OpenCloudOS-Kernel/include/linux/ieee80211.h

3357 lines
105 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* IEEE 802.11 defines
*
* Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
* <jkmaline@cc.hut.fi>
* Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
* Copyright (c) 2005, Devicescape Software, Inc.
* Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
* Copyright (c) 2013 - 2014 Intel Mobile Communications GmbH
* Copyright (c) 2016 - 2017 Intel Deutschland GmbH
* Copyright (c) 2018 - 2019 Intel Corporation
*/
#ifndef LINUX_IEEE80211_H
#define LINUX_IEEE80211_H
#include <linux/types.h>
#include <linux/if_ether.h>
#include <linux/etherdevice.h>
#include <asm/byteorder.h>
#include <asm/unaligned.h>
/*
* DS bit usage
*
* TA = transmitter address
* RA = receiver address
* DA = destination address
* SA = source address
*
* ToDS FromDS A1(RA) A2(TA) A3 A4 Use
* -----------------------------------------------------------------
* 0 0 DA SA BSSID - IBSS/DLS
* 0 1 DA BSSID SA - AP -> STA
* 1 0 BSSID SA DA - AP <- STA
* 1 1 RA TA DA SA unspecified (WDS)
*/
#define FCS_LEN 4
#define IEEE80211_FCTL_VERS 0x0003
#define IEEE80211_FCTL_FTYPE 0x000c
#define IEEE80211_FCTL_STYPE 0x00f0
#define IEEE80211_FCTL_TODS 0x0100
#define IEEE80211_FCTL_FROMDS 0x0200
#define IEEE80211_FCTL_MOREFRAGS 0x0400
#define IEEE80211_FCTL_RETRY 0x0800
#define IEEE80211_FCTL_PM 0x1000
#define IEEE80211_FCTL_MOREDATA 0x2000
#define IEEE80211_FCTL_PROTECTED 0x4000
#define IEEE80211_FCTL_ORDER 0x8000
#define IEEE80211_FCTL_CTL_EXT 0x0f00
#define IEEE80211_SCTL_FRAG 0x000F
#define IEEE80211_SCTL_SEQ 0xFFF0
#define IEEE80211_FTYPE_MGMT 0x0000
#define IEEE80211_FTYPE_CTL 0x0004
#define IEEE80211_FTYPE_DATA 0x0008
#define IEEE80211_FTYPE_EXT 0x000c
/* management */
#define IEEE80211_STYPE_ASSOC_REQ 0x0000
#define IEEE80211_STYPE_ASSOC_RESP 0x0010
#define IEEE80211_STYPE_REASSOC_REQ 0x0020
#define IEEE80211_STYPE_REASSOC_RESP 0x0030
#define IEEE80211_STYPE_PROBE_REQ 0x0040
#define IEEE80211_STYPE_PROBE_RESP 0x0050
#define IEEE80211_STYPE_BEACON 0x0080
#define IEEE80211_STYPE_ATIM 0x0090
#define IEEE80211_STYPE_DISASSOC 0x00A0
#define IEEE80211_STYPE_AUTH 0x00B0
#define IEEE80211_STYPE_DEAUTH 0x00C0
#define IEEE80211_STYPE_ACTION 0x00D0
/* control */
#define IEEE80211_STYPE_CTL_EXT 0x0060
#define IEEE80211_STYPE_BACK_REQ 0x0080
#define IEEE80211_STYPE_BACK 0x0090
#define IEEE80211_STYPE_PSPOLL 0x00A0
#define IEEE80211_STYPE_RTS 0x00B0
#define IEEE80211_STYPE_CTS 0x00C0
#define IEEE80211_STYPE_ACK 0x00D0
#define IEEE80211_STYPE_CFEND 0x00E0
#define IEEE80211_STYPE_CFENDACK 0x00F0
/* data */
#define IEEE80211_STYPE_DATA 0x0000
#define IEEE80211_STYPE_DATA_CFACK 0x0010
#define IEEE80211_STYPE_DATA_CFPOLL 0x0020
#define IEEE80211_STYPE_DATA_CFACKPOLL 0x0030
#define IEEE80211_STYPE_NULLFUNC 0x0040
#define IEEE80211_STYPE_CFACK 0x0050
#define IEEE80211_STYPE_CFPOLL 0x0060
#define IEEE80211_STYPE_CFACKPOLL 0x0070
#define IEEE80211_STYPE_QOS_DATA 0x0080
#define IEEE80211_STYPE_QOS_DATA_CFACK 0x0090
#define IEEE80211_STYPE_QOS_DATA_CFPOLL 0x00A0
#define IEEE80211_STYPE_QOS_DATA_CFACKPOLL 0x00B0
#define IEEE80211_STYPE_QOS_NULLFUNC 0x00C0
#define IEEE80211_STYPE_QOS_CFACK 0x00D0
#define IEEE80211_STYPE_QOS_CFPOLL 0x00E0
#define IEEE80211_STYPE_QOS_CFACKPOLL 0x00F0
/* extension, added by 802.11ad */
#define IEEE80211_STYPE_DMG_BEACON 0x0000
/* control extension - for IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTL_EXT */
#define IEEE80211_CTL_EXT_POLL 0x2000
#define IEEE80211_CTL_EXT_SPR 0x3000
#define IEEE80211_CTL_EXT_GRANT 0x4000
#define IEEE80211_CTL_EXT_DMG_CTS 0x5000
#define IEEE80211_CTL_EXT_DMG_DTS 0x6000
#define IEEE80211_CTL_EXT_SSW 0x8000
#define IEEE80211_CTL_EXT_SSW_FBACK 0x9000
#define IEEE80211_CTL_EXT_SSW_ACK 0xa000
#define IEEE80211_SN_MASK ((IEEE80211_SCTL_SEQ) >> 4)
#define IEEE80211_MAX_SN IEEE80211_SN_MASK
#define IEEE80211_SN_MODULO (IEEE80211_MAX_SN + 1)
static inline bool ieee80211_sn_less(u16 sn1, u16 sn2)
{
return ((sn1 - sn2) & IEEE80211_SN_MASK) > (IEEE80211_SN_MODULO >> 1);
}
static inline u16 ieee80211_sn_add(u16 sn1, u16 sn2)
{
return (sn1 + sn2) & IEEE80211_SN_MASK;
}
static inline u16 ieee80211_sn_inc(u16 sn)
{
return ieee80211_sn_add(sn, 1);
}
static inline u16 ieee80211_sn_sub(u16 sn1, u16 sn2)
{
return (sn1 - sn2) & IEEE80211_SN_MASK;
}
#define IEEE80211_SEQ_TO_SN(seq) (((seq) & IEEE80211_SCTL_SEQ) >> 4)
#define IEEE80211_SN_TO_SEQ(ssn) (((ssn) << 4) & IEEE80211_SCTL_SEQ)
/* miscellaneous IEEE 802.11 constants */
#define IEEE80211_MAX_FRAG_THRESHOLD 2352
#define IEEE80211_MAX_RTS_THRESHOLD 2353
#define IEEE80211_MAX_AID 2007
#define IEEE80211_MAX_TIM_LEN 251
#define IEEE80211_MAX_MESH_PEERINGS 63
/* Maximum size for the MA-UNITDATA primitive, 802.11 standard section
6.2.1.1.2.
802.11e clarifies the figure in section 7.1.2. The frame body is
up to 2304 octets long (maximum MSDU size) plus any crypt overhead. */
#define IEEE80211_MAX_DATA_LEN 2304
/* 802.11ad extends maximum MSDU size for DMG (freq > 40Ghz) networks
* to 7920 bytes, see 8.2.3 General frame format
*/
#define IEEE80211_MAX_DATA_LEN_DMG 7920
/* 30 byte 4 addr hdr, 2 byte QoS, 2304 byte MSDU, 12 byte crypt, 4 byte FCS */
#define IEEE80211_MAX_FRAME_LEN 2352
/* Maximal size of an A-MSDU that can be transported in a HT BA session */
#define IEEE80211_MAX_MPDU_LEN_HT_BA 4095
/* Maximal size of an A-MSDU */
#define IEEE80211_MAX_MPDU_LEN_HT_3839 3839
#define IEEE80211_MAX_MPDU_LEN_HT_7935 7935
#define IEEE80211_MAX_MPDU_LEN_VHT_3895 3895
#define IEEE80211_MAX_MPDU_LEN_VHT_7991 7991
#define IEEE80211_MAX_MPDU_LEN_VHT_11454 11454
#define IEEE80211_MAX_SSID_LEN 32
#define IEEE80211_MAX_MESH_ID_LEN 32
#define IEEE80211_FIRST_TSPEC_TSID 8
#define IEEE80211_NUM_TIDS 16
/* number of user priorities 802.11 uses */
#define IEEE80211_NUM_UPS 8
/* number of ACs */
#define IEEE80211_NUM_ACS 4
#define IEEE80211_QOS_CTL_LEN 2
/* 1d tag mask */
#define IEEE80211_QOS_CTL_TAG1D_MASK 0x0007
/* TID mask */
#define IEEE80211_QOS_CTL_TID_MASK 0x000f
/* EOSP */
#define IEEE80211_QOS_CTL_EOSP 0x0010
/* ACK policy */
#define IEEE80211_QOS_CTL_ACK_POLICY_NORMAL 0x0000
#define IEEE80211_QOS_CTL_ACK_POLICY_NOACK 0x0020
#define IEEE80211_QOS_CTL_ACK_POLICY_NO_EXPL 0x0040
#define IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK 0x0060
#define IEEE80211_QOS_CTL_ACK_POLICY_MASK 0x0060
/* A-MSDU 802.11n */
#define IEEE80211_QOS_CTL_A_MSDU_PRESENT 0x0080
/* Mesh Control 802.11s */
#define IEEE80211_QOS_CTL_MESH_CONTROL_PRESENT 0x0100
mac80211: mesh power save basics Add routines to - maintain a PS mode for each peer and a non-peer PS mode - indicate own PS mode in transmitted frames - track neighbor STAs power modes - buffer frames when neighbors are in PS mode - add TIM and Awake Window IE to beacons - release frames in Mesh Peer Service Periods Add local_pm to sta_info to represent the link-specific power mode at this station towards the remote station. When a peer link is established, use the default power mode stored in mesh config. Update the PS status if the peering status of a neighbor changes. Maintain a mesh power mode for non-peer mesh STAs. Set the non-peer power mode to active mode during peering. Authenticated mesh peering is currently not working when either node is configured to be in power save mode. Indicate the current power mode in transmitted frames. Use QoS Nulls to indicate mesh power mode transitions. For performance reasons, calls to the function setting the frame flags are placed in HWMP routing routines, as there the STA pointer is already available. Add peer_pm to sta_info to represent the peer's link-specific power mode towards the local station. Add nonpeer_pm to represent the peer's power mode towards all non-peer stations. Track power modes based on received frames. Add the ps_data structure to ieee80211_if_mesh (for TIM map, PS neighbor counter and group-addressed frame buffer). Set WLAN_STA_PS flag for STA in PS mode to use the unicast frame buffering routines in the tx path. Update num_sta_ps to buffer and release group-addressed frames after DTIM beacons. Announce the awake window duration in beacons if in light or deep sleep mode towards any peer or non-peer. Create a TIM IE similarly to AP mode and add it to mesh beacons. Parse received Awake Window IEs and check TIM IEs for buffered frames. Release frames towards peers in mesh Peer Service Periods. Use the corresponding trigger frames and monitor the MPSP status. Append a QoS Null as trigger frame if neccessary to properly end the MPSP. Currently, in HT channels MPSPs behave imperfectly and show large delay spikes and frame losses. Signed-off-by: Marco Porsch <marco@cozybit.com> Signed-off-by: Ivan Bezyazychnyy <ivan.bezyazychnyy@gmail.com> Signed-off-by: Mike Krinkin <krinkin.m.u@gmail.com> Signed-off-by: Max Filippov <jcmvbkbc@gmail.com> Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2013-01-31 01:14:08 +08:00
/* Mesh Power Save Level */
#define IEEE80211_QOS_CTL_MESH_PS_LEVEL 0x0200
/* Mesh Receiver Service Period Initiated */
#define IEEE80211_QOS_CTL_RSPI 0x0400
/* U-APSD queue for WMM IEs sent by AP */
#define IEEE80211_WMM_IE_AP_QOSINFO_UAPSD (1<<7)
#define IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK 0x0f
/* U-APSD queues for WMM IEs sent by STA */
#define IEEE80211_WMM_IE_STA_QOSINFO_AC_VO (1<<0)
#define IEEE80211_WMM_IE_STA_QOSINFO_AC_VI (1<<1)
#define IEEE80211_WMM_IE_STA_QOSINFO_AC_BK (1<<2)
#define IEEE80211_WMM_IE_STA_QOSINFO_AC_BE (1<<3)
#define IEEE80211_WMM_IE_STA_QOSINFO_AC_MASK 0x0f
/* U-APSD max SP length for WMM IEs sent by STA */
#define IEEE80211_WMM_IE_STA_QOSINFO_SP_ALL 0x00
#define IEEE80211_WMM_IE_STA_QOSINFO_SP_2 0x01
#define IEEE80211_WMM_IE_STA_QOSINFO_SP_4 0x02
#define IEEE80211_WMM_IE_STA_QOSINFO_SP_6 0x03
#define IEEE80211_WMM_IE_STA_QOSINFO_SP_MASK 0x03
#define IEEE80211_WMM_IE_STA_QOSINFO_SP_SHIFT 5
#define IEEE80211_HT_CTL_LEN 4
struct ieee80211_hdr {
__le16 frame_control;
__le16 duration_id;
u8 addr1[ETH_ALEN];
u8 addr2[ETH_ALEN];
u8 addr3[ETH_ALEN];
__le16 seq_ctrl;
u8 addr4[ETH_ALEN];
} __packed __aligned(2);
struct ieee80211_hdr_3addr {
__le16 frame_control;
__le16 duration_id;
u8 addr1[ETH_ALEN];
u8 addr2[ETH_ALEN];
u8 addr3[ETH_ALEN];
__le16 seq_ctrl;
} __packed __aligned(2);
struct ieee80211_qos_hdr {
__le16 frame_control;
__le16 duration_id;
u8 addr1[ETH_ALEN];
u8 addr2[ETH_ALEN];
u8 addr3[ETH_ALEN];
__le16 seq_ctrl;
__le16 qos_ctrl;
} __packed __aligned(2);
/**
* ieee80211_has_tods - check if IEEE80211_FCTL_TODS is set
* @fc: frame control bytes in little-endian byteorder
*/
static inline bool ieee80211_has_tods(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_TODS)) != 0;
}
/**
* ieee80211_has_fromds - check if IEEE80211_FCTL_FROMDS is set
* @fc: frame control bytes in little-endian byteorder
*/
static inline bool ieee80211_has_fromds(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FROMDS)) != 0;
}
/**
* ieee80211_has_a4 - check if IEEE80211_FCTL_TODS and IEEE80211_FCTL_FROMDS are set
* @fc: frame control bytes in little-endian byteorder
*/
static inline bool ieee80211_has_a4(__le16 fc)
{
__le16 tmp = cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS);
return (fc & tmp) == tmp;
}
/**
* ieee80211_has_morefrags - check if IEEE80211_FCTL_MOREFRAGS is set
* @fc: frame control bytes in little-endian byteorder
*/
static inline bool ieee80211_has_morefrags(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_MOREFRAGS)) != 0;
}
/**
* ieee80211_has_retry - check if IEEE80211_FCTL_RETRY is set
* @fc: frame control bytes in little-endian byteorder
*/
static inline bool ieee80211_has_retry(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_RETRY)) != 0;
}
/**
* ieee80211_has_pm - check if IEEE80211_FCTL_PM is set
* @fc: frame control bytes in little-endian byteorder
*/
static inline bool ieee80211_has_pm(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_PM)) != 0;
}
/**
* ieee80211_has_moredata - check if IEEE80211_FCTL_MOREDATA is set
* @fc: frame control bytes in little-endian byteorder
*/
static inline bool ieee80211_has_moredata(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_MOREDATA)) != 0;
}
/**
* ieee80211_has_protected - check if IEEE80211_FCTL_PROTECTED is set
* @fc: frame control bytes in little-endian byteorder
*/
static inline bool ieee80211_has_protected(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_PROTECTED)) != 0;
}
/**
* ieee80211_has_order - check if IEEE80211_FCTL_ORDER is set
* @fc: frame control bytes in little-endian byteorder
*/
static inline bool ieee80211_has_order(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_ORDER)) != 0;
}
/**
* ieee80211_is_mgmt - check if type is IEEE80211_FTYPE_MGMT
* @fc: frame control bytes in little-endian byteorder
*/
static inline bool ieee80211_is_mgmt(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_MGMT);
}
/**
* ieee80211_is_ctl - check if type is IEEE80211_FTYPE_CTL
* @fc: frame control bytes in little-endian byteorder
*/
static inline bool ieee80211_is_ctl(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_CTL);
}
/**
* ieee80211_is_data - check if type is IEEE80211_FTYPE_DATA
* @fc: frame control bytes in little-endian byteorder
*/
static inline bool ieee80211_is_data(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_DATA);
}
/**
* ieee80211_is_data_qos - check if type is IEEE80211_FTYPE_DATA and IEEE80211_STYPE_QOS_DATA is set
* @fc: frame control bytes in little-endian byteorder
*/
static inline bool ieee80211_is_data_qos(__le16 fc)
{
/*
* mask with QOS_DATA rather than IEEE80211_FCTL_STYPE as we just need
* to check the one bit
*/
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_STYPE_QOS_DATA)) ==
cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_DATA);
}
/**
* ieee80211_is_data_present - check if type is IEEE80211_FTYPE_DATA and has data
* @fc: frame control bytes in little-endian byteorder
*/
static inline bool ieee80211_is_data_present(__le16 fc)
{
/*
* mask with 0x40 and test that that bit is clear to only return true
* for the data-containing substypes.
*/
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | 0x40)) ==
cpu_to_le16(IEEE80211_FTYPE_DATA);
}
/**
* ieee80211_is_assoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_REQ
* @fc: frame control bytes in little-endian byteorder
*/
static inline bool ieee80211_is_assoc_req(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_REQ);
}
/**
* ieee80211_is_assoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_RESP
* @fc: frame control bytes in little-endian byteorder
*/
static inline bool ieee80211_is_assoc_resp(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_RESP);
}
/**
* ieee80211_is_reassoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_REQ
* @fc: frame control bytes in little-endian byteorder
*/
static inline bool ieee80211_is_reassoc_req(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_REQ);
}
/**
* ieee80211_is_reassoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_RESP
* @fc: frame control bytes in little-endian byteorder
*/
static inline bool ieee80211_is_reassoc_resp(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_RESP);
}
/**
* ieee80211_is_probe_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_REQ
* @fc: frame control bytes in little-endian byteorder
*/
static inline bool ieee80211_is_probe_req(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_REQ);
}
/**
* ieee80211_is_probe_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_RESP
* @fc: frame control bytes in little-endian byteorder
*/
static inline bool ieee80211_is_probe_resp(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_RESP);
}
/**
* ieee80211_is_beacon - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_BEACON
* @fc: frame control bytes in little-endian byteorder
*/
static inline bool ieee80211_is_beacon(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON);
}
/**
* ieee80211_is_atim - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ATIM
* @fc: frame control bytes in little-endian byteorder
*/
static inline bool ieee80211_is_atim(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ATIM);
}
/**
* ieee80211_is_disassoc - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DISASSOC
* @fc: frame control bytes in little-endian byteorder
*/
static inline bool ieee80211_is_disassoc(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DISASSOC);
}
/**
* ieee80211_is_auth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_AUTH
* @fc: frame control bytes in little-endian byteorder
*/
static inline bool ieee80211_is_auth(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_AUTH);
}
/**
* ieee80211_is_deauth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DEAUTH
* @fc: frame control bytes in little-endian byteorder
*/
static inline bool ieee80211_is_deauth(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DEAUTH);
}
/**
* ieee80211_is_action - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ACTION
* @fc: frame control bytes in little-endian byteorder
*/
static inline bool ieee80211_is_action(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION);
}
/**
* ieee80211_is_back_req - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK_REQ
* @fc: frame control bytes in little-endian byteorder
*/
static inline bool ieee80211_is_back_req(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK_REQ);
}
/**
* ieee80211_is_back - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK
* @fc: frame control bytes in little-endian byteorder
*/
static inline bool ieee80211_is_back(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK);
}
/**
* ieee80211_is_pspoll - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_PSPOLL
* @fc: frame control bytes in little-endian byteorder
*/
static inline bool ieee80211_is_pspoll(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_PSPOLL);
}
/**
* ieee80211_is_rts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_RTS
* @fc: frame control bytes in little-endian byteorder
*/
static inline bool ieee80211_is_rts(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
}
/**
* ieee80211_is_cts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CTS
* @fc: frame control bytes in little-endian byteorder
*/
static inline bool ieee80211_is_cts(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS);
}
/**
* ieee80211_is_ack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_ACK
* @fc: frame control bytes in little-endian byteorder
*/
static inline bool ieee80211_is_ack(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_ACK);
}
/**
* ieee80211_is_cfend - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFEND
* @fc: frame control bytes in little-endian byteorder
*/
static inline bool ieee80211_is_cfend(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFEND);
}
/**
* ieee80211_is_cfendack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFENDACK
* @fc: frame control bytes in little-endian byteorder
*/
static inline bool ieee80211_is_cfendack(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFENDACK);
}
/**
* ieee80211_is_nullfunc - check if frame is a regular (non-QoS) nullfunc frame
* @fc: frame control bytes in little-endian byteorder
*/
static inline bool ieee80211_is_nullfunc(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC);
}
/**
* ieee80211_is_qos_nullfunc - check if frame is a QoS nullfunc frame
* @fc: frame control bytes in little-endian byteorder
*/
static inline bool ieee80211_is_qos_nullfunc(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_NULLFUNC);
}
/**
* ieee80211_is_bufferable_mmpdu - check if frame is bufferable MMPDU
* @fc: frame control field in little-endian byteorder
*/
static inline bool ieee80211_is_bufferable_mmpdu(__le16 fc)
{
/* IEEE 802.11-2012, definition of "bufferable management frame";
* note that this ignores the IBSS special case. */
return ieee80211_is_mgmt(fc) &&
(ieee80211_is_action(fc) ||
ieee80211_is_disassoc(fc) ||
ieee80211_is_deauth(fc));
}
/**
* ieee80211_is_first_frag - check if IEEE80211_SCTL_FRAG is not set
* @seq_ctrl: frame sequence control bytes in little-endian byteorder
*/
static inline bool ieee80211_is_first_frag(__le16 seq_ctrl)
{
return (seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG)) == 0;
}
mac80211: add fast-rx path The regular RX path has a lot of code, but with a few assumptions on the hardware it's possible to reduce the amount of code significantly. Currently the assumptions on the driver are the following: * hardware/driver reordering buffer (if supporting aggregation) * hardware/driver decryption & PN checking (if using encryption) * hardware/driver did de-duplication * hardware/driver did A-MSDU deaggregation * AP_LINK_PS is used (in AP mode) * no client powersave handling in mac80211 (in client mode) of which some are actually checked per packet: * de-duplication * PN checking * decryption and additionally packets must * not be A-MSDU (have been deaggregated by driver/device) * be data packets * not be fragmented * be unicast * have RFC 1042 header Additionally dynamically we assume: * no encryption or CCMP/GCMP, TKIP/WEP/other not allowed * station must be authorized * 4-addr format not enabled Some data needed for the RX path is cached in a new per-station "fast_rx" structure, so that we only need to look at this and the packet, no other memory when processing packets on the fast RX path. After doing the above per-packet checks, the data path collapses down to a pretty simple conversion function taking advantage of the data cached in the small fast_rx struct. This should speed up the RX processing, and will make it easier to reason about parallelizing RX (for which statistics will need to be per-CPU still.) Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2016-04-01 01:02:10 +08:00
/**
* ieee80211_is_frag - check if a frame is a fragment
* @hdr: 802.11 header of the frame
*/
static inline bool ieee80211_is_frag(struct ieee80211_hdr *hdr)
{
return ieee80211_has_morefrags(hdr->frame_control) ||
hdr->seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG);
}
struct ieee80211s_hdr {
u8 flags;
u8 ttl;
__le32 seqnum;
u8 eaddr1[ETH_ALEN];
u8 eaddr2[ETH_ALEN];
} __packed __aligned(2);
/* Mesh flags */
#define MESH_FLAGS_AE_A4 0x1
#define MESH_FLAGS_AE_A5_A6 0x2
#define MESH_FLAGS_AE 0x3
#define MESH_FLAGS_PS_DEEP 0x4
/**
* enum ieee80211_preq_flags - mesh PREQ element flags
*
* @IEEE80211_PREQ_PROACTIVE_PREP_FLAG: proactive PREP subfield
*/
enum ieee80211_preq_flags {
IEEE80211_PREQ_PROACTIVE_PREP_FLAG = 1<<2,
};
/**
* enum ieee80211_preq_target_flags - mesh PREQ element per target flags
*
* @IEEE80211_PREQ_TO_FLAG: target only subfield
* @IEEE80211_PREQ_USN_FLAG: unknown target HWMP sequence number subfield
*/
enum ieee80211_preq_target_flags {
IEEE80211_PREQ_TO_FLAG = 1<<0,
IEEE80211_PREQ_USN_FLAG = 1<<2,
};
/**
* struct ieee80211_quiet_ie
*
* This structure refers to "Quiet information element"
*/
struct ieee80211_quiet_ie {
u8 count;
u8 period;
__le16 duration;
__le16 offset;
} __packed;
/**
* struct ieee80211_msrment_ie
*
* This structure refers to "Measurement Request/Report information element"
*/
struct ieee80211_msrment_ie {
u8 token;
u8 mode;
u8 type;
u8 request[0];
} __packed;
/**
* struct ieee80211_channel_sw_ie
*
* This structure refers to "Channel Switch Announcement information element"
*/
struct ieee80211_channel_sw_ie {
u8 mode;
u8 new_ch_num;
u8 count;
} __packed;
/**
* struct ieee80211_ext_chansw_ie
*
* This structure represents the "Extended Channel Switch Announcement element"
*/
struct ieee80211_ext_chansw_ie {
u8 mode;
u8 new_operating_class;
u8 new_ch_num;
u8 count;
} __packed;
/**
* struct ieee80211_sec_chan_offs_ie - secondary channel offset IE
* @sec_chan_offs: secondary channel offset, uses IEEE80211_HT_PARAM_CHA_SEC_*
* values here
* This structure represents the "Secondary Channel Offset element"
*/
struct ieee80211_sec_chan_offs_ie {
u8 sec_chan_offs;
} __packed;
/**
* struct ieee80211_mesh_chansw_params_ie - mesh channel switch parameters IE
*
* This structure represents the "Mesh Channel Switch Paramters element"
*/
struct ieee80211_mesh_chansw_params_ie {
u8 mesh_ttl;
u8 mesh_flags;
__le16 mesh_reason;
__le16 mesh_pre_value;
} __packed;
/**
* struct ieee80211_wide_bw_chansw_ie - wide bandwidth channel switch IE
*/
struct ieee80211_wide_bw_chansw_ie {
u8 new_channel_width;
u8 new_center_freq_seg0, new_center_freq_seg1;
} __packed;
/**
* struct ieee80211_tim
*
* This structure refers to "Traffic Indication Map information element"
*/
struct ieee80211_tim_ie {
u8 dtim_count;
u8 dtim_period;
u8 bitmap_ctrl;
/* variable size: 1 - 251 bytes */
u8 virtual_map[1];
} __packed;
/**
* struct ieee80211_meshconf_ie
*
* This structure refers to "Mesh Configuration information element"
*/
struct ieee80211_meshconf_ie {
u8 meshconf_psel;
u8 meshconf_pmetric;
u8 meshconf_congest;
u8 meshconf_synch;
u8 meshconf_auth;
u8 meshconf_form;
u8 meshconf_cap;
} __packed;
/**
* enum mesh_config_capab_flags - Mesh Configuration IE capability field flags
*
* @IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS: STA is willing to establish
* additional mesh peerings with other mesh STAs
* @IEEE80211_MESHCONF_CAPAB_FORWARDING: the STA forwards MSDUs
* @IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING: TBTT adjustment procedure
* is ongoing
mac80211: mesh power save basics Add routines to - maintain a PS mode for each peer and a non-peer PS mode - indicate own PS mode in transmitted frames - track neighbor STAs power modes - buffer frames when neighbors are in PS mode - add TIM and Awake Window IE to beacons - release frames in Mesh Peer Service Periods Add local_pm to sta_info to represent the link-specific power mode at this station towards the remote station. When a peer link is established, use the default power mode stored in mesh config. Update the PS status if the peering status of a neighbor changes. Maintain a mesh power mode for non-peer mesh STAs. Set the non-peer power mode to active mode during peering. Authenticated mesh peering is currently not working when either node is configured to be in power save mode. Indicate the current power mode in transmitted frames. Use QoS Nulls to indicate mesh power mode transitions. For performance reasons, calls to the function setting the frame flags are placed in HWMP routing routines, as there the STA pointer is already available. Add peer_pm to sta_info to represent the peer's link-specific power mode towards the local station. Add nonpeer_pm to represent the peer's power mode towards all non-peer stations. Track power modes based on received frames. Add the ps_data structure to ieee80211_if_mesh (for TIM map, PS neighbor counter and group-addressed frame buffer). Set WLAN_STA_PS flag for STA in PS mode to use the unicast frame buffering routines in the tx path. Update num_sta_ps to buffer and release group-addressed frames after DTIM beacons. Announce the awake window duration in beacons if in light or deep sleep mode towards any peer or non-peer. Create a TIM IE similarly to AP mode and add it to mesh beacons. Parse received Awake Window IEs and check TIM IEs for buffered frames. Release frames towards peers in mesh Peer Service Periods. Use the corresponding trigger frames and monitor the MPSP status. Append a QoS Null as trigger frame if neccessary to properly end the MPSP. Currently, in HT channels MPSPs behave imperfectly and show large delay spikes and frame losses. Signed-off-by: Marco Porsch <marco@cozybit.com> Signed-off-by: Ivan Bezyazychnyy <ivan.bezyazychnyy@gmail.com> Signed-off-by: Mike Krinkin <krinkin.m.u@gmail.com> Signed-off-by: Max Filippov <jcmvbkbc@gmail.com> Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2013-01-31 01:14:08 +08:00
* @IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL: STA is in deep sleep mode or has
* neighbors in deep sleep mode
*/
enum mesh_config_capab_flags {
IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS = 0x01,
IEEE80211_MESHCONF_CAPAB_FORWARDING = 0x08,
IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING = 0x20,
mac80211: mesh power save basics Add routines to - maintain a PS mode for each peer and a non-peer PS mode - indicate own PS mode in transmitted frames - track neighbor STAs power modes - buffer frames when neighbors are in PS mode - add TIM and Awake Window IE to beacons - release frames in Mesh Peer Service Periods Add local_pm to sta_info to represent the link-specific power mode at this station towards the remote station. When a peer link is established, use the default power mode stored in mesh config. Update the PS status if the peering status of a neighbor changes. Maintain a mesh power mode for non-peer mesh STAs. Set the non-peer power mode to active mode during peering. Authenticated mesh peering is currently not working when either node is configured to be in power save mode. Indicate the current power mode in transmitted frames. Use QoS Nulls to indicate mesh power mode transitions. For performance reasons, calls to the function setting the frame flags are placed in HWMP routing routines, as there the STA pointer is already available. Add peer_pm to sta_info to represent the peer's link-specific power mode towards the local station. Add nonpeer_pm to represent the peer's power mode towards all non-peer stations. Track power modes based on received frames. Add the ps_data structure to ieee80211_if_mesh (for TIM map, PS neighbor counter and group-addressed frame buffer). Set WLAN_STA_PS flag for STA in PS mode to use the unicast frame buffering routines in the tx path. Update num_sta_ps to buffer and release group-addressed frames after DTIM beacons. Announce the awake window duration in beacons if in light or deep sleep mode towards any peer or non-peer. Create a TIM IE similarly to AP mode and add it to mesh beacons. Parse received Awake Window IEs and check TIM IEs for buffered frames. Release frames towards peers in mesh Peer Service Periods. Use the corresponding trigger frames and monitor the MPSP status. Append a QoS Null as trigger frame if neccessary to properly end the MPSP. Currently, in HT channels MPSPs behave imperfectly and show large delay spikes and frame losses. Signed-off-by: Marco Porsch <marco@cozybit.com> Signed-off-by: Ivan Bezyazychnyy <ivan.bezyazychnyy@gmail.com> Signed-off-by: Mike Krinkin <krinkin.m.u@gmail.com> Signed-off-by: Max Filippov <jcmvbkbc@gmail.com> Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2013-01-31 01:14:08 +08:00
IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL = 0x40,
};
#define IEEE80211_MESHCONF_FORM_CONNECTED_TO_GATE 0x1
/**
* mesh channel switch parameters element's flag indicator
*
*/
#define WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT BIT(0)
#define WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR BIT(1)
#define WLAN_EID_CHAN_SWITCH_PARAM_REASON BIT(2)
/**
* struct ieee80211_rann_ie
*
* This structure refers to "Root Announcement information element"
*/
struct ieee80211_rann_ie {
u8 rann_flags;
u8 rann_hopcount;
u8 rann_ttl;
u8 rann_addr[ETH_ALEN];
__le32 rann_seq;
__le32 rann_interval;
__le32 rann_metric;
} __packed;
enum ieee80211_rann_flags {
RANN_FLAG_IS_GATE = 1 << 0,
};
enum ieee80211_ht_chanwidth_values {
IEEE80211_HT_CHANWIDTH_20MHZ = 0,
IEEE80211_HT_CHANWIDTH_ANY = 1,
};
/**
* enum ieee80211_opmode_bits - VHT operating mode field bits
* @IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK: channel width mask
* @IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ: 20 MHz channel width
* @IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ: 40 MHz channel width
* @IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ: 80 MHz channel width
* @IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ: 160 MHz or 80+80 MHz channel width
* @IEEE80211_OPMODE_NOTIF_RX_NSS_MASK: number of spatial streams mask
* (the NSS value is the value of this field + 1)
* @IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT: number of spatial streams shift
* @IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF: indicates streams in SU-MIMO PPDU
* using a beamforming steering matrix
*/
enum ieee80211_vht_opmode_bits {
IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK = 3,
IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ = 0,
IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ = 1,
IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ = 2,
IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ = 3,
IEEE80211_OPMODE_NOTIF_RX_NSS_MASK = 0x70,
IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT = 4,
IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF = 0x80,
};
#define WLAN_SA_QUERY_TR_ID_LEN 2
#define WLAN_MEMBERSHIP_LEN 8
#define WLAN_USER_POSITION_LEN 16
/**
* struct ieee80211_tpc_report_ie
*
* This structure refers to "TPC Report element"
*/
struct ieee80211_tpc_report_ie {
u8 tx_power;
u8 link_margin;
} __packed;
struct ieee80211_mgmt {
__le16 frame_control;
__le16 duration;
u8 da[ETH_ALEN];
u8 sa[ETH_ALEN];
u8 bssid[ETH_ALEN];
__le16 seq_ctrl;
union {
struct {
__le16 auth_alg;
__le16 auth_transaction;
__le16 status_code;
/* possibly followed by Challenge text */
u8 variable[0];
} __packed auth;
struct {
__le16 reason_code;
} __packed deauth;
struct {
__le16 capab_info;
__le16 listen_interval;
/* followed by SSID and Supported rates */
u8 variable[0];
} __packed assoc_req;
struct {
__le16 capab_info;
__le16 status_code;
__le16 aid;
/* followed by Supported rates */
u8 variable[0];
} __packed assoc_resp, reassoc_resp;
struct {
__le16 capab_info;
__le16 listen_interval;
u8 current_ap[ETH_ALEN];
/* followed by SSID and Supported rates */
u8 variable[0];
} __packed reassoc_req;
struct {
__le16 reason_code;
} __packed disassoc;
struct {
__le64 timestamp;
__le16 beacon_int;
__le16 capab_info;
/* followed by some of SSID, Supported rates,
* FH Params, DS Params, CF Params, IBSS Params, TIM */
u8 variable[0];
} __packed beacon;
struct {
/* only variable items: SSID, Supported rates */
u8 variable[0];
} __packed probe_req;
struct {
__le64 timestamp;
__le16 beacon_int;
__le16 capab_info;
/* followed by some of SSID, Supported rates,
* FH Params, DS Params, CF Params, IBSS Params */
u8 variable[0];
} __packed probe_resp;
struct {
u8 category;
union {
struct {
u8 action_code;
u8 dialog_token;
u8 status_code;
u8 variable[0];
} __packed wme_action;
struct{
u8 action_code;
u8 variable[0];
} __packed chan_switch;
struct{
u8 action_code;
struct ieee80211_ext_chansw_ie data;
u8 variable[0];
} __packed ext_chan_switch;
struct{
u8 action_code;
u8 dialog_token;
u8 element_id;
u8 length;
struct ieee80211_msrment_ie msr_elem;
} __packed measurement;
struct{
u8 action_code;
u8 dialog_token;
__le16 capab;
__le16 timeout;
__le16 start_seq_num;
} __packed addba_req;
struct{
u8 action_code;
u8 dialog_token;
__le16 status;
__le16 capab;
__le16 timeout;
} __packed addba_resp;
struct{
u8 action_code;
__le16 params;
__le16 reason_code;
} __packed delba;
struct {
u8 action_code;
u8 variable[0];
} __packed self_prot;
struct{
u8 action_code;
u8 variable[0];
} __packed mesh_action;
struct {
u8 action;
u8 trans_id[WLAN_SA_QUERY_TR_ID_LEN];
} __packed sa_query;
struct {
u8 action;
u8 smps_control;
} __packed ht_smps;
struct {
u8 action_code;
u8 chanwidth;
} __packed ht_notify_cw;
struct {
u8 action_code;
u8 dialog_token;
__le16 capability;
u8 variable[0];
} __packed tdls_discover_resp;
struct {
u8 action_code;
u8 operating_mode;
} __packed vht_opmode_notif;
struct {
u8 action_code;
u8 membership[WLAN_MEMBERSHIP_LEN];
u8 position[WLAN_USER_POSITION_LEN];
} __packed vht_group_notif;
struct {
u8 action_code;
u8 dialog_token;
u8 tpc_elem_id;
u8 tpc_elem_length;
struct ieee80211_tpc_report_ie tpc;
} __packed tpc_report;
struct {
u8 action_code;
u8 dialog_token;
u8 follow_up;
u8 tod[6];
u8 toa[6];
__le16 tod_error;
__le16 toa_error;
u8 variable[0];
} __packed ftm;
} u;
} __packed action;
} u;
} __packed __aligned(2);
/* Supported rates membership selectors */
#define BSS_MEMBERSHIP_SELECTOR_HT_PHY 127
#define BSS_MEMBERSHIP_SELECTOR_VHT_PHY 126
/* mgmt header + 1 byte category code */
#define IEEE80211_MIN_ACTION_SIZE offsetof(struct ieee80211_mgmt, u.action.u)
/* Management MIC information element (IEEE 802.11w) */
struct ieee80211_mmie {
u8 element_id;
u8 length;
__le16 key_id;
u8 sequence_number[6];
u8 mic[8];
} __packed;
/* Management MIC information element (IEEE 802.11w) for GMAC and CMAC-256 */
struct ieee80211_mmie_16 {
u8 element_id;
u8 length;
__le16 key_id;
u8 sequence_number[6];
u8 mic[16];
} __packed;
struct ieee80211_vendor_ie {
u8 element_id;
u8 len;
u8 oui[3];
u8 oui_type;
} __packed;
struct ieee80211_wmm_ac_param {
u8 aci_aifsn; /* AIFSN, ACM, ACI */
u8 cw; /* ECWmin, ECWmax (CW = 2^ECW - 1) */
__le16 txop_limit;
} __packed;
struct ieee80211_wmm_param_ie {
u8 element_id; /* Element ID: 221 (0xdd); */
u8 len; /* Length: 24 */
/* required fields for WMM version 1 */
u8 oui[3]; /* 00:50:f2 */
u8 oui_type; /* 2 */
u8 oui_subtype; /* 1 */
u8 version; /* 1 for WMM version 1.0 */
u8 qos_info; /* AP/STA specific QoS info */
u8 reserved; /* 0 */
/* AC_BE, AC_BK, AC_VI, AC_VO */
struct ieee80211_wmm_ac_param ac[4];
} __packed;
/* Control frames */
struct ieee80211_rts {
__le16 frame_control;
__le16 duration;
u8 ra[ETH_ALEN];
u8 ta[ETH_ALEN];
} __packed __aligned(2);
struct ieee80211_cts {
__le16 frame_control;
__le16 duration;
u8 ra[ETH_ALEN];
} __packed __aligned(2);
struct ieee80211_pspoll {
__le16 frame_control;
__le16 aid;
u8 bssid[ETH_ALEN];
u8 ta[ETH_ALEN];
} __packed __aligned(2);
/* TDLS */
/* Channel switch timing */
struct ieee80211_ch_switch_timing {
__le16 switch_time;
__le16 switch_timeout;
} __packed;
/* Link-id information element */
struct ieee80211_tdls_lnkie {
u8 ie_type; /* Link Identifier IE */
u8 ie_len;
u8 bssid[ETH_ALEN];
u8 init_sta[ETH_ALEN];
u8 resp_sta[ETH_ALEN];
} __packed;
struct ieee80211_tdls_data {
u8 da[ETH_ALEN];
u8 sa[ETH_ALEN];
__be16 ether_type;
u8 payload_type;
u8 category;
u8 action_code;
union {
struct {
u8 dialog_token;
__le16 capability;
u8 variable[0];
} __packed setup_req;
struct {
__le16 status_code;
u8 dialog_token;
__le16 capability;
u8 variable[0];
} __packed setup_resp;
struct {
__le16 status_code;
u8 dialog_token;
u8 variable[0];
} __packed setup_cfm;
struct {
__le16 reason_code;
u8 variable[0];
} __packed teardown;
struct {
u8 dialog_token;
u8 variable[0];
} __packed discover_req;
struct {
u8 target_channel;
u8 oper_class;
u8 variable[0];
} __packed chan_switch_req;
struct {
__le16 status_code;
u8 variable[0];
} __packed chan_switch_resp;
} u;
} __packed;
/*
* Peer-to-Peer IE attribute related definitions.
*/
/**
* enum ieee80211_p2p_attr_id - identifies type of peer-to-peer attribute.
*/
enum ieee80211_p2p_attr_id {
IEEE80211_P2P_ATTR_STATUS = 0,
IEEE80211_P2P_ATTR_MINOR_REASON,
IEEE80211_P2P_ATTR_CAPABILITY,
IEEE80211_P2P_ATTR_DEVICE_ID,
IEEE80211_P2P_ATTR_GO_INTENT,
IEEE80211_P2P_ATTR_GO_CONFIG_TIMEOUT,
IEEE80211_P2P_ATTR_LISTEN_CHANNEL,
IEEE80211_P2P_ATTR_GROUP_BSSID,
IEEE80211_P2P_ATTR_EXT_LISTEN_TIMING,
IEEE80211_P2P_ATTR_INTENDED_IFACE_ADDR,
IEEE80211_P2P_ATTR_MANAGABILITY,
IEEE80211_P2P_ATTR_CHANNEL_LIST,
IEEE80211_P2P_ATTR_ABSENCE_NOTICE,
IEEE80211_P2P_ATTR_DEVICE_INFO,
IEEE80211_P2P_ATTR_GROUP_INFO,
IEEE80211_P2P_ATTR_GROUP_ID,
IEEE80211_P2P_ATTR_INTERFACE,
IEEE80211_P2P_ATTR_OPER_CHANNEL,
IEEE80211_P2P_ATTR_INVITE_FLAGS,
/* 19 - 220: Reserved */
IEEE80211_P2P_ATTR_VENDOR_SPECIFIC = 221,
IEEE80211_P2P_ATTR_MAX
};
/* Notice of Absence attribute - described in P2P spec 4.1.14 */
/* Typical max value used here */
#define IEEE80211_P2P_NOA_DESC_MAX 4
struct ieee80211_p2p_noa_desc {
u8 count;
__le32 duration;
__le32 interval;
__le32 start_time;
} __packed;
struct ieee80211_p2p_noa_attr {
u8 index;
u8 oppps_ctwindow;
struct ieee80211_p2p_noa_desc desc[IEEE80211_P2P_NOA_DESC_MAX];
} __packed;
#define IEEE80211_P2P_OPPPS_ENABLE_BIT BIT(7)
#define IEEE80211_P2P_OPPPS_CTWINDOW_MASK 0x7F
/**
* struct ieee80211_bar - HT Block Ack Request
*
* This structure refers to "HT BlockAckReq" as
* described in 802.11n draft section 7.2.1.7.1
*/
struct ieee80211_bar {
__le16 frame_control;
__le16 duration;
__u8 ra[ETH_ALEN];
__u8 ta[ETH_ALEN];
__le16 control;
__le16 start_seq_num;
} __packed;
/* 802.11 BAR control masks */
#define IEEE80211_BAR_CTRL_ACK_POLICY_NORMAL 0x0000
#define IEEE80211_BAR_CTRL_MULTI_TID 0x0002
#define IEEE80211_BAR_CTRL_CBMTID_COMPRESSED_BA 0x0004
#define IEEE80211_BAR_CTRL_TID_INFO_MASK 0xf000
#define IEEE80211_BAR_CTRL_TID_INFO_SHIFT 12
#define IEEE80211_HT_MCS_MASK_LEN 10
/**
* struct ieee80211_mcs_info - MCS information
* @rx_mask: RX mask
* @rx_highest: highest supported RX rate. If set represents
* the highest supported RX data rate in units of 1 Mbps.
* If this field is 0 this value should not be used to
* consider the highest RX data rate supported.
* @tx_params: TX parameters
*/
struct ieee80211_mcs_info {
u8 rx_mask[IEEE80211_HT_MCS_MASK_LEN];
__le16 rx_highest;
u8 tx_params;
u8 reserved[3];
} __packed;
/* 802.11n HT capability MSC set */
#define IEEE80211_HT_MCS_RX_HIGHEST_MASK 0x3ff
#define IEEE80211_HT_MCS_TX_DEFINED 0x01
#define IEEE80211_HT_MCS_TX_RX_DIFF 0x02
/* value 0 == 1 stream etc */
#define IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK 0x0C
#define IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT 2
#define IEEE80211_HT_MCS_TX_MAX_STREAMS 4
#define IEEE80211_HT_MCS_TX_UNEQUAL_MODULATION 0x10
/*
* 802.11n D5.0 20.3.5 / 20.6 says:
* - indices 0 to 7 and 32 are single spatial stream
* - 8 to 31 are multiple spatial streams using equal modulation
* [8..15 for two streams, 16..23 for three and 24..31 for four]
* - remainder are multiple spatial streams using unequal modulation
*/
#define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START 33
#define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START_BYTE \
(IEEE80211_HT_MCS_UNEQUAL_MODULATION_START / 8)
/**
* struct ieee80211_ht_cap - HT capabilities
*
* This structure is the "HT capabilities element" as
* described in 802.11n D5.0 7.3.2.57
*/
struct ieee80211_ht_cap {
__le16 cap_info;
u8 ampdu_params_info;
/* 16 bytes MCS information */
struct ieee80211_mcs_info mcs;
__le16 extended_ht_cap_info;
__le32 tx_BF_cap_info;
u8 antenna_selection_info;
} __packed;
/* 802.11n HT capabilities masks (for cap_info) */
#define IEEE80211_HT_CAP_LDPC_CODING 0x0001
#define IEEE80211_HT_CAP_SUP_WIDTH_20_40 0x0002
#define IEEE80211_HT_CAP_SM_PS 0x000C
#define IEEE80211_HT_CAP_SM_PS_SHIFT 2
#define IEEE80211_HT_CAP_GRN_FLD 0x0010
#define IEEE80211_HT_CAP_SGI_20 0x0020
#define IEEE80211_HT_CAP_SGI_40 0x0040
#define IEEE80211_HT_CAP_TX_STBC 0x0080
#define IEEE80211_HT_CAP_RX_STBC 0x0300
#define IEEE80211_HT_CAP_RX_STBC_SHIFT 8
#define IEEE80211_HT_CAP_DELAY_BA 0x0400
#define IEEE80211_HT_CAP_MAX_AMSDU 0x0800
#define IEEE80211_HT_CAP_DSSSCCK40 0x1000
#define IEEE80211_HT_CAP_RESERVED 0x2000
#define IEEE80211_HT_CAP_40MHZ_INTOLERANT 0x4000
#define IEEE80211_HT_CAP_LSIG_TXOP_PROT 0x8000
/* 802.11n HT extended capabilities masks (for extended_ht_cap_info) */
#define IEEE80211_HT_EXT_CAP_PCO 0x0001
#define IEEE80211_HT_EXT_CAP_PCO_TIME 0x0006
#define IEEE80211_HT_EXT_CAP_PCO_TIME_SHIFT 1
#define IEEE80211_HT_EXT_CAP_MCS_FB 0x0300
#define IEEE80211_HT_EXT_CAP_MCS_FB_SHIFT 8
#define IEEE80211_HT_EXT_CAP_HTC_SUP 0x0400
#define IEEE80211_HT_EXT_CAP_RD_RESPONDER 0x0800
/* 802.11n HT capability AMPDU settings (for ampdu_params_info) */
#define IEEE80211_HT_AMPDU_PARM_FACTOR 0x03
#define IEEE80211_HT_AMPDU_PARM_DENSITY 0x1C
#define IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT 2
/*
* Maximum length of AMPDU that the STA can receive in high-throughput (HT).
* Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets)
*/
enum ieee80211_max_ampdu_length_exp {
IEEE80211_HT_MAX_AMPDU_8K = 0,
IEEE80211_HT_MAX_AMPDU_16K = 1,
IEEE80211_HT_MAX_AMPDU_32K = 2,
IEEE80211_HT_MAX_AMPDU_64K = 3
};
/*
* Maximum length of AMPDU that the STA can receive in VHT.
* Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets)
*/
enum ieee80211_vht_max_ampdu_length_exp {
IEEE80211_VHT_MAX_AMPDU_8K = 0,
IEEE80211_VHT_MAX_AMPDU_16K = 1,
IEEE80211_VHT_MAX_AMPDU_32K = 2,
IEEE80211_VHT_MAX_AMPDU_64K = 3,
IEEE80211_VHT_MAX_AMPDU_128K = 4,
IEEE80211_VHT_MAX_AMPDU_256K = 5,
IEEE80211_VHT_MAX_AMPDU_512K = 6,
IEEE80211_VHT_MAX_AMPDU_1024K = 7
};
#define IEEE80211_HT_MAX_AMPDU_FACTOR 13
/* Minimum MPDU start spacing */
enum ieee80211_min_mpdu_spacing {
IEEE80211_HT_MPDU_DENSITY_NONE = 0, /* No restriction */
IEEE80211_HT_MPDU_DENSITY_0_25 = 1, /* 1/4 usec */
IEEE80211_HT_MPDU_DENSITY_0_5 = 2, /* 1/2 usec */
IEEE80211_HT_MPDU_DENSITY_1 = 3, /* 1 usec */
IEEE80211_HT_MPDU_DENSITY_2 = 4, /* 2 usec */
IEEE80211_HT_MPDU_DENSITY_4 = 5, /* 4 usec */
IEEE80211_HT_MPDU_DENSITY_8 = 6, /* 8 usec */
IEEE80211_HT_MPDU_DENSITY_16 = 7 /* 16 usec */
};
/**
* struct ieee80211_ht_operation - HT operation IE
*
* This structure is the "HT operation element" as
* described in 802.11n-2009 7.3.2.57
*/
struct ieee80211_ht_operation {
u8 primary_chan;
u8 ht_param;
__le16 operation_mode;
__le16 stbc_param;
u8 basic_set[16];
} __packed;
/* for ht_param */
#define IEEE80211_HT_PARAM_CHA_SEC_OFFSET 0x03
#define IEEE80211_HT_PARAM_CHA_SEC_NONE 0x00
#define IEEE80211_HT_PARAM_CHA_SEC_ABOVE 0x01
#define IEEE80211_HT_PARAM_CHA_SEC_BELOW 0x03
#define IEEE80211_HT_PARAM_CHAN_WIDTH_ANY 0x04
#define IEEE80211_HT_PARAM_RIFS_MODE 0x08
/* for operation_mode */
#define IEEE80211_HT_OP_MODE_PROTECTION 0x0003
#define IEEE80211_HT_OP_MODE_PROTECTION_NONE 0
#define IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER 1
#define IEEE80211_HT_OP_MODE_PROTECTION_20MHZ 2
#define IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED 3
#define IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT 0x0004
#define IEEE80211_HT_OP_MODE_NON_HT_STA_PRSNT 0x0010
#define IEEE80211_HT_OP_MODE_CCFS2_SHIFT 5
#define IEEE80211_HT_OP_MODE_CCFS2_MASK 0x1fe0
/* for stbc_param */
#define IEEE80211_HT_STBC_PARAM_DUAL_BEACON 0x0040
#define IEEE80211_HT_STBC_PARAM_DUAL_CTS_PROT 0x0080
#define IEEE80211_HT_STBC_PARAM_STBC_BEACON 0x0100
#define IEEE80211_HT_STBC_PARAM_LSIG_TXOP_FULLPROT 0x0200
#define IEEE80211_HT_STBC_PARAM_PCO_ACTIVE 0x0400
#define IEEE80211_HT_STBC_PARAM_PCO_PHASE 0x0800
/* block-ack parameters */
#define IEEE80211_ADDBA_PARAM_AMSDU_MASK 0x0001
#define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002
#define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C
#define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFC0
#define IEEE80211_DELBA_PARAM_TID_MASK 0xF000
#define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800
/*
* A-MPDU buffer sizes
* According to HT size varies from 8 to 64 frames
* HE adds the ability to have up to 256 frames.
*/
#define IEEE80211_MIN_AMPDU_BUF 0x8
#define IEEE80211_MAX_AMPDU_BUF_HT 0x40
#define IEEE80211_MAX_AMPDU_BUF 0x100
/* Spatial Multiplexing Power Save Modes (for capability) */
#define WLAN_HT_CAP_SM_PS_STATIC 0
#define WLAN_HT_CAP_SM_PS_DYNAMIC 1
#define WLAN_HT_CAP_SM_PS_INVALID 2
#define WLAN_HT_CAP_SM_PS_DISABLED 3
/* for SM power control field lower two bits */
#define WLAN_HT_SMPS_CONTROL_DISABLED 0
#define WLAN_HT_SMPS_CONTROL_STATIC 1
#define WLAN_HT_SMPS_CONTROL_DYNAMIC 3
/**
* struct ieee80211_vht_mcs_info - VHT MCS information
* @rx_mcs_map: RX MCS map 2 bits for each stream, total 8 streams
* @rx_highest: Indicates highest long GI VHT PPDU data rate
* STA can receive. Rate expressed in units of 1 Mbps.
* If this field is 0 this value should not be used to
* consider the highest RX data rate supported.
* The top 3 bits of this field indicate the Maximum NSTS,total
* (a beamformee capability.)
* @tx_mcs_map: TX MCS map 2 bits for each stream, total 8 streams
* @tx_highest: Indicates highest long GI VHT PPDU data rate
* STA can transmit. Rate expressed in units of 1 Mbps.
* If this field is 0 this value should not be used to
* consider the highest TX data rate supported.
* The top 2 bits of this field are reserved, the
* 3rd bit from the top indiciates VHT Extended NSS BW
* Capability.
*/
struct ieee80211_vht_mcs_info {
__le16 rx_mcs_map;
__le16 rx_highest;
__le16 tx_mcs_map;
__le16 tx_highest;
} __packed;
/* for rx_highest */
#define IEEE80211_VHT_MAX_NSTS_TOTAL_SHIFT 13
#define IEEE80211_VHT_MAX_NSTS_TOTAL_MASK (7 << IEEE80211_VHT_MAX_NSTS_TOTAL_SHIFT)
/* for tx_highest */
#define IEEE80211_VHT_EXT_NSS_BW_CAPABLE (1 << 13)
/**
* enum ieee80211_vht_mcs_support - VHT MCS support definitions
* @IEEE80211_VHT_MCS_SUPPORT_0_7: MCSes 0-7 are supported for the
* number of streams
* @IEEE80211_VHT_MCS_SUPPORT_0_8: MCSes 0-8 are supported
* @IEEE80211_VHT_MCS_SUPPORT_0_9: MCSes 0-9 are supported
* @IEEE80211_VHT_MCS_NOT_SUPPORTED: This number of streams isn't supported
*
* These definitions are used in each 2-bit subfield of the @rx_mcs_map
* and @tx_mcs_map fields of &struct ieee80211_vht_mcs_info, which are
* both split into 8 subfields by number of streams. These values indicate
* which MCSes are supported for the number of streams the value appears
* for.
*/
enum ieee80211_vht_mcs_support {
IEEE80211_VHT_MCS_SUPPORT_0_7 = 0,
IEEE80211_VHT_MCS_SUPPORT_0_8 = 1,
IEEE80211_VHT_MCS_SUPPORT_0_9 = 2,
IEEE80211_VHT_MCS_NOT_SUPPORTED = 3,
};
/**
* struct ieee80211_vht_cap - VHT capabilities
*
* This structure is the "VHT capabilities element" as
* described in 802.11ac D3.0 8.4.2.160
* @vht_cap_info: VHT capability info
* @supp_mcs: VHT MCS supported rates
*/
struct ieee80211_vht_cap {
__le32 vht_cap_info;
struct ieee80211_vht_mcs_info supp_mcs;
} __packed;
/**
* enum ieee80211_vht_chanwidth - VHT channel width
* @IEEE80211_VHT_CHANWIDTH_USE_HT: use the HT operation IE to
* determine the channel width (20 or 40 MHz)
* @IEEE80211_VHT_CHANWIDTH_80MHZ: 80 MHz bandwidth
* @IEEE80211_VHT_CHANWIDTH_160MHZ: 160 MHz bandwidth
* @IEEE80211_VHT_CHANWIDTH_80P80MHZ: 80+80 MHz bandwidth
*/
enum ieee80211_vht_chanwidth {
IEEE80211_VHT_CHANWIDTH_USE_HT = 0,
IEEE80211_VHT_CHANWIDTH_80MHZ = 1,
IEEE80211_VHT_CHANWIDTH_160MHZ = 2,
IEEE80211_VHT_CHANWIDTH_80P80MHZ = 3,
};
/**
* struct ieee80211_vht_operation - VHT operation IE
*
* This structure is the "VHT operation element" as
* described in 802.11ac D3.0 8.4.2.161
* @chan_width: Operating channel width
* @center_freq_seg0_idx: center freq segment 0 index
* @center_freq_seg1_idx: center freq segment 1 index
* @basic_mcs_set: VHT Basic MCS rate set
*/
struct ieee80211_vht_operation {
u8 chan_width;
u8 center_freq_seg0_idx;
u8 center_freq_seg1_idx;
__le16 basic_mcs_set;
} __packed;
/**
* struct ieee80211_he_cap_elem - HE capabilities element
*
* This structure is the "HE capabilities element" fixed fields as
* described in P802.11ax_D4.0 section 9.4.2.242.2 and 9.4.2.242.3
*/
struct ieee80211_he_cap_elem {
u8 mac_cap_info[6];
u8 phy_cap_info[11];
} __packed;
#define IEEE80211_TX_RX_MCS_NSS_DESC_MAX_LEN 5
/**
* enum ieee80211_he_mcs_support - HE MCS support definitions
* @IEEE80211_HE_MCS_SUPPORT_0_7: MCSes 0-7 are supported for the
* number of streams
* @IEEE80211_HE_MCS_SUPPORT_0_9: MCSes 0-9 are supported
* @IEEE80211_HE_MCS_SUPPORT_0_11: MCSes 0-11 are supported
* @IEEE80211_HE_MCS_NOT_SUPPORTED: This number of streams isn't supported
*
* These definitions are used in each 2-bit subfield of the rx_mcs_*
* and tx_mcs_* fields of &struct ieee80211_he_mcs_nss_supp, which are
* both split into 8 subfields by number of streams. These values indicate
* which MCSes are supported for the number of streams the value appears
* for.
*/
enum ieee80211_he_mcs_support {
IEEE80211_HE_MCS_SUPPORT_0_7 = 0,
IEEE80211_HE_MCS_SUPPORT_0_9 = 1,
IEEE80211_HE_MCS_SUPPORT_0_11 = 2,
IEEE80211_HE_MCS_NOT_SUPPORTED = 3,
};
/**
* struct ieee80211_he_mcs_nss_supp - HE Tx/Rx HE MCS NSS Support Field
*
* This structure holds the data required for the Tx/Rx HE MCS NSS Support Field
* described in P802.11ax_D2.0 section 9.4.2.237.4
*
* @rx_mcs_80: Rx MCS map 2 bits for each stream, total 8 streams, for channel
* widths less than 80MHz.
* @tx_mcs_80: Tx MCS map 2 bits for each stream, total 8 streams, for channel
* widths less than 80MHz.
* @rx_mcs_160: Rx MCS map 2 bits for each stream, total 8 streams, for channel
* width 160MHz.
* @tx_mcs_160: Tx MCS map 2 bits for each stream, total 8 streams, for channel
* width 160MHz.
* @rx_mcs_80p80: Rx MCS map 2 bits for each stream, total 8 streams, for
* channel width 80p80MHz.
* @tx_mcs_80p80: Tx MCS map 2 bits for each stream, total 8 streams, for
* channel width 80p80MHz.
*/
struct ieee80211_he_mcs_nss_supp {
__le16 rx_mcs_80;
__le16 tx_mcs_80;
__le16 rx_mcs_160;
__le16 tx_mcs_160;
__le16 rx_mcs_80p80;
__le16 tx_mcs_80p80;
} __packed;
/**
* struct ieee80211_he_operation - HE capabilities element
*
* This structure is the "HE operation element" fields as
* described in P802.11ax_D4.0 section 9.4.2.243
*/
struct ieee80211_he_operation {
__le32 he_oper_params;
__le16 he_mcs_nss_set;
/* Optional 0,1,3,4,5,7 or 8 bytes: depends on @he_oper_params */
u8 optional[0];
} __packed;
/**
* struct ieee80211_he_mu_edca_param_ac_rec - MU AC Parameter Record field
*
* This structure is the "MU AC Parameter Record" fields as
* described in P802.11ax_D4.0 section 9.4.2.245
*/
struct ieee80211_he_mu_edca_param_ac_rec {
u8 aifsn;
u8 ecw_min_max;
u8 mu_edca_timer;
} __packed;
/**
* struct ieee80211_mu_edca_param_set - MU EDCA Parameter Set element
*
* This structure is the "MU EDCA Parameter Set element" fields as
* described in P802.11ax_D4.0 section 9.4.2.245
*/
struct ieee80211_mu_edca_param_set {
u8 mu_qos_info;
struct ieee80211_he_mu_edca_param_ac_rec ac_be;
struct ieee80211_he_mu_edca_param_ac_rec ac_bk;
struct ieee80211_he_mu_edca_param_ac_rec ac_vi;
struct ieee80211_he_mu_edca_param_ac_rec ac_vo;
} __packed;
/* 802.11ac VHT Capabilities */
#define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895 0x00000000
#define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991 0x00000001
#define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 0x00000002
#define IEEE80211_VHT_CAP_MAX_MPDU_MASK 0x00000003
#define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ 0x00000004
#define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ 0x00000008
#define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK 0x0000000C
#define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_SHIFT 2
#define IEEE80211_VHT_CAP_RXLDPC 0x00000010
#define IEEE80211_VHT_CAP_SHORT_GI_80 0x00000020
#define IEEE80211_VHT_CAP_SHORT_GI_160 0x00000040
#define IEEE80211_VHT_CAP_TXSTBC 0x00000080
#define IEEE80211_VHT_CAP_RXSTBC_1 0x00000100
#define IEEE80211_VHT_CAP_RXSTBC_2 0x00000200
#define IEEE80211_VHT_CAP_RXSTBC_3 0x00000300
#define IEEE80211_VHT_CAP_RXSTBC_4 0x00000400
#define IEEE80211_VHT_CAP_RXSTBC_MASK 0x00000700
#define IEEE80211_VHT_CAP_RXSTBC_SHIFT 8
#define IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE 0x00000800
#define IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE 0x00001000
#define IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT 13
#define IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK \
(7 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT)
#define IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT 16
#define IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK \
(7 << IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT)
#define IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE 0x00080000
#define IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE 0x00100000
#define IEEE80211_VHT_CAP_VHT_TXOP_PS 0x00200000
#define IEEE80211_VHT_CAP_HTC_VHT 0x00400000
#define IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT 23
#define IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK \
(7 << IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT)
#define IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_UNSOL_MFB 0x08000000
#define IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_MRQ_MFB 0x0c000000
#define IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN 0x10000000
#define IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN 0x20000000
#define IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT 30
#define IEEE80211_VHT_CAP_EXT_NSS_BW_MASK 0xc0000000
/**
* ieee80211_get_vht_max_nss - return max NSS for a given bandwidth/MCS
* @cap: VHT capabilities of the peer
* @bw: bandwidth to use
* @mcs: MCS index to use
* @ext_nss_bw_capable: indicates whether or not the local transmitter
* (rate scaling algorithm) can deal with the new logic
* (dot11VHTExtendedNSSBWCapable)
*
* Due to the VHT Extended NSS Bandwidth Support, the maximum NSS can
* vary for a given BW/MCS. This function parses the data.
*
* Note: This function is exported by cfg80211.
*/
int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
enum ieee80211_vht_chanwidth bw,
int mcs, bool ext_nss_bw_capable);
/* 802.11ax HE MAC capabilities */
#define IEEE80211_HE_MAC_CAP0_HTC_HE 0x01
#define IEEE80211_HE_MAC_CAP0_TWT_REQ 0x02
#define IEEE80211_HE_MAC_CAP0_TWT_RES 0x04
#define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_NOT_SUPP 0x00
#define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_1 0x08
#define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_2 0x10
#define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_3 0x18
#define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_MASK 0x18
#define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_1 0x00
#define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_2 0x20
#define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_4 0x40
#define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_8 0x60
#define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_16 0x80
#define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_32 0xa0
#define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_64 0xc0
#define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_UNLIMITED 0xe0
#define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_MASK 0xe0
#define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_UNLIMITED 0x00
#define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_128 0x01
#define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_256 0x02
#define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_512 0x03
#define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_MASK 0x03
#define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_0US 0x00
#define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_8US 0x04
#define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US 0x08
#define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_MASK 0x0c
#define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_1 0x00
#define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_2 0x10
#define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_3 0x20
#define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_4 0x30
#define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_5 0x40
#define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_6 0x50
#define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_7 0x60
#define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8 0x70
#define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_MASK 0x70
/* Link adaptation is split between byte HE_MAC_CAP1 and
* HE_MAC_CAP2. It should be set only if IEEE80211_HE_MAC_CAP0_HTC_HE
* in which case the following values apply:
* 0 = No feedback.
* 1 = reserved.
* 2 = Unsolicited feedback.
* 3 = both
*/
#define IEEE80211_HE_MAC_CAP1_LINK_ADAPTATION 0x80
#define IEEE80211_HE_MAC_CAP2_LINK_ADAPTATION 0x01
#define IEEE80211_HE_MAC_CAP2_ALL_ACK 0x02
#define IEEE80211_HE_MAC_CAP2_TRS 0x04
#define IEEE80211_HE_MAC_CAP2_BSR 0x08
#define IEEE80211_HE_MAC_CAP2_BCAST_TWT 0x10
#define IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP 0x20
#define IEEE80211_HE_MAC_CAP2_MU_CASCADING 0x40
#define IEEE80211_HE_MAC_CAP2_ACK_EN 0x80
#define IEEE80211_HE_MAC_CAP3_OMI_CONTROL 0x02
#define IEEE80211_HE_MAC_CAP3_OFDMA_RA 0x04
/* The maximum length of an A-MDPU is defined by the combination of the Maximum
* A-MDPU Length Exponent field in the HT capabilities, VHT capabilities and the
* same field in the HE capabilities.
*/
#define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_USE_VHT 0x00
#define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_1 0x08
#define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2 0x10
#define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_RESERVED 0x18
#define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_MASK 0x18
#define IEEE80211_HE_MAC_CAP3_AMSDU_FRAG 0x20
#define IEEE80211_HE_MAC_CAP3_FLEX_TWT_SCHED 0x40
#define IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS 0x80
#define IEEE80211_HE_MAC_CAP4_BSRP_BQRP_A_MPDU_AGG 0x01
#define IEEE80211_HE_MAC_CAP4_QTP 0x02
#define IEEE80211_HE_MAC_CAP4_BQR 0x04
#define IEEE80211_HE_MAC_CAP4_SRP_RESP 0x08
#define IEEE80211_HE_MAC_CAP4_NDP_FB_REP 0x10
#define IEEE80211_HE_MAC_CAP4_OPS 0x20
#define IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU 0x40
/* Multi TID agg TX is split between byte #4 and #5
* The value is a combination of B39,B40,B41
*/
#define IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39 0x80
#define IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 0x01
#define IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 0x02
#define IEEE80211_HE_MAC_CAP5_SUBCHAN_SELECVITE_TRANSMISSION 0x04
#define IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU 0x08
#define IEEE80211_HE_MAC_CAP5_OM_CTRL_UL_MU_DATA_DIS_RX 0x10
#define IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS 0x20
#define IEEE80211_HE_MAC_CAP5_PUNCTURED_SOUNDING 0x40
#define IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX 0x80
/* 802.11ax HE PHY capabilities */
#define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G 0x02
#define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G 0x04
#define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G 0x08
#define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G 0x10
#define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_2G 0x20
#define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_5G 0x40
#define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK 0xfe
#define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_20MHZ 0x01
#define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_40MHZ 0x02
#define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_20MHZ 0x04
#define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_40MHZ 0x08
#define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK 0x0f
#define IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A 0x10
#define IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD 0x20
#define IEEE80211_HE_PHY_CAP1_HE_LTF_AND_GI_FOR_HE_PPDUS_0_8US 0x40
/* Midamble RX/TX Max NSTS is split between byte #2 and byte #3 */
#define IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS 0x80
#define IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS 0x01
#define IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US 0x02
#define IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ 0x04
#define IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ 0x08
#define IEEE80211_HE_PHY_CAP2_DOPPLER_TX 0x10
#define IEEE80211_HE_PHY_CAP2_DOPPLER_RX 0x20
/* Note that the meaning of UL MU below is different between an AP and a non-AP
* sta, where in the AP case it indicates support for Rx and in the non-AP sta
* case it indicates support for Tx.
*/
#define IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO 0x40
#define IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO 0x80
#define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM 0x00
#define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK 0x01
#define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK 0x02
#define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_16_QAM 0x03
#define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_MASK 0x03
#define IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 0x00
#define IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_2 0x04
#define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM 0x00
#define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK 0x08
#define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK 0x10
#define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_16_QAM 0x18
#define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_MASK 0x18
#define IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1 0x00
#define IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_2 0x20
#define IEEE80211_HE_PHY_CAP3_RX_HE_MU_PPDU_FROM_NON_AP_STA 0x40
#define IEEE80211_HE_PHY_CAP3_SU_BEAMFORMER 0x80
#define IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE 0x01
#define IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER 0x02
/* Minimal allowed value of Max STS under 80MHz is 3 */
#define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_4 0x0c
#define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_5 0x10
#define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_6 0x14
#define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_7 0x18
#define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8 0x1c
#define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_MASK 0x1c
/* Minimal allowed value of Max STS above 80MHz is 3 */
#define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_4 0x60
#define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_5 0x80
#define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_6 0xa0
#define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_7 0xc0
#define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 0xe0
#define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_MASK 0xe0
#define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_1 0x00
#define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 0x01
#define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_3 0x02
#define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_4 0x03
#define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_5 0x04
#define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_6 0x05
#define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_7 0x06
#define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_8 0x07
#define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK 0x07
#define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_1 0x00
#define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2 0x08
#define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_3 0x10
#define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_4 0x18
#define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_5 0x20
#define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_6 0x28
#define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_7 0x30
#define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_8 0x38
#define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK 0x38
#define IEEE80211_HE_PHY_CAP5_NG16_SU_FEEDBACK 0x40
#define IEEE80211_HE_PHY_CAP5_NG16_MU_FEEDBACK 0x80
#define IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_42_SU 0x01
#define IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU 0x02
#define IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMER_FB 0x04
#define IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMER_FB 0x08
#define IEEE80211_HE_PHY_CAP6_TRIG_CQI_FB 0x10
#define IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE 0x20
#define IEEE80211_HE_PHY_CAP6_PARTIAL_BANDWIDTH_DL_MUMIMO 0x40
#define IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT 0x80
#define IEEE80211_HE_PHY_CAP7_SRP_BASED_SR 0x01
#define IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_AR 0x02
#define IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI 0x04
#define IEEE80211_HE_PHY_CAP7_MAX_NC_1 0x08
#define IEEE80211_HE_PHY_CAP7_MAX_NC_2 0x10
#define IEEE80211_HE_PHY_CAP7_MAX_NC_3 0x18
#define IEEE80211_HE_PHY_CAP7_MAX_NC_4 0x20
#define IEEE80211_HE_PHY_CAP7_MAX_NC_5 0x28
#define IEEE80211_HE_PHY_CAP7_MAX_NC_6 0x30
#define IEEE80211_HE_PHY_CAP7_MAX_NC_7 0x38
#define IEEE80211_HE_PHY_CAP7_MAX_NC_MASK 0x38
#define IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ 0x40
#define IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ 0x80
#define IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI 0x01
#define IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G 0x02
#define IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU 0x04
#define IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU 0x08
#define IEEE80211_HE_PHY_CAP8_HE_ER_SU_1XLTF_AND_08_US_GI 0x10
#define IEEE80211_HE_PHY_CAP8_MIDAMBLE_RX_TX_2X_AND_1XLTF 0x20
#define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242 0x00
#define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484 0x40
#define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_996 0x80
#define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996 0xc0
#define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK 0xc0
#define IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM 0x01
#define IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK 0x02
#define IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU 0x04
#define IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU 0x08
#define IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB 0x10
#define IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB 0x20
#define IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_0US 0x00
#define IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_8US 0x40
#define IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_16US 0x80
#define IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED 0xc0
#define IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_MASK 0xc0
/* 802.11ax HE TX/RX MCS NSS Support */
#define IEEE80211_TX_RX_MCS_NSS_SUPP_HIGHEST_MCS_POS (3)
#define IEEE80211_TX_RX_MCS_NSS_SUPP_TX_BITMAP_POS (6)
#define IEEE80211_TX_RX_MCS_NSS_SUPP_RX_BITMAP_POS (11)
#define IEEE80211_TX_RX_MCS_NSS_SUPP_TX_BITMAP_MASK 0x07c0
#define IEEE80211_TX_RX_MCS_NSS_SUPP_RX_BITMAP_MASK 0xf800
/* TX/RX HE MCS Support field Highest MCS subfield encoding */
enum ieee80211_he_highest_mcs_supported_subfield_enc {
HIGHEST_MCS_SUPPORTED_MCS7 = 0,
HIGHEST_MCS_SUPPORTED_MCS8,
HIGHEST_MCS_SUPPORTED_MCS9,
HIGHEST_MCS_SUPPORTED_MCS10,
HIGHEST_MCS_SUPPORTED_MCS11,
};
/* Calculate 802.11ax HE capabilities IE Tx/Rx HE MCS NSS Support Field size */
static inline u8
ieee80211_he_mcs_nss_size(const struct ieee80211_he_cap_elem *he_cap)
{
u8 count = 4;
if (he_cap->phy_cap_info[0] &
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G)
count += 4;
if (he_cap->phy_cap_info[0] &
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G)
count += 4;
return count;
}
/* 802.11ax HE PPE Thresholds */
#define IEEE80211_PPE_THRES_NSS_SUPPORT_2NSS (1)
#define IEEE80211_PPE_THRES_NSS_POS (0)
#define IEEE80211_PPE_THRES_NSS_MASK (7)
#define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_2x966_AND_966_RU \
(BIT(5) | BIT(6))
#define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK 0x78
#define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_POS (3)
#define IEEE80211_PPE_THRES_INFO_PPET_SIZE (3)
/*
* Calculate 802.11ax HE capabilities IE PPE field size
* Input: Header byte of ppe_thres (first byte), and HE capa IE's PHY cap u8*
*/
static inline u8
ieee80211_he_ppe_size(u8 ppe_thres_hdr, const u8 *phy_cap_info)
{
u8 n;
if ((phy_cap_info[6] &
IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0)
return 0;
n = hweight8(ppe_thres_hdr &
IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK);
n *= (1 + ((ppe_thres_hdr & IEEE80211_PPE_THRES_NSS_MASK) >>
IEEE80211_PPE_THRES_NSS_POS));
/*
* Each pair is 6 bits, and we need to add the 7 "header" bits to the
* total size.
*/
n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7;
n = DIV_ROUND_UP(n, 8);
return n;
}
/* HE Operation defines */
#define IEEE80211_HE_OPERATION_DFLT_PE_DURATION_MASK 0x00000003
#define IEEE80211_HE_OPERATION_TWT_REQUIRED 0x00000008
#define IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK 0x00003ff0
#define IEEE80211_HE_OPERATION_RTS_THRESHOLD_OFFSET 4
#define IEEE80211_HE_OPERATION_VHT_OPER_INFO 0x00004000
#define IEEE80211_HE_OPERATION_CO_HOSTED_BSS 0x00008000
#define IEEE80211_HE_OPERATION_ER_SU_DISABLE 0x00010000
#define IEEE80211_HE_OPERATION_6GHZ_OP_INFO 0x00020000
#define IEEE80211_HE_OPERATION_BSS_COLOR_MASK 0x3f000000
#define IEEE80211_HE_OPERATION_BSS_COLOR_OFFSET 24
#define IEEE80211_HE_OPERATION_PARTIAL_BSS_COLOR 0x40000000
#define IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED 0x80000000
/*
* ieee80211_he_oper_size - calculate 802.11ax HE Operations IE size
* @he_oper_ie: byte data of the He Operations IE, stating from the the byte
* after the ext ID byte. It is assumed that he_oper_ie has at least
* sizeof(struct ieee80211_he_operation) bytes, checked already in
* ieee802_11_parse_elems_crc()
* @return the actual size of the IE data (not including header), or 0 on error
*/
static inline u8
ieee80211_he_oper_size(const u8 *he_oper_ie)
{
struct ieee80211_he_operation *he_oper = (void *)he_oper_ie;
u8 oper_len = sizeof(struct ieee80211_he_operation);
u32 he_oper_params;
/* Make sure the input is not NULL */
if (!he_oper_ie)
return 0;
/* Calc required length */
he_oper_params = le32_to_cpu(he_oper->he_oper_params);
if (he_oper_params & IEEE80211_HE_OPERATION_VHT_OPER_INFO)
oper_len += 3;
if (he_oper_params & IEEE80211_HE_OPERATION_CO_HOSTED_BSS)
oper_len++;
if (he_oper_params & IEEE80211_HE_OPERATION_6GHZ_OP_INFO)
oper_len += 4;
/* Add the first byte (extension ID) to the total length */
oper_len++;
return oper_len;
}
/* Authentication algorithms */
#define WLAN_AUTH_OPEN 0
#define WLAN_AUTH_SHARED_KEY 1
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 19:39:22 +08:00
#define WLAN_AUTH_FT 2
#define WLAN_AUTH_SAE 3
#define WLAN_AUTH_FILS_SK 4
#define WLAN_AUTH_FILS_SK_PFS 5
#define WLAN_AUTH_FILS_PK 6
#define WLAN_AUTH_LEAP 128
#define WLAN_AUTH_CHALLENGE_LEN 128
#define WLAN_CAPABILITY_ESS (1<<0)
#define WLAN_CAPABILITY_IBSS (1<<1)
/*
* A mesh STA sets the ESS and IBSS capability bits to zero.
* however, this holds true for p2p probe responses (in the p2p_find
* phase) as well.
*/
#define WLAN_CAPABILITY_IS_STA_BSS(cap) \
(!((cap) & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS)))
#define WLAN_CAPABILITY_CF_POLLABLE (1<<2)
#define WLAN_CAPABILITY_CF_POLL_REQUEST (1<<3)
#define WLAN_CAPABILITY_PRIVACY (1<<4)
#define WLAN_CAPABILITY_SHORT_PREAMBLE (1<<5)
#define WLAN_CAPABILITY_PBCC (1<<6)
#define WLAN_CAPABILITY_CHANNEL_AGILITY (1<<7)
/* 802.11h */
#define WLAN_CAPABILITY_SPECTRUM_MGMT (1<<8)
#define WLAN_CAPABILITY_QOS (1<<9)
#define WLAN_CAPABILITY_SHORT_SLOT_TIME (1<<10)
#define WLAN_CAPABILITY_APSD (1<<11)
#define WLAN_CAPABILITY_RADIO_MEASURE (1<<12)
#define WLAN_CAPABILITY_DSSS_OFDM (1<<13)
#define WLAN_CAPABILITY_DEL_BACK (1<<14)
#define WLAN_CAPABILITY_IMM_BACK (1<<15)
/* DMG (60gHz) 802.11ad */
/* type - bits 0..1 */
#define WLAN_CAPABILITY_DMG_TYPE_MASK (3<<0)
#define WLAN_CAPABILITY_DMG_TYPE_IBSS (1<<0) /* Tx by: STA */
#define WLAN_CAPABILITY_DMG_TYPE_PBSS (2<<0) /* Tx by: PCP */
#define WLAN_CAPABILITY_DMG_TYPE_AP (3<<0) /* Tx by: AP */
#define WLAN_CAPABILITY_DMG_CBAP_ONLY (1<<2)
#define WLAN_CAPABILITY_DMG_CBAP_SOURCE (1<<3)
#define WLAN_CAPABILITY_DMG_PRIVACY (1<<4)
#define WLAN_CAPABILITY_DMG_ECPAC (1<<5)
#define WLAN_CAPABILITY_DMG_SPECTRUM_MGMT (1<<8)
#define WLAN_CAPABILITY_DMG_RADIO_MEASURE (1<<12)
/* measurement */
#define IEEE80211_SPCT_MSR_RPRT_MODE_LATE (1<<0)
#define IEEE80211_SPCT_MSR_RPRT_MODE_INCAPABLE (1<<1)
#define IEEE80211_SPCT_MSR_RPRT_MODE_REFUSED (1<<2)
#define IEEE80211_SPCT_MSR_RPRT_TYPE_BASIC 0
#define IEEE80211_SPCT_MSR_RPRT_TYPE_CCA 1
#define IEEE80211_SPCT_MSR_RPRT_TYPE_RPI 2
#define IEEE80211_SPCT_MSR_RPRT_TYPE_LCI 8
#define IEEE80211_SPCT_MSR_RPRT_TYPE_CIVIC 11
/* 802.11g ERP information element */
#define WLAN_ERP_NON_ERP_PRESENT (1<<0)
#define WLAN_ERP_USE_PROTECTION (1<<1)
#define WLAN_ERP_BARKER_PREAMBLE (1<<2)
/* WLAN_ERP_BARKER_PREAMBLE values */
enum {
WLAN_ERP_PREAMBLE_SHORT = 0,
WLAN_ERP_PREAMBLE_LONG = 1,
};
/* Band ID, 802.11ad #8.4.1.45 */
enum {
IEEE80211_BANDID_TV_WS = 0, /* TV white spaces */
IEEE80211_BANDID_SUB1 = 1, /* Sub-1 GHz (excluding TV white spaces) */
IEEE80211_BANDID_2G = 2, /* 2.4 GHz */
IEEE80211_BANDID_3G = 3, /* 3.6 GHz */
IEEE80211_BANDID_5G = 4, /* 4.9 and 5 GHz */
IEEE80211_BANDID_60G = 5, /* 60 GHz */
};
/* Status codes */
enum ieee80211_statuscode {
WLAN_STATUS_SUCCESS = 0,
WLAN_STATUS_UNSPECIFIED_FAILURE = 1,
WLAN_STATUS_CAPS_UNSUPPORTED = 10,
WLAN_STATUS_REASSOC_NO_ASSOC = 11,
WLAN_STATUS_ASSOC_DENIED_UNSPEC = 12,
WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG = 13,
WLAN_STATUS_UNKNOWN_AUTH_TRANSACTION = 14,
WLAN_STATUS_CHALLENGE_FAIL = 15,
WLAN_STATUS_AUTH_TIMEOUT = 16,
WLAN_STATUS_AP_UNABLE_TO_HANDLE_NEW_STA = 17,
WLAN_STATUS_ASSOC_DENIED_RATES = 18,
/* 802.11b */
WLAN_STATUS_ASSOC_DENIED_NOSHORTPREAMBLE = 19,
WLAN_STATUS_ASSOC_DENIED_NOPBCC = 20,
WLAN_STATUS_ASSOC_DENIED_NOAGILITY = 21,
/* 802.11h */
WLAN_STATUS_ASSOC_DENIED_NOSPECTRUM = 22,
WLAN_STATUS_ASSOC_REJECTED_BAD_POWER = 23,
WLAN_STATUS_ASSOC_REJECTED_BAD_SUPP_CHAN = 24,
/* 802.11g */
WLAN_STATUS_ASSOC_DENIED_NOSHORTTIME = 25,
WLAN_STATUS_ASSOC_DENIED_NODSSSOFDM = 26,
/* 802.11w */
WLAN_STATUS_ASSOC_REJECTED_TEMPORARILY = 30,
WLAN_STATUS_ROBUST_MGMT_FRAME_POLICY_VIOLATION = 31,
/* 802.11i */
WLAN_STATUS_INVALID_IE = 40,
WLAN_STATUS_INVALID_GROUP_CIPHER = 41,
WLAN_STATUS_INVALID_PAIRWISE_CIPHER = 42,
WLAN_STATUS_INVALID_AKMP = 43,
WLAN_STATUS_UNSUPP_RSN_VERSION = 44,
WLAN_STATUS_INVALID_RSN_IE_CAP = 45,
WLAN_STATUS_CIPHER_SUITE_REJECTED = 46,
/* 802.11e */
WLAN_STATUS_UNSPECIFIED_QOS = 32,
WLAN_STATUS_ASSOC_DENIED_NOBANDWIDTH = 33,
WLAN_STATUS_ASSOC_DENIED_LOWACK = 34,
WLAN_STATUS_ASSOC_DENIED_UNSUPP_QOS = 35,
WLAN_STATUS_REQUEST_DECLINED = 37,
WLAN_STATUS_INVALID_QOS_PARAM = 38,
WLAN_STATUS_CHANGE_TSPEC = 39,
WLAN_STATUS_WAIT_TS_DELAY = 47,
WLAN_STATUS_NO_DIRECT_LINK = 48,
WLAN_STATUS_STA_NOT_PRESENT = 49,
WLAN_STATUS_STA_NOT_QSTA = 50,
/* 802.11s */
WLAN_STATUS_ANTI_CLOG_REQUIRED = 76,
WLAN_STATUS_FCG_NOT_SUPP = 78,
WLAN_STATUS_STA_NO_TBTT = 78,
/* 802.11ad */
WLAN_STATUS_REJECTED_WITH_SUGGESTED_CHANGES = 39,
WLAN_STATUS_REJECTED_FOR_DELAY_PERIOD = 47,
WLAN_STATUS_REJECT_WITH_SCHEDULE = 83,
WLAN_STATUS_PENDING_ADMITTING_FST_SESSION = 86,
WLAN_STATUS_PERFORMING_FST_NOW = 87,
WLAN_STATUS_PENDING_GAP_IN_BA_WINDOW = 88,
WLAN_STATUS_REJECT_U_PID_SETTING = 89,
WLAN_STATUS_REJECT_DSE_BAND = 96,
WLAN_STATUS_DENIED_WITH_SUGGESTED_BAND_AND_CHANNEL = 99,
WLAN_STATUS_DENIED_DUE_TO_SPECTRUM_MANAGEMENT = 103,
/* 802.11ai */
WLAN_STATUS_FILS_AUTHENTICATION_FAILURE = 108,
WLAN_STATUS_UNKNOWN_AUTHENTICATION_SERVER = 109,
};
/* Reason codes */
enum ieee80211_reasoncode {
WLAN_REASON_UNSPECIFIED = 1,
WLAN_REASON_PREV_AUTH_NOT_VALID = 2,
WLAN_REASON_DEAUTH_LEAVING = 3,
WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY = 4,
WLAN_REASON_DISASSOC_AP_BUSY = 5,
WLAN_REASON_CLASS2_FRAME_FROM_NONAUTH_STA = 6,
WLAN_REASON_CLASS3_FRAME_FROM_NONASSOC_STA = 7,
WLAN_REASON_DISASSOC_STA_HAS_LEFT = 8,
WLAN_REASON_STA_REQ_ASSOC_WITHOUT_AUTH = 9,
/* 802.11h */
WLAN_REASON_DISASSOC_BAD_POWER = 10,
WLAN_REASON_DISASSOC_BAD_SUPP_CHAN = 11,
/* 802.11i */
WLAN_REASON_INVALID_IE = 13,
WLAN_REASON_MIC_FAILURE = 14,
WLAN_REASON_4WAY_HANDSHAKE_TIMEOUT = 15,
WLAN_REASON_GROUP_KEY_HANDSHAKE_TIMEOUT = 16,
WLAN_REASON_IE_DIFFERENT = 17,
WLAN_REASON_INVALID_GROUP_CIPHER = 18,
WLAN_REASON_INVALID_PAIRWISE_CIPHER = 19,
WLAN_REASON_INVALID_AKMP = 20,
WLAN_REASON_UNSUPP_RSN_VERSION = 21,
WLAN_REASON_INVALID_RSN_IE_CAP = 22,
WLAN_REASON_IEEE8021X_FAILED = 23,
WLAN_REASON_CIPHER_SUITE_REJECTED = 24,
/* TDLS (802.11z) */
WLAN_REASON_TDLS_TEARDOWN_UNREACHABLE = 25,
WLAN_REASON_TDLS_TEARDOWN_UNSPECIFIED = 26,
/* 802.11e */
WLAN_REASON_DISASSOC_UNSPECIFIED_QOS = 32,
WLAN_REASON_DISASSOC_QAP_NO_BANDWIDTH = 33,
WLAN_REASON_DISASSOC_LOW_ACK = 34,
WLAN_REASON_DISASSOC_QAP_EXCEED_TXOP = 35,
WLAN_REASON_QSTA_LEAVE_QBSS = 36,
WLAN_REASON_QSTA_NOT_USE = 37,
WLAN_REASON_QSTA_REQUIRE_SETUP = 38,
WLAN_REASON_QSTA_TIMEOUT = 39,
WLAN_REASON_QSTA_CIPHER_NOT_SUPP = 45,
/* 802.11s */
WLAN_REASON_MESH_PEER_CANCELED = 52,
WLAN_REASON_MESH_MAX_PEERS = 53,
WLAN_REASON_MESH_CONFIG = 54,
WLAN_REASON_MESH_CLOSE = 55,
WLAN_REASON_MESH_MAX_RETRIES = 56,
WLAN_REASON_MESH_CONFIRM_TIMEOUT = 57,
WLAN_REASON_MESH_INVALID_GTK = 58,
WLAN_REASON_MESH_INCONSISTENT_PARAM = 59,
WLAN_REASON_MESH_INVALID_SECURITY = 60,
WLAN_REASON_MESH_PATH_ERROR = 61,
WLAN_REASON_MESH_PATH_NOFORWARD = 62,
WLAN_REASON_MESH_PATH_DEST_UNREACHABLE = 63,
WLAN_REASON_MAC_EXISTS_IN_MBSS = 64,
WLAN_REASON_MESH_CHAN_REGULATORY = 65,
WLAN_REASON_MESH_CHAN = 66,
};
/* Information Element IDs */
enum ieee80211_eid {
WLAN_EID_SSID = 0,
WLAN_EID_SUPP_RATES = 1,
WLAN_EID_FH_PARAMS = 2, /* reserved now */
WLAN_EID_DS_PARAMS = 3,
WLAN_EID_CF_PARAMS = 4,
WLAN_EID_TIM = 5,
WLAN_EID_IBSS_PARAMS = 6,
WLAN_EID_COUNTRY = 7,
/* 8, 9 reserved */
WLAN_EID_REQUEST = 10,
WLAN_EID_QBSS_LOAD = 11,
WLAN_EID_EDCA_PARAM_SET = 12,
WLAN_EID_TSPEC = 13,
WLAN_EID_TCLAS = 14,
WLAN_EID_SCHEDULE = 15,
WLAN_EID_CHALLENGE = 16,
/* 17-31 reserved for challenge text extension */
WLAN_EID_PWR_CONSTRAINT = 32,
WLAN_EID_PWR_CAPABILITY = 33,
WLAN_EID_TPC_REQUEST = 34,
WLAN_EID_TPC_REPORT = 35,
WLAN_EID_SUPPORTED_CHANNELS = 36,
WLAN_EID_CHANNEL_SWITCH = 37,
WLAN_EID_MEASURE_REQUEST = 38,
WLAN_EID_MEASURE_REPORT = 39,
WLAN_EID_QUIET = 40,
WLAN_EID_IBSS_DFS = 41,
WLAN_EID_ERP_INFO = 42,
WLAN_EID_TS_DELAY = 43,
WLAN_EID_TCLAS_PROCESSING = 44,
WLAN_EID_HT_CAPABILITY = 45,
WLAN_EID_QOS_CAPA = 46,
/* 47 reserved for Broadcom */
WLAN_EID_RSN = 48,
WLAN_EID_802_15_COEX = 49,
WLAN_EID_EXT_SUPP_RATES = 50,
WLAN_EID_AP_CHAN_REPORT = 51,
WLAN_EID_NEIGHBOR_REPORT = 52,
WLAN_EID_RCPI = 53,
WLAN_EID_MOBILITY_DOMAIN = 54,
WLAN_EID_FAST_BSS_TRANSITION = 55,
WLAN_EID_TIMEOUT_INTERVAL = 56,
WLAN_EID_RIC_DATA = 57,
WLAN_EID_DSE_REGISTERED_LOCATION = 58,
WLAN_EID_SUPPORTED_REGULATORY_CLASSES = 59,
WLAN_EID_EXT_CHANSWITCH_ANN = 60,
WLAN_EID_HT_OPERATION = 61,
WLAN_EID_SECONDARY_CHANNEL_OFFSET = 62,
WLAN_EID_BSS_AVG_ACCESS_DELAY = 63,
WLAN_EID_ANTENNA_INFO = 64,
WLAN_EID_RSNI = 65,
WLAN_EID_MEASUREMENT_PILOT_TX_INFO = 66,
WLAN_EID_BSS_AVAILABLE_CAPACITY = 67,
WLAN_EID_BSS_AC_ACCESS_DELAY = 68,
WLAN_EID_TIME_ADVERTISEMENT = 69,
WLAN_EID_RRM_ENABLED_CAPABILITIES = 70,
WLAN_EID_MULTIPLE_BSSID = 71,
WLAN_EID_BSS_COEX_2040 = 72,
WLAN_EID_BSS_INTOLERANT_CHL_REPORT = 73,
WLAN_EID_OVERLAP_BSS_SCAN_PARAM = 74,
WLAN_EID_RIC_DESCRIPTOR = 75,
WLAN_EID_MMIE = 76,
WLAN_EID_ASSOC_COMEBACK_TIME = 77,
WLAN_EID_EVENT_REQUEST = 78,
WLAN_EID_EVENT_REPORT = 79,
WLAN_EID_DIAGNOSTIC_REQUEST = 80,
WLAN_EID_DIAGNOSTIC_REPORT = 81,
WLAN_EID_LOCATION_PARAMS = 82,
WLAN_EID_NON_TX_BSSID_CAP = 83,
WLAN_EID_SSID_LIST = 84,
WLAN_EID_MULTI_BSSID_IDX = 85,
WLAN_EID_FMS_DESCRIPTOR = 86,
WLAN_EID_FMS_REQUEST = 87,
WLAN_EID_FMS_RESPONSE = 88,
WLAN_EID_QOS_TRAFFIC_CAPA = 89,
WLAN_EID_BSS_MAX_IDLE_PERIOD = 90,
WLAN_EID_TSF_REQUEST = 91,
WLAN_EID_TSF_RESPOSNE = 92,
WLAN_EID_WNM_SLEEP_MODE = 93,
WLAN_EID_TIM_BCAST_REQ = 94,
WLAN_EID_TIM_BCAST_RESP = 95,
WLAN_EID_COLL_IF_REPORT = 96,
WLAN_EID_CHANNEL_USAGE = 97,
WLAN_EID_TIME_ZONE = 98,
WLAN_EID_DMS_REQUEST = 99,
WLAN_EID_DMS_RESPONSE = 100,
WLAN_EID_LINK_ID = 101,
WLAN_EID_WAKEUP_SCHEDUL = 102,
/* 103 reserved */
WLAN_EID_CHAN_SWITCH_TIMING = 104,
WLAN_EID_PTI_CONTROL = 105,
WLAN_EID_PU_BUFFER_STATUS = 106,
WLAN_EID_INTERWORKING = 107,
WLAN_EID_ADVERTISEMENT_PROTOCOL = 108,
WLAN_EID_EXPEDITED_BW_REQ = 109,
WLAN_EID_QOS_MAP_SET = 110,
WLAN_EID_ROAMING_CONSORTIUM = 111,
WLAN_EID_EMERGENCY_ALERT = 112,
WLAN_EID_MESH_CONFIG = 113,
WLAN_EID_MESH_ID = 114,
WLAN_EID_LINK_METRIC_REPORT = 115,
WLAN_EID_CONGESTION_NOTIFICATION = 116,
WLAN_EID_PEER_MGMT = 117,
WLAN_EID_CHAN_SWITCH_PARAM = 118,
WLAN_EID_MESH_AWAKE_WINDOW = 119,
WLAN_EID_BEACON_TIMING = 120,
WLAN_EID_MCCAOP_SETUP_REQ = 121,
WLAN_EID_MCCAOP_SETUP_RESP = 122,
WLAN_EID_MCCAOP_ADVERT = 123,
WLAN_EID_MCCAOP_TEARDOWN = 124,
WLAN_EID_GANN = 125,
WLAN_EID_RANN = 126,
WLAN_EID_EXT_CAPABILITY = 127,
/* 128, 129 reserved for Agere */
WLAN_EID_PREQ = 130,
WLAN_EID_PREP = 131,
WLAN_EID_PERR = 132,
/* 133-136 reserved for Cisco */
WLAN_EID_PXU = 137,
WLAN_EID_PXUC = 138,
WLAN_EID_AUTH_MESH_PEER_EXCH = 139,
WLAN_EID_MIC = 140,
WLAN_EID_DESTINATION_URI = 141,
WLAN_EID_UAPSD_COEX = 142,
WLAN_EID_WAKEUP_SCHEDULE = 143,
WLAN_EID_EXT_SCHEDULE = 144,
WLAN_EID_STA_AVAILABILITY = 145,
WLAN_EID_DMG_TSPEC = 146,
WLAN_EID_DMG_AT = 147,
WLAN_EID_DMG_CAP = 148,
/* 149 reserved for Cisco */
WLAN_EID_CISCO_VENDOR_SPECIFIC = 150,
WLAN_EID_DMG_OPERATION = 151,
WLAN_EID_DMG_BSS_PARAM_CHANGE = 152,
WLAN_EID_DMG_BEAM_REFINEMENT = 153,
WLAN_EID_CHANNEL_MEASURE_FEEDBACK = 154,
/* 155-156 reserved for Cisco */
WLAN_EID_AWAKE_WINDOW = 157,
WLAN_EID_MULTI_BAND = 158,
WLAN_EID_ADDBA_EXT = 159,
WLAN_EID_NEXT_PCP_LIST = 160,
WLAN_EID_PCP_HANDOVER = 161,
WLAN_EID_DMG_LINK_MARGIN = 162,
WLAN_EID_SWITCHING_STREAM = 163,
WLAN_EID_SESSION_TRANSITION = 164,
WLAN_EID_DYN_TONE_PAIRING_REPORT = 165,
WLAN_EID_CLUSTER_REPORT = 166,
WLAN_EID_RELAY_CAP = 167,
WLAN_EID_RELAY_XFER_PARAM_SET = 168,
WLAN_EID_BEAM_LINK_MAINT = 169,
WLAN_EID_MULTIPLE_MAC_ADDR = 170,
WLAN_EID_U_PID = 171,
WLAN_EID_DMG_LINK_ADAPT_ACK = 172,
/* 173 reserved for Symbol */
WLAN_EID_MCCAOP_ADV_OVERVIEW = 174,
WLAN_EID_QUIET_PERIOD_REQ = 175,
/* 176 reserved for Symbol */
WLAN_EID_QUIET_PERIOD_RESP = 177,
/* 178-179 reserved for Symbol */
/* 180 reserved for ISO/IEC 20011 */
WLAN_EID_EPAC_POLICY = 182,
WLAN_EID_CLISTER_TIME_OFF = 183,
WLAN_EID_INTER_AC_PRIO = 184,
WLAN_EID_SCS_DESCRIPTOR = 185,
WLAN_EID_QLOAD_REPORT = 186,
WLAN_EID_HCCA_TXOP_UPDATE_COUNT = 187,
WLAN_EID_HL_STREAM_ID = 188,
WLAN_EID_GCR_GROUP_ADDR = 189,
WLAN_EID_ANTENNA_SECTOR_ID_PATTERN = 190,
WLAN_EID_VHT_CAPABILITY = 191,
WLAN_EID_VHT_OPERATION = 192,
WLAN_EID_EXTENDED_BSS_LOAD = 193,
WLAN_EID_WIDE_BW_CHANNEL_SWITCH = 194,
WLAN_EID_VHT_TX_POWER_ENVELOPE = 195,
WLAN_EID_CHANNEL_SWITCH_WRAPPER = 196,
WLAN_EID_AID = 197,
WLAN_EID_QUIET_CHANNEL = 198,
WLAN_EID_OPMODE_NOTIF = 199,
WLAN_EID_VENDOR_SPECIFIC = 221,
WLAN_EID_QOS_PARAMETER = 222,
WLAN_EID_CAG_NUMBER = 237,
WLAN_EID_AP_CSN = 239,
WLAN_EID_FILS_INDICATION = 240,
WLAN_EID_DILS = 241,
WLAN_EID_FRAGMENT = 242,
WLAN_EID_EXTENSION = 255
};
/* Element ID Extensions for Element ID 255 */
enum ieee80211_eid_ext {
WLAN_EID_EXT_ASSOC_DELAY_INFO = 1,
WLAN_EID_EXT_FILS_REQ_PARAMS = 2,
WLAN_EID_EXT_FILS_KEY_CONFIRM = 3,
WLAN_EID_EXT_FILS_SESSION = 4,
WLAN_EID_EXT_FILS_HLP_CONTAINER = 5,
WLAN_EID_EXT_FILS_IP_ADDR_ASSIGN = 6,
WLAN_EID_EXT_KEY_DELIVERY = 7,
WLAN_EID_EXT_FILS_WRAPPED_DATA = 8,
WLAN_EID_EXT_FILS_PUBLIC_KEY = 12,
WLAN_EID_EXT_FILS_NONCE = 13,
WLAN_EID_EXT_FUTURE_CHAN_GUIDANCE = 14,
WLAN_EID_EXT_HE_CAPABILITY = 35,
WLAN_EID_EXT_HE_OPERATION = 36,
WLAN_EID_EXT_UORA = 37,
WLAN_EID_EXT_HE_MU_EDCA = 38,
WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME = 52,
WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION = 55,
WLAN_EID_EXT_NON_INHERITANCE = 56,
};
/* Action category code */
enum ieee80211_category {
WLAN_CATEGORY_SPECTRUM_MGMT = 0,
WLAN_CATEGORY_QOS = 1,
WLAN_CATEGORY_DLS = 2,
WLAN_CATEGORY_BACK = 3,
WLAN_CATEGORY_PUBLIC = 4,
WLAN_CATEGORY_RADIO_MEASUREMENT = 5,
WLAN_CATEGORY_HT = 7,
WLAN_CATEGORY_SA_QUERY = 8,
WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION = 9,
WLAN_CATEGORY_WNM = 10,
WLAN_CATEGORY_WNM_UNPROTECTED = 11,
WLAN_CATEGORY_TDLS = 12,
WLAN_CATEGORY_MESH_ACTION = 13,
WLAN_CATEGORY_MULTIHOP_ACTION = 14,
WLAN_CATEGORY_SELF_PROTECTED = 15,
WLAN_CATEGORY_DMG = 16,
WLAN_CATEGORY_WMM = 17,
WLAN_CATEGORY_FST = 18,
WLAN_CATEGORY_UNPROT_DMG = 20,
WLAN_CATEGORY_VHT = 21,
WLAN_CATEGORY_VENDOR_SPECIFIC_PROTECTED = 126,
WLAN_CATEGORY_VENDOR_SPECIFIC = 127,
};
/* SPECTRUM_MGMT action code */
enum ieee80211_spectrum_mgmt_actioncode {
WLAN_ACTION_SPCT_MSR_REQ = 0,
WLAN_ACTION_SPCT_MSR_RPRT = 1,
WLAN_ACTION_SPCT_TPC_REQ = 2,
WLAN_ACTION_SPCT_TPC_RPRT = 3,
WLAN_ACTION_SPCT_CHL_SWITCH = 4,
};
/* HT action codes */
enum ieee80211_ht_actioncode {
WLAN_HT_ACTION_NOTIFY_CHANWIDTH = 0,
WLAN_HT_ACTION_SMPS = 1,
WLAN_HT_ACTION_PSMP = 2,
WLAN_HT_ACTION_PCO_PHASE = 3,
WLAN_HT_ACTION_CSI = 4,
WLAN_HT_ACTION_NONCOMPRESSED_BF = 5,
WLAN_HT_ACTION_COMPRESSED_BF = 6,
WLAN_HT_ACTION_ASEL_IDX_FEEDBACK = 7,
};
/* VHT action codes */
enum ieee80211_vht_actioncode {
WLAN_VHT_ACTION_COMPRESSED_BF = 0,
WLAN_VHT_ACTION_GROUPID_MGMT = 1,
WLAN_VHT_ACTION_OPMODE_NOTIF = 2,
};
/* Self Protected Action codes */
enum ieee80211_self_protected_actioncode {
WLAN_SP_RESERVED = 0,
WLAN_SP_MESH_PEERING_OPEN = 1,
WLAN_SP_MESH_PEERING_CONFIRM = 2,
WLAN_SP_MESH_PEERING_CLOSE = 3,
WLAN_SP_MGK_INFORM = 4,
WLAN_SP_MGK_ACK = 5,
};
/* Mesh action codes */
enum ieee80211_mesh_actioncode {
WLAN_MESH_ACTION_LINK_METRIC_REPORT,
WLAN_MESH_ACTION_HWMP_PATH_SELECTION,
WLAN_MESH_ACTION_GATE_ANNOUNCEMENT,
WLAN_MESH_ACTION_CONGESTION_CONTROL_NOTIFICATION,
WLAN_MESH_ACTION_MCCA_SETUP_REQUEST,
WLAN_MESH_ACTION_MCCA_SETUP_REPLY,
WLAN_MESH_ACTION_MCCA_ADVERTISEMENT_REQUEST,
WLAN_MESH_ACTION_MCCA_ADVERTISEMENT,
WLAN_MESH_ACTION_MCCA_TEARDOWN,
WLAN_MESH_ACTION_TBTT_ADJUSTMENT_REQUEST,
WLAN_MESH_ACTION_TBTT_ADJUSTMENT_RESPONSE,
};
/* Security key length */
enum ieee80211_key_len {
WLAN_KEY_LEN_WEP40 = 5,
WLAN_KEY_LEN_WEP104 = 13,
WLAN_KEY_LEN_CCMP = 16,
WLAN_KEY_LEN_CCMP_256 = 32,
WLAN_KEY_LEN_TKIP = 32,
WLAN_KEY_LEN_AES_CMAC = 16,
WLAN_KEY_LEN_SMS4 = 32,
WLAN_KEY_LEN_GCMP = 16,
WLAN_KEY_LEN_GCMP_256 = 32,
WLAN_KEY_LEN_BIP_CMAC_256 = 32,
WLAN_KEY_LEN_BIP_GMAC_128 = 16,
WLAN_KEY_LEN_BIP_GMAC_256 = 32,
};
#define IEEE80211_WEP_IV_LEN 4
#define IEEE80211_WEP_ICV_LEN 4
#define IEEE80211_CCMP_HDR_LEN 8
#define IEEE80211_CCMP_MIC_LEN 8
#define IEEE80211_CCMP_PN_LEN 6
#define IEEE80211_CCMP_256_HDR_LEN 8
#define IEEE80211_CCMP_256_MIC_LEN 16
#define IEEE80211_CCMP_256_PN_LEN 6
#define IEEE80211_TKIP_IV_LEN 8
#define IEEE80211_TKIP_ICV_LEN 4
#define IEEE80211_CMAC_PN_LEN 6
#define IEEE80211_GMAC_PN_LEN 6
#define IEEE80211_GCMP_HDR_LEN 8
#define IEEE80211_GCMP_MIC_LEN 16
#define IEEE80211_GCMP_PN_LEN 6
#define FILS_NONCE_LEN 16
#define FILS_MAX_KEK_LEN 64
#define FILS_ERP_MAX_USERNAME_LEN 16
#define FILS_ERP_MAX_REALM_LEN 253
#define FILS_ERP_MAX_RRK_LEN 64
#define PMK_MAX_LEN 64
#define SAE_PASSWORD_MAX_LEN 128
/* Public action codes (IEEE Std 802.11-2016, 9.6.8.1, Table 9-307) */
enum ieee80211_pub_actioncode {
WLAN_PUB_ACTION_20_40_BSS_COEX = 0,
WLAN_PUB_ACTION_DSE_ENABLEMENT = 1,
WLAN_PUB_ACTION_DSE_DEENABLEMENT = 2,
WLAN_PUB_ACTION_DSE_REG_LOC_ANN = 3,
WLAN_PUB_ACTION_EXT_CHANSW_ANN = 4,
WLAN_PUB_ACTION_DSE_MSMT_REQ = 5,
WLAN_PUB_ACTION_DSE_MSMT_RESP = 6,
WLAN_PUB_ACTION_MSMT_PILOT = 7,
WLAN_PUB_ACTION_DSE_PC = 8,
WLAN_PUB_ACTION_VENDOR_SPECIFIC = 9,
WLAN_PUB_ACTION_GAS_INITIAL_REQ = 10,
WLAN_PUB_ACTION_GAS_INITIAL_RESP = 11,
WLAN_PUB_ACTION_GAS_COMEBACK_REQ = 12,
WLAN_PUB_ACTION_GAS_COMEBACK_RESP = 13,
WLAN_PUB_ACTION_TDLS_DISCOVER_RES = 14,
WLAN_PUB_ACTION_LOC_TRACK_NOTI = 15,
WLAN_PUB_ACTION_QAB_REQUEST_FRAME = 16,
WLAN_PUB_ACTION_QAB_RESPONSE_FRAME = 17,
WLAN_PUB_ACTION_QMF_POLICY = 18,
WLAN_PUB_ACTION_QMF_POLICY_CHANGE = 19,
WLAN_PUB_ACTION_QLOAD_REQUEST = 20,
WLAN_PUB_ACTION_QLOAD_REPORT = 21,
WLAN_PUB_ACTION_HCCA_TXOP_ADVERT = 22,
WLAN_PUB_ACTION_HCCA_TXOP_RESPONSE = 23,
WLAN_PUB_ACTION_PUBLIC_KEY = 24,
WLAN_PUB_ACTION_CHANNEL_AVAIL_QUERY = 25,
WLAN_PUB_ACTION_CHANNEL_SCHEDULE_MGMT = 26,
WLAN_PUB_ACTION_CONTACT_VERI_SIGNAL = 27,
WLAN_PUB_ACTION_GDD_ENABLEMENT_REQ = 28,
WLAN_PUB_ACTION_GDD_ENABLEMENT_RESP = 29,
WLAN_PUB_ACTION_NETWORK_CHANNEL_CONTROL = 30,
WLAN_PUB_ACTION_WHITE_SPACE_MAP_ANN = 31,
WLAN_PUB_ACTION_FTM_REQUEST = 32,
WLAN_PUB_ACTION_FTM = 33,
WLAN_PUB_ACTION_FILS_DISCOVERY = 34,
};
/* TDLS action codes */
enum ieee80211_tdls_actioncode {
WLAN_TDLS_SETUP_REQUEST = 0,
WLAN_TDLS_SETUP_RESPONSE = 1,
WLAN_TDLS_SETUP_CONFIRM = 2,
WLAN_TDLS_TEARDOWN = 3,
WLAN_TDLS_PEER_TRAFFIC_INDICATION = 4,
WLAN_TDLS_CHANNEL_SWITCH_REQUEST = 5,
WLAN_TDLS_CHANNEL_SWITCH_RESPONSE = 6,
WLAN_TDLS_PEER_PSM_REQUEST = 7,
WLAN_TDLS_PEER_PSM_RESPONSE = 8,
WLAN_TDLS_PEER_TRAFFIC_RESPONSE = 9,
WLAN_TDLS_DISCOVERY_REQUEST = 10,
};
/* Extended Channel Switching capability to be set in the 1st byte of
* the @WLAN_EID_EXT_CAPABILITY information element
*/
#define WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING BIT(2)
/* Multiple BSSID capability is set in the 6th bit of 3rd byte of the
* @WLAN_EID_EXT_CAPABILITY information element
*/
#define WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT BIT(6)
/* TDLS capabilities in the the 4th byte of @WLAN_EID_EXT_CAPABILITY */
#define WLAN_EXT_CAPA4_TDLS_BUFFER_STA BIT(4)
#define WLAN_EXT_CAPA4_TDLS_PEER_PSM BIT(5)
#define WLAN_EXT_CAPA4_TDLS_CHAN_SWITCH BIT(6)
/* Interworking capabilities are set in 7th bit of 4th byte of the
* @WLAN_EID_EXT_CAPABILITY information element
*/
#define WLAN_EXT_CAPA4_INTERWORKING_ENABLED BIT(7)
/*
* TDLS capabililites to be enabled in the 5th byte of the
* @WLAN_EID_EXT_CAPABILITY information element
*/
#define WLAN_EXT_CAPA5_TDLS_ENABLED BIT(5)
#define WLAN_EXT_CAPA5_TDLS_PROHIBITED BIT(6)
#define WLAN_EXT_CAPA5_TDLS_CH_SW_PROHIBITED BIT(7)
#define WLAN_EXT_CAPA8_TDLS_WIDE_BW_ENABLED BIT(5)
#define WLAN_EXT_CAPA8_OPMODE_NOTIF BIT(6)
/* Defines the maximal number of MSDUs in an A-MSDU. */
#define WLAN_EXT_CAPA8_MAX_MSDU_IN_AMSDU_LSB BIT(7)
#define WLAN_EXT_CAPA9_MAX_MSDU_IN_AMSDU_MSB BIT(0)
/*
* Fine Timing Measurement Initiator - bit 71 of @WLAN_EID_EXT_CAPABILITY
* information element
*/
#define WLAN_EXT_CAPA9_FTM_INITIATOR BIT(7)
/* Defines support for TWT Requester and TWT Responder */
#define WLAN_EXT_CAPA10_TWT_REQUESTER_SUPPORT BIT(5)
#define WLAN_EXT_CAPA10_TWT_RESPONDER_SUPPORT BIT(6)
/*
* When set, indicates that the AP is able to tolerate 26-tone RU UL
* OFDMA transmissions using HE TB PPDU from OBSS (not falsely classify the
* 26-tone RU UL OFDMA transmissions as radar pulses).
*/
#define WLAN_EXT_CAPA10_OBSS_NARROW_BW_RU_TOLERANCE_SUPPORT BIT(7)
/* Defines support for enhanced multi-bssid advertisement*/
#define WLAN_EXT_CAPA11_EMA_SUPPORT BIT(1)
/* TDLS specific payload type in the LLC/SNAP header */
#define WLAN_TDLS_SNAP_RFTYPE 0x2
/* BSS Coex IE information field bits */
#define WLAN_BSS_COEX_INFORMATION_REQUEST BIT(0)
/**
* enum ieee80211_mesh_sync_method - mesh synchronization method identifier
*
* @IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET: the default synchronization method
* @IEEE80211_SYNC_METHOD_VENDOR: a vendor specific synchronization method
* that will be specified in a vendor specific information element
*/
enum ieee80211_mesh_sync_method {
IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET = 1,
IEEE80211_SYNC_METHOD_VENDOR = 255,
};
/**
* enum ieee80211_mesh_path_protocol - mesh path selection protocol identifier
*
* @IEEE80211_PATH_PROTOCOL_HWMP: the default path selection protocol
* @IEEE80211_PATH_PROTOCOL_VENDOR: a vendor specific protocol that will
* be specified in a vendor specific information element
*/
enum ieee80211_mesh_path_protocol {
IEEE80211_PATH_PROTOCOL_HWMP = 1,
IEEE80211_PATH_PROTOCOL_VENDOR = 255,
};
/**
* enum ieee80211_mesh_path_metric - mesh path selection metric identifier
*
* @IEEE80211_PATH_METRIC_AIRTIME: the default path selection metric
* @IEEE80211_PATH_METRIC_VENDOR: a vendor specific metric that will be
* specified in a vendor specific information element
*/
enum ieee80211_mesh_path_metric {
IEEE80211_PATH_METRIC_AIRTIME = 1,
IEEE80211_PATH_METRIC_VENDOR = 255,
};
/**
* enum ieee80211_root_mode_identifier - root mesh STA mode identifier
*
* These attribute are used by dot11MeshHWMPRootMode to set root mesh STA mode
*
* @IEEE80211_ROOTMODE_NO_ROOT: the mesh STA is not a root mesh STA (default)
* @IEEE80211_ROOTMODE_ROOT: the mesh STA is a root mesh STA if greater than
* this value
* @IEEE80211_PROACTIVE_PREQ_NO_PREP: the mesh STA is a root mesh STA supports
* the proactive PREQ with proactive PREP subfield set to 0
* @IEEE80211_PROACTIVE_PREQ_WITH_PREP: the mesh STA is a root mesh STA
* supports the proactive PREQ with proactive PREP subfield set to 1
* @IEEE80211_PROACTIVE_RANN: the mesh STA is a root mesh STA supports
* the proactive RANN
*/
enum ieee80211_root_mode_identifier {
IEEE80211_ROOTMODE_NO_ROOT = 0,
IEEE80211_ROOTMODE_ROOT = 1,
IEEE80211_PROACTIVE_PREQ_NO_PREP = 2,
IEEE80211_PROACTIVE_PREQ_WITH_PREP = 3,
IEEE80211_PROACTIVE_RANN = 4,
};
/*
* IEEE 802.11-2007 7.3.2.9 Country information element
*
* Minimum length is 8 octets, ie len must be evenly
* divisible by 2
*/
/* Although the spec says 8 I'm seeing 6 in practice */
#define IEEE80211_COUNTRY_IE_MIN_LEN 6
/* The Country String field of the element shall be 3 octets in length */
#define IEEE80211_COUNTRY_STRING_LEN 3
/*
* For regulatory extension stuff see IEEE 802.11-2007
* Annex I (page 1141) and Annex J (page 1147). Also
* review 7.3.2.9.
*
* When dot11RegulatoryClassesRequired is true and the
* first_channel/reg_extension_id is >= 201 then the IE
* compromises of the 'ext' struct represented below:
*
* - Regulatory extension ID - when generating IE this just needs
* to be monotonically increasing for each triplet passed in
* the IE
* - Regulatory class - index into set of rules
* - Coverage class - index into air propagation time (Table 7-27),
* in microseconds, you can compute the air propagation time from
* the index by multiplying by 3, so index 10 yields a propagation
* of 10 us. Valid values are 0-31, values 32-255 are not defined
* yet. A value of 0 inicates air propagation of <= 1 us.
*
* See also Table I.2 for Emission limit sets and table
* I.3 for Behavior limit sets. Table J.1 indicates how to map
* a reg_class to an emission limit set and behavior limit set.
*/
#define IEEE80211_COUNTRY_EXTENSION_ID 201
/*
* Channels numbers in the IE must be monotonically increasing
* if dot11RegulatoryClassesRequired is not true.
*
* If dot11RegulatoryClassesRequired is true consecutive
* subband triplets following a regulatory triplet shall
* have monotonically increasing first_channel number fields.
*
* Channel numbers shall not overlap.
*
* Note that max_power is signed.
*/
struct ieee80211_country_ie_triplet {
union {
struct {
u8 first_channel;
u8 num_channels;
s8 max_power;
} __packed chans;
struct {
u8 reg_extension_id;
u8 reg_class;
u8 coverage_class;
} __packed ext;
};
} __packed;
enum ieee80211_timeout_interval_type {
WLAN_TIMEOUT_REASSOC_DEADLINE = 1 /* 802.11r */,
WLAN_TIMEOUT_KEY_LIFETIME = 2 /* 802.11r */,
WLAN_TIMEOUT_ASSOC_COMEBACK = 3 /* 802.11w */,
};
/**
* struct ieee80211_timeout_interval_ie - Timeout Interval element
* @type: type, see &enum ieee80211_timeout_interval_type
* @value: timeout interval value
*/
struct ieee80211_timeout_interval_ie {
u8 type;
__le32 value;
} __packed;
/**
* enum ieee80211_idle_options - BSS idle options
* @WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE: the station should send an RSN
* protected frame to the AP to reset the idle timer at the AP for
* the station.
*/
enum ieee80211_idle_options {
WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE = BIT(0),
};
/**
* struct ieee80211_bss_max_idle_period_ie
*
* This structure refers to "BSS Max idle period element"
*
* @max_idle_period: indicates the time period during which a station can
* refrain from transmitting frames to its associated AP without being
* disassociated. In units of 1000 TUs.
* @idle_options: indicates the options associated with the BSS idle capability
* as specified in &enum ieee80211_idle_options.
*/
struct ieee80211_bss_max_idle_period_ie {
__le16 max_idle_period;
u8 idle_options;
} __packed;
/* BACK action code */
enum ieee80211_back_actioncode {
WLAN_ACTION_ADDBA_REQ = 0,
WLAN_ACTION_ADDBA_RESP = 1,
WLAN_ACTION_DELBA = 2,
};
/* BACK (block-ack) parties */
enum ieee80211_back_parties {
WLAN_BACK_RECIPIENT = 0,
WLAN_BACK_INITIATOR = 1,
};
/* SA Query action */
enum ieee80211_sa_query_action {
WLAN_ACTION_SA_QUERY_REQUEST = 0,
WLAN_ACTION_SA_QUERY_RESPONSE = 1,
};
/**
* struct ieee80211_bssid_index
*
* This structure refers to "Multiple BSSID-index element"
*
* @bssid_index: BSSID index
* @dtim_period: optional, overrides transmitted BSS dtim period
* @dtim_count: optional, overrides transmitted BSS dtim count
*/
struct ieee80211_bssid_index {
u8 bssid_index;
u8 dtim_period;
u8 dtim_count;
};
/**
* struct ieee80211_multiple_bssid_configuration
*
* This structure refers to "Multiple BSSID Configuration element"
*
* @bssid_count: total number of active BSSIDs in the set
* @profile_periodicity: the least number of beacon frames need to be received
* in order to discover all the nontransmitted BSSIDs in the set.
*/
struct ieee80211_multiple_bssid_configuration {
u8 bssid_count;
u8 profile_periodicity;
};
#define SUITE(oui, id) (((oui) << 8) | (id))
/* cipher suite selectors */
#define WLAN_CIPHER_SUITE_USE_GROUP SUITE(0x000FAC, 0)
#define WLAN_CIPHER_SUITE_WEP40 SUITE(0x000FAC, 1)
#define WLAN_CIPHER_SUITE_TKIP SUITE(0x000FAC, 2)
/* reserved: SUITE(0x000FAC, 3) */
#define WLAN_CIPHER_SUITE_CCMP SUITE(0x000FAC, 4)
#define WLAN_CIPHER_SUITE_WEP104 SUITE(0x000FAC, 5)
#define WLAN_CIPHER_SUITE_AES_CMAC SUITE(0x000FAC, 6)
#define WLAN_CIPHER_SUITE_GCMP SUITE(0x000FAC, 8)
#define WLAN_CIPHER_SUITE_GCMP_256 SUITE(0x000FAC, 9)
#define WLAN_CIPHER_SUITE_CCMP_256 SUITE(0x000FAC, 10)
#define WLAN_CIPHER_SUITE_BIP_GMAC_128 SUITE(0x000FAC, 11)
#define WLAN_CIPHER_SUITE_BIP_GMAC_256 SUITE(0x000FAC, 12)
#define WLAN_CIPHER_SUITE_BIP_CMAC_256 SUITE(0x000FAC, 13)
#define WLAN_CIPHER_SUITE_SMS4 SUITE(0x001472, 1)
/* AKM suite selectors */
#define WLAN_AKM_SUITE_8021X SUITE(0x000FAC, 1)
#define WLAN_AKM_SUITE_PSK SUITE(0x000FAC, 2)
#define WLAN_AKM_SUITE_FT_8021X SUITE(0x000FAC, 3)
#define WLAN_AKM_SUITE_FT_PSK SUITE(0x000FAC, 4)
#define WLAN_AKM_SUITE_8021X_SHA256 SUITE(0x000FAC, 5)
#define WLAN_AKM_SUITE_PSK_SHA256 SUITE(0x000FAC, 6)
#define WLAN_AKM_SUITE_TDLS SUITE(0x000FAC, 7)
#define WLAN_AKM_SUITE_SAE SUITE(0x000FAC, 8)
#define WLAN_AKM_SUITE_FT_OVER_SAE SUITE(0x000FAC, 9)
#define WLAN_AKM_SUITE_8021X_SUITE_B SUITE(0x000FAC, 11)
#define WLAN_AKM_SUITE_8021X_SUITE_B_192 SUITE(0x000FAC, 12)
#define WLAN_AKM_SUITE_FILS_SHA256 SUITE(0x000FAC, 14)
#define WLAN_AKM_SUITE_FILS_SHA384 SUITE(0x000FAC, 15)
#define WLAN_AKM_SUITE_FT_FILS_SHA256 SUITE(0x000FAC, 16)
#define WLAN_AKM_SUITE_FT_FILS_SHA384 SUITE(0x000FAC, 17)
#define WLAN_MAX_KEY_LEN 32
#define WLAN_PMK_NAME_LEN 16
#define WLAN_PMKID_LEN 16
#define WLAN_PMK_LEN_EAP_LEAP 16
#define WLAN_PMK_LEN 32
#define WLAN_PMK_LEN_SUITE_B_192 48
#define WLAN_OUI_WFA 0x506f9a
#define WLAN_OUI_TYPE_WFA_P2P 9
#define WLAN_OUI_MICROSOFT 0x0050f2
#define WLAN_OUI_TYPE_MICROSOFT_WPA 1
#define WLAN_OUI_TYPE_MICROSOFT_WMM 2
#define WLAN_OUI_TYPE_MICROSOFT_WPS 4
#define WLAN_OUI_TYPE_MICROSOFT_TPC 8
/*
* WMM/802.11e Tspec Element
*/
#define IEEE80211_WMM_IE_TSPEC_TID_MASK 0x0F
#define IEEE80211_WMM_IE_TSPEC_TID_SHIFT 1
enum ieee80211_tspec_status_code {
IEEE80211_TSPEC_STATUS_ADMISS_ACCEPTED = 0,
IEEE80211_TSPEC_STATUS_ADDTS_INVAL_PARAMS = 0x1,
};
struct ieee80211_tspec_ie {
u8 element_id;
u8 len;
u8 oui[3];
u8 oui_type;
u8 oui_subtype;
u8 version;
__le16 tsinfo;
u8 tsinfo_resvd;
__le16 nominal_msdu;
__le16 max_msdu;
__le32 min_service_int;
__le32 max_service_int;
__le32 inactivity_int;
__le32 suspension_int;
__le32 service_start_time;
__le32 min_data_rate;
__le32 mean_data_rate;
__le32 peak_data_rate;
__le32 max_burst_size;
__le32 delay_bound;
__le32 min_phy_rate;
__le16 sba;
__le16 medium_time;
} __packed;
/**
* ieee80211_get_qos_ctl - get pointer to qos control bytes
* @hdr: the frame
*
* The qos ctrl bytes come after the frame_control, duration, seq_num
* and 3 or 4 addresses of length ETH_ALEN.
* 3 addr: 2 + 2 + 2 + 3*6 = 24
* 4 addr: 2 + 2 + 2 + 4*6 = 30
*/
static inline u8 *ieee80211_get_qos_ctl(struct ieee80211_hdr *hdr)
{
if (ieee80211_has_a4(hdr->frame_control))
return (u8 *)hdr + 30;
else
return (u8 *)hdr + 24;
}
/**
* ieee80211_get_tid - get qos TID
* @hdr: the frame
*/
static inline u8 ieee80211_get_tid(struct ieee80211_hdr *hdr)
{
u8 *qc = ieee80211_get_qos_ctl(hdr);
return qc[0] & IEEE80211_QOS_CTL_TID_MASK;
}
/**
* ieee80211_get_SA - get pointer to SA
* @hdr: the frame
*
* Given an 802.11 frame, this function returns the offset
* to the source address (SA). It does not verify that the
* header is long enough to contain the address, and the
* header must be long enough to contain the frame control
* field.
*/
static inline u8 *ieee80211_get_SA(struct ieee80211_hdr *hdr)
{
if (ieee80211_has_a4(hdr->frame_control))
return hdr->addr4;
if (ieee80211_has_fromds(hdr->frame_control))
return hdr->addr3;
return hdr->addr2;
}
/**
* ieee80211_get_DA - get pointer to DA
* @hdr: the frame
*
* Given an 802.11 frame, this function returns the offset
* to the destination address (DA). It does not verify that
* the header is long enough to contain the address, and the
* header must be long enough to contain the frame control
* field.
*/
static inline u8 *ieee80211_get_DA(struct ieee80211_hdr *hdr)
{
if (ieee80211_has_tods(hdr->frame_control))
return hdr->addr3;
else
return hdr->addr1;
}
/**
* _ieee80211_is_robust_mgmt_frame - check if frame is a robust management frame
* @hdr: the frame (buffer must include at least the first octet of payload)
*/
static inline bool _ieee80211_is_robust_mgmt_frame(struct ieee80211_hdr *hdr)
{
if (ieee80211_is_disassoc(hdr->frame_control) ||
ieee80211_is_deauth(hdr->frame_control))
return true;
if (ieee80211_is_action(hdr->frame_control)) {
u8 *category;
/*
* Action frames, excluding Public Action frames, are Robust
* Management Frames. However, if we are looking at a Protected
* frame, skip the check since the data may be encrypted and
* the frame has already been found to be a Robust Management
* Frame (by the other end).
*/
if (ieee80211_has_protected(hdr->frame_control))
return true;
category = ((u8 *) hdr) + 24;
return *category != WLAN_CATEGORY_PUBLIC &&
*category != WLAN_CATEGORY_HT &&
*category != WLAN_CATEGORY_WNM_UNPROTECTED &&
*category != WLAN_CATEGORY_SELF_PROTECTED &&
*category != WLAN_CATEGORY_UNPROT_DMG &&
*category != WLAN_CATEGORY_VHT &&
*category != WLAN_CATEGORY_VENDOR_SPECIFIC;
}
return false;
}
/**
* ieee80211_is_robust_mgmt_frame - check if skb contains a robust mgmt frame
* @skb: the skb containing the frame, length will be checked
*/
static inline bool ieee80211_is_robust_mgmt_frame(struct sk_buff *skb)
{
if (skb->len < IEEE80211_MIN_ACTION_SIZE)
return false;
return _ieee80211_is_robust_mgmt_frame((void *)skb->data);
}
/**
* ieee80211_is_public_action - check if frame is a public action frame
* @hdr: the frame
* @len: length of the frame
*/
static inline bool ieee80211_is_public_action(struct ieee80211_hdr *hdr,
size_t len)
{
struct ieee80211_mgmt *mgmt = (void *)hdr;
if (len < IEEE80211_MIN_ACTION_SIZE)
return false;
if (!ieee80211_is_action(hdr->frame_control))
return false;
return mgmt->u.action.category == WLAN_CATEGORY_PUBLIC;
}
/**
* _ieee80211_is_group_privacy_action - check if frame is a group addressed
* privacy action frame
* @hdr: the frame
*/
static inline bool _ieee80211_is_group_privacy_action(struct ieee80211_hdr *hdr)
{
struct ieee80211_mgmt *mgmt = (void *)hdr;
if (!ieee80211_is_action(hdr->frame_control) ||
!is_multicast_ether_addr(hdr->addr1))
return false;
return mgmt->u.action.category == WLAN_CATEGORY_MESH_ACTION ||
mgmt->u.action.category == WLAN_CATEGORY_MULTIHOP_ACTION;
}
/**
* ieee80211_is_group_privacy_action - check if frame is a group addressed
* privacy action frame
* @skb: the skb containing the frame, length will be checked
*/
static inline bool ieee80211_is_group_privacy_action(struct sk_buff *skb)
{
if (skb->len < IEEE80211_MIN_ACTION_SIZE)
return false;
return _ieee80211_is_group_privacy_action((void *)skb->data);
}
/**
* ieee80211_tu_to_usec - convert time units (TU) to microseconds
* @tu: the TUs
*/
static inline unsigned long ieee80211_tu_to_usec(unsigned long tu)
{
return 1024 * tu;
}
/**
* ieee80211_check_tim - check if AID bit is set in TIM
* @tim: the TIM IE
* @tim_len: length of the TIM IE
* @aid: the AID to look for
*/
static inline bool ieee80211_check_tim(const struct ieee80211_tim_ie *tim,
u8 tim_len, u16 aid)
{
u8 mask;
u8 index, indexn1, indexn2;
if (unlikely(!tim || tim_len < sizeof(*tim)))
return false;
aid &= 0x3fff;
index = aid / 8;
mask = 1 << (aid & 7);
indexn1 = tim->bitmap_ctrl & 0xfe;
indexn2 = tim_len + indexn1 - 4;
if (index < indexn1 || index > indexn2)
return false;
index -= indexn1;
return !!(tim->virtual_map[index] & mask);
}
/**
* ieee80211_get_tdls_action - get tdls packet action (or -1, if not tdls packet)
* @skb: the skb containing the frame, length will not be checked
* @hdr_size: the size of the ieee80211_hdr that starts at skb->data
*
* This function assumes the frame is a data frame, and that the network header
* is in the correct place.
*/
static inline int ieee80211_get_tdls_action(struct sk_buff *skb, u32 hdr_size)
{
if (!skb_is_nonlinear(skb) &&
skb->len > (skb_network_offset(skb) + 2)) {
/* Point to where the indication of TDLS should start */
const u8 *tdls_data = skb_network_header(skb) - 2;
if (get_unaligned_be16(tdls_data) == ETH_P_TDLS &&
tdls_data[2] == WLAN_TDLS_SNAP_RFTYPE &&
tdls_data[3] == WLAN_CATEGORY_TDLS)
return tdls_data[4];
}
return -1;
}
/* convert time units */
#define TU_TO_JIFFIES(x) (usecs_to_jiffies((x) * 1024))
#define TU_TO_EXP_TIME(x) (jiffies + TU_TO_JIFFIES(x))
/**
* ieee80211_action_contains_tpc - checks if the frame contains TPC element
* @skb: the skb containing the frame, length will be checked
*
* This function checks if it's either TPC report action frame or Link
* Measurement report action frame as defined in IEEE Std. 802.11-2012 8.5.2.5
* and 8.5.7.5 accordingly.
*/
static inline bool ieee80211_action_contains_tpc(struct sk_buff *skb)
{
struct ieee80211_mgmt *mgmt = (void *)skb->data;
if (!ieee80211_is_action(mgmt->frame_control))
return false;
if (skb->len < IEEE80211_MIN_ACTION_SIZE +
sizeof(mgmt->u.action.u.tpc_report))
return false;
/*
* TPC report - check that:
* category = 0 (Spectrum Management) or 5 (Radio Measurement)
* spectrum management action = 3 (TPC/Link Measurement report)
* TPC report EID = 35
* TPC report element length = 2
*
* The spectrum management's tpc_report struct is used here both for
* parsing tpc_report and radio measurement's link measurement report
* frame, since the relevant part is identical in both frames.
*/
if (mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT &&
mgmt->u.action.category != WLAN_CATEGORY_RADIO_MEASUREMENT)
return false;
/* both spectrum mgmt and link measurement have same action code */
if (mgmt->u.action.u.tpc_report.action_code !=
WLAN_ACTION_SPCT_TPC_RPRT)
return false;
if (mgmt->u.action.u.tpc_report.tpc_elem_id != WLAN_EID_TPC_REPORT ||
mgmt->u.action.u.tpc_report.tpc_elem_length !=
sizeof(struct ieee80211_tpc_report_ie))
return false;
return true;
}
struct element {
u8 id;
u8 datalen;
u8 data[];
} __packed;
/* element iteration helpers */
#define for_each_element(_elem, _data, _datalen) \
for (_elem = (const struct element *)(_data); \
(const u8 *)(_data) + (_datalen) - (const u8 *)_elem >= \
(int)sizeof(*_elem) && \
(const u8 *)(_data) + (_datalen) - (const u8 *)_elem >= \
(int)sizeof(*_elem) + _elem->datalen; \
_elem = (const struct element *)(_elem->data + _elem->datalen))
#define for_each_element_id(element, _id, data, datalen) \
for_each_element(element, data, datalen) \
if (element->id == (_id))
#define for_each_element_extid(element, extid, _data, _datalen) \
for_each_element(element, _data, _datalen) \
if (element->id == WLAN_EID_EXTENSION && \
element->datalen > 0 && \
element->data[0] == (extid))
#define for_each_subelement(sub, element) \
for_each_element(sub, (element)->data, (element)->datalen)
#define for_each_subelement_id(sub, id, element) \
for_each_element_id(sub, id, (element)->data, (element)->datalen)
#define for_each_subelement_extid(sub, extid, element) \
for_each_element_extid(sub, extid, (element)->data, (element)->datalen)
/**
* for_each_element_completed - determine if element parsing consumed all data
* @element: element pointer after for_each_element() or friends
* @data: same data pointer as passed to for_each_element() or friends
* @datalen: same data length as passed to for_each_element() or friends
*
* This function returns %true if all the data was parsed or considered
* while walking the elements. Only use this if your for_each_element()
* loop cannot be broken out of, otherwise it always returns %false.
*
* If some data was malformed, this returns %false since the last parsed
* element will not fill the whole remaining data.
*/
static inline bool for_each_element_completed(const struct element *element,
const void *data, size_t datalen)
{
return (const u8 *)element == (const u8 *)data + datalen;
}
#endif /* LINUX_IEEE80211_H */