore_read(gt->uncore, CHV_FUSE_GT);
sseu->slice_mask = BIT(0);
intel_sseu_set_info(sseu, 1, 2, 8);
if (!(fuse & CHV_FGT_DISABLE_SS0)) {
u8 disabled_mask =
((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
(((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
subslice_mask |= BIT(0);
sseu_set_eus(sseu, 0, 0, ~disabled_mask);
}
if (!(fuse & CHV_FGT_DISABLE_SS1)) {
u8 disabled_mask =
((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
(((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
subslice_mask |= BIT(1);
sseu_set_eus(sseu, 0, 1, ~disabled_mask);
}
intel_sseu_set_subslices(sseu, 0, sseu->subslice_mask, subslice_mask);
sseu->eu_total = compute_eu_total(sseu);
/*
* CHV expected to always have a uniform distribution of EU
* across subslices.
*/
sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
sseu->eu_total /
intel_sseu_subslice_total(sseu) :
0;
/*
* CHV supports subslice power gating on devices with more than
* one subslice, and supports EU power gating on devices with
* more than one EU pair per subslice.
*/
sseu->has_slice_pg = 0;
sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1;
sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
}
static void gen9_sseu_info_init(struct intel_gt *gt)
{
struct drm_i915_private *i915 = gt->i915;
struct intel_device_info *info = mkwrite_device_info(i915);
struct sseu_dev_info *sseu = &gt->info.sseu;
struct intel_uncore *uncore = gt->uncore;
u32 fuse2, eu_disable, subslice_mask;
const u8 eu_mask = 0xff;
int s, ss;
fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
/* BXT has a single slice and at most 3 subslices. */
intel_sseu_set_info(sseu, IS_GEN9_LP(i915) ? 1 : 3,
IS_GEN9_LP(i915) ? 3 : 4, 8);
/*
* The subslice disable field is global, i.e. it applies
* to each of the enabled slices.
*/
subslice_mask = (1 << sseu->max_subslices) - 1;
subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
GEN9_F2_SS_DIS_SHIFT);
/*
* Iterate through enabled slices and subslices to
* count the total enabled EU.
*/
for (s = 0; s < sseu->max_slices; s++) {
if (!(sseu->slice_mask & BIT(s)))
/* skip disabled slice */
continue;
intel_sseu_set_subslices(sseu, s, sseu->subslice_mask,
subslice_mask);
eu_disable = intel_uncore_read(uncore, GEN9_EU_DISABLE(s));
for (ss = 0; ss < sseu->max_subslices; ss++) {
int eu_per_ss;
u8 eu_disabled_mask;
if (!intel_sseu_has_subslice(sseu, s, ss))
/* skip disabled subslice */
continue;
eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
eu_per_ss = sseu->max_eus_per_subslice -
hweight8(eu_disabled_mask);
/*
* Record which subslice(s) has(have) 7 EUs. we
* can tune the hash used to spread work among
* subslices if they are unbalanced.
*/
if (eu_per_ss == 7)
sseu->subslice_7eu[s] |= BIT(ss);
}
}
sseu->eu_total = compute_eu_total(sseu);
/*
* SKL is expected to always have a uniform distribution
* of EU across subslices with the exception that any one
* EU in any one subslice may be fused off for die
* recovery. BXT is expected to be perfectly uniform in EU
* distribution.
*/
sseu->eu_per_subslice =
intel_sseu_subslice_total(sseu) ?
DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
0;
/*
* SKL+ supports slice power gating on devices with more than
* one slice, and supports EU power gating on devices with
* more than one EU pair per subslice. BXT+ supports subslice
* power gating on devices with more than one subslice, and
* supports EU power gating on devices with more than one EU
* pair per subslice.
*/
sseu->has_slice_pg =
!IS_GEN9_LP(i915) && hweight8(sseu->slice_mask) > 1;
sseu->has_subslice_pg =
IS_GEN9_LP(i915) && intel_sseu_subslice_total(sseu) > 1;
sseu->has_eu_pg = sseu->eu_per_subslice > 2;
if (IS_GEN9_LP(i915)) {
#define IS_SS_DISABLED(ss) (!(sseu->subslice_mask[0] & BIT(ss)))
info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
sseu->min_eu_in_pool = 0;
if (info->has_pooled_eu) {
if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
sseu->min_eu_in_pool = 3;
else if (IS_SS_DISABLED(1))
sseu->min_eu_in_pool = 6;
else
sseu->min_eu_in_pool = 9;
}
#undef IS_SS_DISABLED
}
}
static void bdw_sseu_info_init(struct intel_gt *gt)
{
struct sseu_dev_info *sseu = &gt->info.sseu;
struct intel_uncore *uncore = gt->uncore;
int s, ss;
u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
u32 eu_disable0, eu_disable1, eu_disable2;
fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
intel_sseu_set_info(sseu, 3, 3, 8);
/*
* The subslice disable field is global, i.e. it applies
* to each of the enabled slices.
*/
subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
GEN8_F2_SS_DIS_SHIFT);
eu_disable0 = intel_uncore_read(uncore, GEN8_EU_DISABLE0);
eu_disable1 = intel_uncore_read(uncore, GEN8_EU_DISABLE1);
eu_disable2 = intel_uncore_read(uncore, GEN8_EU_DISABLE2);
eu_disable[0] = eu_disable0 & GEN8_EU_DIS0_S0_MASK;
eu_disable[1] = (eu_disable0 >> GEN8_EU_DIS0_S1_SHIFT) |
((eu_disable1 & GEN8_EU_DIS1_S1_MASK) <<
(32 - GEN8_EU_DIS0_S1_SHIFT));
eu_disable[2] = (eu_disable1 >> GEN8_EU_DIS1_S2_SHIFT) |
((eu_disable2 & GEN8_EU_DIS2_S2_MASK) <<
(32 - GEN8_EU_DIS1_S2_SHIFT));
/*
* Iterate through enabled slices and subslices to
* count the total enabled EU.
*/
for (s = 0; s < sseu->max_slices; s++) {
if (!(sseu->slice_mask & BIT(s)))
/* skip disabled slice */
continue;
intel_sseu_set_subslices(sseu, s, sseu->subslice_mask,
subslice_mask);
for (ss = 0; ss < sseu->max_subslices; ss++) {
u8 eu_disabled_mask;
u32 n_disabled;
if (!intel_sseu_has_subslice(sseu, s, ss))
/* skip disabled subslice */
continue;
eu_disabled_mask =
eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
n_disabled = hweight8(eu_disabled_mask);
/*
* Record which subslices have 7 EUs.
*/
if (sseu->max_eus_per_subslice - n_disabled == 7)
sseu->subslice_7eu[s] |= 1 << ss;
}
}
sseu->eu_total = compute_eu_total(sseu);
/*
* BDW is expected to always have a uniform distribution of EU across
* subslices with the exception that any one EU in any one subslice may
* be fused off for die recovery.
*/
sseu->eu_per_subslice =
intel_sseu_subslice_total(sseu) ?
DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
0;
/*
* BDW supports slice power gating on devices with more than
* one slice.
*/
sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
sseu->has_subslice_pg = 0;
sseu->has_eu_pg = 0;
}
static void hsw_sseu_info_init(struct intel_gt *gt)
{
struct drm_i915_private *i915 = gt->i915;
struct sseu_dev_info *sseu = &gt->info.sseu;
u32 fuse1;
u8 subslice_mask = 0;
int s, ss;
/*
* There isn't a register to tell us how many slices/subslices. We
* work off the PCI-ids here.
*/
switch (INTEL_INFO(i915)->gt) {
default:
MISSING_CASE(INTEL_INFO(i915)->gt);
fallthrough;
case 1:
sseu->slice_mask = BIT(0);
subslice_mask = BIT(0);
break;
case 2:
sseu->slice_mask = BIT(0);
subslice_mask = BIT(0) | BIT(1);
break;
case 3:
sseu->slice_mask = BIT(0) | BIT(1);
subslice_mask = BIT(0) | BIT(1);
break;
}
fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
switch (REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1)) {
default:
MISSING_CASE(REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1));
fallthrough;
case HSW_F1_EU_DIS_10EUS:
sseu->eu_per_subslice = 10;
break;
case HSW_F1_EU_DIS_8EUS:
sseu->eu_per_subslice = 8;
break;
case HSW_F1_EU_DIS_6EUS:
sseu->eu_per_subslice = 6;
break;
}
intel_sseu_set_info(sseu, hweight8(sseu->slice_mask),
hweight8(subslice_mask),
sseu->eu_per_subslice);
for (s = 0; s < sseu->max_slices; s++) {
intel_sseu_set_subslices(sseu, s, sseu->subslice_mask,
subslice_mask);
for (ss = 0; ss < sseu->max_subslices; ss++) {
sseu_set_eus(sseu, s, ss,
(1UL << sseu->eu_per_subslice) - 1);
}
}
sseu->eu_total = compute_eu_total(sseu);
/* No powergating for you. */
sseu->has_slice_pg = 0;
sseu->has_subslice_pg = 0;
sseu->has_eu_pg = 0;
}
void intel_sseu_info_init(struct intel_gt *gt)
{
struct drm_i915_private *i915 = gt->i915;
if (IS_HASWELL(i915))
hsw_sseu_info_init(gt);
else if (IS_CHERRYVIEW(i915))
cherryview_sseu_info_init(gt);
else if (IS_BROADWELL(i915))
bdw_sseu_info_init(gt);
else if (GRAPHICS_VER(i915) == 9)
gen9_sseu_info_init(gt);
else if (GRAPHICS_VER(i915) == 11)
gen11_sseu_info_init(gt);
else if (GRAPHICS_VER(i915) >= 12)
gen12_sseu_info_init(gt);
}
u32 intel_sseu_make_rpcs(struct intel_gt *gt,
const struct intel_sseu *req_sseu)
{
struct drm_i915_private *i915 = gt->i915;
const struct sseu_dev_info *sseu = &gt->info.sseu;
bool subslice_pg = sseu->has_subslice_pg;
u8 slices, subslices;
u32 rpcs = 0;
/*
* No explicit RPCS request is needed to ensure full
* slice/subslice/EU enablement prior to Gen9.
*/
if (GRAPHICS_VER(i915) < 9)
return 0;
/*
* If i915/perf is active, we want a stable powergating configuration
drm/i915/perf: introduce global sseu pinning On Gen11 powergating half the execution units is a functional requirement when using the VME samplers. Not fullfilling this requirement can lead to hangs. This unfortunately plays fairly poorly with the NOA requirements. NOA requires a stable power configuration to maintain its configuration. As a result using OA (and NOA feeding into it) so far has required us to use a power configuration that can work for all contexts. The only power configuration fullfilling this is powergating half the execution units. This makes performance analysis for 3D workloads somewhat pointless. Failing to find a solution that would work for everybody, this change introduces a new i915-perf stream open parameter that punts the decision off to userspace. If this parameter is omitted, the existing Gen11 behavior remains (half EU array powergating). This change takes the initiative to move all perf related sseu configuration into i915_perf.c v2: Make parameter priviliged if different from default v3: Fix context modifying its sseu config while i915-perf is enabled v4: Always consider global sseu a privileged operation (Tvrtko) Override req_sseu point in intel_sseu_make_rpcs() (Tvrtko) Remove unrelated changes (Tvrtko) v5: Some typos (Tvrtko) Process sseu param in read_properties_unlocked() (Tvrtko) v6: Actually commit the bits from v5... Fixup some checkpath warnings v7: Only compare engine uabi field (Chris) Signed-off-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20200317132222.2638719-3-lionel.g.landwerlin@intel.com
2020-03-17 21:22:22 +08:00
* on the system. Use the configuration pinned by i915/perf.
*/
drm/i915/perf: introduce global sseu pinning On Gen11 powergating half the execution units is a functional requirement when using the VME samplers. Not fullfilling this requirement can lead to hangs. This unfortunately plays fairly poorly with the NOA requirements. NOA requires a stable power configuration to maintain its configuration. As a result using OA (and NOA feeding into it) so far has required us to use a power configuration that can work for all contexts. The only power configuration fullfilling this is powergating half the execution units. This makes performance analysis for 3D workloads somewhat pointless. Failing to find a solution that would work for everybody, this change introduces a new i915-perf stream open parameter that punts the decision off to userspace. If this parameter is omitted, the existing Gen11 behavior remains (half EU array powergating). This change takes the initiative to move all perf related sseu configuration into i915_perf.c v2: Make parameter priviliged if different from default v3: Fix context modifying its sseu config while i915-perf is enabled v4: Always consider global sseu a privileged operation (Tvrtko) Override req_sseu point in intel_sseu_make_rpcs() (Tvrtko) Remove unrelated changes (Tvrtko) v5: Some typos (Tvrtko) Process sseu param in read_properties_unlocked() (Tvrtko) v6: Actually commit the bits from v5... Fixup some checkpath warnings v7: Only compare engine uabi field (Chris) Signed-off-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20200317132222.2638719-3-lionel.g.landwerlin@intel.com
2020-03-17 21:22:22 +08:00
if (i915->perf.exclusive_stream)
req_sseu = &i915->perf.sseu;
drm/i915/perf: introduce global sseu pinning On Gen11 powergating half the execution units is a functional requirement when using the VME samplers. Not fullfilling this requirement can lead to hangs. This unfortunately plays fairly poorly with the NOA requirements. NOA requires a stable power configuration to maintain its configuration. As a result using OA (and NOA feeding into it) so far has required us to use a power configuration that can work for all contexts. The only power configuration fullfilling this is powergating half the execution units. This makes performance analysis for 3D workloads somewhat pointless. Failing to find a solution that would work for everybody, this change introduces a new i915-perf stream open parameter that punts the decision off to userspace. If this parameter is omitted, the existing Gen11 behavior remains (half EU array powergating). This change takes the initiative to move all perf related sseu configuration into i915_perf.c v2: Make parameter priviliged if different from default v3: Fix context modifying its sseu config while i915-perf is enabled v4: Always consider global sseu a privileged operation (Tvrtko) Override req_sseu point in intel_sseu_make_rpcs() (Tvrtko) Remove unrelated changes (Tvrtko) v5: Some typos (Tvrtko) Process sseu param in read_properties_unlocked() (Tvrtko) v6: Actually commit the bits from v5... Fixup some checkpath warnings v7: Only compare engine uabi field (Chris) Signed-off-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20200317132222.2638719-3-lionel.g.landwerlin@intel.com
2020-03-17 21:22:22 +08:00
slices = hweight8(req_sseu->slice_mask);
subslices = hweight8(req_sseu->subslice_mask);
/*
* Since the SScount bitfield in GEN8_R_PWR_CLK_STATE is only three bits
* wide and Icelake has up to eight subslices, specfial programming is
* needed in order to correctly enable all subslices.
*
* According to documentation software must consider the configuration
* as 2x4x8 and hardware will translate this to 1x8x8.
*
* Furthemore, even though SScount is three bits, maximum documented
* value for it is four. From this some rules/restrictions follow:
*
* 1.
* If enabled subslice count is greater than four, two whole slices must
* be enabled instead.
*
* 2.
* When more than one slice is enabled, hardware ignores the subslice
* count altogether.
*
* From these restrictions it follows that it is not possible to enable
* a count of subslices between the SScount maximum of four restriction,
* and the maximum available number on a particular SKU. Either all
* subslices are enabled, or a count between one and four on the first
* slice.
*/
if (GRAPHICS_VER(i915) == 11 &&
slices == 1 &&
subslices > min_t(u8, 4, hweight8(sseu->subslice_mask[0]) / 2)) {
GEM_BUG_ON(subslices & 1);
subslice_pg = false;
slices *= 2;
}
/*
* Starting in Gen9, render power gating can leave
* slice/subslice/EU in a partially enabled state. We
* must make an explicit request through RPCS for full
* enablement.
*/
if (sseu->has_slice_pg) {
u32 mask, val = slices;
if (GRAPHICS_VER(i915) >= 11) {
mask = GEN11_RPCS_S_CNT_MASK;
val <<= GEN11_RPCS_S_CNT_SHIFT;
} else {
mask = GEN8_RPCS_S_CNT_MASK;
val <<= GEN8_RPCS_S_CNT_SHIFT;
}
GEM_BUG_ON(val & ~mask);
val &= mask;
rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_S_CNT_ENABLE | val;
}
if (subslice_pg) {
u32 val = subslices;
val <<= GEN8_RPCS_SS_CNT_SHIFT;
GEM_BUG_ON(val & ~GEN8_RPCS_SS_CNT_MASK);
val &= GEN8_RPCS_SS_CNT_MASK;
rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_SS_CNT_ENABLE | val;
}
if (sseu->has_eu_pg) {
u32 val;
drm/i915/perf: introduce global sseu pinning On Gen11 powergating half the execution units is a functional requirement when using the VME samplers. Not fullfilling this requirement can lead to hangs. This unfortunately plays fairly poorly with the NOA requirements. NOA requires a stable power configuration to maintain its configuration. As a result using OA (and NOA feeding into it) so far has required us to use a power configuration that can work for all contexts. The only power configuration fullfilling this is powergating half the execution units. This makes performance analysis for 3D workloads somewhat pointless. Failing to find a solution that would work for everybody, this change introduces a new i915-perf stream open parameter that punts the decision off to userspace. If this parameter is omitted, the existing Gen11 behavior remains (half EU array powergating). This change takes the initiative to move all perf related sseu configuration into i915_perf.c v2: Make parameter priviliged if different from default v3: Fix context modifying its sseu config while i915-perf is enabled v4: Always consider global sseu a privileged operation (Tvrtko) Override req_sseu point in intel_sseu_make_rpcs() (Tvrtko) Remove unrelated changes (Tvrtko) v5: Some typos (Tvrtko) Process sseu param in read_properties_unlocked() (Tvrtko) v6: Actually commit the bits from v5... Fixup some checkpath warnings v7: Only compare engine uabi field (Chris) Signed-off-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20200317132222.2638719-3-lionel.g.landwerlin@intel.com
2020-03-17 21:22:22 +08:00
val = req_sseu->min_eus_per_subslice << GEN8_RPCS_EU_MIN_SHIFT;
GEM_BUG_ON(val & ~GEN8_RPCS_EU_MIN_MASK);
val &= GEN8_RPCS_EU_MIN_MASK;
rpcs |= val;
drm/i915/perf: introduce global sseu pinning On Gen11 powergating half the execution units is a functional requirement when using the VME samplers. Not fullfilling this requirement can lead to hangs. This unfortunately plays fairly poorly with the NOA requirements. NOA requires a stable power configuration to maintain its configuration. As a result using OA (and NOA feeding into it) so far has required us to use a power configuration that can work for all contexts. The only power configuration fullfilling this is powergating half the execution units. This makes performance analysis for 3D workloads somewhat pointless. Failing to find a solution that would work for everybody, this change introduces a new i915-perf stream open parameter that punts the decision off to userspace. If this parameter is omitted, the existing Gen11 behavior remains (half EU array powergating). This change takes the initiative to move all perf related sseu configuration into i915_perf.c v2: Make parameter priviliged if different from default v3: Fix context modifying its sseu config while i915-perf is enabled v4: Always consider global sseu a privileged operation (Tvrtko) Override req_sseu point in intel_sseu_make_rpcs() (Tvrtko) Remove unrelated changes (Tvrtko) v5: Some typos (Tvrtko) Process sseu param in read_properties_unlocked() (Tvrtko) v6: Actually commit the bits from v5... Fixup some checkpath warnings v7: Only compare engine uabi field (Chris) Signed-off-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20200317132222.2638719-3-lionel.g.landwerlin@intel.com
2020-03-17 21:22:22 +08:00
val = req_sseu->max_eus_per_subslice << GEN8_RPCS_EU_MAX_SHIFT;
GEM_BUG_ON(val & ~GEN8_RPCS_EU_MAX_MASK);
val &= GEN8_RPCS_EU_MAX_MASK;
rpcs |= val;
rpcs |= GEN8_RPCS_ENABLE;
}
return rpcs;
}
void intel_sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
{
int s;
drm_printf(p, "slice total: %u, mask=%04x\n",
hweight8(sseu->slice_mask), sseu->slice_mask);
drm_printf(p, "subslice total: %u\n", intel_sseu_subslice_total(sseu));
for (s = 0; s < sseu->max_slices; s++) {
drm_printf(p, "slice%d: %u subslices, mask=%08x\n",
s, intel_sseu_subslices_per_slice(sseu, s),
intel_sseu_get_subslices(sseu, s));
}
drm_printf(p, "EU total: %u\n", sseu->eu_total);
drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
drm_printf(p, "has slice power gating: %s\n",
str_yes_no(sseu->has_slice_pg));
drm_printf(p, "has subslice power gating: %s\n",
str_yes_no(sseu->has_subslice_pg));
drm_printf(p, "has EU power gating: %s\n",
str_yes_no(sseu->has_eu_pg));
}
static void sseu_print_hsw_topology(const struct sseu_dev_info *sseu,
struct drm_printer *p)
{
int s, ss;
for (s = 0; s < sseu->max_slices; s++) {
drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n",
s, intel_sseu_subslices_per_slice(sseu, s),
intel_sseu_get_subslices(sseu, s));
for (ss = 0; ss < sseu->max_subslices; ss++) {
u16 enabled_eus = sseu_get_eus(sseu, s, ss);
drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
ss, hweight16(enabled_eus), enabled_eus);
}
}
}
static void sseu_print_xehp_topology(const struct sseu_dev_info *sseu,
struct drm_printer *p)
{
u32 g_dss_mask = sseu_get_geometry_subslices(sseu);
u32 c_dss_mask = intel_sseu_get_compute_subslices(sseu);
int dss;
for (dss = 0; dss < sseu->max_subslices; dss++) {
u16 enabled_eus = sseu_get_eus(sseu, 0, dss);
drm_printf(p, "DSS_%02d: G:%3s C:%3s, %2u EUs (0x%04hx)\n", dss,
str_yes_no(g_dss_mask & BIT(dss)),
str_yes_no(c_dss_mask & BIT(dss)),
hweight16(enabled_eus), enabled_eus);
}
}
void intel_sseu_print_topology(struct drm_i915_private *i915,
const struct sseu_dev_info *sseu,
struct drm_printer *p)
{
if (sseu->max_slices == 0) {
drm_printf(p, "Unavailable\n");
} else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
sseu_print_xehp_topology(sseu, p);
} else {
sseu_print_hsw_topology(sseu, p);
}
}
u16 intel_slicemask_from_dssmask(u64 dss_mask, int dss_per_slice)
{
u16 slice_mask = 0;
int i;
WARN_ON(sizeof(dss_mask) * 8 / dss_per_slice > 8 * sizeof(slice_mask));
for (i = 0; dss_mask; i++) {
if (dss_mask & GENMASK(dss_per_slice - 1, 0))
slice_mask |= BIT(i);
dss_mask >>= dss_per_slice;
}
return slice_mask;
}