OpenCloudOS-Kernel/net/ipv6/addrconf.c

4301 lines
104 KiB
C
Raw Normal View History

/*
* IPv6 Address [auto]configuration
* Linux INET6 implementation
*
* Authors:
* Pedro Roque <roque@di.fc.ul.pt>
* Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
*
* $Id: addrconf.c,v 1.69 2001/10/31 21:55:54 davem Exp $
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
/*
* Changes:
*
* Janos Farkas : delete timer on ifdown
* <chexum@bankinf.banki.hu>
* Andi Kleen : kill double kfree on module
* unload.
* Maciej W. Rozycki : FDDI support
* sekiya@USAGI : Don't send too many RS
* packets.
* yoshfuji@USAGI : Fixed interval between DAD
* packets.
* YOSHIFUJI Hideaki @USAGI : improved accuracy of
* address validation timer.
* YOSHIFUJI Hideaki @USAGI : Privacy Extensions (RFC3041)
* support.
* Yuji SEKIYA @USAGI : Don't assign a same IPv6
* address on a same interface.
* YOSHIFUJI Hideaki @USAGI : ARCnet support
* YOSHIFUJI Hideaki @USAGI : convert /proc/net/if_inet6 to
* seq_file.
* YOSHIFUJI Hideaki @USAGI : improved source address
* selection; consider scope,
* status etc.
*/
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/net.h>
#include <linux/in6.h>
#include <linux/netdevice.h>
#include <linux/if_addr.h>
#include <linux/if_arp.h>
#include <linux/if_arcnet.h>
#include <linux/if_infiniband.h>
#include <linux/route.h>
#include <linux/inetdevice.h>
#include <linux/init.h>
#ifdef CONFIG_SYSCTL
#include <linux/sysctl.h>
#endif
#include <linux/capability.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/string.h>
#include <net/net_namespace.h>
#include <net/sock.h>
#include <net/snmp.h>
#include <net/ipv6.h>
#include <net/protocol.h>
#include <net/ndisc.h>
#include <net/ip6_route.h>
#include <net/addrconf.h>
#include <net/tcp.h>
#include <net/ip.h>
#include <net/netlink.h>
#include <net/pkt_sched.h>
#include <linux/if_tunnel.h>
#include <linux/rtnetlink.h>
#ifdef CONFIG_IPV6_PRIVACY
#include <linux/random.h>
#endif
#include <asm/uaccess.h>
#include <asm/unaligned.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
/* Set to 3 to get tracing... */
#define ACONF_DEBUG 2
#if ACONF_DEBUG >= 3
#define ADBG(x) printk x
#else
#define ADBG(x)
#endif
#define INFINITY_LIFE_TIME 0xFFFFFFFF
#define TIME_DELTA(a,b) ((unsigned long)((long)(a) - (long)(b)))
#ifdef CONFIG_SYSCTL
static void addrconf_sysctl_register(struct inet6_dev *idev, struct ipv6_devconf *p);
static void addrconf_sysctl_unregister(struct ipv6_devconf *p);
#endif
#ifdef CONFIG_IPV6_PRIVACY
static int __ipv6_regen_rndid(struct inet6_dev *idev);
static int __ipv6_try_regen_rndid(struct inet6_dev *idev, struct in6_addr *tmpaddr);
static void ipv6_regen_rndid(unsigned long data);
static int desync_factor = MAX_DESYNC_FACTOR * HZ;
#endif
static int ipv6_count_addresses(struct inet6_dev *idev);
/*
* Configured unicast address hash table
*/
static struct inet6_ifaddr *inet6_addr_lst[IN6_ADDR_HSIZE];
static DEFINE_RWLOCK(addrconf_hash_lock);
static void addrconf_verify(unsigned long);
static DEFINE_TIMER(addr_chk_timer, addrconf_verify, 0, 0);
static DEFINE_SPINLOCK(addrconf_verify_lock);
static void addrconf_join_anycast(struct inet6_ifaddr *ifp);
static void addrconf_leave_anycast(struct inet6_ifaddr *ifp);
static int addrconf_ifdown(struct net_device *dev, int how);
static void addrconf_dad_start(struct inet6_ifaddr *ifp, u32 flags);
static void addrconf_dad_timer(unsigned long data);
static void addrconf_dad_completed(struct inet6_ifaddr *ifp);
static void addrconf_dad_run(struct inet6_dev *idev);
static void addrconf_rs_timer(unsigned long data);
static void __ipv6_ifa_notify(int event, struct inet6_ifaddr *ifa);
static void ipv6_ifa_notify(int event, struct inet6_ifaddr *ifa);
static void inet6_prefix_notify(int event, struct inet6_dev *idev,
struct prefix_info *pinfo);
static int ipv6_chk_same_addr(const struct in6_addr *addr, struct net_device *dev);
[PATCH] Notifier chain update: API changes The kernel's implementation of notifier chains is unsafe. There is no protection against entries being added to or removed from a chain while the chain is in use. The issues were discussed in this thread: http://marc.theaimsgroup.com/?l=linux-kernel&m=113018709002036&w=2 We noticed that notifier chains in the kernel fall into two basic usage classes: "Blocking" chains are always called from a process context and the callout routines are allowed to sleep; "Atomic" chains can be called from an atomic context and the callout routines are not allowed to sleep. We decided to codify this distinction and make it part of the API. Therefore this set of patches introduces three new, parallel APIs: one for blocking notifiers, one for atomic notifiers, and one for "raw" notifiers (which is really just the old API under a new name). New kinds of data structures are used for the heads of the chains, and new routines are defined for registration, unregistration, and calling a chain. The three APIs are explained in include/linux/notifier.h and their implementation is in kernel/sys.c. With atomic and blocking chains, the implementation guarantees that the chain links will not be corrupted and that chain callers will not get messed up by entries being added or removed. For raw chains the implementation provides no guarantees at all; users of this API must provide their own protections. (The idea was that situations may come up where the assumptions of the atomic and blocking APIs are not appropriate, so it should be possible for users to handle these things in their own way.) There are some limitations, which should not be too hard to live with. For atomic/blocking chains, registration and unregistration must always be done in a process context since the chain is protected by a mutex/rwsem. Also, a callout routine for a non-raw chain must not try to register or unregister entries on its own chain. (This did happen in a couple of places and the code had to be changed to avoid it.) Since atomic chains may be called from within an NMI handler, they cannot use spinlocks for synchronization. Instead we use RCU. The overhead falls almost entirely in the unregister routine, which is okay since unregistration is much less frequent that calling a chain. Here is the list of chains that we adjusted and their classifications. None of them use the raw API, so for the moment it is only a placeholder. ATOMIC CHAINS ------------- arch/i386/kernel/traps.c: i386die_chain arch/ia64/kernel/traps.c: ia64die_chain arch/powerpc/kernel/traps.c: powerpc_die_chain arch/sparc64/kernel/traps.c: sparc64die_chain arch/x86_64/kernel/traps.c: die_chain drivers/char/ipmi/ipmi_si_intf.c: xaction_notifier_list kernel/panic.c: panic_notifier_list kernel/profile.c: task_free_notifier net/bluetooth/hci_core.c: hci_notifier net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_chain net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_expect_chain net/ipv6/addrconf.c: inet6addr_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_expect_chain net/netlink/af_netlink.c: netlink_chain BLOCKING CHAINS --------------- arch/powerpc/platforms/pseries/reconfig.c: pSeries_reconfig_chain arch/s390/kernel/process.c: idle_chain arch/x86_64/kernel/process.c idle_notifier drivers/base/memory.c: memory_chain drivers/cpufreq/cpufreq.c cpufreq_policy_notifier_list drivers/cpufreq/cpufreq.c cpufreq_transition_notifier_list drivers/macintosh/adb.c: adb_client_list drivers/macintosh/via-pmu.c sleep_notifier_list drivers/macintosh/via-pmu68k.c sleep_notifier_list drivers/macintosh/windfarm_core.c wf_client_list drivers/usb/core/notify.c usb_notifier_list drivers/video/fbmem.c fb_notifier_list kernel/cpu.c cpu_chain kernel/module.c module_notify_list kernel/profile.c munmap_notifier kernel/profile.c task_exit_notifier kernel/sys.c reboot_notifier_list net/core/dev.c netdev_chain net/decnet/dn_dev.c: dnaddr_chain net/ipv4/devinet.c: inetaddr_chain It's possible that some of these classifications are wrong. If they are, please let us know or submit a patch to fix them. Note that any chain that gets called very frequently should be atomic, because the rwsem read-locking used for blocking chains is very likely to incur cache misses on SMP systems. (However, if the chain's callout routines may sleep then the chain cannot be atomic.) The patch set was written by Alan Stern and Chandra Seetharaman, incorporating material written by Keith Owens and suggestions from Paul McKenney and Andrew Morton. [jes@sgi.com: restructure the notifier chain initialization macros] Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com> Signed-off-by: Jes Sorensen <jes@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 17:16:30 +08:00
static ATOMIC_NOTIFIER_HEAD(inet6addr_chain);
struct ipv6_devconf ipv6_devconf __read_mostly = {
.forwarding = 0,
.hop_limit = IPV6_DEFAULT_HOPLIMIT,
.mtu6 = IPV6_MIN_MTU,
.accept_ra = 1,
.accept_redirects = 1,
.autoconf = 1,
.force_mld_version = 0,
.dad_transmits = 1,
.rtr_solicits = MAX_RTR_SOLICITATIONS,
.rtr_solicit_interval = RTR_SOLICITATION_INTERVAL,
.rtr_solicit_delay = MAX_RTR_SOLICITATION_DELAY,
#ifdef CONFIG_IPV6_PRIVACY
.use_tempaddr = 0,
.temp_valid_lft = TEMP_VALID_LIFETIME,
.temp_prefered_lft = TEMP_PREFERRED_LIFETIME,
.regen_max_retry = REGEN_MAX_RETRY,
.max_desync_factor = MAX_DESYNC_FACTOR,
#endif
.max_addresses = IPV6_MAX_ADDRESSES,
.accept_ra_defrtr = 1,
.accept_ra_pinfo = 1,
#ifdef CONFIG_IPV6_ROUTER_PREF
.accept_ra_rtr_pref = 1,
.rtr_probe_interval = 60 * HZ,
#ifdef CONFIG_IPV6_ROUTE_INFO
.accept_ra_rt_info_max_plen = 0,
#endif
#endif
.proxy_ndp = 0,
.accept_source_route = 0, /* we do not accept RH0 by default. */
};
static struct ipv6_devconf ipv6_devconf_dflt __read_mostly = {
.forwarding = 0,
.hop_limit = IPV6_DEFAULT_HOPLIMIT,
.mtu6 = IPV6_MIN_MTU,
.accept_ra = 1,
.accept_redirects = 1,
.autoconf = 1,
.dad_transmits = 1,
.rtr_solicits = MAX_RTR_SOLICITATIONS,
.rtr_solicit_interval = RTR_SOLICITATION_INTERVAL,
.rtr_solicit_delay = MAX_RTR_SOLICITATION_DELAY,
#ifdef CONFIG_IPV6_PRIVACY
.use_tempaddr = 0,
.temp_valid_lft = TEMP_VALID_LIFETIME,
.temp_prefered_lft = TEMP_PREFERRED_LIFETIME,
.regen_max_retry = REGEN_MAX_RETRY,
.max_desync_factor = MAX_DESYNC_FACTOR,
#endif
.max_addresses = IPV6_MAX_ADDRESSES,
.accept_ra_defrtr = 1,
.accept_ra_pinfo = 1,
#ifdef CONFIG_IPV6_ROUTER_PREF
.accept_ra_rtr_pref = 1,
.rtr_probe_interval = 60 * HZ,
#ifdef CONFIG_IPV6_ROUTE_INFO
.accept_ra_rt_info_max_plen = 0,
#endif
#endif
.proxy_ndp = 0,
.accept_source_route = 0, /* we do not accept RH0 by default. */
};
/* IPv6 Wildcard Address and Loopback Address defined by RFC2553 */
const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;
const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT;
/* Check if a valid qdisc is available */
static inline int addrconf_qdisc_ok(struct net_device *dev)
{
return (dev->qdisc != &noop_qdisc);
}
static void addrconf_del_timer(struct inet6_ifaddr *ifp)
{
if (del_timer(&ifp->timer))
__in6_ifa_put(ifp);
}
enum addrconf_timer_t
{
AC_NONE,
AC_DAD,
AC_RS,
};
static void addrconf_mod_timer(struct inet6_ifaddr *ifp,
enum addrconf_timer_t what,
unsigned long when)
{
if (!del_timer(&ifp->timer))
in6_ifa_hold(ifp);
switch (what) {
case AC_DAD:
ifp->timer.function = addrconf_dad_timer;
break;
case AC_RS:
ifp->timer.function = addrconf_rs_timer;
break;
default:;
}
ifp->timer.expires = jiffies + when;
add_timer(&ifp->timer);
}
static int snmp6_alloc_dev(struct inet6_dev *idev)
{
if (snmp_mib_init((void **)idev->stats.ipv6,
sizeof(struct ipstats_mib),
__alignof__(struct ipstats_mib)) < 0)
goto err_ip;
if (snmp_mib_init((void **)idev->stats.icmpv6,
sizeof(struct icmpv6_mib),
__alignof__(struct icmpv6_mib)) < 0)
goto err_icmp;
if (snmp_mib_init((void **)idev->stats.icmpv6msg,
sizeof(struct icmpv6msg_mib),
__alignof__(struct icmpv6msg_mib)) < 0)
goto err_icmpmsg;
return 0;
err_icmpmsg:
snmp_mib_free((void **)idev->stats.icmpv6);
err_icmp:
snmp_mib_free((void **)idev->stats.ipv6);
err_ip:
return -ENOMEM;
}
static void snmp6_free_dev(struct inet6_dev *idev)
{
snmp_mib_free((void **)idev->stats.icmpv6msg);
snmp_mib_free((void **)idev->stats.icmpv6);
snmp_mib_free((void **)idev->stats.ipv6);
}
/* Nobody refers to this device, we may destroy it. */
static void in6_dev_finish_destroy_rcu(struct rcu_head *head)
{
struct inet6_dev *idev = container_of(head, struct inet6_dev, rcu);
kfree(idev);
}
void in6_dev_finish_destroy(struct inet6_dev *idev)
{
struct net_device *dev = idev->dev;
BUG_TRAP(idev->addr_list==NULL);
BUG_TRAP(idev->mc_list==NULL);
#ifdef NET_REFCNT_DEBUG
printk(KERN_DEBUG "in6_dev_finish_destroy: %s\n", dev ? dev->name : "NIL");
#endif
dev_put(dev);
if (!idev->dead) {
printk("Freeing alive inet6 device %p\n", idev);
return;
}
snmp6_free_dev(idev);
call_rcu(&idev->rcu, in6_dev_finish_destroy_rcu);
}
EXPORT_SYMBOL(in6_dev_finish_destroy);
static struct inet6_dev * ipv6_add_dev(struct net_device *dev)
{
struct inet6_dev *ndev;
struct in6_addr maddr;
ASSERT_RTNL();
if (dev->mtu < IPV6_MIN_MTU)
return NULL;
ndev = kzalloc(sizeof(struct inet6_dev), GFP_KERNEL);
if (ndev == NULL)
return NULL;
rwlock_init(&ndev->lock);
ndev->dev = dev;
memcpy(&ndev->cnf, &ipv6_devconf_dflt, sizeof(ndev->cnf));
ndev->cnf.mtu6 = dev->mtu;
ndev->cnf.sysctl = NULL;
ndev->nd_parms = neigh_parms_alloc(dev, &nd_tbl);
if (ndev->nd_parms == NULL) {
kfree(ndev);
return NULL;
}
/* We refer to the device */
dev_hold(dev);
if (snmp6_alloc_dev(ndev) < 0) {
ADBG((KERN_WARNING
"%s(): cannot allocate memory for statistics; dev=%s.\n",
__FUNCTION__, dev->name));
neigh_parms_release(&nd_tbl, ndev->nd_parms);
ndev->dead = 1;
in6_dev_finish_destroy(ndev);
return NULL;
}
if (snmp6_register_dev(ndev) < 0) {
ADBG((KERN_WARNING
"%s(): cannot create /proc/net/dev_snmp6/%s\n",
__FUNCTION__, dev->name));
neigh_parms_release(&nd_tbl, ndev->nd_parms);
ndev->dead = 1;
in6_dev_finish_destroy(ndev);
return NULL;
}
/* One reference from device. We must do this before
* we invoke __ipv6_regen_rndid().
*/
in6_dev_hold(ndev);
#ifdef CONFIG_IPV6_PRIVACY
init_timer(&ndev->regen_timer);
ndev->regen_timer.function = ipv6_regen_rndid;
ndev->regen_timer.data = (unsigned long) ndev;
if ((dev->flags&IFF_LOOPBACK) ||
dev->type == ARPHRD_TUNNEL ||
#if defined(CONFIG_IPV6_SIT) || defined(CONFIG_IPV6_SIT_MODULE)
dev->type == ARPHRD_SIT ||
#endif
dev->type == ARPHRD_NONE) {
printk(KERN_INFO
"%s: Disabled Privacy Extensions\n",
dev->name);
ndev->cnf.use_tempaddr = -1;
} else {
in6_dev_hold(ndev);
ipv6_regen_rndid((unsigned long) ndev);
}
#endif
if (netif_running(dev) && addrconf_qdisc_ok(dev))
ndev->if_flags |= IF_READY;
ipv6_mc_init_dev(ndev);
ndev->tstamp = jiffies;
#ifdef CONFIG_SYSCTL
neigh_sysctl_register(dev, ndev->nd_parms, NET_IPV6,
NET_IPV6_NEIGH, "ipv6",
&ndisc_ifinfo_sysctl_change,
NULL);
addrconf_sysctl_register(ndev, &ndev->cnf);
#endif
/* protected by rtnl_lock */
rcu_assign_pointer(dev->ip6_ptr, ndev);
/* Join all-node multicast group */
ipv6_addr_all_nodes(&maddr);
ipv6_dev_mc_inc(dev, &maddr);
return ndev;
}
static struct inet6_dev * ipv6_find_idev(struct net_device *dev)
{
struct inet6_dev *idev;
ASSERT_RTNL();
if ((idev = __in6_dev_get(dev)) == NULL) {
if ((idev = ipv6_add_dev(dev)) == NULL)
return NULL;
}
if (dev->flags&IFF_UP)
ipv6_mc_up(idev);
return idev;
}
#ifdef CONFIG_SYSCTL
static void dev_forward_change(struct inet6_dev *idev)
{
struct net_device *dev;
struct inet6_ifaddr *ifa;
struct in6_addr addr;
if (!idev)
return;
dev = idev->dev;
if (dev && (dev->flags & IFF_MULTICAST)) {
ipv6_addr_all_routers(&addr);
if (idev->cnf.forwarding)
ipv6_dev_mc_inc(dev, &addr);
else
ipv6_dev_mc_dec(dev, &addr);
}
for (ifa=idev->addr_list; ifa; ifa=ifa->if_next) {
if (ifa->flags&IFA_F_TENTATIVE)
continue;
if (idev->cnf.forwarding)
addrconf_join_anycast(ifa);
else
addrconf_leave_anycast(ifa);
}
}
static void addrconf_forward_change(void)
{
struct net_device *dev;
struct inet6_dev *idev;
read_lock(&dev_base_lock);
[NET]: Make the device list and device lookups per namespace. This patch makes most of the generic device layer network namespace safe. This patch makes dev_base_head a network namespace variable, and then it picks up a few associated variables. The functions: dev_getbyhwaddr dev_getfirsthwbytype dev_get_by_flags dev_get_by_name __dev_get_by_name dev_get_by_index __dev_get_by_index dev_ioctl dev_ethtool dev_load wireless_process_ioctl were modified to take a network namespace argument, and deal with it. vlan_ioctl_set and brioctl_set were modified so their hooks will receive a network namespace argument. So basically anthing in the core of the network stack that was affected to by the change of dev_base was modified to handle multiple network namespaces. The rest of the network stack was simply modified to explicitly use &init_net the initial network namespace. This can be fixed when those components of the network stack are modified to handle multiple network namespaces. For now the ifindex generator is left global. Fundametally ifindex numbers are per namespace, or else we will have corner case problems with migration when we get that far. At the same time there are assumptions in the network stack that the ifindex of a network device won't change. Making the ifindex number global seems a good compromise until the network stack can cope with ifindex changes when you change namespaces, and the like. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-18 02:56:21 +08:00
for_each_netdev(&init_net, dev) {
rcu_read_lock();
idev = __in6_dev_get(dev);
if (idev) {
int changed = (!idev->cnf.forwarding) ^ (!ipv6_devconf.forwarding);
idev->cnf.forwarding = ipv6_devconf.forwarding;
if (changed)
dev_forward_change(idev);
}
rcu_read_unlock();
}
read_unlock(&dev_base_lock);
}
#endif
/* Nobody refers to this ifaddr, destroy it */
void inet6_ifa_finish_destroy(struct inet6_ifaddr *ifp)
{
BUG_TRAP(ifp->if_next==NULL);
BUG_TRAP(ifp->lst_next==NULL);
#ifdef NET_REFCNT_DEBUG
printk(KERN_DEBUG "inet6_ifa_finish_destroy\n");
#endif
in6_dev_put(ifp->idev);
if (del_timer(&ifp->timer))
printk("Timer is still running, when freeing ifa=%p\n", ifp);
if (!ifp->dead) {
printk("Freeing alive inet6 address %p\n", ifp);
return;
}
dst_release(&ifp->rt->u.dst);
kfree(ifp);
}
static void
ipv6_link_dev_addr(struct inet6_dev *idev, struct inet6_ifaddr *ifp)
{
struct inet6_ifaddr *ifa, **ifap;
int ifp_scope = ipv6_addr_src_scope(&ifp->addr);
/*
* Each device address list is sorted in order of scope -
* global before linklocal.
*/
for (ifap = &idev->addr_list; (ifa = *ifap) != NULL;
ifap = &ifa->if_next) {
if (ifp_scope >= ipv6_addr_src_scope(&ifa->addr))
break;
}
ifp->if_next = *ifap;
*ifap = ifp;
}
/* On success it returns ifp with increased reference count */
static struct inet6_ifaddr *
ipv6_add_addr(struct inet6_dev *idev, const struct in6_addr *addr, int pfxlen,
int scope, u32 flags)
{
struct inet6_ifaddr *ifa = NULL;
struct rt6_info *rt;
int hash;
int err = 0;
rcu_read_lock_bh();
if (idev->dead) {
err = -ENODEV; /*XXX*/
goto out2;
}
write_lock(&addrconf_hash_lock);
/* Ignore adding duplicate addresses on an interface */
if (ipv6_chk_same_addr(addr, idev->dev)) {
ADBG(("ipv6_add_addr: already assigned\n"));
err = -EEXIST;
goto out;
}
ifa = kzalloc(sizeof(struct inet6_ifaddr), GFP_ATOMIC);
if (ifa == NULL) {
ADBG(("ipv6_add_addr: malloc failed\n"));
err = -ENOBUFS;
goto out;
}
rt = addrconf_dst_alloc(idev, addr, 0);
if (IS_ERR(rt)) {
err = PTR_ERR(rt);
goto out;
}
ipv6_addr_copy(&ifa->addr, addr);
spin_lock_init(&ifa->lock);
init_timer(&ifa->timer);
ifa->timer.data = (unsigned long) ifa;
ifa->scope = scope;
ifa->prefix_len = pfxlen;
ifa->flags = flags | IFA_F_TENTATIVE;
ifa->cstamp = ifa->tstamp = jiffies;
ifa->rt = rt;
/*
* part one of RFC 4429, section 3.3
* We should not configure an address as
* optimistic if we do not yet know the link
* layer address of our nexhop router
*/
if (rt->rt6i_nexthop == NULL)
ifa->flags &= ~IFA_F_OPTIMISTIC;
ifa->idev = idev;
in6_dev_hold(idev);
/* For caller */
in6_ifa_hold(ifa);
/* Add to big hash table */
hash = ipv6_addr_hash(addr);
ifa->lst_next = inet6_addr_lst[hash];
inet6_addr_lst[hash] = ifa;
in6_ifa_hold(ifa);
write_unlock(&addrconf_hash_lock);
write_lock(&idev->lock);
/* Add to inet6_dev unicast addr list. */
ipv6_link_dev_addr(idev, ifa);
#ifdef CONFIG_IPV6_PRIVACY
if (ifa->flags&IFA_F_TEMPORARY) {
ifa->tmp_next = idev->tempaddr_list;
idev->tempaddr_list = ifa;
in6_ifa_hold(ifa);
}
#endif
in6_ifa_hold(ifa);
write_unlock(&idev->lock);
out2:
rcu_read_unlock_bh();
if (likely(err == 0))
[PATCH] Notifier chain update: API changes The kernel's implementation of notifier chains is unsafe. There is no protection against entries being added to or removed from a chain while the chain is in use. The issues were discussed in this thread: http://marc.theaimsgroup.com/?l=linux-kernel&m=113018709002036&w=2 We noticed that notifier chains in the kernel fall into two basic usage classes: "Blocking" chains are always called from a process context and the callout routines are allowed to sleep; "Atomic" chains can be called from an atomic context and the callout routines are not allowed to sleep. We decided to codify this distinction and make it part of the API. Therefore this set of patches introduces three new, parallel APIs: one for blocking notifiers, one for atomic notifiers, and one for "raw" notifiers (which is really just the old API under a new name). New kinds of data structures are used for the heads of the chains, and new routines are defined for registration, unregistration, and calling a chain. The three APIs are explained in include/linux/notifier.h and their implementation is in kernel/sys.c. With atomic and blocking chains, the implementation guarantees that the chain links will not be corrupted and that chain callers will not get messed up by entries being added or removed. For raw chains the implementation provides no guarantees at all; users of this API must provide their own protections. (The idea was that situations may come up where the assumptions of the atomic and blocking APIs are not appropriate, so it should be possible for users to handle these things in their own way.) There are some limitations, which should not be too hard to live with. For atomic/blocking chains, registration and unregistration must always be done in a process context since the chain is protected by a mutex/rwsem. Also, a callout routine for a non-raw chain must not try to register or unregister entries on its own chain. (This did happen in a couple of places and the code had to be changed to avoid it.) Since atomic chains may be called from within an NMI handler, they cannot use spinlocks for synchronization. Instead we use RCU. The overhead falls almost entirely in the unregister routine, which is okay since unregistration is much less frequent that calling a chain. Here is the list of chains that we adjusted and their classifications. None of them use the raw API, so for the moment it is only a placeholder. ATOMIC CHAINS ------------- arch/i386/kernel/traps.c: i386die_chain arch/ia64/kernel/traps.c: ia64die_chain arch/powerpc/kernel/traps.c: powerpc_die_chain arch/sparc64/kernel/traps.c: sparc64die_chain arch/x86_64/kernel/traps.c: die_chain drivers/char/ipmi/ipmi_si_intf.c: xaction_notifier_list kernel/panic.c: panic_notifier_list kernel/profile.c: task_free_notifier net/bluetooth/hci_core.c: hci_notifier net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_chain net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_expect_chain net/ipv6/addrconf.c: inet6addr_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_expect_chain net/netlink/af_netlink.c: netlink_chain BLOCKING CHAINS --------------- arch/powerpc/platforms/pseries/reconfig.c: pSeries_reconfig_chain arch/s390/kernel/process.c: idle_chain arch/x86_64/kernel/process.c idle_notifier drivers/base/memory.c: memory_chain drivers/cpufreq/cpufreq.c cpufreq_policy_notifier_list drivers/cpufreq/cpufreq.c cpufreq_transition_notifier_list drivers/macintosh/adb.c: adb_client_list drivers/macintosh/via-pmu.c sleep_notifier_list drivers/macintosh/via-pmu68k.c sleep_notifier_list drivers/macintosh/windfarm_core.c wf_client_list drivers/usb/core/notify.c usb_notifier_list drivers/video/fbmem.c fb_notifier_list kernel/cpu.c cpu_chain kernel/module.c module_notify_list kernel/profile.c munmap_notifier kernel/profile.c task_exit_notifier kernel/sys.c reboot_notifier_list net/core/dev.c netdev_chain net/decnet/dn_dev.c: dnaddr_chain net/ipv4/devinet.c: inetaddr_chain It's possible that some of these classifications are wrong. If they are, please let us know or submit a patch to fix them. Note that any chain that gets called very frequently should be atomic, because the rwsem read-locking used for blocking chains is very likely to incur cache misses on SMP systems. (However, if the chain's callout routines may sleep then the chain cannot be atomic.) The patch set was written by Alan Stern and Chandra Seetharaman, incorporating material written by Keith Owens and suggestions from Paul McKenney and Andrew Morton. [jes@sgi.com: restructure the notifier chain initialization macros] Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com> Signed-off-by: Jes Sorensen <jes@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 17:16:30 +08:00
atomic_notifier_call_chain(&inet6addr_chain, NETDEV_UP, ifa);
else {
kfree(ifa);
ifa = ERR_PTR(err);
}
return ifa;
out:
write_unlock(&addrconf_hash_lock);
goto out2;
}
/* This function wants to get referenced ifp and releases it before return */
static void ipv6_del_addr(struct inet6_ifaddr *ifp)
{
struct inet6_ifaddr *ifa, **ifap;
struct inet6_dev *idev = ifp->idev;
int hash;
int deleted = 0, onlink = 0;
unsigned long expires = jiffies;
hash = ipv6_addr_hash(&ifp->addr);
ifp->dead = 1;
write_lock_bh(&addrconf_hash_lock);
for (ifap = &inet6_addr_lst[hash]; (ifa=*ifap) != NULL;
ifap = &ifa->lst_next) {
if (ifa == ifp) {
*ifap = ifa->lst_next;
__in6_ifa_put(ifp);
ifa->lst_next = NULL;
break;
}
}
write_unlock_bh(&addrconf_hash_lock);
write_lock_bh(&idev->lock);
#ifdef CONFIG_IPV6_PRIVACY
if (ifp->flags&IFA_F_TEMPORARY) {
for (ifap = &idev->tempaddr_list; (ifa=*ifap) != NULL;
ifap = &ifa->tmp_next) {
if (ifa == ifp) {
*ifap = ifa->tmp_next;
if (ifp->ifpub) {
in6_ifa_put(ifp->ifpub);
ifp->ifpub = NULL;
}
__in6_ifa_put(ifp);
ifa->tmp_next = NULL;
break;
}
}
}
#endif
for (ifap = &idev->addr_list; (ifa=*ifap) != NULL;) {
if (ifa == ifp) {
*ifap = ifa->if_next;
__in6_ifa_put(ifp);
ifa->if_next = NULL;
if (!(ifp->flags & IFA_F_PERMANENT) || onlink > 0)
break;
deleted = 1;
continue;
} else if (ifp->flags & IFA_F_PERMANENT) {
if (ipv6_prefix_equal(&ifa->addr, &ifp->addr,
ifp->prefix_len)) {
if (ifa->flags & IFA_F_PERMANENT) {
onlink = 1;
if (deleted)
break;
} else {
unsigned long lifetime;
if (!onlink)
onlink = -1;
spin_lock(&ifa->lock);
lifetime = min_t(unsigned long,
ifa->valid_lft, 0x7fffffffUL/HZ);
if (time_before(expires,
ifa->tstamp + lifetime * HZ))
expires = ifa->tstamp + lifetime * HZ;
spin_unlock(&ifa->lock);
}
}
}
ifap = &ifa->if_next;
}
write_unlock_bh(&idev->lock);
ipv6_ifa_notify(RTM_DELADDR, ifp);
[PATCH] Notifier chain update: API changes The kernel's implementation of notifier chains is unsafe. There is no protection against entries being added to or removed from a chain while the chain is in use. The issues were discussed in this thread: http://marc.theaimsgroup.com/?l=linux-kernel&m=113018709002036&w=2 We noticed that notifier chains in the kernel fall into two basic usage classes: "Blocking" chains are always called from a process context and the callout routines are allowed to sleep; "Atomic" chains can be called from an atomic context and the callout routines are not allowed to sleep. We decided to codify this distinction and make it part of the API. Therefore this set of patches introduces three new, parallel APIs: one for blocking notifiers, one for atomic notifiers, and one for "raw" notifiers (which is really just the old API under a new name). New kinds of data structures are used for the heads of the chains, and new routines are defined for registration, unregistration, and calling a chain. The three APIs are explained in include/linux/notifier.h and their implementation is in kernel/sys.c. With atomic and blocking chains, the implementation guarantees that the chain links will not be corrupted and that chain callers will not get messed up by entries being added or removed. For raw chains the implementation provides no guarantees at all; users of this API must provide their own protections. (The idea was that situations may come up where the assumptions of the atomic and blocking APIs are not appropriate, so it should be possible for users to handle these things in their own way.) There are some limitations, which should not be too hard to live with. For atomic/blocking chains, registration and unregistration must always be done in a process context since the chain is protected by a mutex/rwsem. Also, a callout routine for a non-raw chain must not try to register or unregister entries on its own chain. (This did happen in a couple of places and the code had to be changed to avoid it.) Since atomic chains may be called from within an NMI handler, they cannot use spinlocks for synchronization. Instead we use RCU. The overhead falls almost entirely in the unregister routine, which is okay since unregistration is much less frequent that calling a chain. Here is the list of chains that we adjusted and their classifications. None of them use the raw API, so for the moment it is only a placeholder. ATOMIC CHAINS ------------- arch/i386/kernel/traps.c: i386die_chain arch/ia64/kernel/traps.c: ia64die_chain arch/powerpc/kernel/traps.c: powerpc_die_chain arch/sparc64/kernel/traps.c: sparc64die_chain arch/x86_64/kernel/traps.c: die_chain drivers/char/ipmi/ipmi_si_intf.c: xaction_notifier_list kernel/panic.c: panic_notifier_list kernel/profile.c: task_free_notifier net/bluetooth/hci_core.c: hci_notifier net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_chain net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_expect_chain net/ipv6/addrconf.c: inet6addr_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_expect_chain net/netlink/af_netlink.c: netlink_chain BLOCKING CHAINS --------------- arch/powerpc/platforms/pseries/reconfig.c: pSeries_reconfig_chain arch/s390/kernel/process.c: idle_chain arch/x86_64/kernel/process.c idle_notifier drivers/base/memory.c: memory_chain drivers/cpufreq/cpufreq.c cpufreq_policy_notifier_list drivers/cpufreq/cpufreq.c cpufreq_transition_notifier_list drivers/macintosh/adb.c: adb_client_list drivers/macintosh/via-pmu.c sleep_notifier_list drivers/macintosh/via-pmu68k.c sleep_notifier_list drivers/macintosh/windfarm_core.c wf_client_list drivers/usb/core/notify.c usb_notifier_list drivers/video/fbmem.c fb_notifier_list kernel/cpu.c cpu_chain kernel/module.c module_notify_list kernel/profile.c munmap_notifier kernel/profile.c task_exit_notifier kernel/sys.c reboot_notifier_list net/core/dev.c netdev_chain net/decnet/dn_dev.c: dnaddr_chain net/ipv4/devinet.c: inetaddr_chain It's possible that some of these classifications are wrong. If they are, please let us know or submit a patch to fix them. Note that any chain that gets called very frequently should be atomic, because the rwsem read-locking used for blocking chains is very likely to incur cache misses on SMP systems. (However, if the chain's callout routines may sleep then the chain cannot be atomic.) The patch set was written by Alan Stern and Chandra Seetharaman, incorporating material written by Keith Owens and suggestions from Paul McKenney and Andrew Morton. [jes@sgi.com: restructure the notifier chain initialization macros] Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com> Signed-off-by: Jes Sorensen <jes@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 17:16:30 +08:00
atomic_notifier_call_chain(&inet6addr_chain, NETDEV_DOWN, ifp);
addrconf_del_timer(ifp);
/*
* Purge or update corresponding prefix
*
* 1) we don't purge prefix here if address was not permanent.
* prefix is managed by its own lifetime.
* 2) if there're no addresses, delete prefix.
* 3) if there're still other permanent address(es),
* corresponding prefix is still permanent.
* 4) otherwise, update prefix lifetime to the
* longest valid lifetime among the corresponding
* addresses on the device.
* Note: subsequent RA will update lifetime.
*
* --yoshfuji
*/
if ((ifp->flags & IFA_F_PERMANENT) && onlink < 1) {
struct in6_addr prefix;
struct rt6_info *rt;
ipv6_addr_prefix(&prefix, &ifp->addr, ifp->prefix_len);
rt = rt6_lookup(&prefix, NULL, ifp->idev->dev->ifindex, 1);
if (rt && ((rt->rt6i_flags & (RTF_GATEWAY | RTF_DEFAULT)) == 0)) {
if (onlink == 0) {
ip6_del_rt(rt);
rt = NULL;
} else if (!(rt->rt6i_flags & RTF_EXPIRES)) {
rt->rt6i_expires = expires;
rt->rt6i_flags |= RTF_EXPIRES;
}
}
dst_release(&rt->u.dst);
}
in6_ifa_put(ifp);
}
#ifdef CONFIG_IPV6_PRIVACY
static int ipv6_create_tempaddr(struct inet6_ifaddr *ifp, struct inet6_ifaddr *ift)
{
struct inet6_dev *idev = ifp->idev;
struct in6_addr addr, *tmpaddr;
unsigned long tmp_prefered_lft, tmp_valid_lft, tmp_cstamp, tmp_tstamp;
int tmp_plen;
int ret = 0;
int max_addresses;
u32 addr_flags;
write_lock(&idev->lock);
if (ift) {
spin_lock_bh(&ift->lock);
memcpy(&addr.s6_addr[8], &ift->addr.s6_addr[8], 8);
spin_unlock_bh(&ift->lock);
tmpaddr = &addr;
} else {
tmpaddr = NULL;
}
retry:
in6_dev_hold(idev);
if (idev->cnf.use_tempaddr <= 0) {
write_unlock(&idev->lock);
printk(KERN_INFO
"ipv6_create_tempaddr(): use_tempaddr is disabled.\n");
in6_dev_put(idev);
ret = -1;
goto out;
}
spin_lock_bh(&ifp->lock);
if (ifp->regen_count++ >= idev->cnf.regen_max_retry) {
idev->cnf.use_tempaddr = -1; /*XXX*/
spin_unlock_bh(&ifp->lock);
write_unlock(&idev->lock);
printk(KERN_WARNING
"ipv6_create_tempaddr(): regeneration time exceeded. disabled temporary address support.\n");
in6_dev_put(idev);
ret = -1;
goto out;
}
in6_ifa_hold(ifp);
memcpy(addr.s6_addr, ifp->addr.s6_addr, 8);
if (__ipv6_try_regen_rndid(idev, tmpaddr) < 0) {
spin_unlock_bh(&ifp->lock);
write_unlock(&idev->lock);
printk(KERN_WARNING
"ipv6_create_tempaddr(): regeneration of randomized interface id failed.\n");
in6_ifa_put(ifp);
in6_dev_put(idev);
ret = -1;
goto out;
}
memcpy(&addr.s6_addr[8], idev->rndid, 8);
tmp_valid_lft = min_t(__u32,
ifp->valid_lft,
idev->cnf.temp_valid_lft);
tmp_prefered_lft = min_t(__u32,
ifp->prefered_lft,
idev->cnf.temp_prefered_lft - desync_factor / HZ);
tmp_plen = ifp->prefix_len;
max_addresses = idev->cnf.max_addresses;
tmp_cstamp = ifp->cstamp;
tmp_tstamp = ifp->tstamp;
spin_unlock_bh(&ifp->lock);
write_unlock(&idev->lock);
addr_flags = IFA_F_TEMPORARY;
/* set in addrconf_prefix_rcv() */
if (ifp->flags & IFA_F_OPTIMISTIC)
addr_flags |= IFA_F_OPTIMISTIC;
ift = !max_addresses ||
ipv6_count_addresses(idev) < max_addresses ?
ipv6_add_addr(idev, &addr, tmp_plen,
ipv6_addr_type(&addr)&IPV6_ADDR_SCOPE_MASK,
addr_flags) : NULL;
if (!ift || IS_ERR(ift)) {
in6_ifa_put(ifp);
in6_dev_put(idev);
printk(KERN_INFO
"ipv6_create_tempaddr(): retry temporary address regeneration.\n");
tmpaddr = &addr;
write_lock(&idev->lock);
goto retry;
}
spin_lock_bh(&ift->lock);
ift->ifpub = ifp;
ift->valid_lft = tmp_valid_lft;
ift->prefered_lft = tmp_prefered_lft;
ift->cstamp = tmp_cstamp;
ift->tstamp = tmp_tstamp;
spin_unlock_bh(&ift->lock);
addrconf_dad_start(ift, 0);
in6_ifa_put(ift);
in6_dev_put(idev);
out:
return ret;
}
#endif
/*
* Choose an appropriate source address (RFC3484)
*/
struct ipv6_saddr_score {
int addr_type;
unsigned int attrs;
int matchlen;
int scope;
unsigned int rule;
};
#define IPV6_SADDR_SCORE_LOCAL 0x0001
#define IPV6_SADDR_SCORE_PREFERRED 0x0004
#define IPV6_SADDR_SCORE_HOA 0x0008
#define IPV6_SADDR_SCORE_OIF 0x0010
#define IPV6_SADDR_SCORE_LABEL 0x0020
#define IPV6_SADDR_SCORE_PRIVACY 0x0040
static inline int ipv6_saddr_preferred(int type)
{
if (type & (IPV6_ADDR_MAPPED|IPV6_ADDR_COMPATv4|
IPV6_ADDR_LOOPBACK|IPV6_ADDR_RESERVED))
return 1;
return 0;
}
/* static matching label */
static inline int ipv6_saddr_label(const struct in6_addr *addr, int type)
{
/*
* prefix (longest match) label
* -----------------------------
* ::1/128 0
* ::/0 1
* 2002::/16 2
* ::/96 3
* ::ffff:0:0/96 4
* fc00::/7 5
* 2001::/32 6
*/
if (type & IPV6_ADDR_LOOPBACK)
return 0;
else if (type & IPV6_ADDR_COMPATv4)
return 3;
else if (type & IPV6_ADDR_MAPPED)
return 4;
else if (addr->s6_addr32[0] == htonl(0x20010000))
return 6;
else if (addr->s6_addr16[0] == htons(0x2002))
return 2;
else if ((addr->s6_addr[0] & 0xfe) == 0xfc)
return 5;
return 1;
}
int ipv6_dev_get_saddr(struct net_device *daddr_dev,
struct in6_addr *daddr, struct in6_addr *saddr)
{
struct ipv6_saddr_score hiscore;
struct inet6_ifaddr *ifa_result = NULL;
int daddr_type = __ipv6_addr_type(daddr);
int daddr_scope = __ipv6_addr_src_scope(daddr_type);
u32 daddr_label = ipv6_saddr_label(daddr, daddr_type);
struct net_device *dev;
memset(&hiscore, 0, sizeof(hiscore));
read_lock(&dev_base_lock);
rcu_read_lock();
[NET]: Make the device list and device lookups per namespace. This patch makes most of the generic device layer network namespace safe. This patch makes dev_base_head a network namespace variable, and then it picks up a few associated variables. The functions: dev_getbyhwaddr dev_getfirsthwbytype dev_get_by_flags dev_get_by_name __dev_get_by_name dev_get_by_index __dev_get_by_index dev_ioctl dev_ethtool dev_load wireless_process_ioctl were modified to take a network namespace argument, and deal with it. vlan_ioctl_set and brioctl_set were modified so their hooks will receive a network namespace argument. So basically anthing in the core of the network stack that was affected to by the change of dev_base was modified to handle multiple network namespaces. The rest of the network stack was simply modified to explicitly use &init_net the initial network namespace. This can be fixed when those components of the network stack are modified to handle multiple network namespaces. For now the ifindex generator is left global. Fundametally ifindex numbers are per namespace, or else we will have corner case problems with migration when we get that far. At the same time there are assumptions in the network stack that the ifindex of a network device won't change. Making the ifindex number global seems a good compromise until the network stack can cope with ifindex changes when you change namespaces, and the like. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-18 02:56:21 +08:00
for_each_netdev(&init_net, dev) {
struct inet6_dev *idev;
struct inet6_ifaddr *ifa;
/* Rule 0: Candidate Source Address (section 4)
* - multicast and link-local destination address,
* the set of candidate source address MUST only
* include addresses assigned to interfaces
* belonging to the same link as the outgoing
* interface.
* (- For site-local destination addresses, the
* set of candidate source addresses MUST only
* include addresses assigned to interfaces
* belonging to the same site as the outgoing
* interface.)
*/
if ((daddr_type & IPV6_ADDR_MULTICAST ||
daddr_scope <= IPV6_ADDR_SCOPE_LINKLOCAL) &&
daddr_dev && dev != daddr_dev)
continue;
idev = __in6_dev_get(dev);
if (!idev)
continue;
read_lock_bh(&idev->lock);
for (ifa = idev->addr_list; ifa; ifa = ifa->if_next) {
struct ipv6_saddr_score score;
score.addr_type = __ipv6_addr_type(&ifa->addr);
/* Rule 0:
* - Tentative Address (RFC2462 section 5.4)
* - A tentative address is not considered
* "assigned to an interface" in the traditional
* sense, unless it is also flagged as optimistic.
* - Candidate Source Address (section 4)
* - In any case, anycast addresses, multicast
* addresses, and the unspecified address MUST
* NOT be included in a candidate set.
*/
if ((ifa->flags & IFA_F_TENTATIVE) &&
(!(ifa->flags & IFA_F_OPTIMISTIC)))
continue;
if (unlikely(score.addr_type == IPV6_ADDR_ANY ||
score.addr_type & IPV6_ADDR_MULTICAST)) {
LIMIT_NETDEBUG(KERN_DEBUG
"ADDRCONF: unspecified / multicast address "
"assigned as unicast address on %s",
dev->name);
continue;
}
score.attrs = 0;
score.matchlen = 0;
score.scope = 0;
score.rule = 0;
if (ifa_result == NULL) {
/* record it if the first available entry */
goto record_it;
}
/* Rule 1: Prefer same address */
if (hiscore.rule < 1) {
if (ipv6_addr_equal(&ifa_result->addr, daddr))
hiscore.attrs |= IPV6_SADDR_SCORE_LOCAL;
hiscore.rule++;
}
if (ipv6_addr_equal(&ifa->addr, daddr)) {
score.attrs |= IPV6_SADDR_SCORE_LOCAL;
if (!(hiscore.attrs & IPV6_SADDR_SCORE_LOCAL)) {
score.rule = 1;
goto record_it;
}
} else {
if (hiscore.attrs & IPV6_SADDR_SCORE_LOCAL)
continue;
}
/* Rule 2: Prefer appropriate scope */
if (hiscore.rule < 2) {
hiscore.scope = __ipv6_addr_src_scope(hiscore.addr_type);
hiscore.rule++;
}
score.scope = __ipv6_addr_src_scope(score.addr_type);
if (hiscore.scope < score.scope) {
if (hiscore.scope < daddr_scope) {
score.rule = 2;
goto record_it;
} else
continue;
} else if (score.scope < hiscore.scope) {
if (score.scope < daddr_scope)
break; /* addresses sorted by scope */
else {
score.rule = 2;
goto record_it;
}
}
/* Rule 3: Avoid deprecated and optimistic addresses */
if (hiscore.rule < 3) {
if (ipv6_saddr_preferred(hiscore.addr_type) ||
(((ifa_result->flags &
(IFA_F_DEPRECATED|IFA_F_OPTIMISTIC)) == 0)))
hiscore.attrs |= IPV6_SADDR_SCORE_PREFERRED;
hiscore.rule++;
}
if (ipv6_saddr_preferred(score.addr_type) ||
(((ifa->flags &
(IFA_F_DEPRECATED|IFA_F_OPTIMISTIC)) == 0))) {
score.attrs |= IPV6_SADDR_SCORE_PREFERRED;
if (!(hiscore.attrs & IPV6_SADDR_SCORE_PREFERRED)) {
score.rule = 3;
goto record_it;
}
} else {
if (hiscore.attrs & IPV6_SADDR_SCORE_PREFERRED)
continue;
}
/* Rule 4: Prefer home address */
#if defined(CONFIG_IPV6_MIP6) || defined(CONFIG_IPV6_MIP6_MODULE)
if (hiscore.rule < 4) {
if (ifa_result->flags & IFA_F_HOMEADDRESS)
hiscore.attrs |= IPV6_SADDR_SCORE_HOA;
hiscore.rule++;
}
if (ifa->flags & IFA_F_HOMEADDRESS) {
score.attrs |= IPV6_SADDR_SCORE_HOA;
if (!(ifa_result->flags & IFA_F_HOMEADDRESS)) {
score.rule = 4;
goto record_it;
}
} else {
if (hiscore.attrs & IPV6_SADDR_SCORE_HOA)
continue;
}
#else
if (hiscore.rule < 4)
hiscore.rule++;
#endif
/* Rule 5: Prefer outgoing interface */
if (hiscore.rule < 5) {
if (daddr_dev == NULL ||
daddr_dev == ifa_result->idev->dev)
hiscore.attrs |= IPV6_SADDR_SCORE_OIF;
hiscore.rule++;
}
if (daddr_dev == NULL ||
daddr_dev == ifa->idev->dev) {
score.attrs |= IPV6_SADDR_SCORE_OIF;
if (!(hiscore.attrs & IPV6_SADDR_SCORE_OIF)) {
score.rule = 5;
goto record_it;
}
} else {
if (hiscore.attrs & IPV6_SADDR_SCORE_OIF)
continue;
}
/* Rule 6: Prefer matching label */
if (hiscore.rule < 6) {
if (ipv6_saddr_label(&ifa_result->addr, hiscore.addr_type) == daddr_label)
hiscore.attrs |= IPV6_SADDR_SCORE_LABEL;
hiscore.rule++;
}
if (ipv6_saddr_label(&ifa->addr, score.addr_type) == daddr_label) {
score.attrs |= IPV6_SADDR_SCORE_LABEL;
if (!(hiscore.attrs & IPV6_SADDR_SCORE_LABEL)) {
score.rule = 6;
goto record_it;
}
} else {
if (hiscore.attrs & IPV6_SADDR_SCORE_LABEL)
continue;
}
#ifdef CONFIG_IPV6_PRIVACY
/* Rule 7: Prefer public address
* Note: prefer temprary address if use_tempaddr >= 2
*/
if (hiscore.rule < 7) {
if ((!(ifa_result->flags & IFA_F_TEMPORARY)) ^
(ifa_result->idev->cnf.use_tempaddr >= 2))
hiscore.attrs |= IPV6_SADDR_SCORE_PRIVACY;
hiscore.rule++;
}
if ((!(ifa->flags & IFA_F_TEMPORARY)) ^
(ifa->idev->cnf.use_tempaddr >= 2)) {
score.attrs |= IPV6_SADDR_SCORE_PRIVACY;
if (!(hiscore.attrs & IPV6_SADDR_SCORE_PRIVACY)) {
score.rule = 7;
goto record_it;
}
} else {
if (hiscore.attrs & IPV6_SADDR_SCORE_PRIVACY)
continue;
}
#else
if (hiscore.rule < 7)
hiscore.rule++;
#endif
/* Rule 8: Use longest matching prefix */
if (hiscore.rule < 8) {
hiscore.matchlen = ipv6_addr_diff(&ifa_result->addr, daddr);
hiscore.rule++;
}
score.matchlen = ipv6_addr_diff(&ifa->addr, daddr);
if (score.matchlen > hiscore.matchlen) {
score.rule = 8;
goto record_it;
}
#if 0
else if (score.matchlen < hiscore.matchlen)
continue;
#endif
/* Final Rule: choose first available one */
continue;
record_it:
if (ifa_result)
in6_ifa_put(ifa_result);
in6_ifa_hold(ifa);
ifa_result = ifa;
hiscore = score;
}
read_unlock_bh(&idev->lock);
}
rcu_read_unlock();
read_unlock(&dev_base_lock);
if (!ifa_result)
return -EADDRNOTAVAIL;
ipv6_addr_copy(saddr, &ifa_result->addr);
in6_ifa_put(ifa_result);
return 0;
}
int ipv6_get_saddr(struct dst_entry *dst,
struct in6_addr *daddr, struct in6_addr *saddr)
{
return ipv6_dev_get_saddr(dst ? ip6_dst_idev(dst)->dev : NULL, daddr, saddr);
}
EXPORT_SYMBOL(ipv6_get_saddr);
int ipv6_get_lladdr(struct net_device *dev, struct in6_addr *addr,
unsigned char banned_flags)
{
struct inet6_dev *idev;
int err = -EADDRNOTAVAIL;
rcu_read_lock();
if ((idev = __in6_dev_get(dev)) != NULL) {
struct inet6_ifaddr *ifp;
read_lock_bh(&idev->lock);
for (ifp=idev->addr_list; ifp; ifp=ifp->if_next) {
if (ifp->scope == IFA_LINK && !(ifp->flags & banned_flags)) {
ipv6_addr_copy(addr, &ifp->addr);
err = 0;
break;
}
}
read_unlock_bh(&idev->lock);
}
rcu_read_unlock();
return err;
}
static int ipv6_count_addresses(struct inet6_dev *idev)
{
int cnt = 0;
struct inet6_ifaddr *ifp;
read_lock_bh(&idev->lock);
for (ifp=idev->addr_list; ifp; ifp=ifp->if_next)
cnt++;
read_unlock_bh(&idev->lock);
return cnt;
}
int ipv6_chk_addr(struct in6_addr *addr, struct net_device *dev, int strict)
{
struct inet6_ifaddr * ifp;
u8 hash = ipv6_addr_hash(addr);
read_lock_bh(&addrconf_hash_lock);
for(ifp = inet6_addr_lst[hash]; ifp; ifp=ifp->lst_next) {
if (ipv6_addr_equal(&ifp->addr, addr) &&
!(ifp->flags&IFA_F_TENTATIVE)) {
if (dev == NULL || ifp->idev->dev == dev ||
!(ifp->scope&(IFA_LINK|IFA_HOST) || strict))
break;
}
}
read_unlock_bh(&addrconf_hash_lock);
return ifp != NULL;
}
EXPORT_SYMBOL(ipv6_chk_addr);
static
int ipv6_chk_same_addr(const struct in6_addr *addr, struct net_device *dev)
{
struct inet6_ifaddr * ifp;
u8 hash = ipv6_addr_hash(addr);
for(ifp = inet6_addr_lst[hash]; ifp; ifp=ifp->lst_next) {
if (ipv6_addr_equal(&ifp->addr, addr)) {
if (dev == NULL || ifp->idev->dev == dev)
break;
}
}
return ifp != NULL;
}
struct inet6_ifaddr * ipv6_get_ifaddr(struct in6_addr *addr, struct net_device *dev, int strict)
{
struct inet6_ifaddr * ifp;
u8 hash = ipv6_addr_hash(addr);
read_lock_bh(&addrconf_hash_lock);
for(ifp = inet6_addr_lst[hash]; ifp; ifp=ifp->lst_next) {
if (ipv6_addr_equal(&ifp->addr, addr)) {
if (dev == NULL || ifp->idev->dev == dev ||
!(ifp->scope&(IFA_LINK|IFA_HOST) || strict)) {
in6_ifa_hold(ifp);
break;
}
}
}
read_unlock_bh(&addrconf_hash_lock);
return ifp;
}
int ipv6_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2)
{
const struct in6_addr *sk_rcv_saddr6 = &inet6_sk(sk)->rcv_saddr;
const struct in6_addr *sk2_rcv_saddr6 = inet6_rcv_saddr(sk2);
__be32 sk_rcv_saddr = inet_sk(sk)->rcv_saddr;
__be32 sk2_rcv_saddr = inet_rcv_saddr(sk2);
int sk_ipv6only = ipv6_only_sock(sk);
int sk2_ipv6only = inet_v6_ipv6only(sk2);
int addr_type = ipv6_addr_type(sk_rcv_saddr6);
int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
if (!sk2_rcv_saddr && !sk_ipv6only)
return 1;
if (addr_type2 == IPV6_ADDR_ANY &&
!(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
return 1;
if (addr_type == IPV6_ADDR_ANY &&
!(sk_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
return 1;
if (sk2_rcv_saddr6 &&
ipv6_addr_equal(sk_rcv_saddr6, sk2_rcv_saddr6))
return 1;
if (addr_type == IPV6_ADDR_MAPPED &&
!sk2_ipv6only &&
(!sk2_rcv_saddr || !sk_rcv_saddr || sk_rcv_saddr == sk2_rcv_saddr))
return 1;
return 0;
}
/* Gets referenced address, destroys ifaddr */
static void addrconf_dad_stop(struct inet6_ifaddr *ifp)
{
if (ifp->flags&IFA_F_PERMANENT) {
spin_lock_bh(&ifp->lock);
addrconf_del_timer(ifp);
ifp->flags |= IFA_F_TENTATIVE;
spin_unlock_bh(&ifp->lock);
in6_ifa_put(ifp);
#ifdef CONFIG_IPV6_PRIVACY
} else if (ifp->flags&IFA_F_TEMPORARY) {
struct inet6_ifaddr *ifpub;
spin_lock_bh(&ifp->lock);
ifpub = ifp->ifpub;
if (ifpub) {
in6_ifa_hold(ifpub);
spin_unlock_bh(&ifp->lock);
ipv6_create_tempaddr(ifpub, ifp);
in6_ifa_put(ifpub);
} else {
spin_unlock_bh(&ifp->lock);
}
ipv6_del_addr(ifp);
#endif
} else
ipv6_del_addr(ifp);
}
void addrconf_dad_failure(struct inet6_ifaddr *ifp)
{
if (net_ratelimit())
printk(KERN_INFO "%s: duplicate address detected!\n", ifp->idev->dev->name);
addrconf_dad_stop(ifp);
}
/* Join to solicited addr multicast group. */
void addrconf_join_solict(struct net_device *dev, struct in6_addr *addr)
{
struct in6_addr maddr;
if (dev->flags&(IFF_LOOPBACK|IFF_NOARP))
return;
addrconf_addr_solict_mult(addr, &maddr);
ipv6_dev_mc_inc(dev, &maddr);
}
void addrconf_leave_solict(struct inet6_dev *idev, struct in6_addr *addr)
{
struct in6_addr maddr;
if (idev->dev->flags&(IFF_LOOPBACK|IFF_NOARP))
return;
addrconf_addr_solict_mult(addr, &maddr);
__ipv6_dev_mc_dec(idev, &maddr);
}
static void addrconf_join_anycast(struct inet6_ifaddr *ifp)
{
struct in6_addr addr;
ipv6_addr_prefix(&addr, &ifp->addr, ifp->prefix_len);
if (ipv6_addr_any(&addr))
return;
ipv6_dev_ac_inc(ifp->idev->dev, &addr);
}
static void addrconf_leave_anycast(struct inet6_ifaddr *ifp)
{
struct in6_addr addr;
ipv6_addr_prefix(&addr, &ifp->addr, ifp->prefix_len);
if (ipv6_addr_any(&addr))
return;
__ipv6_dev_ac_dec(ifp->idev, &addr);
}
static int addrconf_ifid_eui48(u8 *eui, struct net_device *dev)
{
if (dev->addr_len != ETH_ALEN)
return -1;
memcpy(eui, dev->dev_addr, 3);
memcpy(eui + 5, dev->dev_addr + 3, 3);
/*
* The zSeries OSA network cards can be shared among various
* OS instances, but the OSA cards have only one MAC address.
* This leads to duplicate address conflicts in conjunction
* with IPv6 if more than one instance uses the same card.
*
* The driver for these cards can deliver a unique 16-bit
* identifier for each instance sharing the same card. It is
* placed instead of 0xFFFE in the interface identifier. The
* "u" bit of the interface identifier is not inverted in this
* case. Hence the resulting interface identifier has local
* scope according to RFC2373.
*/
if (dev->dev_id) {
eui[3] = (dev->dev_id >> 8) & 0xFF;
eui[4] = dev->dev_id & 0xFF;
} else {
eui[3] = 0xFF;
eui[4] = 0xFE;
eui[0] ^= 2;
}
return 0;
}
static int addrconf_ifid_arcnet(u8 *eui, struct net_device *dev)
{
/* XXX: inherit EUI-64 from other interface -- yoshfuji */
if (dev->addr_len != ARCNET_ALEN)
return -1;
memset(eui, 0, 7);
eui[7] = *(u8*)dev->dev_addr;
return 0;
}
static int addrconf_ifid_infiniband(u8 *eui, struct net_device *dev)
{
if (dev->addr_len != INFINIBAND_ALEN)
return -1;
memcpy(eui, dev->dev_addr + 12, 8);
eui[0] |= 2;
return 0;
}
static int ipv6_generate_eui64(u8 *eui, struct net_device *dev)
{
switch (dev->type) {
case ARPHRD_ETHER:
case ARPHRD_FDDI:
case ARPHRD_IEEE802_TR:
return addrconf_ifid_eui48(eui, dev);
case ARPHRD_ARCNET:
return addrconf_ifid_arcnet(eui, dev);
case ARPHRD_INFINIBAND:
return addrconf_ifid_infiniband(eui, dev);
}
return -1;
}
static int ipv6_inherit_eui64(u8 *eui, struct inet6_dev *idev)
{
int err = -1;
struct inet6_ifaddr *ifp;
read_lock_bh(&idev->lock);
for (ifp=idev->addr_list; ifp; ifp=ifp->if_next) {
if (ifp->scope == IFA_LINK && !(ifp->flags&IFA_F_TENTATIVE)) {
memcpy(eui, ifp->addr.s6_addr+8, 8);
err = 0;
break;
}
}
read_unlock_bh(&idev->lock);
return err;
}
#ifdef CONFIG_IPV6_PRIVACY
/* (re)generation of randomized interface identifier (RFC 3041 3.2, 3.5) */
static int __ipv6_regen_rndid(struct inet6_dev *idev)
{
regen:
get_random_bytes(idev->rndid, sizeof(idev->rndid));
idev->rndid[0] &= ~0x02;
/*
* <draft-ietf-ipngwg-temp-addresses-v2-00.txt>:
* check if generated address is not inappropriate
*
* - Reserved subnet anycast (RFC 2526)
* 11111101 11....11 1xxxxxxx
* - ISATAP (draft-ietf-ngtrans-isatap-13.txt) 5.1
* 00-00-5E-FE-xx-xx-xx-xx
* - value 0
* - XXX: already assigned to an address on the device
*/
if (idev->rndid[0] == 0xfd &&
(idev->rndid[1]&idev->rndid[2]&idev->rndid[3]&idev->rndid[4]&idev->rndid[5]&idev->rndid[6]) == 0xff &&
(idev->rndid[7]&0x80))
goto regen;
if ((idev->rndid[0]|idev->rndid[1]) == 0) {
if (idev->rndid[2] == 0x5e && idev->rndid[3] == 0xfe)
goto regen;
if ((idev->rndid[2]|idev->rndid[3]|idev->rndid[4]|idev->rndid[5]|idev->rndid[6]|idev->rndid[7]) == 0x00)
goto regen;
}
return 0;
}
static void ipv6_regen_rndid(unsigned long data)
{
struct inet6_dev *idev = (struct inet6_dev *) data;
unsigned long expires;
rcu_read_lock_bh();
write_lock_bh(&idev->lock);
if (idev->dead)
goto out;
if (__ipv6_regen_rndid(idev) < 0)
goto out;
expires = jiffies +
idev->cnf.temp_prefered_lft * HZ -
idev->cnf.regen_max_retry * idev->cnf.dad_transmits * idev->nd_parms->retrans_time - desync_factor;
if (time_before(expires, jiffies)) {
printk(KERN_WARNING
"ipv6_regen_rndid(): too short regeneration interval; timer disabled for %s.\n",
idev->dev->name);
goto out;
}
if (!mod_timer(&idev->regen_timer, expires))
in6_dev_hold(idev);
out:
write_unlock_bh(&idev->lock);
rcu_read_unlock_bh();
in6_dev_put(idev);
}
static int __ipv6_try_regen_rndid(struct inet6_dev *idev, struct in6_addr *tmpaddr) {
int ret = 0;
if (tmpaddr && memcmp(idev->rndid, &tmpaddr->s6_addr[8], 8) == 0)
ret = __ipv6_regen_rndid(idev);
return ret;
}
#endif
/*
* Add prefix route.
*/
static void
addrconf_prefix_route(struct in6_addr *pfx, int plen, struct net_device *dev,
unsigned long expires, u32 flags)
{
struct fib6_config cfg = {
.fc_table = RT6_TABLE_PREFIX,
.fc_metric = IP6_RT_PRIO_ADDRCONF,
.fc_ifindex = dev->ifindex,
.fc_expires = expires,
.fc_dst_len = plen,
.fc_flags = RTF_UP | flags,
};
ipv6_addr_copy(&cfg.fc_dst, pfx);
/* Prevent useless cloning on PtP SIT.
This thing is done here expecting that the whole
class of non-broadcast devices need not cloning.
*/
#if defined(CONFIG_IPV6_SIT) || defined(CONFIG_IPV6_SIT_MODULE)
if (dev->type == ARPHRD_SIT && (dev->flags & IFF_POINTOPOINT))
cfg.fc_flags |= RTF_NONEXTHOP;
#endif
ip6_route_add(&cfg);
}
/* Create "default" multicast route to the interface */
static void addrconf_add_mroute(struct net_device *dev)
{
struct fib6_config cfg = {
.fc_table = RT6_TABLE_LOCAL,
.fc_metric = IP6_RT_PRIO_ADDRCONF,
.fc_ifindex = dev->ifindex,
.fc_dst_len = 8,
.fc_flags = RTF_UP,
};
ipv6_addr_set(&cfg.fc_dst, htonl(0xFF000000), 0, 0, 0);
ip6_route_add(&cfg);
}
#if defined(CONFIG_IPV6_SIT) || defined(CONFIG_IPV6_SIT_MODULE)
static void sit_route_add(struct net_device *dev)
{
struct fib6_config cfg = {
.fc_table = RT6_TABLE_MAIN,
.fc_metric = IP6_RT_PRIO_ADDRCONF,
.fc_ifindex = dev->ifindex,
.fc_dst_len = 96,
.fc_flags = RTF_UP | RTF_NONEXTHOP,
};
/* prefix length - 96 bits "::d.d.d.d" */
ip6_route_add(&cfg);
}
#endif
static void addrconf_add_lroute(struct net_device *dev)
{
struct in6_addr addr;
ipv6_addr_set(&addr, htonl(0xFE800000), 0, 0, 0);
addrconf_prefix_route(&addr, 64, dev, 0, 0);
}
static struct inet6_dev *addrconf_add_dev(struct net_device *dev)
{
struct inet6_dev *idev;
ASSERT_RTNL();
if ((idev = ipv6_find_idev(dev)) == NULL)
return NULL;
/* Add default multicast route */
addrconf_add_mroute(dev);
/* Add link local route */
addrconf_add_lroute(dev);
return idev;
}
void addrconf_prefix_rcv(struct net_device *dev, u8 *opt, int len)
{
struct prefix_info *pinfo;
__u32 valid_lft;
__u32 prefered_lft;
int addr_type;
unsigned long rt_expires;
struct inet6_dev *in6_dev;
pinfo = (struct prefix_info *) opt;
if (len < sizeof(struct prefix_info)) {
ADBG(("addrconf: prefix option too short\n"));
return;
}
/*
* Validation checks ([ADDRCONF], page 19)
*/
addr_type = ipv6_addr_type(&pinfo->prefix);
if (addr_type & (IPV6_ADDR_MULTICAST|IPV6_ADDR_LINKLOCAL))
return;
valid_lft = ntohl(pinfo->valid);
prefered_lft = ntohl(pinfo->prefered);
if (prefered_lft > valid_lft) {
if (net_ratelimit())
printk(KERN_WARNING "addrconf: prefix option has invalid lifetime\n");
return;
}
in6_dev = in6_dev_get(dev);
if (in6_dev == NULL) {
if (net_ratelimit())
printk(KERN_DEBUG "addrconf: device %s not configured\n", dev->name);
return;
}
/*
* Two things going on here:
* 1) Add routes for on-link prefixes
* 2) Configure prefixes with the auto flag set
*/
/* Avoid arithmetic overflow. Really, we could
save rt_expires in seconds, likely valid_lft,
but it would require division in fib gc, that it
not good.
*/
if (valid_lft >= 0x7FFFFFFF/HZ)
rt_expires = 0x7FFFFFFF - (0x7FFFFFFF % HZ);
else
rt_expires = valid_lft * HZ;
/*
* We convert this (in jiffies) to clock_t later.
* Avoid arithmetic overflow there as well.
* Overflow can happen only if HZ < USER_HZ.
*/
if (HZ < USER_HZ && rt_expires > 0x7FFFFFFF / USER_HZ)
rt_expires = 0x7FFFFFFF / USER_HZ;
if (pinfo->onlink) {
struct rt6_info *rt;
rt = rt6_lookup(&pinfo->prefix, NULL, dev->ifindex, 1);
if (rt && ((rt->rt6i_flags & (RTF_GATEWAY | RTF_DEFAULT)) == 0)) {
if (rt->rt6i_flags&RTF_EXPIRES) {
if (valid_lft == 0) {
ip6_del_rt(rt);
rt = NULL;
} else {
rt->rt6i_expires = jiffies + rt_expires;
}
}
} else if (valid_lft) {
addrconf_prefix_route(&pinfo->prefix, pinfo->prefix_len,
dev, jiffies_to_clock_t(rt_expires), RTF_ADDRCONF|RTF_EXPIRES|RTF_PREFIX_RT);
}
if (rt)
dst_release(&rt->u.dst);
}
/* Try to figure out our local address for this prefix */
if (pinfo->autoconf && in6_dev->cnf.autoconf) {
struct inet6_ifaddr * ifp;
struct in6_addr addr;
int create = 0, update_lft = 0;
if (pinfo->prefix_len == 64) {
memcpy(&addr, &pinfo->prefix, 8);
if (ipv6_generate_eui64(addr.s6_addr + 8, dev) &&
ipv6_inherit_eui64(addr.s6_addr + 8, in6_dev)) {
in6_dev_put(in6_dev);
return;
}
goto ok;
}
if (net_ratelimit())
printk(KERN_DEBUG "IPv6 addrconf: prefix with wrong length %d\n",
pinfo->prefix_len);
in6_dev_put(in6_dev);
return;
ok:
ifp = ipv6_get_ifaddr(&addr, dev, 1);
if (ifp == NULL && valid_lft) {
int max_addresses = in6_dev->cnf.max_addresses;
u32 addr_flags = 0;
#ifdef CONFIG_IPV6_OPTIMISTIC_DAD
if (in6_dev->cnf.optimistic_dad &&
!ipv6_devconf.forwarding)
addr_flags = IFA_F_OPTIMISTIC;
#endif
/* Do not allow to create too much of autoconfigured
* addresses; this would be too easy way to crash kernel.
*/
if (!max_addresses ||
ipv6_count_addresses(in6_dev) < max_addresses)
ifp = ipv6_add_addr(in6_dev, &addr, pinfo->prefix_len,
addr_type&IPV6_ADDR_SCOPE_MASK,
addr_flags);
if (!ifp || IS_ERR(ifp)) {
in6_dev_put(in6_dev);
return;
}
update_lft = create = 1;
ifp->cstamp = jiffies;
addrconf_dad_start(ifp, RTF_ADDRCONF|RTF_PREFIX_RT);
}
if (ifp) {
int flags;
unsigned long now;
#ifdef CONFIG_IPV6_PRIVACY
struct inet6_ifaddr *ift;
#endif
u32 stored_lft;
/* update lifetime (RFC2462 5.5.3 e) */
spin_lock(&ifp->lock);
now = jiffies;
if (ifp->valid_lft > (now - ifp->tstamp) / HZ)
stored_lft = ifp->valid_lft - (now - ifp->tstamp) / HZ;
else
stored_lft = 0;
if (!update_lft && stored_lft) {
if (valid_lft > MIN_VALID_LIFETIME ||
valid_lft > stored_lft)
update_lft = 1;
else if (stored_lft <= MIN_VALID_LIFETIME) {
/* valid_lft <= stored_lft is always true */
/* XXX: IPsec */
update_lft = 0;
} else {
valid_lft = MIN_VALID_LIFETIME;
if (valid_lft < prefered_lft)
prefered_lft = valid_lft;
update_lft = 1;
}
}
if (update_lft) {
ifp->valid_lft = valid_lft;
ifp->prefered_lft = prefered_lft;
ifp->tstamp = now;
flags = ifp->flags;
ifp->flags &= ~IFA_F_DEPRECATED;
spin_unlock(&ifp->lock);
if (!(flags&IFA_F_TENTATIVE))
ipv6_ifa_notify(0, ifp);
} else
spin_unlock(&ifp->lock);
#ifdef CONFIG_IPV6_PRIVACY
read_lock_bh(&in6_dev->lock);
/* update all temporary addresses in the list */
for (ift=in6_dev->tempaddr_list; ift; ift=ift->tmp_next) {
/*
* When adjusting the lifetimes of an existing
* temporary address, only lower the lifetimes.
* Implementations must not increase the
* lifetimes of an existing temporary address
* when processing a Prefix Information Option.
*/
spin_lock(&ift->lock);
flags = ift->flags;
if (ift->valid_lft > valid_lft &&
ift->valid_lft - valid_lft > (jiffies - ift->tstamp) / HZ)
ift->valid_lft = valid_lft + (jiffies - ift->tstamp) / HZ;
if (ift->prefered_lft > prefered_lft &&
ift->prefered_lft - prefered_lft > (jiffies - ift->tstamp) / HZ)
ift->prefered_lft = prefered_lft + (jiffies - ift->tstamp) / HZ;
spin_unlock(&ift->lock);
if (!(flags&IFA_F_TENTATIVE))
ipv6_ifa_notify(0, ift);
}
if (create && in6_dev->cnf.use_tempaddr > 0) {
/*
* When a new public address is created as described in [ADDRCONF],
* also create a new temporary address.
*/
read_unlock_bh(&in6_dev->lock);
ipv6_create_tempaddr(ifp, NULL);
} else {
read_unlock_bh(&in6_dev->lock);
}
#endif
in6_ifa_put(ifp);
addrconf_verify(0);
}
}
inet6_prefix_notify(RTM_NEWPREFIX, in6_dev, pinfo);
in6_dev_put(in6_dev);
}
/*
* Set destination address.
* Special case for SIT interfaces where we create a new "virtual"
* device.
*/
int addrconf_set_dstaddr(void __user *arg)
{
struct in6_ifreq ireq;
struct net_device *dev;
int err = -EINVAL;
rtnl_lock();
err = -EFAULT;
if (copy_from_user(&ireq, arg, sizeof(struct in6_ifreq)))
goto err_exit;
[NET]: Make the device list and device lookups per namespace. This patch makes most of the generic device layer network namespace safe. This patch makes dev_base_head a network namespace variable, and then it picks up a few associated variables. The functions: dev_getbyhwaddr dev_getfirsthwbytype dev_get_by_flags dev_get_by_name __dev_get_by_name dev_get_by_index __dev_get_by_index dev_ioctl dev_ethtool dev_load wireless_process_ioctl were modified to take a network namespace argument, and deal with it. vlan_ioctl_set and brioctl_set were modified so their hooks will receive a network namespace argument. So basically anthing in the core of the network stack that was affected to by the change of dev_base was modified to handle multiple network namespaces. The rest of the network stack was simply modified to explicitly use &init_net the initial network namespace. This can be fixed when those components of the network stack are modified to handle multiple network namespaces. For now the ifindex generator is left global. Fundametally ifindex numbers are per namespace, or else we will have corner case problems with migration when we get that far. At the same time there are assumptions in the network stack that the ifindex of a network device won't change. Making the ifindex number global seems a good compromise until the network stack can cope with ifindex changes when you change namespaces, and the like. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-18 02:56:21 +08:00
dev = __dev_get_by_index(&init_net, ireq.ifr6_ifindex);
err = -ENODEV;
if (dev == NULL)
goto err_exit;
#if defined(CONFIG_IPV6_SIT) || defined(CONFIG_IPV6_SIT_MODULE)
if (dev->type == ARPHRD_SIT) {
struct ifreq ifr;
mm_segment_t oldfs;
struct ip_tunnel_parm p;
err = -EADDRNOTAVAIL;
if (!(ipv6_addr_type(&ireq.ifr6_addr) & IPV6_ADDR_COMPATv4))
goto err_exit;
memset(&p, 0, sizeof(p));
p.iph.daddr = ireq.ifr6_addr.s6_addr32[3];
p.iph.saddr = 0;
p.iph.version = 4;
p.iph.ihl = 5;
p.iph.protocol = IPPROTO_IPV6;
p.iph.ttl = 64;
ifr.ifr_ifru.ifru_data = (void __user *)&p;
oldfs = get_fs(); set_fs(KERNEL_DS);
err = dev->do_ioctl(dev, &ifr, SIOCADDTUNNEL);
set_fs(oldfs);
if (err == 0) {
err = -ENOBUFS;
[NET]: Make the device list and device lookups per namespace. This patch makes most of the generic device layer network namespace safe. This patch makes dev_base_head a network namespace variable, and then it picks up a few associated variables. The functions: dev_getbyhwaddr dev_getfirsthwbytype dev_get_by_flags dev_get_by_name __dev_get_by_name dev_get_by_index __dev_get_by_index dev_ioctl dev_ethtool dev_load wireless_process_ioctl were modified to take a network namespace argument, and deal with it. vlan_ioctl_set and brioctl_set were modified so their hooks will receive a network namespace argument. So basically anthing in the core of the network stack that was affected to by the change of dev_base was modified to handle multiple network namespaces. The rest of the network stack was simply modified to explicitly use &init_net the initial network namespace. This can be fixed when those components of the network stack are modified to handle multiple network namespaces. For now the ifindex generator is left global. Fundametally ifindex numbers are per namespace, or else we will have corner case problems with migration when we get that far. At the same time there are assumptions in the network stack that the ifindex of a network device won't change. Making the ifindex number global seems a good compromise until the network stack can cope with ifindex changes when you change namespaces, and the like. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-18 02:56:21 +08:00
if ((dev = __dev_get_by_name(&init_net, p.name)) == NULL)
goto err_exit;
err = dev_open(dev);
}
}
#endif
err_exit:
rtnl_unlock();
return err;
}
/*
* Manual configuration of address on an interface
*/
static int inet6_addr_add(int ifindex, struct in6_addr *pfx, int plen,
__u8 ifa_flags, __u32 prefered_lft, __u32 valid_lft)
{
struct inet6_ifaddr *ifp;
struct inet6_dev *idev;
struct net_device *dev;
int scope;
u32 flags = RTF_EXPIRES;
ASSERT_RTNL();
/* check the lifetime */
if (!valid_lft || prefered_lft > valid_lft)
return -EINVAL;
[NET]: Make the device list and device lookups per namespace. This patch makes most of the generic device layer network namespace safe. This patch makes dev_base_head a network namespace variable, and then it picks up a few associated variables. The functions: dev_getbyhwaddr dev_getfirsthwbytype dev_get_by_flags dev_get_by_name __dev_get_by_name dev_get_by_index __dev_get_by_index dev_ioctl dev_ethtool dev_load wireless_process_ioctl were modified to take a network namespace argument, and deal with it. vlan_ioctl_set and brioctl_set were modified so their hooks will receive a network namespace argument. So basically anthing in the core of the network stack that was affected to by the change of dev_base was modified to handle multiple network namespaces. The rest of the network stack was simply modified to explicitly use &init_net the initial network namespace. This can be fixed when those components of the network stack are modified to handle multiple network namespaces. For now the ifindex generator is left global. Fundametally ifindex numbers are per namespace, or else we will have corner case problems with migration when we get that far. At the same time there are assumptions in the network stack that the ifindex of a network device won't change. Making the ifindex number global seems a good compromise until the network stack can cope with ifindex changes when you change namespaces, and the like. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-18 02:56:21 +08:00
if ((dev = __dev_get_by_index(&init_net, ifindex)) == NULL)
return -ENODEV;
if ((idev = addrconf_add_dev(dev)) == NULL)
return -ENOBUFS;
scope = ipv6_addr_scope(pfx);
if (valid_lft == INFINITY_LIFE_TIME) {
ifa_flags |= IFA_F_PERMANENT;
flags = 0;
} else if (valid_lft >= 0x7FFFFFFF/HZ)
valid_lft = 0x7FFFFFFF/HZ;
if (prefered_lft == 0)
ifa_flags |= IFA_F_DEPRECATED;
else if ((prefered_lft >= 0x7FFFFFFF/HZ) &&
(prefered_lft != INFINITY_LIFE_TIME))
prefered_lft = 0x7FFFFFFF/HZ;
ifp = ipv6_add_addr(idev, pfx, plen, scope, ifa_flags);
if (!IS_ERR(ifp)) {
spin_lock_bh(&ifp->lock);
ifp->valid_lft = valid_lft;
ifp->prefered_lft = prefered_lft;
ifp->tstamp = jiffies;
spin_unlock_bh(&ifp->lock);
addrconf_prefix_route(&ifp->addr, ifp->prefix_len, dev,
jiffies_to_clock_t(valid_lft * HZ), flags);
/*
* Note that section 3.1 of RFC 4429 indicates
* that the Optimistic flag should not be set for
* manually configured addresses
*/
addrconf_dad_start(ifp, 0);
in6_ifa_put(ifp);
addrconf_verify(0);
return 0;
}
return PTR_ERR(ifp);
}
static int inet6_addr_del(int ifindex, struct in6_addr *pfx, int plen)
{
struct inet6_ifaddr *ifp;
struct inet6_dev *idev;
struct net_device *dev;
[NET]: Make the device list and device lookups per namespace. This patch makes most of the generic device layer network namespace safe. This patch makes dev_base_head a network namespace variable, and then it picks up a few associated variables. The functions: dev_getbyhwaddr dev_getfirsthwbytype dev_get_by_flags dev_get_by_name __dev_get_by_name dev_get_by_index __dev_get_by_index dev_ioctl dev_ethtool dev_load wireless_process_ioctl were modified to take a network namespace argument, and deal with it. vlan_ioctl_set and brioctl_set were modified so their hooks will receive a network namespace argument. So basically anthing in the core of the network stack that was affected to by the change of dev_base was modified to handle multiple network namespaces. The rest of the network stack was simply modified to explicitly use &init_net the initial network namespace. This can be fixed when those components of the network stack are modified to handle multiple network namespaces. For now the ifindex generator is left global. Fundametally ifindex numbers are per namespace, or else we will have corner case problems with migration when we get that far. At the same time there are assumptions in the network stack that the ifindex of a network device won't change. Making the ifindex number global seems a good compromise until the network stack can cope with ifindex changes when you change namespaces, and the like. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-18 02:56:21 +08:00
if ((dev = __dev_get_by_index(&init_net, ifindex)) == NULL)
return -ENODEV;
if ((idev = __in6_dev_get(dev)) == NULL)
return -ENXIO;
read_lock_bh(&idev->lock);
for (ifp = idev->addr_list; ifp; ifp=ifp->if_next) {
if (ifp->prefix_len == plen &&
ipv6_addr_equal(pfx, &ifp->addr)) {
in6_ifa_hold(ifp);
read_unlock_bh(&idev->lock);
ipv6_del_addr(ifp);
/* If the last address is deleted administratively,
disable IPv6 on this interface.
*/
if (idev->addr_list == NULL)
addrconf_ifdown(idev->dev, 1);
return 0;
}
}
read_unlock_bh(&idev->lock);
return -EADDRNOTAVAIL;
}
int addrconf_add_ifaddr(void __user *arg)
{
struct in6_ifreq ireq;
int err;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (copy_from_user(&ireq, arg, sizeof(struct in6_ifreq)))
return -EFAULT;
rtnl_lock();
err = inet6_addr_add(ireq.ifr6_ifindex, &ireq.ifr6_addr, ireq.ifr6_prefixlen,
IFA_F_PERMANENT, INFINITY_LIFE_TIME, INFINITY_LIFE_TIME);
rtnl_unlock();
return err;
}
int addrconf_del_ifaddr(void __user *arg)
{
struct in6_ifreq ireq;
int err;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (copy_from_user(&ireq, arg, sizeof(struct in6_ifreq)))
return -EFAULT;
rtnl_lock();
err = inet6_addr_del(ireq.ifr6_ifindex, &ireq.ifr6_addr, ireq.ifr6_prefixlen);
rtnl_unlock();
return err;
}
#if defined(CONFIG_IPV6_SIT) || defined(CONFIG_IPV6_SIT_MODULE)
static void sit_add_v4_addrs(struct inet6_dev *idev)
{
struct inet6_ifaddr * ifp;
struct in6_addr addr;
struct net_device *dev;
int scope;
ASSERT_RTNL();
memset(&addr, 0, sizeof(struct in6_addr));
memcpy(&addr.s6_addr32[3], idev->dev->dev_addr, 4);
if (idev->dev->flags&IFF_POINTOPOINT) {
addr.s6_addr32[0] = htonl(0xfe800000);
scope = IFA_LINK;
} else {
scope = IPV6_ADDR_COMPATv4;
}
if (addr.s6_addr32[3]) {
ifp = ipv6_add_addr(idev, &addr, 128, scope, IFA_F_PERMANENT);
if (!IS_ERR(ifp)) {
spin_lock_bh(&ifp->lock);
ifp->flags &= ~IFA_F_TENTATIVE;
spin_unlock_bh(&ifp->lock);
ipv6_ifa_notify(RTM_NEWADDR, ifp);
in6_ifa_put(ifp);
}
return;
}
[NET]: Make the device list and device lookups per namespace. This patch makes most of the generic device layer network namespace safe. This patch makes dev_base_head a network namespace variable, and then it picks up a few associated variables. The functions: dev_getbyhwaddr dev_getfirsthwbytype dev_get_by_flags dev_get_by_name __dev_get_by_name dev_get_by_index __dev_get_by_index dev_ioctl dev_ethtool dev_load wireless_process_ioctl were modified to take a network namespace argument, and deal with it. vlan_ioctl_set and brioctl_set were modified so their hooks will receive a network namespace argument. So basically anthing in the core of the network stack that was affected to by the change of dev_base was modified to handle multiple network namespaces. The rest of the network stack was simply modified to explicitly use &init_net the initial network namespace. This can be fixed when those components of the network stack are modified to handle multiple network namespaces. For now the ifindex generator is left global. Fundametally ifindex numbers are per namespace, or else we will have corner case problems with migration when we get that far. At the same time there are assumptions in the network stack that the ifindex of a network device won't change. Making the ifindex number global seems a good compromise until the network stack can cope with ifindex changes when you change namespaces, and the like. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-18 02:56:21 +08:00
for_each_netdev(&init_net, dev) {
struct in_device * in_dev = __in_dev_get_rtnl(dev);
if (in_dev && (dev->flags & IFF_UP)) {
struct in_ifaddr * ifa;
int flag = scope;
for (ifa = in_dev->ifa_list; ifa; ifa = ifa->ifa_next) {
int plen;
addr.s6_addr32[3] = ifa->ifa_local;
if (ifa->ifa_scope == RT_SCOPE_LINK)
continue;
if (ifa->ifa_scope >= RT_SCOPE_HOST) {
if (idev->dev->flags&IFF_POINTOPOINT)
continue;
flag |= IFA_HOST;
}
if (idev->dev->flags&IFF_POINTOPOINT)
plen = 64;
else
plen = 96;
ifp = ipv6_add_addr(idev, &addr, plen, flag,
IFA_F_PERMANENT);
if (!IS_ERR(ifp)) {
spin_lock_bh(&ifp->lock);
ifp->flags &= ~IFA_F_TENTATIVE;
spin_unlock_bh(&ifp->lock);
ipv6_ifa_notify(RTM_NEWADDR, ifp);
in6_ifa_put(ifp);
}
}
}
}
}
#endif
static void init_loopback(struct net_device *dev)
{
struct inet6_dev *idev;
struct inet6_ifaddr * ifp;
/* ::1 */
ASSERT_RTNL();
if ((idev = ipv6_find_idev(dev)) == NULL) {
printk(KERN_DEBUG "init loopback: add_dev failed\n");
return;
}
ifp = ipv6_add_addr(idev, &in6addr_loopback, 128, IFA_HOST, IFA_F_PERMANENT);
if (!IS_ERR(ifp)) {
spin_lock_bh(&ifp->lock);
ifp->flags &= ~IFA_F_TENTATIVE;
spin_unlock_bh(&ifp->lock);
ipv6_ifa_notify(RTM_NEWADDR, ifp);
in6_ifa_put(ifp);
}
}
static void addrconf_add_linklocal(struct inet6_dev *idev, struct in6_addr *addr)
{
struct inet6_ifaddr * ifp;
u32 addr_flags = IFA_F_PERMANENT;
#ifdef CONFIG_IPV6_OPTIMISTIC_DAD
if (idev->cnf.optimistic_dad &&
!ipv6_devconf.forwarding)
addr_flags |= IFA_F_OPTIMISTIC;
#endif
ifp = ipv6_add_addr(idev, addr, 64, IFA_LINK, addr_flags);
if (!IS_ERR(ifp)) {
addrconf_prefix_route(&ifp->addr, ifp->prefix_len, idev->dev, 0, 0);
addrconf_dad_start(ifp, 0);
in6_ifa_put(ifp);
}
}
static void addrconf_dev_config(struct net_device *dev)
{
struct in6_addr addr;
struct inet6_dev * idev;
ASSERT_RTNL();
if ((dev->type != ARPHRD_ETHER) &&
(dev->type != ARPHRD_FDDI) &&
(dev->type != ARPHRD_IEEE802_TR) &&
(dev->type != ARPHRD_ARCNET) &&
(dev->type != ARPHRD_INFINIBAND)) {
/* Alas, we support only Ethernet autoconfiguration. */
return;
}
idev = addrconf_add_dev(dev);
if (idev == NULL)
return;
memset(&addr, 0, sizeof(struct in6_addr));
addr.s6_addr32[0] = htonl(0xFE800000);
if (ipv6_generate_eui64(addr.s6_addr + 8, dev) == 0)
addrconf_add_linklocal(idev, &addr);
}
#if defined(CONFIG_IPV6_SIT) || defined(CONFIG_IPV6_SIT_MODULE)
static void addrconf_sit_config(struct net_device *dev)
{
struct inet6_dev *idev;
ASSERT_RTNL();
/*
* Configure the tunnel with one of our IPv4
* addresses... we should configure all of
* our v4 addrs in the tunnel
*/
if ((idev = ipv6_find_idev(dev)) == NULL) {
printk(KERN_DEBUG "init sit: add_dev failed\n");
return;
}
sit_add_v4_addrs(idev);
if (dev->flags&IFF_POINTOPOINT) {
addrconf_add_mroute(dev);
addrconf_add_lroute(dev);
} else
sit_route_add(dev);
}
#endif
static inline int
ipv6_inherit_linklocal(struct inet6_dev *idev, struct net_device *link_dev)
{
struct in6_addr lladdr;
if (!ipv6_get_lladdr(link_dev, &lladdr, IFA_F_TENTATIVE)) {
addrconf_add_linklocal(idev, &lladdr);
return 0;
}
return -1;
}
static void ip6_tnl_add_linklocal(struct inet6_dev *idev)
{
struct net_device *link_dev;
/* first try to inherit the link-local address from the link device */
if (idev->dev->iflink &&
[NET]: Make the device list and device lookups per namespace. This patch makes most of the generic device layer network namespace safe. This patch makes dev_base_head a network namespace variable, and then it picks up a few associated variables. The functions: dev_getbyhwaddr dev_getfirsthwbytype dev_get_by_flags dev_get_by_name __dev_get_by_name dev_get_by_index __dev_get_by_index dev_ioctl dev_ethtool dev_load wireless_process_ioctl were modified to take a network namespace argument, and deal with it. vlan_ioctl_set and brioctl_set were modified so their hooks will receive a network namespace argument. So basically anthing in the core of the network stack that was affected to by the change of dev_base was modified to handle multiple network namespaces. The rest of the network stack was simply modified to explicitly use &init_net the initial network namespace. This can be fixed when those components of the network stack are modified to handle multiple network namespaces. For now the ifindex generator is left global. Fundametally ifindex numbers are per namespace, or else we will have corner case problems with migration when we get that far. At the same time there are assumptions in the network stack that the ifindex of a network device won't change. Making the ifindex number global seems a good compromise until the network stack can cope with ifindex changes when you change namespaces, and the like. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-18 02:56:21 +08:00
(link_dev = __dev_get_by_index(&init_net, idev->dev->iflink))) {
if (!ipv6_inherit_linklocal(idev, link_dev))
return;
}
/* then try to inherit it from any device */
[NET]: Make the device list and device lookups per namespace. This patch makes most of the generic device layer network namespace safe. This patch makes dev_base_head a network namespace variable, and then it picks up a few associated variables. The functions: dev_getbyhwaddr dev_getfirsthwbytype dev_get_by_flags dev_get_by_name __dev_get_by_name dev_get_by_index __dev_get_by_index dev_ioctl dev_ethtool dev_load wireless_process_ioctl were modified to take a network namespace argument, and deal with it. vlan_ioctl_set and brioctl_set were modified so their hooks will receive a network namespace argument. So basically anthing in the core of the network stack that was affected to by the change of dev_base was modified to handle multiple network namespaces. The rest of the network stack was simply modified to explicitly use &init_net the initial network namespace. This can be fixed when those components of the network stack are modified to handle multiple network namespaces. For now the ifindex generator is left global. Fundametally ifindex numbers are per namespace, or else we will have corner case problems with migration when we get that far. At the same time there are assumptions in the network stack that the ifindex of a network device won't change. Making the ifindex number global seems a good compromise until the network stack can cope with ifindex changes when you change namespaces, and the like. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-18 02:56:21 +08:00
for_each_netdev(&init_net, link_dev) {
if (!ipv6_inherit_linklocal(idev, link_dev))
return;
}
printk(KERN_DEBUG "init ip6-ip6: add_linklocal failed\n");
}
/*
* Autoconfigure tunnel with a link-local address so routing protocols,
* DHCPv6, MLD etc. can be run over the virtual link
*/
static void addrconf_ip6_tnl_config(struct net_device *dev)
{
struct inet6_dev *idev;
ASSERT_RTNL();
if ((idev = addrconf_add_dev(dev)) == NULL) {
printk(KERN_DEBUG "init ip6-ip6: add_dev failed\n");
return;
}
ip6_tnl_add_linklocal(idev);
}
static int addrconf_notify(struct notifier_block *this, unsigned long event,
void * data)
{
struct net_device *dev = (struct net_device *) data;
struct inet6_dev *idev = __in6_dev_get(dev);
int run_pending = 0;
int err;
if (dev->nd_net != &init_net)
return NOTIFY_DONE;
switch(event) {
case NETDEV_REGISTER:
if (!idev && dev->mtu >= IPV6_MIN_MTU) {
idev = ipv6_add_dev(dev);
if (!idev)
return notifier_from_errno(-ENOMEM);
}
break;
case NETDEV_UP:
case NETDEV_CHANGE:
if (dev->flags & IFF_SLAVE)
break;
if (event == NETDEV_UP) {
if (!addrconf_qdisc_ok(dev)) {
/* device is not ready yet. */
printk(KERN_INFO
"ADDRCONF(NETDEV_UP): %s: "
"link is not ready\n",
dev->name);
break;
}
if (!idev && dev->mtu >= IPV6_MIN_MTU)
idev = ipv6_add_dev(dev);
if (idev)
idev->if_flags |= IF_READY;
} else {
if (!addrconf_qdisc_ok(dev)) {
/* device is still not ready. */
break;
}
if (idev) {
if (idev->if_flags & IF_READY) {
/* device is already configured. */
break;
}
idev->if_flags |= IF_READY;
}
printk(KERN_INFO
"ADDRCONF(NETDEV_CHANGE): %s: "
"link becomes ready\n",
dev->name);
run_pending = 1;
}
switch(dev->type) {
#if defined(CONFIG_IPV6_SIT) || defined(CONFIG_IPV6_SIT_MODULE)
case ARPHRD_SIT:
addrconf_sit_config(dev);
break;
#endif
case ARPHRD_TUNNEL6:
addrconf_ip6_tnl_config(dev);
break;
case ARPHRD_LOOPBACK:
init_loopback(dev);
break;
default:
addrconf_dev_config(dev);
break;
}
if (idev) {
if (run_pending)
addrconf_dad_run(idev);
/* If the MTU changed during the interface down, when the
interface up, the changed MTU must be reflected in the
idev as well as routers.
*/
if (idev->cnf.mtu6 != dev->mtu && dev->mtu >= IPV6_MIN_MTU) {
rt6_mtu_change(dev, dev->mtu);
idev->cnf.mtu6 = dev->mtu;
}
idev->tstamp = jiffies;
inet6_ifinfo_notify(RTM_NEWLINK, idev);
/* If the changed mtu during down is lower than IPV6_MIN_MTU
stop IPv6 on this interface.
*/
if (dev->mtu < IPV6_MIN_MTU)
addrconf_ifdown(dev, event != NETDEV_DOWN);
}
break;
case NETDEV_CHANGEMTU:
if (idev && dev->mtu >= IPV6_MIN_MTU) {
rt6_mtu_change(dev, dev->mtu);
idev->cnf.mtu6 = dev->mtu;
break;
}
if (!idev && dev->mtu >= IPV6_MIN_MTU) {
idev = ipv6_add_dev(dev);
if (idev)
break;
}
/* MTU falled under IPV6_MIN_MTU. Stop IPv6 on this interface. */
case NETDEV_DOWN:
case NETDEV_UNREGISTER:
/*
* Remove all addresses from this interface.
*/
addrconf_ifdown(dev, event != NETDEV_DOWN);
break;
case NETDEV_CHANGENAME:
if (idev) {
snmp6_unregister_dev(idev);
#ifdef CONFIG_SYSCTL
addrconf_sysctl_unregister(&idev->cnf);
neigh_sysctl_unregister(idev->nd_parms);
neigh_sysctl_register(dev, idev->nd_parms,
NET_IPV6, NET_IPV6_NEIGH, "ipv6",
&ndisc_ifinfo_sysctl_change,
NULL);
addrconf_sysctl_register(idev, &idev->cnf);
#endif
err = snmp6_register_dev(idev);
if (err)
return notifier_from_errno(err);
}
break;
}
return NOTIFY_OK;
}
/*
* addrconf module should be notified of a device going up
*/
static struct notifier_block ipv6_dev_notf = {
.notifier_call = addrconf_notify,
.priority = 0
};
static int addrconf_ifdown(struct net_device *dev, int how)
{
struct inet6_dev *idev;
struct inet6_ifaddr *ifa, **bifa;
int i;
ASSERT_RTNL();
if (dev == init_net.loopback_dev && how == 1)
how = 0;
rt6_ifdown(dev);
neigh_ifdown(&nd_tbl, dev);
idev = __in6_dev_get(dev);
if (idev == NULL)
return -ENODEV;
/* Step 1: remove reference to ipv6 device from parent device.
Do not dev_put!
*/
if (how == 1) {
idev->dead = 1;
/* protected by rtnl_lock */
rcu_assign_pointer(dev->ip6_ptr, NULL);
/* Step 1.5: remove snmp6 entry */
snmp6_unregister_dev(idev);
}
/* Step 2: clear hash table */
for (i=0; i<IN6_ADDR_HSIZE; i++) {
bifa = &inet6_addr_lst[i];
write_lock_bh(&addrconf_hash_lock);
while ((ifa = *bifa) != NULL) {
if (ifa->idev == idev) {
*bifa = ifa->lst_next;
ifa->lst_next = NULL;
addrconf_del_timer(ifa);
in6_ifa_put(ifa);
continue;
}
bifa = &ifa->lst_next;
}
write_unlock_bh(&addrconf_hash_lock);
}
write_lock_bh(&idev->lock);
/* Step 3: clear flags for stateless addrconf */
if (how != 1)
idev->if_flags &= ~(IF_RS_SENT|IF_RA_RCVD|IF_READY);
/* Step 4: clear address list */
#ifdef CONFIG_IPV6_PRIVACY
if (how == 1 && del_timer(&idev->regen_timer))
in6_dev_put(idev);
/* clear tempaddr list */
while ((ifa = idev->tempaddr_list) != NULL) {
idev->tempaddr_list = ifa->tmp_next;
ifa->tmp_next = NULL;
ifa->dead = 1;
write_unlock_bh(&idev->lock);
spin_lock_bh(&ifa->lock);
if (ifa->ifpub) {
in6_ifa_put(ifa->ifpub);
ifa->ifpub = NULL;
}
spin_unlock_bh(&ifa->lock);
in6_ifa_put(ifa);
write_lock_bh(&idev->lock);
}
#endif
while ((ifa = idev->addr_list) != NULL) {
idev->addr_list = ifa->if_next;
ifa->if_next = NULL;
ifa->dead = 1;
addrconf_del_timer(ifa);
write_unlock_bh(&idev->lock);
__ipv6_ifa_notify(RTM_DELADDR, ifa);
atomic_notifier_call_chain(&inet6addr_chain, NETDEV_DOWN, ifa);
in6_ifa_put(ifa);
write_lock_bh(&idev->lock);
}
write_unlock_bh(&idev->lock);
/* Step 5: Discard multicast list */
if (how == 1)
ipv6_mc_destroy_dev(idev);
else
ipv6_mc_down(idev);
idev->tstamp = jiffies;
/* Shot the device (if unregistered) */
if (how == 1) {
#ifdef CONFIG_SYSCTL
addrconf_sysctl_unregister(&idev->cnf);
neigh_sysctl_unregister(idev->nd_parms);
#endif
neigh_parms_release(&nd_tbl, idev->nd_parms);
neigh_ifdown(&nd_tbl, dev);
in6_dev_put(idev);
}
return 0;
}
static void addrconf_rs_timer(unsigned long data)
{
struct inet6_ifaddr *ifp = (struct inet6_ifaddr *) data;
if (ifp->idev->cnf.forwarding)
goto out;
if (ifp->idev->if_flags & IF_RA_RCVD) {
/*
* Announcement received after solicitation
* was sent
*/
goto out;
}
spin_lock(&ifp->lock);
if (ifp->probes++ < ifp->idev->cnf.rtr_solicits) {
struct in6_addr all_routers;
/* The wait after the last probe can be shorter */
addrconf_mod_timer(ifp, AC_RS,
(ifp->probes == ifp->idev->cnf.rtr_solicits) ?
ifp->idev->cnf.rtr_solicit_delay :
ifp->idev->cnf.rtr_solicit_interval);
spin_unlock(&ifp->lock);
ipv6_addr_all_routers(&all_routers);
ndisc_send_rs(ifp->idev->dev, &ifp->addr, &all_routers);
} else {
spin_unlock(&ifp->lock);
/*
* Note: we do not support deprecated "all on-link"
* assumption any longer.
*/
printk(KERN_DEBUG "%s: no IPv6 routers present\n",
ifp->idev->dev->name);
}
out:
in6_ifa_put(ifp);
}
/*
* Duplicate Address Detection
*/
static void addrconf_dad_kick(struct inet6_ifaddr *ifp)
{
unsigned long rand_num;
struct inet6_dev *idev = ifp->idev;
if (ifp->flags & IFA_F_OPTIMISTIC)
rand_num = 0;
else
rand_num = net_random() % (idev->cnf.rtr_solicit_delay ? : 1);
ifp->probes = idev->cnf.dad_transmits;
addrconf_mod_timer(ifp, AC_DAD, rand_num);
}
static void addrconf_dad_start(struct inet6_ifaddr *ifp, u32 flags)
{
struct inet6_dev *idev = ifp->idev;
struct net_device *dev = idev->dev;
addrconf_join_solict(dev, &ifp->addr);
net_srandom(ifp->addr.s6_addr32[3]);
read_lock_bh(&idev->lock);
if (ifp->dead)
goto out;
spin_lock_bh(&ifp->lock);
if (dev->flags&(IFF_NOARP|IFF_LOOPBACK) ||
!(ifp->flags&IFA_F_TENTATIVE) ||
ifp->flags & IFA_F_NODAD) {
ifp->flags &= ~(IFA_F_TENTATIVE|IFA_F_OPTIMISTIC);
spin_unlock_bh(&ifp->lock);
read_unlock_bh(&idev->lock);
addrconf_dad_completed(ifp);
return;
}
if (!(idev->if_flags & IF_READY)) {
spin_unlock_bh(&ifp->lock);
read_unlock_bh(&idev->lock);
/*
* If the defice is not ready:
* - keep it tentative if it is a permanent address.
* - otherwise, kill it.
*/
in6_ifa_hold(ifp);
addrconf_dad_stop(ifp);
return;
}
/*
* Optimistic nodes can start receiving
* Frames right away
*/
if(ifp->flags & IFA_F_OPTIMISTIC)
ip6_ins_rt(ifp->rt);
addrconf_dad_kick(ifp);
spin_unlock_bh(&ifp->lock);
out:
read_unlock_bh(&idev->lock);
}
static void addrconf_dad_timer(unsigned long data)
{
struct inet6_ifaddr *ifp = (struct inet6_ifaddr *) data;
struct inet6_dev *idev = ifp->idev;
struct in6_addr unspec;
struct in6_addr mcaddr;
read_lock_bh(&idev->lock);
if (idev->dead) {
read_unlock_bh(&idev->lock);
goto out;
}
spin_lock_bh(&ifp->lock);
if (ifp->probes == 0) {
/*
* DAD was successful
*/
ifp->flags &= ~(IFA_F_TENTATIVE|IFA_F_OPTIMISTIC);
spin_unlock_bh(&ifp->lock);
read_unlock_bh(&idev->lock);
addrconf_dad_completed(ifp);
goto out;
}
ifp->probes--;
addrconf_mod_timer(ifp, AC_DAD, ifp->idev->nd_parms->retrans_time);
spin_unlock_bh(&ifp->lock);
read_unlock_bh(&idev->lock);
/* send a neighbour solicitation for our addr */
memset(&unspec, 0, sizeof(unspec));
addrconf_addr_solict_mult(&ifp->addr, &mcaddr);
ndisc_send_ns(ifp->idev->dev, NULL, &ifp->addr, &mcaddr, &unspec);
out:
in6_ifa_put(ifp);
}
static void addrconf_dad_completed(struct inet6_ifaddr *ifp)
{
struct net_device * dev = ifp->idev->dev;
/*
* Configure the address for reception. Now it is valid.
*/
ipv6_ifa_notify(RTM_NEWADDR, ifp);
/* If added prefix is link local and forwarding is off,
start sending router solicitations.
*/
if (ifp->idev->cnf.forwarding == 0 &&
ifp->idev->cnf.rtr_solicits > 0 &&
(dev->flags&IFF_LOOPBACK) == 0 &&
(ipv6_addr_type(&ifp->addr) & IPV6_ADDR_LINKLOCAL)) {
struct in6_addr all_routers;
ipv6_addr_all_routers(&all_routers);
/*
* If a host as already performed a random delay
* [...] as part of DAD [...] there is no need
* to delay again before sending the first RS
*/
ndisc_send_rs(ifp->idev->dev, &ifp->addr, &all_routers);
spin_lock_bh(&ifp->lock);
ifp->probes = 1;
ifp->idev->if_flags |= IF_RS_SENT;
addrconf_mod_timer(ifp, AC_RS, ifp->idev->cnf.rtr_solicit_interval);
spin_unlock_bh(&ifp->lock);
}
}
static void addrconf_dad_run(struct inet6_dev *idev) {
struct inet6_ifaddr *ifp;
read_lock_bh(&idev->lock);
for (ifp = idev->addr_list; ifp; ifp = ifp->if_next) {
spin_lock_bh(&ifp->lock);
if (!(ifp->flags & IFA_F_TENTATIVE)) {
spin_unlock_bh(&ifp->lock);
continue;
}
spin_unlock_bh(&ifp->lock);
addrconf_dad_kick(ifp);
}
read_unlock_bh(&idev->lock);
}
#ifdef CONFIG_PROC_FS
struct if6_iter_state {
int bucket;
};
static struct inet6_ifaddr *if6_get_first(struct seq_file *seq)
{
struct inet6_ifaddr *ifa = NULL;
struct if6_iter_state *state = seq->private;
for (state->bucket = 0; state->bucket < IN6_ADDR_HSIZE; ++state->bucket) {
ifa = inet6_addr_lst[state->bucket];
if (ifa)
break;
}
return ifa;
}
static struct inet6_ifaddr *if6_get_next(struct seq_file *seq, struct inet6_ifaddr *ifa)
{
struct if6_iter_state *state = seq->private;
ifa = ifa->lst_next;
try_again:
if (!ifa && ++state->bucket < IN6_ADDR_HSIZE) {
ifa = inet6_addr_lst[state->bucket];
goto try_again;
}
return ifa;
}
static struct inet6_ifaddr *if6_get_idx(struct seq_file *seq, loff_t pos)
{
struct inet6_ifaddr *ifa = if6_get_first(seq);
if (ifa)
while(pos && (ifa = if6_get_next(seq, ifa)) != NULL)
--pos;
return pos ? NULL : ifa;
}
static void *if6_seq_start(struct seq_file *seq, loff_t *pos)
{
read_lock_bh(&addrconf_hash_lock);
return if6_get_idx(seq, *pos);
}
static void *if6_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
struct inet6_ifaddr *ifa;
ifa = if6_get_next(seq, v);
++*pos;
return ifa;
}
static void if6_seq_stop(struct seq_file *seq, void *v)
{
read_unlock_bh(&addrconf_hash_lock);
}
static int if6_seq_show(struct seq_file *seq, void *v)
{
struct inet6_ifaddr *ifp = (struct inet6_ifaddr *)v;
seq_printf(seq,
NIP6_SEQFMT " %02x %02x %02x %02x %8s\n",
NIP6(ifp->addr),
ifp->idev->dev->ifindex,
ifp->prefix_len,
ifp->scope,
ifp->flags,
ifp->idev->dev->name);
return 0;
}
static const struct seq_operations if6_seq_ops = {
.start = if6_seq_start,
.next = if6_seq_next,
.show = if6_seq_show,
.stop = if6_seq_stop,
};
static int if6_seq_open(struct inode *inode, struct file *file)
{
return seq_open_private(file, &if6_seq_ops,
sizeof(struct if6_iter_state));
}
static const struct file_operations if6_fops = {
.owner = THIS_MODULE,
.open = if6_seq_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release_private,
};
int __init if6_proc_init(void)
{
if (!proc_net_fops_create(&init_net, "if_inet6", S_IRUGO, &if6_fops))
return -ENOMEM;
return 0;
}
void if6_proc_exit(void)
{
proc_net_remove(&init_net, "if_inet6");
}
#endif /* CONFIG_PROC_FS */
#if defined(CONFIG_IPV6_MIP6) || defined(CONFIG_IPV6_MIP6_MODULE)
/* Check if address is a home address configured on any interface. */
int ipv6_chk_home_addr(struct in6_addr *addr)
{
int ret = 0;
struct inet6_ifaddr * ifp;
u8 hash = ipv6_addr_hash(addr);
read_lock_bh(&addrconf_hash_lock);
for (ifp = inet6_addr_lst[hash]; ifp; ifp = ifp->lst_next) {
if (ipv6_addr_cmp(&ifp->addr, addr) == 0 &&
(ifp->flags & IFA_F_HOMEADDRESS)) {
ret = 1;
break;
}
}
read_unlock_bh(&addrconf_hash_lock);
return ret;
}
#endif
/*
* Periodic address status verification
*/
static void addrconf_verify(unsigned long foo)
{
struct inet6_ifaddr *ifp;
unsigned long now, next;
int i;
spin_lock_bh(&addrconf_verify_lock);
now = jiffies;
next = now + ADDR_CHECK_FREQUENCY;
del_timer(&addr_chk_timer);
for (i=0; i < IN6_ADDR_HSIZE; i++) {
restart:
read_lock(&addrconf_hash_lock);
for (ifp=inet6_addr_lst[i]; ifp; ifp=ifp->lst_next) {
unsigned long age;
#ifdef CONFIG_IPV6_PRIVACY
unsigned long regen_advance;
#endif
if (ifp->flags & IFA_F_PERMANENT)
continue;
spin_lock(&ifp->lock);
age = (now - ifp->tstamp) / HZ;
#ifdef CONFIG_IPV6_PRIVACY
regen_advance = ifp->idev->cnf.regen_max_retry *
ifp->idev->cnf.dad_transmits *
ifp->idev->nd_parms->retrans_time / HZ;
#endif
if (ifp->valid_lft != INFINITY_LIFE_TIME &&
age >= ifp->valid_lft) {
spin_unlock(&ifp->lock);
in6_ifa_hold(ifp);
read_unlock(&addrconf_hash_lock);
ipv6_del_addr(ifp);
goto restart;
} else if (ifp->prefered_lft == INFINITY_LIFE_TIME) {
spin_unlock(&ifp->lock);
continue;
} else if (age >= ifp->prefered_lft) {
/* jiffies - ifp->tsamp > age >= ifp->prefered_lft */
int deprecate = 0;
if (!(ifp->flags&IFA_F_DEPRECATED)) {
deprecate = 1;
ifp->flags |= IFA_F_DEPRECATED;
}
if (time_before(ifp->tstamp + ifp->valid_lft * HZ, next))
next = ifp->tstamp + ifp->valid_lft * HZ;
spin_unlock(&ifp->lock);
if (deprecate) {
in6_ifa_hold(ifp);
read_unlock(&addrconf_hash_lock);
ipv6_ifa_notify(0, ifp);
in6_ifa_put(ifp);
goto restart;
}
#ifdef CONFIG_IPV6_PRIVACY
} else if ((ifp->flags&IFA_F_TEMPORARY) &&
!(ifp->flags&IFA_F_TENTATIVE)) {
if (age >= ifp->prefered_lft - regen_advance) {
struct inet6_ifaddr *ifpub = ifp->ifpub;
if (time_before(ifp->tstamp + ifp->prefered_lft * HZ, next))
next = ifp->tstamp + ifp->prefered_lft * HZ;
if (!ifp->regen_count && ifpub) {
ifp->regen_count++;
in6_ifa_hold(ifp);
in6_ifa_hold(ifpub);
spin_unlock(&ifp->lock);
read_unlock(&addrconf_hash_lock);
spin_lock(&ifpub->lock);
ifpub->regen_count = 0;
spin_unlock(&ifpub->lock);
ipv6_create_tempaddr(ifpub, ifp);
in6_ifa_put(ifpub);
in6_ifa_put(ifp);
goto restart;
}
} else if (time_before(ifp->tstamp + ifp->prefered_lft * HZ - regen_advance * HZ, next))
next = ifp->tstamp + ifp->prefered_lft * HZ - regen_advance * HZ;
spin_unlock(&ifp->lock);
#endif
} else {
/* ifp->prefered_lft <= ifp->valid_lft */
if (time_before(ifp->tstamp + ifp->prefered_lft * HZ, next))
next = ifp->tstamp + ifp->prefered_lft * HZ;
spin_unlock(&ifp->lock);
}
}
read_unlock(&addrconf_hash_lock);
}
addr_chk_timer.expires = time_before(next, jiffies + HZ) ? jiffies + HZ : next;
add_timer(&addr_chk_timer);
spin_unlock_bh(&addrconf_verify_lock);
}
static struct in6_addr *extract_addr(struct nlattr *addr, struct nlattr *local)
{
struct in6_addr *pfx = NULL;
if (addr)
pfx = nla_data(addr);
if (local) {
if (pfx && nla_memcmp(local, pfx, sizeof(*pfx)))
pfx = NULL;
else
pfx = nla_data(local);
}
return pfx;
}
static const struct nla_policy ifa_ipv6_policy[IFA_MAX+1] = {
[IFA_ADDRESS] = { .len = sizeof(struct in6_addr) },
[IFA_LOCAL] = { .len = sizeof(struct in6_addr) },
[IFA_CACHEINFO] = { .len = sizeof(struct ifa_cacheinfo) },
};
static int
inet6_rtm_deladdr(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
{
struct ifaddrmsg *ifm;
struct nlattr *tb[IFA_MAX+1];
struct in6_addr *pfx;
int err;
err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFA_MAX, ifa_ipv6_policy);
if (err < 0)
return err;
ifm = nlmsg_data(nlh);
pfx = extract_addr(tb[IFA_ADDRESS], tb[IFA_LOCAL]);
if (pfx == NULL)
return -EINVAL;
return inet6_addr_del(ifm->ifa_index, pfx, ifm->ifa_prefixlen);
}
static int inet6_addr_modify(struct inet6_ifaddr *ifp, u8 ifa_flags,
u32 prefered_lft, u32 valid_lft)
{
u32 flags = RTF_EXPIRES;
if (!valid_lft || (prefered_lft > valid_lft))
return -EINVAL;
if (valid_lft == INFINITY_LIFE_TIME) {
ifa_flags |= IFA_F_PERMANENT;
flags = 0;
} else if (valid_lft >= 0x7FFFFFFF/HZ)
valid_lft = 0x7FFFFFFF/HZ;
if (prefered_lft == 0)
ifa_flags |= IFA_F_DEPRECATED;
else if ((prefered_lft >= 0x7FFFFFFF/HZ) &&
(prefered_lft != INFINITY_LIFE_TIME))
prefered_lft = 0x7FFFFFFF/HZ;
spin_lock_bh(&ifp->lock);
ifp->flags = (ifp->flags & ~(IFA_F_DEPRECATED | IFA_F_PERMANENT | IFA_F_NODAD | IFA_F_HOMEADDRESS)) | ifa_flags;
ifp->tstamp = jiffies;
ifp->valid_lft = valid_lft;
ifp->prefered_lft = prefered_lft;
spin_unlock_bh(&ifp->lock);
if (!(ifp->flags&IFA_F_TENTATIVE))
ipv6_ifa_notify(0, ifp);
addrconf_prefix_route(&ifp->addr, ifp->prefix_len, ifp->idev->dev,
jiffies_to_clock_t(valid_lft * HZ), flags);
addrconf_verify(0);
return 0;
}
static int
inet6_rtm_newaddr(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
{
struct ifaddrmsg *ifm;
struct nlattr *tb[IFA_MAX+1];
struct in6_addr *pfx;
struct inet6_ifaddr *ifa;
struct net_device *dev;
u32 valid_lft = INFINITY_LIFE_TIME, preferred_lft = INFINITY_LIFE_TIME;
u8 ifa_flags;
int err;
err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFA_MAX, ifa_ipv6_policy);
if (err < 0)
return err;
ifm = nlmsg_data(nlh);
pfx = extract_addr(tb[IFA_ADDRESS], tb[IFA_LOCAL]);
if (pfx == NULL)
return -EINVAL;
if (tb[IFA_CACHEINFO]) {
struct ifa_cacheinfo *ci;
ci = nla_data(tb[IFA_CACHEINFO]);
valid_lft = ci->ifa_valid;
preferred_lft = ci->ifa_prefered;
} else {
preferred_lft = INFINITY_LIFE_TIME;
valid_lft = INFINITY_LIFE_TIME;
}
[NET]: Make the device list and device lookups per namespace. This patch makes most of the generic device layer network namespace safe. This patch makes dev_base_head a network namespace variable, and then it picks up a few associated variables. The functions: dev_getbyhwaddr dev_getfirsthwbytype dev_get_by_flags dev_get_by_name __dev_get_by_name dev_get_by_index __dev_get_by_index dev_ioctl dev_ethtool dev_load wireless_process_ioctl were modified to take a network namespace argument, and deal with it. vlan_ioctl_set and brioctl_set were modified so their hooks will receive a network namespace argument. So basically anthing in the core of the network stack that was affected to by the change of dev_base was modified to handle multiple network namespaces. The rest of the network stack was simply modified to explicitly use &init_net the initial network namespace. This can be fixed when those components of the network stack are modified to handle multiple network namespaces. For now the ifindex generator is left global. Fundametally ifindex numbers are per namespace, or else we will have corner case problems with migration when we get that far. At the same time there are assumptions in the network stack that the ifindex of a network device won't change. Making the ifindex number global seems a good compromise until the network stack can cope with ifindex changes when you change namespaces, and the like. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-18 02:56:21 +08:00
dev = __dev_get_by_index(&init_net, ifm->ifa_index);
if (dev == NULL)
return -ENODEV;
/* We ignore other flags so far. */
ifa_flags = ifm->ifa_flags & (IFA_F_NODAD | IFA_F_HOMEADDRESS);
ifa = ipv6_get_ifaddr(pfx, dev, 1);
if (ifa == NULL) {
/*
* It would be best to check for !NLM_F_CREATE here but
* userspace alreay relies on not having to provide this.
*/
return inet6_addr_add(ifm->ifa_index, pfx, ifm->ifa_prefixlen,
ifa_flags, preferred_lft, valid_lft);
}
if (nlh->nlmsg_flags & NLM_F_EXCL ||
!(nlh->nlmsg_flags & NLM_F_REPLACE))
err = -EEXIST;
else
err = inet6_addr_modify(ifa, ifa_flags, preferred_lft, valid_lft);
in6_ifa_put(ifa);
return err;
}
static void put_ifaddrmsg(struct nlmsghdr *nlh, u8 prefixlen, u8 flags,
u8 scope, int ifindex)
{
struct ifaddrmsg *ifm;
ifm = nlmsg_data(nlh);
ifm->ifa_family = AF_INET6;
ifm->ifa_prefixlen = prefixlen;
ifm->ifa_flags = flags;
ifm->ifa_scope = scope;
ifm->ifa_index = ifindex;
}
static int put_cacheinfo(struct sk_buff *skb, unsigned long cstamp,
unsigned long tstamp, u32 preferred, u32 valid)
{
struct ifa_cacheinfo ci;
ci.cstamp = (u32)(TIME_DELTA(cstamp, INITIAL_JIFFIES) / HZ * 100
+ TIME_DELTA(cstamp, INITIAL_JIFFIES) % HZ * 100 / HZ);
ci.tstamp = (u32)(TIME_DELTA(tstamp, INITIAL_JIFFIES) / HZ * 100
+ TIME_DELTA(tstamp, INITIAL_JIFFIES) % HZ * 100 / HZ);
ci.ifa_prefered = preferred;
ci.ifa_valid = valid;
return nla_put(skb, IFA_CACHEINFO, sizeof(ci), &ci);
}
static inline int rt_scope(int ifa_scope)
{
if (ifa_scope & IFA_HOST)
return RT_SCOPE_HOST;
else if (ifa_scope & IFA_LINK)
return RT_SCOPE_LINK;
else if (ifa_scope & IFA_SITE)
return RT_SCOPE_SITE;
else
return RT_SCOPE_UNIVERSE;
}
static inline int inet6_ifaddr_msgsize(void)
{
return NLMSG_ALIGN(sizeof(struct ifaddrmsg))
+ nla_total_size(16) /* IFA_ADDRESS */
+ nla_total_size(sizeof(struct ifa_cacheinfo));
}
static int inet6_fill_ifaddr(struct sk_buff *skb, struct inet6_ifaddr *ifa,
u32 pid, u32 seq, int event, unsigned int flags)
{
struct nlmsghdr *nlh;
u32 preferred, valid;
nlh = nlmsg_put(skb, pid, seq, event, sizeof(struct ifaddrmsg), flags);
if (nlh == NULL)
return -EMSGSIZE;
put_ifaddrmsg(nlh, ifa->prefix_len, ifa->flags, rt_scope(ifa->scope),
ifa->idev->dev->ifindex);
if (!(ifa->flags&IFA_F_PERMANENT)) {
preferred = ifa->prefered_lft;
valid = ifa->valid_lft;
if (preferred != INFINITY_LIFE_TIME) {
long tval = (jiffies - ifa->tstamp)/HZ;
preferred -= tval;
if (valid != INFINITY_LIFE_TIME)
valid -= tval;
}
} else {
preferred = INFINITY_LIFE_TIME;
valid = INFINITY_LIFE_TIME;
}
if (nla_put(skb, IFA_ADDRESS, 16, &ifa->addr) < 0 ||
put_cacheinfo(skb, ifa->cstamp, ifa->tstamp, preferred, valid) < 0) {
nlmsg_cancel(skb, nlh);
return -EMSGSIZE;
}
return nlmsg_end(skb, nlh);
}
static int inet6_fill_ifmcaddr(struct sk_buff *skb, struct ifmcaddr6 *ifmca,
u32 pid, u32 seq, int event, u16 flags)
{
struct nlmsghdr *nlh;
u8 scope = RT_SCOPE_UNIVERSE;
int ifindex = ifmca->idev->dev->ifindex;
if (ipv6_addr_scope(&ifmca->mca_addr) & IFA_SITE)
scope = RT_SCOPE_SITE;
nlh = nlmsg_put(skb, pid, seq, event, sizeof(struct ifaddrmsg), flags);
if (nlh == NULL)
return -EMSGSIZE;
put_ifaddrmsg(nlh, 128, IFA_F_PERMANENT, scope, ifindex);
if (nla_put(skb, IFA_MULTICAST, 16, &ifmca->mca_addr) < 0 ||
put_cacheinfo(skb, ifmca->mca_cstamp, ifmca->mca_tstamp,
INFINITY_LIFE_TIME, INFINITY_LIFE_TIME) < 0) {
nlmsg_cancel(skb, nlh);
return -EMSGSIZE;
}
return nlmsg_end(skb, nlh);
}
static int inet6_fill_ifacaddr(struct sk_buff *skb, struct ifacaddr6 *ifaca,
u32 pid, u32 seq, int event, unsigned int flags)
{
struct nlmsghdr *nlh;
u8 scope = RT_SCOPE_UNIVERSE;
int ifindex = ifaca->aca_idev->dev->ifindex;
if (ipv6_addr_scope(&ifaca->aca_addr) & IFA_SITE)
scope = RT_SCOPE_SITE;
nlh = nlmsg_put(skb, pid, seq, event, sizeof(struct ifaddrmsg), flags);
if (nlh == NULL)
return -EMSGSIZE;
put_ifaddrmsg(nlh, 128, IFA_F_PERMANENT, scope, ifindex);
if (nla_put(skb, IFA_ANYCAST, 16, &ifaca->aca_addr) < 0 ||
put_cacheinfo(skb, ifaca->aca_cstamp, ifaca->aca_tstamp,
INFINITY_LIFE_TIME, INFINITY_LIFE_TIME) < 0) {
nlmsg_cancel(skb, nlh);
return -EMSGSIZE;
}
return nlmsg_end(skb, nlh);
}
enum addr_type_t
{
UNICAST_ADDR,
MULTICAST_ADDR,
ANYCAST_ADDR,
};
static int inet6_dump_addr(struct sk_buff *skb, struct netlink_callback *cb,
enum addr_type_t type)
{
int idx, ip_idx;
int s_idx, s_ip_idx;
int err = 1;
struct net_device *dev;
struct inet6_dev *idev = NULL;
struct inet6_ifaddr *ifa;
struct ifmcaddr6 *ifmca;
struct ifacaddr6 *ifaca;
s_idx = cb->args[0];
s_ip_idx = ip_idx = cb->args[1];
idx = 0;
[NET]: Make the device list and device lookups per namespace. This patch makes most of the generic device layer network namespace safe. This patch makes dev_base_head a network namespace variable, and then it picks up a few associated variables. The functions: dev_getbyhwaddr dev_getfirsthwbytype dev_get_by_flags dev_get_by_name __dev_get_by_name dev_get_by_index __dev_get_by_index dev_ioctl dev_ethtool dev_load wireless_process_ioctl were modified to take a network namespace argument, and deal with it. vlan_ioctl_set and brioctl_set were modified so their hooks will receive a network namespace argument. So basically anthing in the core of the network stack that was affected to by the change of dev_base was modified to handle multiple network namespaces. The rest of the network stack was simply modified to explicitly use &init_net the initial network namespace. This can be fixed when those components of the network stack are modified to handle multiple network namespaces. For now the ifindex generator is left global. Fundametally ifindex numbers are per namespace, or else we will have corner case problems with migration when we get that far. At the same time there are assumptions in the network stack that the ifindex of a network device won't change. Making the ifindex number global seems a good compromise until the network stack can cope with ifindex changes when you change namespaces, and the like. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-18 02:56:21 +08:00
for_each_netdev(&init_net, dev) {
if (idx < s_idx)
goto cont;
if (idx > s_idx)
s_ip_idx = 0;
ip_idx = 0;
if ((idev = in6_dev_get(dev)) == NULL)
goto cont;
read_lock_bh(&idev->lock);
switch (type) {
case UNICAST_ADDR:
/* unicast address incl. temp addr */
for (ifa = idev->addr_list; ifa;
ifa = ifa->if_next, ip_idx++) {
if (ip_idx < s_ip_idx)
continue;
if ((err = inet6_fill_ifaddr(skb, ifa,
NETLINK_CB(cb->skb).pid,
cb->nlh->nlmsg_seq, RTM_NEWADDR,
NLM_F_MULTI)) <= 0)
goto done;
}
break;
case MULTICAST_ADDR:
/* multicast address */
for (ifmca = idev->mc_list; ifmca;
ifmca = ifmca->next, ip_idx++) {
if (ip_idx < s_ip_idx)
continue;
if ((err = inet6_fill_ifmcaddr(skb, ifmca,
NETLINK_CB(cb->skb).pid,
cb->nlh->nlmsg_seq, RTM_GETMULTICAST,
NLM_F_MULTI)) <= 0)
goto done;
}
break;
case ANYCAST_ADDR:
/* anycast address */
for (ifaca = idev->ac_list; ifaca;
ifaca = ifaca->aca_next, ip_idx++) {
if (ip_idx < s_ip_idx)
continue;
if ((err = inet6_fill_ifacaddr(skb, ifaca,
NETLINK_CB(cb->skb).pid,
cb->nlh->nlmsg_seq, RTM_GETANYCAST,
NLM_F_MULTI)) <= 0)
goto done;
}
break;
default:
break;
}
read_unlock_bh(&idev->lock);
in6_dev_put(idev);
cont:
idx++;
}
done:
if (err <= 0) {
read_unlock_bh(&idev->lock);
in6_dev_put(idev);
}
cb->args[0] = idx;
cb->args[1] = ip_idx;
return skb->len;
}
static int inet6_dump_ifaddr(struct sk_buff *skb, struct netlink_callback *cb)
{
enum addr_type_t type = UNICAST_ADDR;
return inet6_dump_addr(skb, cb, type);
}
static int inet6_dump_ifmcaddr(struct sk_buff *skb, struct netlink_callback *cb)
{
enum addr_type_t type = MULTICAST_ADDR;
return inet6_dump_addr(skb, cb, type);
}
static int inet6_dump_ifacaddr(struct sk_buff *skb, struct netlink_callback *cb)
{
enum addr_type_t type = ANYCAST_ADDR;
return inet6_dump_addr(skb, cb, type);
}
static int inet6_rtm_getaddr(struct sk_buff *in_skb, struct nlmsghdr* nlh,
void *arg)
{
struct ifaddrmsg *ifm;
struct nlattr *tb[IFA_MAX+1];
struct in6_addr *addr = NULL;
struct net_device *dev = NULL;
struct inet6_ifaddr *ifa;
struct sk_buff *skb;
int err;
err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFA_MAX, ifa_ipv6_policy);
if (err < 0)
goto errout;
addr = extract_addr(tb[IFA_ADDRESS], tb[IFA_LOCAL]);
if (addr == NULL) {
err = -EINVAL;
goto errout;
}
ifm = nlmsg_data(nlh);
if (ifm->ifa_index)
[NET]: Make the device list and device lookups per namespace. This patch makes most of the generic device layer network namespace safe. This patch makes dev_base_head a network namespace variable, and then it picks up a few associated variables. The functions: dev_getbyhwaddr dev_getfirsthwbytype dev_get_by_flags dev_get_by_name __dev_get_by_name dev_get_by_index __dev_get_by_index dev_ioctl dev_ethtool dev_load wireless_process_ioctl were modified to take a network namespace argument, and deal with it. vlan_ioctl_set and brioctl_set were modified so their hooks will receive a network namespace argument. So basically anthing in the core of the network stack that was affected to by the change of dev_base was modified to handle multiple network namespaces. The rest of the network stack was simply modified to explicitly use &init_net the initial network namespace. This can be fixed when those components of the network stack are modified to handle multiple network namespaces. For now the ifindex generator is left global. Fundametally ifindex numbers are per namespace, or else we will have corner case problems with migration when we get that far. At the same time there are assumptions in the network stack that the ifindex of a network device won't change. Making the ifindex number global seems a good compromise until the network stack can cope with ifindex changes when you change namespaces, and the like. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-18 02:56:21 +08:00
dev = __dev_get_by_index(&init_net, ifm->ifa_index);
if ((ifa = ipv6_get_ifaddr(addr, dev, 1)) == NULL) {
err = -EADDRNOTAVAIL;
goto errout;
}
if ((skb = nlmsg_new(inet6_ifaddr_msgsize(), GFP_KERNEL)) == NULL) {
err = -ENOBUFS;
goto errout_ifa;
}
err = inet6_fill_ifaddr(skb, ifa, NETLINK_CB(in_skb).pid,
nlh->nlmsg_seq, RTM_NEWADDR, 0);
if (err < 0) {
/* -EMSGSIZE implies BUG in inet6_ifaddr_msgsize() */
WARN_ON(err == -EMSGSIZE);
kfree_skb(skb);
goto errout_ifa;
}
err = rtnl_unicast(skb, NETLINK_CB(in_skb).pid);
errout_ifa:
in6_ifa_put(ifa);
errout:
return err;
}
static void inet6_ifa_notify(int event, struct inet6_ifaddr *ifa)
{
struct sk_buff *skb;
int err = -ENOBUFS;
skb = nlmsg_new(inet6_ifaddr_msgsize(), GFP_ATOMIC);
if (skb == NULL)
goto errout;
err = inet6_fill_ifaddr(skb, ifa, 0, 0, event, 0);
if (err < 0) {
/* -EMSGSIZE implies BUG in inet6_ifaddr_msgsize() */
WARN_ON(err == -EMSGSIZE);
kfree_skb(skb);
goto errout;
}
err = rtnl_notify(skb, 0, RTNLGRP_IPV6_IFADDR, NULL, GFP_ATOMIC);
errout:
if (err < 0)
rtnl_set_sk_err(RTNLGRP_IPV6_IFADDR, err);
}
static inline void ipv6_store_devconf(struct ipv6_devconf *cnf,
__s32 *array, int bytes)
{
BUG_ON(bytes < (DEVCONF_MAX * 4));
memset(array, 0, bytes);
array[DEVCONF_FORWARDING] = cnf->forwarding;
array[DEVCONF_HOPLIMIT] = cnf->hop_limit;
array[DEVCONF_MTU6] = cnf->mtu6;
array[DEVCONF_ACCEPT_RA] = cnf->accept_ra;
array[DEVCONF_ACCEPT_REDIRECTS] = cnf->accept_redirects;
array[DEVCONF_AUTOCONF] = cnf->autoconf;
array[DEVCONF_DAD_TRANSMITS] = cnf->dad_transmits;
array[DEVCONF_RTR_SOLICITS] = cnf->rtr_solicits;
array[DEVCONF_RTR_SOLICIT_INTERVAL] = cnf->rtr_solicit_interval;
array[DEVCONF_RTR_SOLICIT_DELAY] = cnf->rtr_solicit_delay;
array[DEVCONF_FORCE_MLD_VERSION] = cnf->force_mld_version;
#ifdef CONFIG_IPV6_PRIVACY
array[DEVCONF_USE_TEMPADDR] = cnf->use_tempaddr;
array[DEVCONF_TEMP_VALID_LFT] = cnf->temp_valid_lft;
array[DEVCONF_TEMP_PREFERED_LFT] = cnf->temp_prefered_lft;
array[DEVCONF_REGEN_MAX_RETRY] = cnf->regen_max_retry;
array[DEVCONF_MAX_DESYNC_FACTOR] = cnf->max_desync_factor;
#endif
array[DEVCONF_MAX_ADDRESSES] = cnf->max_addresses;
array[DEVCONF_ACCEPT_RA_DEFRTR] = cnf->accept_ra_defrtr;
array[DEVCONF_ACCEPT_RA_PINFO] = cnf->accept_ra_pinfo;
#ifdef CONFIG_IPV6_ROUTER_PREF
array[DEVCONF_ACCEPT_RA_RTR_PREF] = cnf->accept_ra_rtr_pref;
array[DEVCONF_RTR_PROBE_INTERVAL] = cnf->rtr_probe_interval;
#ifdef CONFIG_IPV6_ROUTE_INFO
array[DEVCONF_ACCEPT_RA_RT_INFO_MAX_PLEN] = cnf->accept_ra_rt_info_max_plen;
#endif
#endif
array[DEVCONF_PROXY_NDP] = cnf->proxy_ndp;
array[DEVCONF_ACCEPT_SOURCE_ROUTE] = cnf->accept_source_route;
#ifdef CONFIG_IPV6_OPTIMISTIC_DAD
array[DEVCONF_OPTIMISTIC_DAD] = cnf->optimistic_dad;
#endif
}
static inline size_t inet6_if_nlmsg_size(void)
{
return NLMSG_ALIGN(sizeof(struct ifinfomsg))
+ nla_total_size(IFNAMSIZ) /* IFLA_IFNAME */
+ nla_total_size(MAX_ADDR_LEN) /* IFLA_ADDRESS */
+ nla_total_size(4) /* IFLA_MTU */
+ nla_total_size(4) /* IFLA_LINK */
+ nla_total_size( /* IFLA_PROTINFO */
nla_total_size(4) /* IFLA_INET6_FLAGS */
+ nla_total_size(sizeof(struct ifla_cacheinfo))
+ nla_total_size(DEVCONF_MAX * 4) /* IFLA_INET6_CONF */
+ nla_total_size(IPSTATS_MIB_MAX * 8) /* IFLA_INET6_STATS */
+ nla_total_size(ICMP6_MIB_MAX * 8) /* IFLA_INET6_ICMP6STATS */
);
}
static inline void __snmp6_fill_stats(u64 *stats, void **mib, int items,
int bytes)
{
int i;
int pad = bytes - sizeof(u64) * items;
BUG_ON(pad < 0);
/* Use put_unaligned() because stats may not be aligned for u64. */
put_unaligned(items, &stats[0]);
for (i = 1; i < items; i++)
put_unaligned(snmp_fold_field(mib, i), &stats[i]);
memset(&stats[items], 0, pad);
}
static void snmp6_fill_stats(u64 *stats, struct inet6_dev *idev, int attrtype,
int bytes)
{
switch(attrtype) {
case IFLA_INET6_STATS:
__snmp6_fill_stats(stats, (void **)idev->stats.ipv6, IPSTATS_MIB_MAX, bytes);
break;
case IFLA_INET6_ICMP6STATS:
__snmp6_fill_stats(stats, (void **)idev->stats.icmpv6, ICMP6_MIB_MAX, bytes);
break;
}
}
static int inet6_fill_ifinfo(struct sk_buff *skb, struct inet6_dev *idev,
u32 pid, u32 seq, int event, unsigned int flags)
{
struct net_device *dev = idev->dev;
struct nlattr *nla;
struct ifinfomsg *hdr;
struct nlmsghdr *nlh;
void *protoinfo;
struct ifla_cacheinfo ci;
nlh = nlmsg_put(skb, pid, seq, event, sizeof(*hdr), flags);
if (nlh == NULL)
return -EMSGSIZE;
hdr = nlmsg_data(nlh);
hdr->ifi_family = AF_INET6;
hdr->__ifi_pad = 0;
hdr->ifi_type = dev->type;
hdr->ifi_index = dev->ifindex;
hdr->ifi_flags = dev_get_flags(dev);
hdr->ifi_change = 0;
NLA_PUT_STRING(skb, IFLA_IFNAME, dev->name);
if (dev->addr_len)
NLA_PUT(skb, IFLA_ADDRESS, dev->addr_len, dev->dev_addr);
NLA_PUT_U32(skb, IFLA_MTU, dev->mtu);
if (dev->ifindex != dev->iflink)
NLA_PUT_U32(skb, IFLA_LINK, dev->iflink);
protoinfo = nla_nest_start(skb, IFLA_PROTINFO);
if (protoinfo == NULL)
goto nla_put_failure;
NLA_PUT_U32(skb, IFLA_INET6_FLAGS, idev->if_flags);
ci.max_reasm_len = IPV6_MAXPLEN;
ci.tstamp = (__u32)(TIME_DELTA(idev->tstamp, INITIAL_JIFFIES) / HZ * 100
+ TIME_DELTA(idev->tstamp, INITIAL_JIFFIES) % HZ * 100 / HZ);
ci.reachable_time = idev->nd_parms->reachable_time;
ci.retrans_time = idev->nd_parms->retrans_time;
NLA_PUT(skb, IFLA_INET6_CACHEINFO, sizeof(ci), &ci);
nla = nla_reserve(skb, IFLA_INET6_CONF, DEVCONF_MAX * sizeof(s32));
if (nla == NULL)
goto nla_put_failure;
ipv6_store_devconf(&idev->cnf, nla_data(nla), nla_len(nla));
/* XXX - MC not implemented */
nla = nla_reserve(skb, IFLA_INET6_STATS, IPSTATS_MIB_MAX * sizeof(u64));
if (nla == NULL)
goto nla_put_failure;
snmp6_fill_stats(nla_data(nla), idev, IFLA_INET6_STATS, nla_len(nla));
nla = nla_reserve(skb, IFLA_INET6_ICMP6STATS, ICMP6_MIB_MAX * sizeof(u64));
if (nla == NULL)
goto nla_put_failure;
snmp6_fill_stats(nla_data(nla), idev, IFLA_INET6_ICMP6STATS, nla_len(nla));
nla_nest_end(skb, protoinfo);
return nlmsg_end(skb, nlh);
nla_put_failure:
nlmsg_cancel(skb, nlh);
return -EMSGSIZE;
}
static int inet6_dump_ifinfo(struct sk_buff *skb, struct netlink_callback *cb)
{
int idx, err;
int s_idx = cb->args[0];
struct net_device *dev;
struct inet6_dev *idev;
read_lock(&dev_base_lock);
idx = 0;
[NET]: Make the device list and device lookups per namespace. This patch makes most of the generic device layer network namespace safe. This patch makes dev_base_head a network namespace variable, and then it picks up a few associated variables. The functions: dev_getbyhwaddr dev_getfirsthwbytype dev_get_by_flags dev_get_by_name __dev_get_by_name dev_get_by_index __dev_get_by_index dev_ioctl dev_ethtool dev_load wireless_process_ioctl were modified to take a network namespace argument, and deal with it. vlan_ioctl_set and brioctl_set were modified so their hooks will receive a network namespace argument. So basically anthing in the core of the network stack that was affected to by the change of dev_base was modified to handle multiple network namespaces. The rest of the network stack was simply modified to explicitly use &init_net the initial network namespace. This can be fixed when those components of the network stack are modified to handle multiple network namespaces. For now the ifindex generator is left global. Fundametally ifindex numbers are per namespace, or else we will have corner case problems with migration when we get that far. At the same time there are assumptions in the network stack that the ifindex of a network device won't change. Making the ifindex number global seems a good compromise until the network stack can cope with ifindex changes when you change namespaces, and the like. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-18 02:56:21 +08:00
for_each_netdev(&init_net, dev) {
if (idx < s_idx)
goto cont;
if ((idev = in6_dev_get(dev)) == NULL)
goto cont;
err = inet6_fill_ifinfo(skb, idev, NETLINK_CB(cb->skb).pid,
cb->nlh->nlmsg_seq, RTM_NEWLINK, NLM_F_MULTI);
in6_dev_put(idev);
if (err <= 0)
break;
cont:
idx++;
}
read_unlock(&dev_base_lock);
cb->args[0] = idx;
return skb->len;
}
void inet6_ifinfo_notify(int event, struct inet6_dev *idev)
{
struct sk_buff *skb;
int err = -ENOBUFS;
skb = nlmsg_new(inet6_if_nlmsg_size(), GFP_ATOMIC);
if (skb == NULL)
goto errout;
err = inet6_fill_ifinfo(skb, idev, 0, 0, event, 0);
if (err < 0) {
/* -EMSGSIZE implies BUG in inet6_if_nlmsg_size() */
WARN_ON(err == -EMSGSIZE);
kfree_skb(skb);
goto errout;
}
err = rtnl_notify(skb, 0, RTNLGRP_IPV6_IFADDR, NULL, GFP_ATOMIC);
errout:
if (err < 0)
rtnl_set_sk_err(RTNLGRP_IPV6_IFADDR, err);
}
static inline size_t inet6_prefix_nlmsg_size(void)
{
return NLMSG_ALIGN(sizeof(struct prefixmsg))
+ nla_total_size(sizeof(struct in6_addr))
+ nla_total_size(sizeof(struct prefix_cacheinfo));
}
static int inet6_fill_prefix(struct sk_buff *skb, struct inet6_dev *idev,
struct prefix_info *pinfo, u32 pid, u32 seq,
int event, unsigned int flags)
{
struct prefixmsg *pmsg;
struct nlmsghdr *nlh;
struct prefix_cacheinfo ci;
nlh = nlmsg_put(skb, pid, seq, event, sizeof(*pmsg), flags);
if (nlh == NULL)
return -EMSGSIZE;
pmsg = nlmsg_data(nlh);
pmsg->prefix_family = AF_INET6;
pmsg->prefix_pad1 = 0;
pmsg->prefix_pad2 = 0;
pmsg->prefix_ifindex = idev->dev->ifindex;
pmsg->prefix_len = pinfo->prefix_len;
pmsg->prefix_type = pinfo->type;
pmsg->prefix_pad3 = 0;
pmsg->prefix_flags = 0;
if (pinfo->onlink)
pmsg->prefix_flags |= IF_PREFIX_ONLINK;
if (pinfo->autoconf)
pmsg->prefix_flags |= IF_PREFIX_AUTOCONF;
NLA_PUT(skb, PREFIX_ADDRESS, sizeof(pinfo->prefix), &pinfo->prefix);
ci.preferred_time = ntohl(pinfo->prefered);
ci.valid_time = ntohl(pinfo->valid);
NLA_PUT(skb, PREFIX_CACHEINFO, sizeof(ci), &ci);
return nlmsg_end(skb, nlh);
nla_put_failure:
nlmsg_cancel(skb, nlh);
return -EMSGSIZE;
}
static void inet6_prefix_notify(int event, struct inet6_dev *idev,
struct prefix_info *pinfo)
{
struct sk_buff *skb;
int err = -ENOBUFS;
skb = nlmsg_new(inet6_prefix_nlmsg_size(), GFP_ATOMIC);
if (skb == NULL)
goto errout;
err = inet6_fill_prefix(skb, idev, pinfo, 0, 0, event, 0);
if (err < 0) {
/* -EMSGSIZE implies BUG in inet6_prefix_nlmsg_size() */
WARN_ON(err == -EMSGSIZE);
kfree_skb(skb);
goto errout;
}
err = rtnl_notify(skb, 0, RTNLGRP_IPV6_PREFIX, NULL, GFP_ATOMIC);
errout:
if (err < 0)
rtnl_set_sk_err(RTNLGRP_IPV6_PREFIX, err);
}
static void __ipv6_ifa_notify(int event, struct inet6_ifaddr *ifp)
{
inet6_ifa_notify(event ? : RTM_NEWADDR, ifp);
switch (event) {
case RTM_NEWADDR:
/*
* If the address was optimistic
* we inserted the route at the start of
* our DAD process, so we don't need
* to do it again
*/
if (!(ifp->rt->rt6i_node))
ip6_ins_rt(ifp->rt);
if (ifp->idev->cnf.forwarding)
addrconf_join_anycast(ifp);
break;
case RTM_DELADDR:
if (ifp->idev->cnf.forwarding)
addrconf_leave_anycast(ifp);
addrconf_leave_solict(ifp->idev, &ifp->addr);
dst_hold(&ifp->rt->u.dst);
if (ip6_del_rt(ifp->rt))
dst_free(&ifp->rt->u.dst);
break;
}
}
static void ipv6_ifa_notify(int event, struct inet6_ifaddr *ifp)
{
rcu_read_lock_bh();
if (likely(ifp->idev->dead == 0))
__ipv6_ifa_notify(event, ifp);
rcu_read_unlock_bh();
}
#ifdef CONFIG_SYSCTL
static
int addrconf_sysctl_forward(ctl_table *ctl, int write, struct file * filp,
void __user *buffer, size_t *lenp, loff_t *ppos)
{
int *valp = ctl->data;
int val = *valp;
int ret;
ret = proc_dointvec(ctl, write, filp, buffer, lenp, ppos);
if (write && valp != &ipv6_devconf_dflt.forwarding) {
if (valp != &ipv6_devconf.forwarding) {
if ((!*valp) ^ (!val)) {
struct inet6_dev *idev = (struct inet6_dev *)ctl->extra1;
if (idev == NULL)
return ret;
dev_forward_change(idev);
}
} else {
ipv6_devconf_dflt.forwarding = ipv6_devconf.forwarding;
addrconf_forward_change();
}
if (*valp)
rt6_purge_dflt_routers();
}
return ret;
}
static int addrconf_sysctl_forward_strategy(ctl_table *table,
int __user *name, int nlen,
void __user *oldval,
size_t __user *oldlenp,
void __user *newval, size_t newlen)
{
int *valp = table->data;
int new;
if (!newval || !newlen)
return 0;
if (newlen != sizeof(int))
return -EINVAL;
if (get_user(new, (int __user *)newval))
return -EFAULT;
if (new == *valp)
return 0;
if (oldval && oldlenp) {
size_t len;
if (get_user(len, oldlenp))
return -EFAULT;
if (len) {
if (len > table->maxlen)
len = table->maxlen;
if (copy_to_user(oldval, valp, len))
return -EFAULT;
if (put_user(len, oldlenp))
return -EFAULT;
}
}
if (valp != &ipv6_devconf_dflt.forwarding) {
if (valp != &ipv6_devconf.forwarding) {
struct inet6_dev *idev = (struct inet6_dev *)table->extra1;
int changed;
if (unlikely(idev == NULL))
return -ENODEV;
changed = (!*valp) ^ (!new);
*valp = new;
if (changed)
dev_forward_change(idev);
} else {
*valp = new;
addrconf_forward_change();
}
if (*valp)
rt6_purge_dflt_routers();
} else
*valp = new;
return 1;
}
static struct addrconf_sysctl_table
{
struct ctl_table_header *sysctl_header;
ctl_table addrconf_vars[__NET_IPV6_MAX];
ctl_table addrconf_dev[2];
ctl_table addrconf_conf_dir[2];
ctl_table addrconf_proto_dir[2];
ctl_table addrconf_root_dir[2];
} addrconf_sysctl __read_mostly = {
.sysctl_header = NULL,
.addrconf_vars = {
{
.ctl_name = NET_IPV6_FORWARDING,
.procname = "forwarding",
.data = &ipv6_devconf.forwarding,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &addrconf_sysctl_forward,
.strategy = &addrconf_sysctl_forward_strategy,
},
{
.ctl_name = NET_IPV6_HOP_LIMIT,
.procname = "hop_limit",
.data = &ipv6_devconf.hop_limit,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.ctl_name = NET_IPV6_MTU,
.procname = "mtu",
.data = &ipv6_devconf.mtu6,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec,
},
{
.ctl_name = NET_IPV6_ACCEPT_RA,
.procname = "accept_ra",
.data = &ipv6_devconf.accept_ra,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec,
},
{
.ctl_name = NET_IPV6_ACCEPT_REDIRECTS,
.procname = "accept_redirects",
.data = &ipv6_devconf.accept_redirects,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec,
},
{
.ctl_name = NET_IPV6_AUTOCONF,
.procname = "autoconf",
.data = &ipv6_devconf.autoconf,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec,
},
{
.ctl_name = NET_IPV6_DAD_TRANSMITS,
.procname = "dad_transmits",
.data = &ipv6_devconf.dad_transmits,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec,
},
{
.ctl_name = NET_IPV6_RTR_SOLICITS,
.procname = "router_solicitations",
.data = &ipv6_devconf.rtr_solicits,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec,
},
{
.ctl_name = NET_IPV6_RTR_SOLICIT_INTERVAL,
.procname = "router_solicitation_interval",
.data = &ipv6_devconf.rtr_solicit_interval,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec_jiffies,
.strategy = &sysctl_jiffies,
},
{
.ctl_name = NET_IPV6_RTR_SOLICIT_DELAY,
.procname = "router_solicitation_delay",
.data = &ipv6_devconf.rtr_solicit_delay,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec_jiffies,
.strategy = &sysctl_jiffies,
},
{
.ctl_name = NET_IPV6_FORCE_MLD_VERSION,
.procname = "force_mld_version",
.data = &ipv6_devconf.force_mld_version,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec,
},
#ifdef CONFIG_IPV6_PRIVACY
{
.ctl_name = NET_IPV6_USE_TEMPADDR,
.procname = "use_tempaddr",
.data = &ipv6_devconf.use_tempaddr,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec,
},
{
.ctl_name = NET_IPV6_TEMP_VALID_LFT,
.procname = "temp_valid_lft",
.data = &ipv6_devconf.temp_valid_lft,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec,
},
{
.ctl_name = NET_IPV6_TEMP_PREFERED_LFT,
.procname = "temp_prefered_lft",
.data = &ipv6_devconf.temp_prefered_lft,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec,
},
{
.ctl_name = NET_IPV6_REGEN_MAX_RETRY,
.procname = "regen_max_retry",
.data = &ipv6_devconf.regen_max_retry,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec,
},
{
.ctl_name = NET_IPV6_MAX_DESYNC_FACTOR,
.procname = "max_desync_factor",
.data = &ipv6_devconf.max_desync_factor,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec,
},
#endif
{
.ctl_name = NET_IPV6_MAX_ADDRESSES,
.procname = "max_addresses",
.data = &ipv6_devconf.max_addresses,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec,
},
{
.ctl_name = NET_IPV6_ACCEPT_RA_DEFRTR,
.procname = "accept_ra_defrtr",
.data = &ipv6_devconf.accept_ra_defrtr,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec,
},
{
.ctl_name = NET_IPV6_ACCEPT_RA_PINFO,
.procname = "accept_ra_pinfo",
.data = &ipv6_devconf.accept_ra_pinfo,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec,
},
#ifdef CONFIG_IPV6_ROUTER_PREF
{
.ctl_name = NET_IPV6_ACCEPT_RA_RTR_PREF,
.procname = "accept_ra_rtr_pref",
.data = &ipv6_devconf.accept_ra_rtr_pref,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec,
},
{
.ctl_name = NET_IPV6_RTR_PROBE_INTERVAL,
.procname = "router_probe_interval",
.data = &ipv6_devconf.rtr_probe_interval,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec_jiffies,
.strategy = &sysctl_jiffies,
},
#ifdef CONFIG_IPV6_ROUTE_INFO
{
.ctl_name = NET_IPV6_ACCEPT_RA_RT_INFO_MAX_PLEN,
.procname = "accept_ra_rt_info_max_plen",
.data = &ipv6_devconf.accept_ra_rt_info_max_plen,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec,
},
#endif
#endif
{
.ctl_name = NET_IPV6_PROXY_NDP,
.procname = "proxy_ndp",
.data = &ipv6_devconf.proxy_ndp,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec,
},
{
.ctl_name = NET_IPV6_ACCEPT_SOURCE_ROUTE,
.procname = "accept_source_route",
.data = &ipv6_devconf.accept_source_route,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec,
},
#ifdef CONFIG_IPV6_OPTIMISTIC_DAD
{
.ctl_name = CTL_UNNUMBERED,
.procname = "optimistic_dad",
.data = &ipv6_devconf.optimistic_dad,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec,
},
#endif
{
.ctl_name = 0, /* sentinel */
}
},
.addrconf_dev = {
{
.ctl_name = NET_PROTO_CONF_ALL,
.procname = "all",
.mode = 0555,
.child = addrconf_sysctl.addrconf_vars,
},
{
.ctl_name = 0, /* sentinel */
}
},
.addrconf_conf_dir = {
{
.ctl_name = NET_IPV6_CONF,
.procname = "conf",
.mode = 0555,
.child = addrconf_sysctl.addrconf_dev,
},
{
.ctl_name = 0, /* sentinel */
}
},
.addrconf_proto_dir = {
{
.ctl_name = NET_IPV6,
.procname = "ipv6",
.mode = 0555,
.child = addrconf_sysctl.addrconf_conf_dir,
},
{
.ctl_name = 0, /* sentinel */
}
},
.addrconf_root_dir = {
{
.ctl_name = CTL_NET,
.procname = "net",
.mode = 0555,
.child = addrconf_sysctl.addrconf_proto_dir,
},
{
.ctl_name = 0, /* sentinel */
}
},
};
static void addrconf_sysctl_register(struct inet6_dev *idev, struct ipv6_devconf *p)
{
int i;
struct net_device *dev = idev ? idev->dev : NULL;
struct addrconf_sysctl_table *t;
char *dev_name = NULL;
t = kmemdup(&addrconf_sysctl, sizeof(*t), GFP_KERNEL);
if (t == NULL)
return;
for (i=0; t->addrconf_vars[i].data; i++) {
t->addrconf_vars[i].data += (char*)p - (char*)&ipv6_devconf;
t->addrconf_vars[i].extra1 = idev; /* embedded; no ref */
}
if (dev) {
dev_name = dev->name;
t->addrconf_dev[0].ctl_name = dev->ifindex;
} else {
dev_name = "default";
t->addrconf_dev[0].ctl_name = NET_PROTO_CONF_DEFAULT;
}
/*
* Make a copy of dev_name, because '.procname' is regarded as const
* by sysctl and we wouldn't want anyone to change it under our feet
* (see SIOCSIFNAME).
*/
dev_name = kstrdup(dev_name, GFP_KERNEL);
if (!dev_name)
goto free;
t->addrconf_dev[0].procname = dev_name;
t->addrconf_dev[0].child = t->addrconf_vars;
t->addrconf_conf_dir[0].child = t->addrconf_dev;
t->addrconf_proto_dir[0].child = t->addrconf_conf_dir;
t->addrconf_root_dir[0].child = t->addrconf_proto_dir;
[PATCH] sysctl: remove insert_at_head from register_sysctl The semantic effect of insert_at_head is that it would allow new registered sysctl entries to override existing sysctl entries of the same name. Which is pain for caching and the proc interface never implemented. I have done an audit and discovered that none of the current users of register_sysctl care as (excpet for directories) they do not register duplicate sysctl entries. So this patch simply removes the support for overriding existing entries in the sys_sysctl interface since no one uses it or cares and it makes future enhancments harder. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: David Howells <dhowells@redhat.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Andi Kleen <ak@muc.de> Cc: Jens Axboe <axboe@kernel.dk> Cc: Corey Minyard <minyard@acm.org> Cc: Neil Brown <neilb@suse.de> Cc: "John W. Linville" <linville@tuxdriver.com> Cc: James Bottomley <James.Bottomley@steeleye.com> Cc: Jan Kara <jack@ucw.cz> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Cc: Mark Fasheh <mark.fasheh@oracle.com> Cc: David Chinner <dgc@sgi.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Patrick McHardy <kaber@trash.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-14 16:34:09 +08:00
t->sysctl_header = register_sysctl_table(t->addrconf_root_dir);
if (t->sysctl_header == NULL)
goto free_procname;
else
p->sysctl = t;
return;
/* error path */
free_procname:
kfree(dev_name);
free:
kfree(t);
return;
}
static void addrconf_sysctl_unregister(struct ipv6_devconf *p)
{
if (p->sysctl) {
struct addrconf_sysctl_table *t = p->sysctl;
p->sysctl = NULL;
unregister_sysctl_table(t->sysctl_header);
kfree(t->addrconf_dev[0].procname);
kfree(t);
}
}
#endif
/*
* Device notifier
*/
int register_inet6addr_notifier(struct notifier_block *nb)
{
return atomic_notifier_chain_register(&inet6addr_chain, nb);
}
EXPORT_SYMBOL(register_inet6addr_notifier);
int unregister_inet6addr_notifier(struct notifier_block *nb)
{
return atomic_notifier_chain_unregister(&inet6addr_chain,nb);
}
EXPORT_SYMBOL(unregister_inet6addr_notifier);
/*
* Init / cleanup code
*/
int __init addrconf_init(void)
{
int err = 0;
/* The addrconf netdev notifier requires that loopback_dev
* has it's ipv6 private information allocated and setup
* before it can bring up and give link-local addresses
* to other devices which are up.
*
* Unfortunately, loopback_dev is not necessarily the first
* entry in the global dev_base list of net devices. In fact,
* it is likely to be the very last entry on that list.
* So this causes the notifier registry below to try and
* give link-local addresses to all devices besides loopback_dev
* first, then loopback_dev, which cases all the non-loopback_dev
* devices to fail to get a link-local address.
*
* So, as a temporary fix, allocate the ipv6 structure for
* loopback_dev first by hand.
* Longer term, all of the dependencies ipv6 has upon the loopback
* device and it being up should be removed.
*/
rtnl_lock();
if (!ipv6_add_dev(init_net.loopback_dev))
err = -ENOMEM;
rtnl_unlock();
if (err)
return err;
ip6_null_entry.u.dst.dev = init_net.loopback_dev;
ip6_null_entry.rt6i_idev = in6_dev_get(init_net.loopback_dev);
#ifdef CONFIG_IPV6_MULTIPLE_TABLES
ip6_prohibit_entry.u.dst.dev = init_net.loopback_dev;
ip6_prohibit_entry.rt6i_idev = in6_dev_get(init_net.loopback_dev);
ip6_blk_hole_entry.u.dst.dev = init_net.loopback_dev;
ip6_blk_hole_entry.rt6i_idev = in6_dev_get(init_net.loopback_dev);
#endif
register_netdevice_notifier(&ipv6_dev_notf);
addrconf_verify(0);
err = __rtnl_register(PF_INET6, RTM_GETLINK, NULL, inet6_dump_ifinfo);
if (err < 0)
goto errout;
/* Only the first call to __rtnl_register can fail */
__rtnl_register(PF_INET6, RTM_NEWADDR, inet6_rtm_newaddr, NULL);
__rtnl_register(PF_INET6, RTM_DELADDR, inet6_rtm_deladdr, NULL);
__rtnl_register(PF_INET6, RTM_GETADDR, inet6_rtm_getaddr, inet6_dump_ifaddr);
__rtnl_register(PF_INET6, RTM_GETMULTICAST, NULL, inet6_dump_ifmcaddr);
__rtnl_register(PF_INET6, RTM_GETANYCAST, NULL, inet6_dump_ifacaddr);
#ifdef CONFIG_SYSCTL
addrconf_sysctl.sysctl_header =
[PATCH] sysctl: remove insert_at_head from register_sysctl The semantic effect of insert_at_head is that it would allow new registered sysctl entries to override existing sysctl entries of the same name. Which is pain for caching and the proc interface never implemented. I have done an audit and discovered that none of the current users of register_sysctl care as (excpet for directories) they do not register duplicate sysctl entries. So this patch simply removes the support for overriding existing entries in the sys_sysctl interface since no one uses it or cares and it makes future enhancments harder. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: David Howells <dhowells@redhat.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Andi Kleen <ak@muc.de> Cc: Jens Axboe <axboe@kernel.dk> Cc: Corey Minyard <minyard@acm.org> Cc: Neil Brown <neilb@suse.de> Cc: "John W. Linville" <linville@tuxdriver.com> Cc: James Bottomley <James.Bottomley@steeleye.com> Cc: Jan Kara <jack@ucw.cz> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Cc: Mark Fasheh <mark.fasheh@oracle.com> Cc: David Chinner <dgc@sgi.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Patrick McHardy <kaber@trash.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-14 16:34:09 +08:00
register_sysctl_table(addrconf_sysctl.addrconf_root_dir);
addrconf_sysctl_register(NULL, &ipv6_devconf_dflt);
#endif
return 0;
errout:
unregister_netdevice_notifier(&ipv6_dev_notf);
return err;
}
void __exit addrconf_cleanup(void)
{
struct net_device *dev;
struct inet6_ifaddr *ifa;
int i;
unregister_netdevice_notifier(&ipv6_dev_notf);
#ifdef CONFIG_SYSCTL
addrconf_sysctl_unregister(&ipv6_devconf_dflt);
addrconf_sysctl_unregister(&ipv6_devconf);
#endif
rtnl_lock();
/*
* clean dev list.
*/
[NET]: Make the device list and device lookups per namespace. This patch makes most of the generic device layer network namespace safe. This patch makes dev_base_head a network namespace variable, and then it picks up a few associated variables. The functions: dev_getbyhwaddr dev_getfirsthwbytype dev_get_by_flags dev_get_by_name __dev_get_by_name dev_get_by_index __dev_get_by_index dev_ioctl dev_ethtool dev_load wireless_process_ioctl were modified to take a network namespace argument, and deal with it. vlan_ioctl_set and brioctl_set were modified so their hooks will receive a network namespace argument. So basically anthing in the core of the network stack that was affected to by the change of dev_base was modified to handle multiple network namespaces. The rest of the network stack was simply modified to explicitly use &init_net the initial network namespace. This can be fixed when those components of the network stack are modified to handle multiple network namespaces. For now the ifindex generator is left global. Fundametally ifindex numbers are per namespace, or else we will have corner case problems with migration when we get that far. At the same time there are assumptions in the network stack that the ifindex of a network device won't change. Making the ifindex number global seems a good compromise until the network stack can cope with ifindex changes when you change namespaces, and the like. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-18 02:56:21 +08:00
for_each_netdev(&init_net, dev) {
if (__in6_dev_get(dev) == NULL)
continue;
addrconf_ifdown(dev, 1);
}
addrconf_ifdown(init_net.loopback_dev, 2);
/*
* Check hash table.
*/
write_lock_bh(&addrconf_hash_lock);
for (i=0; i < IN6_ADDR_HSIZE; i++) {
for (ifa=inet6_addr_lst[i]; ifa; ) {
struct inet6_ifaddr *bifa;
bifa = ifa;
ifa = ifa->lst_next;
printk(KERN_DEBUG "bug: IPv6 address leakage detected: ifa=%p\n", bifa);
/* Do not free it; something is wrong.
Now we can investigate it with debugger.
*/
}
}
write_unlock_bh(&addrconf_hash_lock);
del_timer(&addr_chk_timer);
rtnl_unlock();
}