OpenCloudOS-Kernel/tools/perf/tests/openat-syscall-all-cpus.c

126 lines
3.2 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
// SPDX-License-Identifier: GPL-2.0
#include <errno.h>
#include <inttypes.h>
/* For the CPU_* macros */
#include <pthread.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <api/fs/fs.h>
#include <linux/err.h>
#include <api/fs/tracing_path.h>
#include "evsel.h"
#include "tests.h"
#include "thread_map.h"
#include "cpumap.h"
#include "debug.h"
#include "stat.h"
int test__openat_syscall_event_on_all_cpus(struct test *test __maybe_unused, int subtest __maybe_unused)
{
int err = -1, fd, cpu;
struct cpu_map *cpus;
struct perf_evsel *evsel;
unsigned int nr_openat_calls = 111, i;
cpu_set_t cpu_set;
struct thread_map *threads = thread_map__new(-1, getpid(), UINT_MAX);
char sbuf[STRERR_BUFSIZE];
char errbuf[BUFSIZ];
if (threads == NULL) {
pr_debug("thread_map__new\n");
return -1;
}
cpus = cpu_map__new(NULL);
if (cpus == NULL) {
pr_debug("cpu_map__new\n");
goto out_thread_map_delete;
}
CPU_ZERO(&cpu_set);
evsel = perf_evsel__newtp("syscalls", "sys_enter_openat");
if (IS_ERR(evsel)) {
tracing_path__strerror_open_tp(errno, errbuf, sizeof(errbuf), "syscalls", "sys_enter_openat");
perf test: Silence tracepoint event failures Currently, when 'perf test' is run by a normal user, it'll fail to access tracepoint events. The output becomes somewhat messy because it tries to be nice with long error messages and hints. IMHO this is not needed for 'perf test' by default and AFAIK 'perf test' uses pr_debug() rather than pr_err() for such messages so that one can use -v option to see further details on failed testcases if needed. Before: $ perf test 1: vmlinux symtab matches kallsyms : FAILED! 2: detect openat syscall event :Error: No permissions to read /sys/kernel/debug/tracing/events/syscalls/sys_enter_openat Hint: Try 'sudo mount -o remount,mode=755 /sys/kernel/debug/tracing' FAILED! 3: detect openat syscall event on all cpus :Error: No permissions to read /sys/kernel/debug/tracing/events/syscalls/sys_enter_openat Hint: Try 'sudo mount -o remount,mode=755 /sys/kernel/debug/tracing' FAILED! ... After: $ perf test 1: vmlinux symtab matches kallsyms : FAILED! 2: detect openat syscall event : FAILED! 3: detect openat syscall event on all cpus : FAILED! ... $ perf test -v 2 2: detect openat syscall event : --- start --- test child forked, pid 30575 Error: No permissions to read /sys/kernel/debug/tracing/events/syscalls/sys_enter_openat Hint: Try 'sudo mount -o remount,mode=755 /sys/kernel/debug/tracing' test child finished with -1 ---- end ---- detect openat syscall event: FAILED! Signed-off-by: Namhyung Kim <namhyung@kernel.org> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Acked-by: David Ahern <dsahern@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Wang Nan <wangnan0@huawei.com> Link: http://lkml.kernel.org/r/1445268229-1601-1-git-send-email-namhyung@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2015-10-19 23:23:48 +08:00
pr_debug("%s\n", errbuf);
goto out_thread_map_delete;
}
if (perf_evsel__open(evsel, cpus, threads) < 0) {
pr_debug("failed to open counter: %s, "
"tweak /proc/sys/kernel/perf_event_paranoid?\n",
str_error_r(errno, sbuf, sizeof(sbuf)));
goto out_evsel_delete;
}
for (cpu = 0; cpu < cpus->nr; ++cpu) {
unsigned int ncalls = nr_openat_calls + cpu;
/*
* XXX eventually lift this restriction in a way that
* keeps perf building on older glibc installations
* without CPU_ALLOC. 1024 cpus in 2010 still seems
* a reasonable upper limit tho :-)
*/
if (cpus->map[cpu] >= CPU_SETSIZE) {
pr_debug("Ignoring CPU %d\n", cpus->map[cpu]);
continue;
}
CPU_SET(cpus->map[cpu], &cpu_set);
if (sched_setaffinity(0, sizeof(cpu_set), &cpu_set) < 0) {
pr_debug("sched_setaffinity() failed on CPU %d: %s ",
cpus->map[cpu],
str_error_r(errno, sbuf, sizeof(sbuf)));
goto out_close_fd;
}
for (i = 0; i < ncalls; ++i) {
fd = openat(0, "/etc/passwd", O_RDONLY);
close(fd);
}
CPU_CLR(cpus->map[cpu], &cpu_set);
}
/*
* Here we need to explicitly preallocate the counts, as if
* we use the auto allocation it will allocate just for 1 cpu,
* as we start by cpu 0.
*/
if (perf_evsel__alloc_counts(evsel, cpus->nr, 1) < 0) {
pr_debug("perf_evsel__alloc_counts(ncpus=%d)\n", cpus->nr);
goto out_close_fd;
}
err = 0;
for (cpu = 0; cpu < cpus->nr; ++cpu) {
unsigned int expected;
if (cpus->map[cpu] >= CPU_SETSIZE)
continue;
if (perf_evsel__read_on_cpu(evsel, cpu, 0) < 0) {
pr_debug("perf_evsel__read_on_cpu\n");
err = -1;
break;
}
expected = nr_openat_calls + cpu;
if (perf_counts(evsel->counts, cpu, 0)->val != expected) {
pr_debug("perf_evsel__read_on_cpu: expected to intercept %d calls on cpu %d, got %" PRIu64 "\n",
expected, cpus->map[cpu], perf_counts(evsel->counts, cpu, 0)->val);
err = -1;
}
}
perf_evsel__free_counts(evsel);
out_close_fd:
perf evsel: Fix buffer overflow while freeing events Fix buffer overflow for: % perf stat -e msr/tsc/,cstate_core/c7-residency/ true that causes glibc free list corruption. For some reason it doesn't trigger in valgrind, but it is visible in AS: ================================================================= ==32681==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x603000003f5c at pc 0x0000005671ef bp 0x7ffdaaac9ac0 sp 0x7ffdaaac9ab0 READ of size 4 at 0x603000003f5c thread T0 #0 0x5671ee in perf_evsel__close_fd util/evsel.c:1196 #1 0x56c57a in perf_evsel__close util/evsel.c:1717 #2 0x55ed5f in perf_evlist__close util/evlist.c:1631 #3 0x4647e1 in __run_perf_stat /home/ak/hle/linux-hle-2.6/tools/perf/builtin-stat.c:749 #4 0x4648e3 in run_perf_stat /home/ak/hle/linux-hle-2.6/tools/perf/builtin-stat.c:767 #5 0x46e1bc in cmd_stat /home/ak/hle/linux-hle-2.6/tools/perf/builtin-stat.c:2785 #6 0x52f83d in run_builtin /home/ak/hle/linux-hle-2.6/tools/perf/perf.c:296 #7 0x52fd49 in handle_internal_command /home/ak/hle/linux-hle-2.6/tools/perf/perf.c:348 #8 0x5300de in run_argv /home/ak/hle/linux-hle-2.6/tools/perf/perf.c:392 #9 0x5308f3 in main /home/ak/hle/linux-hle-2.6/tools/perf/perf.c:530 #10 0x7f0672d13400 in __libc_start_main (/lib64/libc.so.6+0x20400) #11 0x428419 in _start (/home/ak/hle/obj-perf/perf+0x428419) 0x603000003f5c is located 0 bytes to the right of 28-byte region [0x603000003f40,0x603000003f5c) allocated by thread T0 here: #0 0x7f0675139020 in calloc (/lib64/libasan.so.3+0xc7020) #1 0x648a2d in zalloc util/util.h:23 #2 0x648a88 in xyarray__new util/xyarray.c:9 #3 0x566419 in perf_evsel__alloc_fd util/evsel.c:1039 #4 0x56b427 in perf_evsel__open util/evsel.c:1529 #5 0x56c620 in perf_evsel__open_per_thread util/evsel.c:1730 #6 0x461dea in create_perf_stat_counter /home/ak/hle/linux-hle-2.6/tools/perf/builtin-stat.c:263 #7 0x4637d7 in __run_perf_stat /home/ak/hle/linux-hle-2.6/tools/perf/builtin-stat.c:600 #8 0x4648e3 in run_perf_stat /home/ak/hle/linux-hle-2.6/tools/perf/builtin-stat.c:767 #9 0x46e1bc in cmd_stat /home/ak/hle/linux-hle-2.6/tools/perf/builtin-stat.c:2785 #10 0x52f83d in run_builtin /home/ak/hle/linux-hle-2.6/tools/perf/perf.c:296 #11 0x52fd49 in handle_internal_command /home/ak/hle/linux-hle-2.6/tools/perf/perf.c:348 #12 0x5300de in run_argv /home/ak/hle/linux-hle-2.6/tools/perf/perf.c:392 #13 0x5308f3 in main /home/ak/hle/linux-hle-2.6/tools/perf/perf.c:530 #14 0x7f0672d13400 in __libc_start_main (/lib64/libc.so.6+0x20400) The event is allocated with cpus == 1, but freed with cpus == real number When the evsel close function walks the file descriptors it exceeds the fd xyarray boundaries and reads random memory. v2: Now that xyarrays save their original dimensions we can use these to iterate the two dimensional fd arrays. Fix some users (close, ioctl) in evsel.c to use these fields directly. This allows simplifying the code and dropping quite a few function arguments. Adjust all callers by removing the unneeded arguments. The actual perf event reading still uses the original values from the evsel list. Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170811232634.30465-2-andi@firstfloor.org [ Fix up xy_max_[xy]() -> xyarray__max_[xy]() ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-08-12 07:26:17 +08:00
perf_evsel__close_fd(evsel);
out_evsel_delete:
perf_evsel__delete(evsel);
out_thread_map_delete:
thread_map__put(threads);
return err;
}