OpenCloudOS-Kernel/sound/sparc/amd7930.c

1100 lines
30 KiB
C
Raw Normal View History

/*
* Driver for AMD7930 sound chips found on Sparcs.
* Copyright (C) 2002, 2008 David S. Miller <davem@davemloft.net>
*
* Based entirely upon drivers/sbus/audio/amd7930.c which is:
* Copyright (C) 1996,1997 Thomas K. Dyas (tdyas@eden.rutgers.edu)
*
* --- Notes from Thomas's original driver ---
* This is the lowlevel driver for the AMD7930 audio chip found on all
* sun4c machines and some sun4m machines.
*
* The amd7930 is actually an ISDN chip which has a very simple
* integrated audio encoder/decoder. When Sun decided on what chip to
* use for audio, they had the brilliant idea of using the amd7930 and
* only connecting the audio encoder/decoder pins.
*
* Thanks to the AMD engineer who was able to get us the AMD79C30
* databook which has all the programming information and gain tables.
*
* Advanced Micro Devices' Am79C30A is an ISDN/audio chip used in the
* SparcStation 1+. The chip provides microphone and speaker interfaces
* which provide mono-channel audio at 8K samples per second via either
* 8-bit A-law or 8-bit mu-law encoding. Also, the chip features an
* ISDN BRI Line Interface Unit (LIU), I.430 S/T physical interface,
* which performs basic D channel LAPD processing and provides raw
* B channel data. The digital audio channel, the two ISDN B channels,
* and two 64 Kbps channels to the microprocessor are all interconnected
* via a multiplexer.
* --- End of notes from Thoamas's original driver ---
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/moduleparam.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/info.h>
#include <sound/control.h>
#include <sound/initval.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/prom.h>
static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */
module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for Sun AMD7930 soundcard.");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for Sun AMD7930 soundcard.");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable Sun AMD7930 soundcard.");
MODULE_AUTHOR("Thomas K. Dyas and David S. Miller");
MODULE_DESCRIPTION("Sun AMD7930");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{Sun,AMD7930}}");
/* Device register layout. */
/* Register interface presented to the CPU by the amd7930. */
#define AMD7930_CR 0x00UL /* Command Register (W) */
#define AMD7930_IR AMD7930_CR /* Interrupt Register (R) */
#define AMD7930_DR 0x01UL /* Data Register (R/W) */
#define AMD7930_DSR1 0x02UL /* D-channel Status Register 1 (R) */
#define AMD7930_DER 0x03UL /* D-channel Error Register (R) */
#define AMD7930_DCTB 0x04UL /* D-channel Transmit Buffer (W) */
#define AMD7930_DCRB AMD7930_DCTB /* D-channel Receive Buffer (R) */
#define AMD7930_BBTB 0x05UL /* Bb-channel Transmit Buffer (W) */
#define AMD7930_BBRB AMD7930_BBTB /* Bb-channel Receive Buffer (R) */
#define AMD7930_BCTB 0x06UL /* Bc-channel Transmit Buffer (W) */
#define AMD7930_BCRB AMD7930_BCTB /* Bc-channel Receive Buffer (R) */
#define AMD7930_DSR2 0x07UL /* D-channel Status Register 2 (R) */
/* Indirect registers in the Main Audio Processor. */
struct amd7930_map {
__u16 x[8];
__u16 r[8];
__u16 gx;
__u16 gr;
__u16 ger;
__u16 stgr;
__u16 ftgr;
__u16 atgr;
__u8 mmr1;
__u8 mmr2;
};
/* After an amd7930 interrupt, reading the Interrupt Register (ir)
* clears the interrupt and returns a bitmask indicating which
* interrupt source(s) require service.
*/
#define AMR_IR_DTTHRSH 0x01 /* D-channel xmit threshold */
#define AMR_IR_DRTHRSH 0x02 /* D-channel recv threshold */
#define AMR_IR_DSRI 0x04 /* D-channel packet status */
#define AMR_IR_DERI 0x08 /* D-channel error */
#define AMR_IR_BBUF 0x10 /* B-channel data xfer */
#define AMR_IR_LSRI 0x20 /* LIU status */
#define AMR_IR_DSR2I 0x40 /* D-channel buffer status */
#define AMR_IR_MLTFRMI 0x80 /* multiframe or PP */
/* The amd7930 has "indirect registers" which are accessed by writing
* the register number into the Command Register and then reading or
* writing values from the Data Register as appropriate. We define the
* AMR_* macros to be the indirect register numbers and AM_* macros to
* be bits in whatever register is referred to.
*/
/* Initialization */
#define AMR_INIT 0x21
#define AM_INIT_ACTIVE 0x01
#define AM_INIT_DATAONLY 0x02
#define AM_INIT_POWERDOWN 0x03
#define AM_INIT_DISABLE_INTS 0x04
#define AMR_INIT2 0x20
#define AM_INIT2_ENABLE_POWERDOWN 0x20
#define AM_INIT2_ENABLE_MULTIFRAME 0x10
/* Line Interface Unit */
#define AMR_LIU_LSR 0xA1
#define AM_LIU_LSR_STATE 0x07
#define AM_LIU_LSR_F3 0x08
#define AM_LIU_LSR_F7 0x10
#define AM_LIU_LSR_F8 0x20
#define AM_LIU_LSR_HSW 0x40
#define AM_LIU_LSR_HSW_CHG 0x80
#define AMR_LIU_LPR 0xA2
#define AMR_LIU_LMR1 0xA3
#define AM_LIU_LMR1_B1_ENABL 0x01
#define AM_LIU_LMR1_B2_ENABL 0x02
#define AM_LIU_LMR1_F_DISABL 0x04
#define AM_LIU_LMR1_FA_DISABL 0x08
#define AM_LIU_LMR1_REQ_ACTIV 0x10
#define AM_LIU_LMR1_F8_F3 0x20
#define AM_LIU_LMR1_LIU_ENABL 0x40
#define AMR_LIU_LMR2 0xA4
#define AM_LIU_LMR2_DECHO 0x01
#define AM_LIU_LMR2_DLOOP 0x02
#define AM_LIU_LMR2_DBACKOFF 0x04
#define AM_LIU_LMR2_EN_F3_INT 0x08
#define AM_LIU_LMR2_EN_F8_INT 0x10
#define AM_LIU_LMR2_EN_HSW_INT 0x20
#define AM_LIU_LMR2_EN_F7_INT 0x40
#define AMR_LIU_2_4 0xA5
#define AMR_LIU_MF 0xA6
#define AMR_LIU_MFSB 0xA7
#define AMR_LIU_MFQB 0xA8
/* Multiplexor */
#define AMR_MUX_MCR1 0x41
#define AMR_MUX_MCR2 0x42
#define AMR_MUX_MCR3 0x43
#define AM_MUX_CHANNEL_B1 0x01
#define AM_MUX_CHANNEL_B2 0x02
#define AM_MUX_CHANNEL_Ba 0x03
#define AM_MUX_CHANNEL_Bb 0x04
#define AM_MUX_CHANNEL_Bc 0x05
#define AM_MUX_CHANNEL_Bd 0x06
#define AM_MUX_CHANNEL_Be 0x07
#define AM_MUX_CHANNEL_Bf 0x08
#define AMR_MUX_MCR4 0x44
#define AM_MUX_MCR4_ENABLE_INTS 0x08
#define AM_MUX_MCR4_REVERSE_Bb 0x10
#define AM_MUX_MCR4_REVERSE_Bc 0x20
#define AMR_MUX_1_4 0x45
/* Main Audio Processor */
#define AMR_MAP_X 0x61
#define AMR_MAP_R 0x62
#define AMR_MAP_GX 0x63
#define AMR_MAP_GR 0x64
#define AMR_MAP_GER 0x65
#define AMR_MAP_STGR 0x66
#define AMR_MAP_FTGR_1_2 0x67
#define AMR_MAP_ATGR_1_2 0x68
#define AMR_MAP_MMR1 0x69
#define AM_MAP_MMR1_ALAW 0x01
#define AM_MAP_MMR1_GX 0x02
#define AM_MAP_MMR1_GR 0x04
#define AM_MAP_MMR1_GER 0x08
#define AM_MAP_MMR1_X 0x10
#define AM_MAP_MMR1_R 0x20
#define AM_MAP_MMR1_STG 0x40
#define AM_MAP_MMR1_LOOPBACK 0x80
#define AMR_MAP_MMR2 0x6A
#define AM_MAP_MMR2_AINB 0x01
#define AM_MAP_MMR2_LS 0x02
#define AM_MAP_MMR2_ENABLE_DTMF 0x04
#define AM_MAP_MMR2_ENABLE_TONEGEN 0x08
#define AM_MAP_MMR2_ENABLE_TONERING 0x10
#define AM_MAP_MMR2_DISABLE_HIGHPASS 0x20
#define AM_MAP_MMR2_DISABLE_AUTOZERO 0x40
#define AMR_MAP_1_10 0x6B
#define AMR_MAP_MMR3 0x6C
#define AMR_MAP_STRA 0x6D
#define AMR_MAP_STRF 0x6E
#define AMR_MAP_PEAKX 0x70
#define AMR_MAP_PEAKR 0x71
#define AMR_MAP_15_16 0x72
/* Data Link Controller */
#define AMR_DLC_FRAR_1_2_3 0x81
#define AMR_DLC_SRAR_1_2_3 0x82
#define AMR_DLC_TAR 0x83
#define AMR_DLC_DRLR 0x84
#define AMR_DLC_DTCR 0x85
#define AMR_DLC_DMR1 0x86
#define AMR_DLC_DMR1_DTTHRSH_INT 0x01
#define AMR_DLC_DMR1_DRTHRSH_INT 0x02
#define AMR_DLC_DMR1_TAR_ENABL 0x04
#define AMR_DLC_DMR1_EORP_INT 0x08
#define AMR_DLC_DMR1_EN_ADDR1 0x10
#define AMR_DLC_DMR1_EN_ADDR2 0x20
#define AMR_DLC_DMR1_EN_ADDR3 0x40
#define AMR_DLC_DMR1_EN_ADDR4 0x80
#define AMR_DLC_DMR1_EN_ADDRS 0xf0
#define AMR_DLC_DMR2 0x87
#define AMR_DLC_DMR2_RABRT_INT 0x01
#define AMR_DLC_DMR2_RESID_INT 0x02
#define AMR_DLC_DMR2_COLL_INT 0x04
#define AMR_DLC_DMR2_FCS_INT 0x08
#define AMR_DLC_DMR2_OVFL_INT 0x10
#define AMR_DLC_DMR2_UNFL_INT 0x20
#define AMR_DLC_DMR2_OVRN_INT 0x40
#define AMR_DLC_DMR2_UNRN_INT 0x80
#define AMR_DLC_1_7 0x88
#define AMR_DLC_DRCR 0x89
#define AMR_DLC_RNGR1 0x8A
#define AMR_DLC_RNGR2 0x8B
#define AMR_DLC_FRAR4 0x8C
#define AMR_DLC_SRAR4 0x8D
#define AMR_DLC_DMR3 0x8E
#define AMR_DLC_DMR3_VA_INT 0x01
#define AMR_DLC_DMR3_EOTP_INT 0x02
#define AMR_DLC_DMR3_LBRP_INT 0x04
#define AMR_DLC_DMR3_RBA_INT 0x08
#define AMR_DLC_DMR3_LBT_INT 0x10
#define AMR_DLC_DMR3_TBE_INT 0x20
#define AMR_DLC_DMR3_RPLOST_INT 0x40
#define AMR_DLC_DMR3_KEEP_FCS 0x80
#define AMR_DLC_DMR4 0x8F
#define AMR_DLC_DMR4_RCV_1 0x00
#define AMR_DLC_DMR4_RCV_2 0x01
#define AMR_DLC_DMR4_RCV_4 0x02
#define AMR_DLC_DMR4_RCV_8 0x03
#define AMR_DLC_DMR4_RCV_16 0x01
#define AMR_DLC_DMR4_RCV_24 0x02
#define AMR_DLC_DMR4_RCV_30 0x03
#define AMR_DLC_DMR4_XMT_1 0x00
#define AMR_DLC_DMR4_XMT_2 0x04
#define AMR_DLC_DMR4_XMT_4 0x08
#define AMR_DLC_DMR4_XMT_8 0x0c
#define AMR_DLC_DMR4_XMT_10 0x08
#define AMR_DLC_DMR4_XMT_14 0x0c
#define AMR_DLC_DMR4_IDLE_MARK 0x00
#define AMR_DLC_DMR4_IDLE_FLAG 0x10
#define AMR_DLC_DMR4_ADDR_BOTH 0x00
#define AMR_DLC_DMR4_ADDR_1ST 0x20
#define AMR_DLC_DMR4_ADDR_2ND 0xa0
#define AMR_DLC_DMR4_CR_ENABLE 0x40
#define AMR_DLC_12_15 0x90
#define AMR_DLC_ASR 0x91
#define AMR_DLC_EFCR 0x92
#define AMR_DLC_EFCR_EXTEND_FIFO 0x01
#define AMR_DLC_EFCR_SEC_PKT_INT 0x02
#define AMR_DSR1_VADDR 0x01
#define AMR_DSR1_EORP 0x02
#define AMR_DSR1_PKT_IP 0x04
#define AMR_DSR1_DECHO_ON 0x08
#define AMR_DSR1_DLOOP_ON 0x10
#define AMR_DSR1_DBACK_OFF 0x20
#define AMR_DSR1_EOTP 0x40
#define AMR_DSR1_CXMT_ABRT 0x80
#define AMR_DSR2_LBRP 0x01
#define AMR_DSR2_RBA 0x02
#define AMR_DSR2_RPLOST 0x04
#define AMR_DSR2_LAST_BYTE 0x08
#define AMR_DSR2_TBE 0x10
#define AMR_DSR2_MARK_IDLE 0x20
#define AMR_DSR2_FLAG_IDLE 0x40
#define AMR_DSR2_SECOND_PKT 0x80
#define AMR_DER_RABRT 0x01
#define AMR_DER_RFRAME 0x02
#define AMR_DER_COLLISION 0x04
#define AMR_DER_FCS 0x08
#define AMR_DER_OVFL 0x10
#define AMR_DER_UNFL 0x20
#define AMR_DER_OVRN 0x40
#define AMR_DER_UNRN 0x80
/* Peripheral Port */
#define AMR_PP_PPCR1 0xC0
#define AMR_PP_PPSR 0xC1
#define AMR_PP_PPIER 0xC2
#define AMR_PP_MTDR 0xC3
#define AMR_PP_MRDR 0xC3
#define AMR_PP_CITDR0 0xC4
#define AMR_PP_CIRDR0 0xC4
#define AMR_PP_CITDR1 0xC5
#define AMR_PP_CIRDR1 0xC5
#define AMR_PP_PPCR2 0xC8
#define AMR_PP_PPCR3 0xC9
struct snd_amd7930 {
spinlock_t lock;
void __iomem *regs;
u32 flags;
#define AMD7930_FLAG_PLAYBACK 0x00000001
#define AMD7930_FLAG_CAPTURE 0x00000002
struct amd7930_map map;
struct snd_card *card;
struct snd_pcm *pcm;
struct snd_pcm_substream *playback_substream;
struct snd_pcm_substream *capture_substream;
/* Playback/Capture buffer state. */
unsigned char *p_orig, *p_cur;
int p_left;
unsigned char *c_orig, *c_cur;
int c_left;
int rgain;
int pgain;
int mgain;
struct platform_device *op;
unsigned int irq;
struct snd_amd7930 *next;
};
static struct snd_amd7930 *amd7930_list;
/* Idle the AMD7930 chip. The amd->lock is not held. */
static __inline__ void amd7930_idle(struct snd_amd7930 *amd)
{
unsigned long flags;
spin_lock_irqsave(&amd->lock, flags);
sbus_writeb(AMR_INIT, amd->regs + AMD7930_CR);
sbus_writeb(0, amd->regs + AMD7930_DR);
spin_unlock_irqrestore(&amd->lock, flags);
}
/* Enable chip interrupts. The amd->lock is not held. */
static __inline__ void amd7930_enable_ints(struct snd_amd7930 *amd)
{
unsigned long flags;
spin_lock_irqsave(&amd->lock, flags);
sbus_writeb(AMR_INIT, amd->regs + AMD7930_CR);
sbus_writeb(AM_INIT_ACTIVE, amd->regs + AMD7930_DR);
spin_unlock_irqrestore(&amd->lock, flags);
}
/* Disable chip interrupts. The amd->lock is not held. */
static __inline__ void amd7930_disable_ints(struct snd_amd7930 *amd)
{
unsigned long flags;
spin_lock_irqsave(&amd->lock, flags);
sbus_writeb(AMR_INIT, amd->regs + AMD7930_CR);
sbus_writeb(AM_INIT_ACTIVE | AM_INIT_DISABLE_INTS, amd->regs + AMD7930_DR);
spin_unlock_irqrestore(&amd->lock, flags);
}
/* Commit amd7930_map settings to the hardware.
* The amd->lock is held and local interrupts are disabled.
*/
static void __amd7930_write_map(struct snd_amd7930 *amd)
{
struct amd7930_map *map = &amd->map;
sbus_writeb(AMR_MAP_GX, amd->regs + AMD7930_CR);
sbus_writeb(((map->gx >> 0) & 0xff), amd->regs + AMD7930_DR);
sbus_writeb(((map->gx >> 8) & 0xff), amd->regs + AMD7930_DR);
sbus_writeb(AMR_MAP_GR, amd->regs + AMD7930_CR);
sbus_writeb(((map->gr >> 0) & 0xff), amd->regs + AMD7930_DR);
sbus_writeb(((map->gr >> 8) & 0xff), amd->regs + AMD7930_DR);
sbus_writeb(AMR_MAP_STGR, amd->regs + AMD7930_CR);
sbus_writeb(((map->stgr >> 0) & 0xff), amd->regs + AMD7930_DR);
sbus_writeb(((map->stgr >> 8) & 0xff), amd->regs + AMD7930_DR);
sbus_writeb(AMR_MAP_GER, amd->regs + AMD7930_CR);
sbus_writeb(((map->ger >> 0) & 0xff), amd->regs + AMD7930_DR);
sbus_writeb(((map->ger >> 8) & 0xff), amd->regs + AMD7930_DR);
sbus_writeb(AMR_MAP_MMR1, amd->regs + AMD7930_CR);
sbus_writeb(map->mmr1, amd->regs + AMD7930_DR);
sbus_writeb(AMR_MAP_MMR2, amd->regs + AMD7930_CR);
sbus_writeb(map->mmr2, amd->regs + AMD7930_DR);
}
/* gx, gr & stg gains. this table must contain 256 elements with
* the 0th being "infinity" (the magic value 9008). The remaining
* elements match sun's gain curve (but with higher resolution):
* -18 to 0dB in .16dB steps then 0 to 12dB in .08dB steps.
*/
static __const__ __u16 gx_coeff[256] = {
0x9008, 0x8b7c, 0x8b51, 0x8b45, 0x8b42, 0x8b3b, 0x8b36, 0x8b33,
0x8b32, 0x8b2a, 0x8b2b, 0x8b2c, 0x8b25, 0x8b23, 0x8b22, 0x8b22,
0x9122, 0x8b1a, 0x8aa3, 0x8aa3, 0x8b1c, 0x8aa6, 0x912d, 0x912b,
0x8aab, 0x8b12, 0x8aaa, 0x8ab2, 0x9132, 0x8ab4, 0x913c, 0x8abb,
0x9142, 0x9144, 0x9151, 0x8ad5, 0x8aeb, 0x8a79, 0x8a5a, 0x8a4a,
0x8b03, 0x91c2, 0x91bb, 0x8a3f, 0x8a33, 0x91b2, 0x9212, 0x9213,
0x8a2c, 0x921d, 0x8a23, 0x921a, 0x9222, 0x9223, 0x922d, 0x9231,
0x9234, 0x9242, 0x925b, 0x92dd, 0x92c1, 0x92b3, 0x92ab, 0x92a4,
0x92a2, 0x932b, 0x9341, 0x93d3, 0x93b2, 0x93a2, 0x943c, 0x94b2,
0x953a, 0x9653, 0x9782, 0x9e21, 0x9d23, 0x9cd2, 0x9c23, 0x9baa,
0x9bde, 0x9b33, 0x9b22, 0x9b1d, 0x9ab2, 0xa142, 0xa1e5, 0x9a3b,
0xa213, 0xa1a2, 0xa231, 0xa2eb, 0xa313, 0xa334, 0xa421, 0xa54b,
0xada4, 0xac23, 0xab3b, 0xaaab, 0xaa5c, 0xb1a3, 0xb2ca, 0xb3bd,
0xbe24, 0xbb2b, 0xba33, 0xc32b, 0xcb5a, 0xd2a2, 0xe31d, 0x0808,
0x72ba, 0x62c2, 0x5c32, 0x52db, 0x513e, 0x4cce, 0x43b2, 0x4243,
0x41b4, 0x3b12, 0x3bc3, 0x3df2, 0x34bd, 0x3334, 0x32c2, 0x3224,
0x31aa, 0x2a7b, 0x2aaa, 0x2b23, 0x2bba, 0x2c42, 0x2e23, 0x25bb,
0x242b, 0x240f, 0x231a, 0x22bb, 0x2241, 0x2223, 0x221f, 0x1a33,
0x1a4a, 0x1acd, 0x2132, 0x1b1b, 0x1b2c, 0x1b62, 0x1c12, 0x1c32,
0x1d1b, 0x1e71, 0x16b1, 0x1522, 0x1434, 0x1412, 0x1352, 0x1323,
0x1315, 0x12bc, 0x127a, 0x1235, 0x1226, 0x11a2, 0x1216, 0x0a2a,
0x11bc, 0x11d1, 0x1163, 0x0ac2, 0x0ab2, 0x0aab, 0x0b1b, 0x0b23,
0x0b33, 0x0c0f, 0x0bb3, 0x0c1b, 0x0c3e, 0x0cb1, 0x0d4c, 0x0ec1,
0x079a, 0x0614, 0x0521, 0x047c, 0x0422, 0x03b1, 0x03e3, 0x0333,
0x0322, 0x031c, 0x02aa, 0x02ba, 0x02f2, 0x0242, 0x0232, 0x0227,
0x0222, 0x021b, 0x01ad, 0x0212, 0x01b2, 0x01bb, 0x01cb, 0x01f6,
0x0152, 0x013a, 0x0133, 0x0131, 0x012c, 0x0123, 0x0122, 0x00a2,
0x011b, 0x011e, 0x0114, 0x00b1, 0x00aa, 0x00b3, 0x00bd, 0x00ba,
0x00c5, 0x00d3, 0x00f3, 0x0062, 0x0051, 0x0042, 0x003b, 0x0033,
0x0032, 0x002a, 0x002c, 0x0025, 0x0023, 0x0022, 0x001a, 0x0021,
0x001b, 0x001b, 0x001d, 0x0015, 0x0013, 0x0013, 0x0012, 0x0012,
0x000a, 0x000a, 0x0011, 0x0011, 0x000b, 0x000b, 0x000c, 0x000e,
};
static __const__ __u16 ger_coeff[] = {
0x431f, /* 5. dB */
0x331f, /* 5.5 dB */
0x40dd, /* 6. dB */
0x11dd, /* 6.5 dB */
0x440f, /* 7. dB */
0x411f, /* 7.5 dB */
0x311f, /* 8. dB */
0x5520, /* 8.5 dB */
0x10dd, /* 9. dB */
0x4211, /* 9.5 dB */
0x410f, /* 10. dB */
0x111f, /* 10.5 dB */
0x600b, /* 11. dB */
0x00dd, /* 11.5 dB */
0x4210, /* 12. dB */
0x110f, /* 13. dB */
0x7200, /* 14. dB */
0x2110, /* 15. dB */
0x2200, /* 15.9 dB */
0x000b, /* 16.9 dB */
0x000f /* 18. dB */
};
/* Update amd7930_map settings and program them into the hardware.
* The amd->lock is held and local interrupts are disabled.
*/
static void __amd7930_update_map(struct snd_amd7930 *amd)
{
struct amd7930_map *map = &amd->map;
int level;
map->gx = gx_coeff[amd->rgain];
map->stgr = gx_coeff[amd->mgain];
level = (amd->pgain * (256 + ARRAY_SIZE(ger_coeff))) >> 8;
if (level >= 256) {
map->ger = ger_coeff[level - 256];
map->gr = gx_coeff[255];
} else {
map->ger = ger_coeff[0];
map->gr = gx_coeff[level];
}
__amd7930_write_map(amd);
}
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
static irqreturn_t snd_amd7930_interrupt(int irq, void *dev_id)
{
struct snd_amd7930 *amd = dev_id;
unsigned int elapsed;
u8 ir;
spin_lock(&amd->lock);
elapsed = 0;
ir = sbus_readb(amd->regs + AMD7930_IR);
if (ir & AMR_IR_BBUF) {
u8 byte;
if (amd->flags & AMD7930_FLAG_PLAYBACK) {
if (amd->p_left > 0) {
byte = *(amd->p_cur++);
amd->p_left--;
sbus_writeb(byte, amd->regs + AMD7930_BBTB);
if (amd->p_left == 0)
elapsed |= AMD7930_FLAG_PLAYBACK;
} else
sbus_writeb(0, amd->regs + AMD7930_BBTB);
} else if (amd->flags & AMD7930_FLAG_CAPTURE) {
byte = sbus_readb(amd->regs + AMD7930_BBRB);
if (amd->c_left > 0) {
*(amd->c_cur++) = byte;
amd->c_left--;
if (amd->c_left == 0)
elapsed |= AMD7930_FLAG_CAPTURE;
}
}
}
spin_unlock(&amd->lock);
if (elapsed & AMD7930_FLAG_PLAYBACK)
snd_pcm_period_elapsed(amd->playback_substream);
else
snd_pcm_period_elapsed(amd->capture_substream);
return IRQ_HANDLED;
}
static int snd_amd7930_trigger(struct snd_amd7930 *amd, unsigned int flag, int cmd)
{
unsigned long flags;
int result = 0;
spin_lock_irqsave(&amd->lock, flags);
if (cmd == SNDRV_PCM_TRIGGER_START) {
if (!(amd->flags & flag)) {
amd->flags |= flag;
/* Enable B channel interrupts. */
sbus_writeb(AMR_MUX_MCR4, amd->regs + AMD7930_CR);
sbus_writeb(AM_MUX_MCR4_ENABLE_INTS, amd->regs + AMD7930_DR);
}
} else if (cmd == SNDRV_PCM_TRIGGER_STOP) {
if (amd->flags & flag) {
amd->flags &= ~flag;
/* Disable B channel interrupts. */
sbus_writeb(AMR_MUX_MCR4, amd->regs + AMD7930_CR);
sbus_writeb(0, amd->regs + AMD7930_DR);
}
} else {
result = -EINVAL;
}
spin_unlock_irqrestore(&amd->lock, flags);
return result;
}
static int snd_amd7930_playback_trigger(struct snd_pcm_substream *substream,
int cmd)
{
struct snd_amd7930 *amd = snd_pcm_substream_chip(substream);
return snd_amd7930_trigger(amd, AMD7930_FLAG_PLAYBACK, cmd);
}
static int snd_amd7930_capture_trigger(struct snd_pcm_substream *substream,
int cmd)
{
struct snd_amd7930 *amd = snd_pcm_substream_chip(substream);
return snd_amd7930_trigger(amd, AMD7930_FLAG_CAPTURE, cmd);
}
static int snd_amd7930_playback_prepare(struct snd_pcm_substream *substream)
{
struct snd_amd7930 *amd = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
unsigned int size = snd_pcm_lib_buffer_bytes(substream);
unsigned long flags;
u8 new_mmr1;
spin_lock_irqsave(&amd->lock, flags);
amd->flags |= AMD7930_FLAG_PLAYBACK;
/* Setup the pseudo-dma transfer pointers. */
amd->p_orig = amd->p_cur = runtime->dma_area;
amd->p_left = size;
/* Put the chip into the correct encoding format. */
new_mmr1 = amd->map.mmr1;
if (runtime->format == SNDRV_PCM_FORMAT_A_LAW)
new_mmr1 |= AM_MAP_MMR1_ALAW;
else
new_mmr1 &= ~AM_MAP_MMR1_ALAW;
if (new_mmr1 != amd->map.mmr1) {
amd->map.mmr1 = new_mmr1;
__amd7930_update_map(amd);
}
spin_unlock_irqrestore(&amd->lock, flags);
return 0;
}
static int snd_amd7930_capture_prepare(struct snd_pcm_substream *substream)
{
struct snd_amd7930 *amd = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
unsigned int size = snd_pcm_lib_buffer_bytes(substream);
unsigned long flags;
u8 new_mmr1;
spin_lock_irqsave(&amd->lock, flags);
amd->flags |= AMD7930_FLAG_CAPTURE;
/* Setup the pseudo-dma transfer pointers. */
amd->c_orig = amd->c_cur = runtime->dma_area;
amd->c_left = size;
/* Put the chip into the correct encoding format. */
new_mmr1 = amd->map.mmr1;
if (runtime->format == SNDRV_PCM_FORMAT_A_LAW)
new_mmr1 |= AM_MAP_MMR1_ALAW;
else
new_mmr1 &= ~AM_MAP_MMR1_ALAW;
if (new_mmr1 != amd->map.mmr1) {
amd->map.mmr1 = new_mmr1;
__amd7930_update_map(amd);
}
spin_unlock_irqrestore(&amd->lock, flags);
return 0;
}
static snd_pcm_uframes_t snd_amd7930_playback_pointer(struct snd_pcm_substream *substream)
{
struct snd_amd7930 *amd = snd_pcm_substream_chip(substream);
size_t ptr;
if (!(amd->flags & AMD7930_FLAG_PLAYBACK))
return 0;
ptr = amd->p_cur - amd->p_orig;
return bytes_to_frames(substream->runtime, ptr);
}
static snd_pcm_uframes_t snd_amd7930_capture_pointer(struct snd_pcm_substream *substream)
{
struct snd_amd7930 *amd = snd_pcm_substream_chip(substream);
size_t ptr;
if (!(amd->flags & AMD7930_FLAG_CAPTURE))
return 0;
ptr = amd->c_cur - amd->c_orig;
return bytes_to_frames(substream->runtime, ptr);
}
/* Playback and capture have identical properties. */
static struct snd_pcm_hardware snd_amd7930_pcm_hw =
{
.info = (SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_HALF_DUPLEX),
.formats = SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW,
.rates = SNDRV_PCM_RATE_8000,
.rate_min = 8000,
.rate_max = 8000,
.channels_min = 1,
.channels_max = 1,
.buffer_bytes_max = (64*1024),
.period_bytes_min = 1,
.period_bytes_max = (64*1024),
.periods_min = 1,
.periods_max = 1024,
};
static int snd_amd7930_playback_open(struct snd_pcm_substream *substream)
{
struct snd_amd7930 *amd = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
amd->playback_substream = substream;
runtime->hw = snd_amd7930_pcm_hw;
return 0;
}
static int snd_amd7930_capture_open(struct snd_pcm_substream *substream)
{
struct snd_amd7930 *amd = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
amd->capture_substream = substream;
runtime->hw = snd_amd7930_pcm_hw;
return 0;
}
static int snd_amd7930_playback_close(struct snd_pcm_substream *substream)
{
struct snd_amd7930 *amd = snd_pcm_substream_chip(substream);
amd->playback_substream = NULL;
return 0;
}
static int snd_amd7930_capture_close(struct snd_pcm_substream *substream)
{
struct snd_amd7930 *amd = snd_pcm_substream_chip(substream);
amd->capture_substream = NULL;
return 0;
}
static int snd_amd7930_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
}
static int snd_amd7930_hw_free(struct snd_pcm_substream *substream)
{
return snd_pcm_lib_free_pages(substream);
}
static struct snd_pcm_ops snd_amd7930_playback_ops = {
.open = snd_amd7930_playback_open,
.close = snd_amd7930_playback_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_amd7930_hw_params,
.hw_free = snd_amd7930_hw_free,
.prepare = snd_amd7930_playback_prepare,
.trigger = snd_amd7930_playback_trigger,
.pointer = snd_amd7930_playback_pointer,
};
static struct snd_pcm_ops snd_amd7930_capture_ops = {
.open = snd_amd7930_capture_open,
.close = snd_amd7930_capture_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_amd7930_hw_params,
.hw_free = snd_amd7930_hw_free,
.prepare = snd_amd7930_capture_prepare,
.trigger = snd_amd7930_capture_trigger,
.pointer = snd_amd7930_capture_pointer,
};
static int snd_amd7930_pcm(struct snd_amd7930 *amd)
{
struct snd_pcm *pcm;
int err;
if ((err = snd_pcm_new(amd->card,
/* ID */ "sun_amd7930",
/* device */ 0,
/* playback count */ 1,
/* capture count */ 1, &pcm)) < 0)
return err;
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_amd7930_playback_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_amd7930_capture_ops);
pcm->private_data = amd;
pcm->info_flags = 0;
strcpy(pcm->name, amd->card->shortname);
amd->pcm = pcm;
snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
snd_dma_continuous_data(GFP_KERNEL),
64*1024, 64*1024);
return 0;
}
#define VOLUME_MONITOR 0
#define VOLUME_CAPTURE 1
#define VOLUME_PLAYBACK 2
static int snd_amd7930_info_volume(struct snd_kcontrol *kctl, struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 255;
return 0;
}
static int snd_amd7930_get_volume(struct snd_kcontrol *kctl, struct snd_ctl_elem_value *ucontrol)
{
struct snd_amd7930 *amd = snd_kcontrol_chip(kctl);
int type = kctl->private_value;
int *swval;
switch (type) {
case VOLUME_MONITOR:
swval = &amd->mgain;
break;
case VOLUME_CAPTURE:
swval = &amd->rgain;
break;
case VOLUME_PLAYBACK:
default:
swval = &amd->pgain;
break;
}
ucontrol->value.integer.value[0] = *swval;
return 0;
}
static int snd_amd7930_put_volume(struct snd_kcontrol *kctl, struct snd_ctl_elem_value *ucontrol)
{
struct snd_amd7930 *amd = snd_kcontrol_chip(kctl);
unsigned long flags;
int type = kctl->private_value;
int *swval, change;
switch (type) {
case VOLUME_MONITOR:
swval = &amd->mgain;
break;
case VOLUME_CAPTURE:
swval = &amd->rgain;
break;
case VOLUME_PLAYBACK:
default:
swval = &amd->pgain;
break;
}
spin_lock_irqsave(&amd->lock, flags);
if (*swval != ucontrol->value.integer.value[0]) {
*swval = ucontrol->value.integer.value[0] & 0xff;
__amd7930_update_map(amd);
change = 1;
} else
change = 0;
spin_unlock_irqrestore(&amd->lock, flags);
return change;
}
static struct snd_kcontrol_new amd7930_controls[] = {
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Monitor Volume",
.index = 0,
.info = snd_amd7930_info_volume,
.get = snd_amd7930_get_volume,
.put = snd_amd7930_put_volume,
.private_value = VOLUME_MONITOR,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Capture Volume",
.index = 0,
.info = snd_amd7930_info_volume,
.get = snd_amd7930_get_volume,
.put = snd_amd7930_put_volume,
.private_value = VOLUME_CAPTURE,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Playback Volume",
.index = 0,
.info = snd_amd7930_info_volume,
.get = snd_amd7930_get_volume,
.put = snd_amd7930_put_volume,
.private_value = VOLUME_PLAYBACK,
},
};
static int snd_amd7930_mixer(struct snd_amd7930 *amd)
{
struct snd_card *card;
int idx, err;
if (snd_BUG_ON(!amd || !amd->card))
return -EINVAL;
card = amd->card;
strcpy(card->mixername, card->shortname);
for (idx = 0; idx < ARRAY_SIZE(amd7930_controls); idx++) {
if ((err = snd_ctl_add(card,
snd_ctl_new1(&amd7930_controls[idx], amd))) < 0)
return err;
}
return 0;
}
static int snd_amd7930_free(struct snd_amd7930 *amd)
{
struct platform_device *op = amd->op;
amd7930_idle(amd);
if (amd->irq)
free_irq(amd->irq, amd);
if (amd->regs)
of_iounmap(&op->resource[0], amd->regs,
resource_size(&op->resource[0]));
kfree(amd);
return 0;
}
static int snd_amd7930_dev_free(struct snd_device *device)
{
struct snd_amd7930 *amd = device->device_data;
return snd_amd7930_free(amd);
}
static struct snd_device_ops snd_amd7930_dev_ops = {
.dev_free = snd_amd7930_dev_free,
};
static int snd_amd7930_create(struct snd_card *card,
struct platform_device *op,
int irq, int dev,
struct snd_amd7930 **ramd)
{
struct snd_amd7930 *amd;
unsigned long flags;
int err;
*ramd = NULL;
amd = kzalloc(sizeof(*amd), GFP_KERNEL);
if (amd == NULL)
return -ENOMEM;
spin_lock_init(&amd->lock);
amd->card = card;
amd->op = op;
amd->regs = of_ioremap(&op->resource[0], 0,
resource_size(&op->resource[0]), "amd7930");
if (!amd->regs) {
snd_printk(KERN_ERR
"amd7930-%d: Unable to map chip registers.\n", dev);
return -EIO;
}
amd7930_idle(amd);
if (request_irq(irq, snd_amd7930_interrupt,
IRQF_SHARED, "amd7930", amd)) {
snd_printk(KERN_ERR "amd7930-%d: Unable to grab IRQ %d\n",
dev, irq);
snd_amd7930_free(amd);
return -EBUSY;
}
amd->irq = irq;
amd7930_enable_ints(amd);
spin_lock_irqsave(&amd->lock, flags);
amd->rgain = 128;
amd->pgain = 200;
amd->mgain = 0;
memset(&amd->map, 0, sizeof(amd->map));
amd->map.mmr1 = (AM_MAP_MMR1_GX | AM_MAP_MMR1_GER |
AM_MAP_MMR1_GR | AM_MAP_MMR1_STG);
amd->map.mmr2 = (AM_MAP_MMR2_LS | AM_MAP_MMR2_AINB);
__amd7930_update_map(amd);
/* Always MUX audio (Ba) to channel Bb. */
sbus_writeb(AMR_MUX_MCR1, amd->regs + AMD7930_CR);
sbus_writeb(AM_MUX_CHANNEL_Ba | (AM_MUX_CHANNEL_Bb << 4),
amd->regs + AMD7930_DR);
spin_unlock_irqrestore(&amd->lock, flags);
if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL,
amd, &snd_amd7930_dev_ops)) < 0) {
snd_amd7930_free(amd);
return err;
}
*ramd = amd;
return 0;
}
static int amd7930_sbus_probe(struct platform_device *op)
{
struct resource *rp = &op->resource[0];
static int dev_num;
struct snd_card *card;
struct snd_amd7930 *amd;
int err, irq;
irq = op->archdata.irqs[0];
if (dev_num >= SNDRV_CARDS)
return -ENODEV;
if (!enable[dev_num]) {
dev_num++;
return -ENOENT;
}
err = snd_card_create(index[dev_num], id[dev_num], THIS_MODULE, 0,
&card);
if (err < 0)
return err;
strcpy(card->driver, "AMD7930");
strcpy(card->shortname, "Sun AMD7930");
sprintf(card->longname, "%s at 0x%02lx:0x%08Lx, irq %d",
card->shortname,
rp->flags & 0xffL,
(unsigned long long)rp->start,
irq);
if ((err = snd_amd7930_create(card, op,
irq, dev_num, &amd)) < 0)
goto out_err;
if ((err = snd_amd7930_pcm(amd)) < 0)
goto out_err;
if ((err = snd_amd7930_mixer(amd)) < 0)
goto out_err;
if ((err = snd_card_register(card)) < 0)
goto out_err;
amd->next = amd7930_list;
amd7930_list = amd;
dev_num++;
return 0;
out_err:
snd_card_free(card);
return err;
}
static const struct of_device_id amd7930_match[] = {
{
.name = "audio",
},
{},
};
static struct platform_driver amd7930_sbus_driver = {
.driver = {
.name = "audio",
.owner = THIS_MODULE,
.of_match_table = amd7930_match,
},
.probe = amd7930_sbus_probe,
};
static int __init amd7930_init(void)
{
return platform_driver_register(&amd7930_sbus_driver);
}
static void __exit amd7930_exit(void)
{
struct snd_amd7930 *p = amd7930_list;
while (p != NULL) {
struct snd_amd7930 *next = p->next;
snd_card_free(p->card);
p = next;
}
amd7930_list = NULL;
platform_driver_unregister(&amd7930_sbus_driver);
}
module_init(amd7930_init);
module_exit(amd7930_exit);