OpenCloudOS-Kernel/net/bluetooth/bnep/core.c

748 lines
16 KiB
C
Raw Normal View History

/*
BNEP implementation for Linux Bluetooth stack (BlueZ).
Copyright (C) 2001-2002 Inventel Systemes
Written 2001-2002 by
Clément Moreau <clement.moreau@inventel.fr>
David Libault <david.libault@inventel.fr>
Copyright (C) 2002 Maxim Krasnyansky <maxk@qualcomm.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation;
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
SOFTWARE IS DISCLAIMED.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/signal.h>
#include <linux/init.h>
#include <linux/wait.h>
#include <linux/freezer.h>
#include <linux/errno.h>
#include <linux/net.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/kthread.h>
#include <net/sock.h>
#include <linux/socket.h>
#include <linux/file.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <asm/unaligned.h>
#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>
#include <net/bluetooth/l2cap.h>
#include "bnep.h"
#define VERSION "1.3"
static bool compress_src = true;
static bool compress_dst = true;
static LIST_HEAD(bnep_session_list);
static DECLARE_RWSEM(bnep_session_sem);
static struct bnep_session *__bnep_get_session(u8 *dst)
{
struct bnep_session *s;
BT_DBG("");
list_for_each_entry(s, &bnep_session_list, list)
if (ether_addr_equal(dst, s->eh.h_source))
return s;
return NULL;
}
static void __bnep_link_session(struct bnep_session *s)
{
list_add(&s->list, &bnep_session_list);
}
static void __bnep_unlink_session(struct bnep_session *s)
{
list_del(&s->list);
}
static int bnep_send(struct bnep_session *s, void *data, size_t len)
{
struct socket *sock = s->sock;
struct kvec iv = { data, len };
return kernel_sendmsg(sock, &s->msg, &iv, 1, len);
}
static int bnep_send_rsp(struct bnep_session *s, u8 ctrl, u16 resp)
{
struct bnep_control_rsp rsp;
rsp.type = BNEP_CONTROL;
rsp.ctrl = ctrl;
rsp.resp = htons(resp);
return bnep_send(s, &rsp, sizeof(rsp));
}
#ifdef CONFIG_BT_BNEP_PROTO_FILTER
static inline void bnep_set_default_proto_filter(struct bnep_session *s)
{
/* (IPv4, ARP) */
s->proto_filter[0].start = ETH_P_IP;
s->proto_filter[0].end = ETH_P_ARP;
/* (RARP, AppleTalk) */
s->proto_filter[1].start = ETH_P_RARP;
s->proto_filter[1].end = ETH_P_AARP;
/* (IPX, IPv6) */
s->proto_filter[2].start = ETH_P_IPX;
s->proto_filter[2].end = ETH_P_IPV6;
}
#endif
static int bnep_ctrl_set_netfilter(struct bnep_session *s, __be16 *data, int len)
{
int n;
if (len < 2)
return -EILSEQ;
n = get_unaligned_be16(data);
data++;
len -= 2;
if (len < n)
return -EILSEQ;
BT_DBG("filter len %d", n);
#ifdef CONFIG_BT_BNEP_PROTO_FILTER
n /= 4;
if (n <= BNEP_MAX_PROTO_FILTERS) {
struct bnep_proto_filter *f = s->proto_filter;
int i;
for (i = 0; i < n; i++) {
f[i].start = get_unaligned_be16(data++);
f[i].end = get_unaligned_be16(data++);
BT_DBG("proto filter start %d end %d",
f[i].start, f[i].end);
}
if (i < BNEP_MAX_PROTO_FILTERS)
memset(f + i, 0, sizeof(*f));
if (n == 0)
bnep_set_default_proto_filter(s);
bnep_send_rsp(s, BNEP_FILTER_NET_TYPE_RSP, BNEP_SUCCESS);
} else {
bnep_send_rsp(s, BNEP_FILTER_NET_TYPE_RSP, BNEP_FILTER_LIMIT_REACHED);
}
#else
bnep_send_rsp(s, BNEP_FILTER_NET_TYPE_RSP, BNEP_FILTER_UNSUPPORTED_REQ);
#endif
return 0;
}
static int bnep_ctrl_set_mcfilter(struct bnep_session *s, u8 *data, int len)
{
int n;
if (len < 2)
return -EILSEQ;
n = get_unaligned_be16(data);
data += 2;
len -= 2;
if (len < n)
return -EILSEQ;
BT_DBG("filter len %d", n);
#ifdef CONFIG_BT_BNEP_MC_FILTER
n /= (ETH_ALEN * 2);
if (n > 0) {
int i;
s->mc_filter = 0;
/* Always send broadcast */
set_bit(bnep_mc_hash(s->dev->broadcast), (ulong *) &s->mc_filter);
/* Add address ranges to the multicast hash */
for (; n > 0; n--) {
u8 a1[6], *a2;
memcpy(a1, data, ETH_ALEN);
data += ETH_ALEN;
a2 = data;
data += ETH_ALEN;
BT_DBG("mc filter %s -> %s",
batostr((void *) a1), batostr((void *) a2));
/* Iterate from a1 to a2 */
set_bit(bnep_mc_hash(a1), (ulong *) &s->mc_filter);
while (memcmp(a1, a2, 6) < 0 && s->mc_filter != ~0LL) {
/* Increment a1 */
i = 5;
while (i >= 0 && ++a1[i--] == 0)
;
set_bit(bnep_mc_hash(a1), (ulong *) &s->mc_filter);
}
}
}
BT_DBG("mc filter hash 0x%llx", s->mc_filter);
bnep_send_rsp(s, BNEP_FILTER_MULTI_ADDR_RSP, BNEP_SUCCESS);
#else
bnep_send_rsp(s, BNEP_FILTER_MULTI_ADDR_RSP, BNEP_FILTER_UNSUPPORTED_REQ);
#endif
return 0;
}
static int bnep_rx_control(struct bnep_session *s, void *data, int len)
{
u8 cmd = *(u8 *)data;
int err = 0;
data++;
len--;
switch (cmd) {
case BNEP_CMD_NOT_UNDERSTOOD:
case BNEP_SETUP_CONN_RSP:
case BNEP_FILTER_NET_TYPE_RSP:
case BNEP_FILTER_MULTI_ADDR_RSP:
/* Ignore these for now */
break;
case BNEP_FILTER_NET_TYPE_SET:
err = bnep_ctrl_set_netfilter(s, data, len);
break;
case BNEP_FILTER_MULTI_ADDR_SET:
err = bnep_ctrl_set_mcfilter(s, data, len);
break;
case BNEP_SETUP_CONN_REQ:
err = bnep_send_rsp(s, BNEP_SETUP_CONN_RSP, BNEP_CONN_NOT_ALLOWED);
break;
default: {
u8 pkt[3];
pkt[0] = BNEP_CONTROL;
pkt[1] = BNEP_CMD_NOT_UNDERSTOOD;
pkt[2] = cmd;
bnep_send(s, pkt, sizeof(pkt));
}
break;
}
return err;
}
static int bnep_rx_extension(struct bnep_session *s, struct sk_buff *skb)
{
struct bnep_ext_hdr *h;
int err = 0;
do {
h = (void *) skb->data;
if (!skb_pull(skb, sizeof(*h))) {
err = -EILSEQ;
break;
}
BT_DBG("type 0x%x len %d", h->type, h->len);
switch (h->type & BNEP_TYPE_MASK) {
case BNEP_EXT_CONTROL:
bnep_rx_control(s, skb->data, skb->len);
break;
default:
/* Unknown extension, skip it. */
break;
}
if (!skb_pull(skb, h->len)) {
err = -EILSEQ;
break;
}
} while (!err && (h->type & BNEP_EXT_HEADER));
return err;
}
static u8 __bnep_rx_hlen[] = {
ETH_HLEN, /* BNEP_GENERAL */
0, /* BNEP_CONTROL */
2, /* BNEP_COMPRESSED */
ETH_ALEN + 2, /* BNEP_COMPRESSED_SRC_ONLY */
ETH_ALEN + 2 /* BNEP_COMPRESSED_DST_ONLY */
};
static inline int bnep_rx_frame(struct bnep_session *s, struct sk_buff *skb)
{
struct net_device *dev = s->dev;
struct sk_buff *nskb;
u8 type;
dev->stats.rx_bytes += skb->len;
type = *(u8 *) skb->data;
skb_pull(skb, 1);
if ((type & BNEP_TYPE_MASK) >= sizeof(__bnep_rx_hlen))
goto badframe;
if ((type & BNEP_TYPE_MASK) == BNEP_CONTROL) {
bnep_rx_control(s, skb->data, skb->len);
kfree_skb(skb);
return 0;
}
skb_reset_mac_header(skb);
/* Verify and pull out header */
if (!skb_pull(skb, __bnep_rx_hlen[type & BNEP_TYPE_MASK]))
goto badframe;
s->eh.h_proto = get_unaligned((__be16 *) (skb->data - 2));
if (type & BNEP_EXT_HEADER) {
if (bnep_rx_extension(s, skb) < 0)
goto badframe;
}
/* Strip 802.1p header */
if (ntohs(s->eh.h_proto) == ETH_P_8021Q) {
if (!skb_pull(skb, 4))
goto badframe;
s->eh.h_proto = get_unaligned((__be16 *) (skb->data - 2));
}
/* We have to alloc new skb and copy data here :(. Because original skb
* may not be modified and because of the alignment requirements. */
nskb = alloc_skb(2 + ETH_HLEN + skb->len, GFP_KERNEL);
if (!nskb) {
dev->stats.rx_dropped++;
kfree_skb(skb);
return -ENOMEM;
}
skb_reserve(nskb, 2);
/* Decompress header and construct ether frame */
switch (type & BNEP_TYPE_MASK) {
case BNEP_COMPRESSED:
memcpy(__skb_put(nskb, ETH_HLEN), &s->eh, ETH_HLEN);
break;
case BNEP_COMPRESSED_SRC_ONLY:
memcpy(__skb_put(nskb, ETH_ALEN), s->eh.h_dest, ETH_ALEN);
memcpy(__skb_put(nskb, ETH_ALEN), skb_mac_header(skb), ETH_ALEN);
put_unaligned(s->eh.h_proto, (__be16 *) __skb_put(nskb, 2));
break;
case BNEP_COMPRESSED_DST_ONLY:
memcpy(__skb_put(nskb, ETH_ALEN), skb_mac_header(skb),
ETH_ALEN);
memcpy(__skb_put(nskb, ETH_ALEN + 2), s->eh.h_source,
ETH_ALEN + 2);
break;
case BNEP_GENERAL:
memcpy(__skb_put(nskb, ETH_ALEN * 2), skb_mac_header(skb),
ETH_ALEN * 2);
put_unaligned(s->eh.h_proto, (__be16 *) __skb_put(nskb, 2));
break;
}
skb_copy_from_linear_data(skb, __skb_put(nskb, skb->len), skb->len);
kfree_skb(skb);
dev->stats.rx_packets++;
nskb->ip_summed = CHECKSUM_NONE;
nskb->protocol = eth_type_trans(nskb, dev);
netif_rx_ni(nskb);
return 0;
badframe:
dev->stats.rx_errors++;
kfree_skb(skb);
return 0;
}
static u8 __bnep_tx_types[] = {
BNEP_GENERAL,
BNEP_COMPRESSED_SRC_ONLY,
BNEP_COMPRESSED_DST_ONLY,
BNEP_COMPRESSED
};
static inline int bnep_tx_frame(struct bnep_session *s, struct sk_buff *skb)
{
struct ethhdr *eh = (void *) skb->data;
struct socket *sock = s->sock;
struct kvec iv[3];
int len = 0, il = 0;
u8 type = 0;
BT_DBG("skb %p dev %p type %d", skb, skb->dev, skb->pkt_type);
if (!skb->dev) {
/* Control frame sent by us */
goto send;
}
iv[il++] = (struct kvec) { &type, 1 };
len++;
if (compress_src && ether_addr_equal(eh->h_dest, s->eh.h_source))
type |= 0x01;
if (compress_dst && ether_addr_equal(eh->h_source, s->eh.h_dest))
type |= 0x02;
if (type)
skb_pull(skb, ETH_ALEN * 2);
type = __bnep_tx_types[type];
switch (type) {
case BNEP_COMPRESSED_SRC_ONLY:
iv[il++] = (struct kvec) { eh->h_source, ETH_ALEN };
len += ETH_ALEN;
break;
case BNEP_COMPRESSED_DST_ONLY:
iv[il++] = (struct kvec) { eh->h_dest, ETH_ALEN };
len += ETH_ALEN;
break;
}
send:
iv[il++] = (struct kvec) { skb->data, skb->len };
len += skb->len;
/* FIXME: linearize skb */
{
len = kernel_sendmsg(sock, &s->msg, iv, il, len);
}
kfree_skb(skb);
if (len > 0) {
s->dev->stats.tx_bytes += len;
s->dev->stats.tx_packets++;
return 0;
}
return len;
}
static int bnep_session(void *arg)
{
struct bnep_session *s = arg;
struct net_device *dev = s->dev;
struct sock *sk = s->sock->sk;
struct sk_buff *skb;
wait_queue_t wait;
BT_DBG("");
set_user_nice(current, -15);
init_waitqueue_entry(&wait, current);
add_wait_queue(sk_sleep(sk), &wait);
while (1) {
set_current_state(TASK_INTERRUPTIBLE);
if (atomic_read(&s->terminate))
break;
/* RX */
while ((skb = skb_dequeue(&sk->sk_receive_queue))) {
skb_orphan(skb);
if (!skb_linearize(skb))
bnep_rx_frame(s, skb);
else
kfree_skb(skb);
}
if (sk->sk_state != BT_CONNECTED)
break;
/* TX */
while ((skb = skb_dequeue(&sk->sk_write_queue)))
if (bnep_tx_frame(s, skb))
break;
netif_wake_queue(dev);
schedule();
}
__set_current_state(TASK_RUNNING);
remove_wait_queue(sk_sleep(sk), &wait);
/* Cleanup session */
down_write(&bnep_session_sem);
/* Delete network device */
unregister_netdev(dev);
/* Wakeup user-space polling for socket errors */
s->sock->sk->sk_err = EUNATCH;
wake_up_interruptible(sk_sleep(s->sock->sk));
/* Release the socket */
fput(s->sock->file);
__bnep_unlink_session(s);
up_write(&bnep_session_sem);
free_netdev(dev);
module_put_and_exit(0);
return 0;
}
static struct device *bnep_get_device(struct bnep_session *session)
{
bdaddr_t *src = &bt_sk(session->sock->sk)->src;
bdaddr_t *dst = &bt_sk(session->sock->sk)->dst;
struct hci_dev *hdev;
struct hci_conn *conn;
hdev = hci_get_route(dst, src);
if (!hdev)
return NULL;
conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst);
hci_dev_put(hdev);
return conn ? &conn->dev : NULL;
}
static struct device_type bnep_type = {
.name = "bluetooth",
};
int bnep_add_connection(struct bnep_connadd_req *req, struct socket *sock)
{
struct net_device *dev;
struct bnep_session *s, *ss;
u8 dst[ETH_ALEN], src[ETH_ALEN];
int err;
BT_DBG("");
baswap((void *) dst, &bt_sk(sock->sk)->dst);
baswap((void *) src, &bt_sk(sock->sk)->src);
/* session struct allocated as private part of net_device */
dev = alloc_netdev(sizeof(struct bnep_session),
(*req->device) ? req->device : "bnep%d",
bnep_net_setup);
if (!dev)
return -ENOMEM;
down_write(&bnep_session_sem);
ss = __bnep_get_session(dst);
if (ss && ss->state == BT_CONNECTED) {
err = -EEXIST;
goto failed;
}
s = netdev_priv(dev);
/* This is rx header therefore addresses are swapped.
* ie. eh.h_dest is our local address. */
memcpy(s->eh.h_dest, &src, ETH_ALEN);
memcpy(s->eh.h_source, &dst, ETH_ALEN);
memcpy(dev->dev_addr, s->eh.h_dest, ETH_ALEN);
s->dev = dev;
s->sock = sock;
s->role = req->role;
s->state = BT_CONNECTED;
s->msg.msg_flags = MSG_NOSIGNAL;
#ifdef CONFIG_BT_BNEP_MC_FILTER
/* Set default mc filter */
set_bit(bnep_mc_hash(dev->broadcast), (ulong *) &s->mc_filter);
#endif
#ifdef CONFIG_BT_BNEP_PROTO_FILTER
/* Set default protocol filter */
bnep_set_default_proto_filter(s);
#endif
SET_NETDEV_DEV(dev, bnep_get_device(s));
SET_NETDEV_DEVTYPE(dev, &bnep_type);
err = register_netdev(dev);
if (err)
goto failed;
__bnep_link_session(s);
__module_get(THIS_MODULE);
s->task = kthread_run(bnep_session, s, "kbnepd %s", dev->name);
if (IS_ERR(s->task)) {
/* Session thread start failed, gotta cleanup. */
module_put(THIS_MODULE);
unregister_netdev(dev);
__bnep_unlink_session(s);
err = PTR_ERR(s->task);
goto failed;
}
up_write(&bnep_session_sem);
strcpy(req->device, dev->name);
return 0;
failed:
up_write(&bnep_session_sem);
free_netdev(dev);
return err;
}
int bnep_del_connection(struct bnep_conndel_req *req)
{
struct bnep_session *s;
int err = 0;
BT_DBG("");
down_read(&bnep_session_sem);
s = __bnep_get_session(req->dst);
if (s) {
atomic_inc(&s->terminate);
wake_up_process(s->task);
} else
err = -ENOENT;
up_read(&bnep_session_sem);
return err;
}
static void __bnep_copy_ci(struct bnep_conninfo *ci, struct bnep_session *s)
{
memset(ci, 0, sizeof(*ci));
memcpy(ci->dst, s->eh.h_source, ETH_ALEN);
strcpy(ci->device, s->dev->name);
ci->flags = s->flags;
ci->state = s->state;
ci->role = s->role;
}
int bnep_get_connlist(struct bnep_connlist_req *req)
{
struct bnep_session *s;
int err = 0, n = 0;
down_read(&bnep_session_sem);
list_for_each_entry(s, &bnep_session_list, list) {
struct bnep_conninfo ci;
__bnep_copy_ci(&ci, s);
if (copy_to_user(req->ci, &ci, sizeof(ci))) {
err = -EFAULT;
break;
}
if (++n >= req->cnum)
break;
req->ci++;
}
req->cnum = n;
up_read(&bnep_session_sem);
return err;
}
int bnep_get_conninfo(struct bnep_conninfo *ci)
{
struct bnep_session *s;
int err = 0;
down_read(&bnep_session_sem);
s = __bnep_get_session(ci->dst);
if (s)
__bnep_copy_ci(ci, s);
else
err = -ENOENT;
up_read(&bnep_session_sem);
return err;
}
static int __init bnep_init(void)
{
char flt[50] = "";
#ifdef CONFIG_BT_BNEP_PROTO_FILTER
strcat(flt, "protocol ");
#endif
#ifdef CONFIG_BT_BNEP_MC_FILTER
strcat(flt, "multicast");
#endif
BT_INFO("BNEP (Ethernet Emulation) ver %s", VERSION);
if (flt[0])
BT_INFO("BNEP filters: %s", flt);
bnep_sock_init();
return 0;
}
static void __exit bnep_exit(void)
{
bnep_sock_cleanup();
}
module_init(bnep_init);
module_exit(bnep_exit);
module_param(compress_src, bool, 0644);
MODULE_PARM_DESC(compress_src, "Compress sources headers");
module_param(compress_dst, bool, 0644);
MODULE_PARM_DESC(compress_dst, "Compress destination headers");
MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>");
MODULE_DESCRIPTION("Bluetooth BNEP ver " VERSION);
MODULE_VERSION(VERSION);
MODULE_LICENSE("GPL");
MODULE_ALIAS("bt-proto-4");