OpenCloudOS-Kernel/drivers/net/usb/smsc75xx.c

2356 lines
57 KiB
C
Raw Normal View History

/***************************************************************************
*
* Copyright (C) 2007-2010 SMSC
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*
*****************************************************************************/
#include <linux/module.h>
#include <linux/kmod.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/usb.h>
#include <linux/bitrev.h>
#include <linux/crc16.h>
#include <linux/crc32.h>
#include <linux/usb/usbnet.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/of_net.h>
#include "smsc75xx.h"
#define SMSC_CHIPNAME "smsc75xx"
#define SMSC_DRIVER_VERSION "1.0.0"
#define HS_USB_PKT_SIZE (512)
#define FS_USB_PKT_SIZE (64)
#define DEFAULT_HS_BURST_CAP_SIZE (16 * 1024 + 5 * HS_USB_PKT_SIZE)
#define DEFAULT_FS_BURST_CAP_SIZE (6 * 1024 + 33 * FS_USB_PKT_SIZE)
#define DEFAULT_BULK_IN_DELAY (0x00002000)
#define MAX_SINGLE_PACKET_SIZE (9000)
#define LAN75XX_EEPROM_MAGIC (0x7500)
#define EEPROM_MAC_OFFSET (0x01)
#define DEFAULT_TX_CSUM_ENABLE (true)
#define DEFAULT_RX_CSUM_ENABLE (true)
#define SMSC75XX_INTERNAL_PHY_ID (1)
#define SMSC75XX_TX_OVERHEAD (8)
#define MAX_RX_FIFO_SIZE (20 * 1024)
#define MAX_TX_FIFO_SIZE (12 * 1024)
#define USB_VENDOR_ID_SMSC (0x0424)
#define USB_PRODUCT_ID_LAN7500 (0x7500)
#define USB_PRODUCT_ID_LAN7505 (0x7505)
#define RXW_PADDING 2
#define SUPPORTED_WAKE (WAKE_PHY | WAKE_UCAST | WAKE_BCAST | \
WAKE_MCAST | WAKE_ARP | WAKE_MAGIC)
#define SUSPEND_SUSPEND0 (0x01)
#define SUSPEND_SUSPEND1 (0x02)
#define SUSPEND_SUSPEND2 (0x04)
#define SUSPEND_SUSPEND3 (0x08)
#define SUSPEND_ALLMODES (SUSPEND_SUSPEND0 | SUSPEND_SUSPEND1 | \
SUSPEND_SUSPEND2 | SUSPEND_SUSPEND3)
struct smsc75xx_priv {
struct usbnet *dev;
u32 rfe_ctl;
u32 wolopts;
u32 multicast_hash_table[DP_SEL_VHF_HASH_LEN];
struct mutex dataport_mutex;
spinlock_t rfe_ctl_lock;
struct work_struct set_multicast;
u8 suspend_flags;
};
struct usb_context {
struct usb_ctrlrequest req;
struct usbnet *dev;
};
static bool turbo_mode = true;
module_param(turbo_mode, bool, 0644);
MODULE_PARM_DESC(turbo_mode, "Enable multiple frames per Rx transaction");
static int smsc75xx_link_ok_nopm(struct usbnet *dev);
static int smsc75xx_phy_gig_workaround(struct usbnet *dev);
static int __must_check __smsc75xx_read_reg(struct usbnet *dev, u32 index,
u32 *data, int in_pm)
{
u32 buf;
int ret;
int (*fn)(struct usbnet *, u8, u8, u16, u16, void *, u16);
BUG_ON(!dev);
if (!in_pm)
fn = usbnet_read_cmd;
else
fn = usbnet_read_cmd_nopm;
ret = fn(dev, USB_VENDOR_REQUEST_READ_REGISTER, USB_DIR_IN
| USB_TYPE_VENDOR | USB_RECIP_DEVICE,
0, index, &buf, 4);
if (unlikely(ret < 0)) {
netdev_warn(dev->net, "Failed to read reg index 0x%08x: %d\n",
index, ret);
return ret;
}
le32_to_cpus(&buf);
*data = buf;
return ret;
}
static int __must_check __smsc75xx_write_reg(struct usbnet *dev, u32 index,
u32 data, int in_pm)
{
u32 buf;
int ret;
int (*fn)(struct usbnet *, u8, u8, u16, u16, const void *, u16);
BUG_ON(!dev);
if (!in_pm)
fn = usbnet_write_cmd;
else
fn = usbnet_write_cmd_nopm;
buf = data;
cpu_to_le32s(&buf);
ret = fn(dev, USB_VENDOR_REQUEST_WRITE_REGISTER, USB_DIR_OUT
| USB_TYPE_VENDOR | USB_RECIP_DEVICE,
0, index, &buf, 4);
if (unlikely(ret < 0))
netdev_warn(dev->net, "Failed to write reg index 0x%08x: %d\n",
index, ret);
return ret;
}
static int __must_check smsc75xx_read_reg_nopm(struct usbnet *dev, u32 index,
u32 *data)
{
return __smsc75xx_read_reg(dev, index, data, 1);
}
static int __must_check smsc75xx_write_reg_nopm(struct usbnet *dev, u32 index,
u32 data)
{
return __smsc75xx_write_reg(dev, index, data, 1);
}
static int __must_check smsc75xx_read_reg(struct usbnet *dev, u32 index,
u32 *data)
{
return __smsc75xx_read_reg(dev, index, data, 0);
}
static int __must_check smsc75xx_write_reg(struct usbnet *dev, u32 index,
u32 data)
{
return __smsc75xx_write_reg(dev, index, data, 0);
}
/* Loop until the read is completed with timeout
* called with phy_mutex held */
static __must_check int __smsc75xx_phy_wait_not_busy(struct usbnet *dev,
int in_pm)
{
unsigned long start_time = jiffies;
u32 val;
int ret;
do {
ret = __smsc75xx_read_reg(dev, MII_ACCESS, &val, in_pm);
if (ret < 0) {
netdev_warn(dev->net, "Error reading MII_ACCESS\n");
return ret;
}
if (!(val & MII_ACCESS_BUSY))
return 0;
} while (!time_after(jiffies, start_time + HZ));
return -EIO;
}
static int __smsc75xx_mdio_read(struct net_device *netdev, int phy_id, int idx,
int in_pm)
{
struct usbnet *dev = netdev_priv(netdev);
u32 val, addr;
int ret;
mutex_lock(&dev->phy_mutex);
/* confirm MII not busy */
ret = __smsc75xx_phy_wait_not_busy(dev, in_pm);
if (ret < 0) {
netdev_warn(dev->net, "MII is busy in smsc75xx_mdio_read\n");
goto done;
}
/* set the address, index & direction (read from PHY) */
phy_id &= dev->mii.phy_id_mask;
idx &= dev->mii.reg_num_mask;
addr = ((phy_id << MII_ACCESS_PHY_ADDR_SHIFT) & MII_ACCESS_PHY_ADDR)
| ((idx << MII_ACCESS_REG_ADDR_SHIFT) & MII_ACCESS_REG_ADDR)
| MII_ACCESS_READ | MII_ACCESS_BUSY;
ret = __smsc75xx_write_reg(dev, MII_ACCESS, addr, in_pm);
if (ret < 0) {
netdev_warn(dev->net, "Error writing MII_ACCESS\n");
goto done;
}
ret = __smsc75xx_phy_wait_not_busy(dev, in_pm);
if (ret < 0) {
netdev_warn(dev->net, "Timed out reading MII reg %02X\n", idx);
goto done;
}
ret = __smsc75xx_read_reg(dev, MII_DATA, &val, in_pm);
if (ret < 0) {
netdev_warn(dev->net, "Error reading MII_DATA\n");
goto done;
}
ret = (u16)(val & 0xFFFF);
done:
mutex_unlock(&dev->phy_mutex);
return ret;
}
static void __smsc75xx_mdio_write(struct net_device *netdev, int phy_id,
int idx, int regval, int in_pm)
{
struct usbnet *dev = netdev_priv(netdev);
u32 val, addr;
int ret;
mutex_lock(&dev->phy_mutex);
/* confirm MII not busy */
ret = __smsc75xx_phy_wait_not_busy(dev, in_pm);
if (ret < 0) {
netdev_warn(dev->net, "MII is busy in smsc75xx_mdio_write\n");
goto done;
}
val = regval;
ret = __smsc75xx_write_reg(dev, MII_DATA, val, in_pm);
if (ret < 0) {
netdev_warn(dev->net, "Error writing MII_DATA\n");
goto done;
}
/* set the address, index & direction (write to PHY) */
phy_id &= dev->mii.phy_id_mask;
idx &= dev->mii.reg_num_mask;
addr = ((phy_id << MII_ACCESS_PHY_ADDR_SHIFT) & MII_ACCESS_PHY_ADDR)
| ((idx << MII_ACCESS_REG_ADDR_SHIFT) & MII_ACCESS_REG_ADDR)
| MII_ACCESS_WRITE | MII_ACCESS_BUSY;
ret = __smsc75xx_write_reg(dev, MII_ACCESS, addr, in_pm);
if (ret < 0) {
netdev_warn(dev->net, "Error writing MII_ACCESS\n");
goto done;
}
ret = __smsc75xx_phy_wait_not_busy(dev, in_pm);
if (ret < 0) {
netdev_warn(dev->net, "Timed out writing MII reg %02X\n", idx);
goto done;
}
done:
mutex_unlock(&dev->phy_mutex);
}
static int smsc75xx_mdio_read_nopm(struct net_device *netdev, int phy_id,
int idx)
{
return __smsc75xx_mdio_read(netdev, phy_id, idx, 1);
}
static void smsc75xx_mdio_write_nopm(struct net_device *netdev, int phy_id,
int idx, int regval)
{
__smsc75xx_mdio_write(netdev, phy_id, idx, regval, 1);
}
static int smsc75xx_mdio_read(struct net_device *netdev, int phy_id, int idx)
{
return __smsc75xx_mdio_read(netdev, phy_id, idx, 0);
}
static void smsc75xx_mdio_write(struct net_device *netdev, int phy_id, int idx,
int regval)
{
__smsc75xx_mdio_write(netdev, phy_id, idx, regval, 0);
}
static int smsc75xx_wait_eeprom(struct usbnet *dev)
{
unsigned long start_time = jiffies;
u32 val;
int ret;
do {
ret = smsc75xx_read_reg(dev, E2P_CMD, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading E2P_CMD\n");
return ret;
}
if (!(val & E2P_CMD_BUSY) || (val & E2P_CMD_TIMEOUT))
break;
udelay(40);
} while (!time_after(jiffies, start_time + HZ));
if (val & (E2P_CMD_TIMEOUT | E2P_CMD_BUSY)) {
netdev_warn(dev->net, "EEPROM read operation timeout\n");
return -EIO;
}
return 0;
}
static int smsc75xx_eeprom_confirm_not_busy(struct usbnet *dev)
{
unsigned long start_time = jiffies;
u32 val;
int ret;
do {
ret = smsc75xx_read_reg(dev, E2P_CMD, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading E2P_CMD\n");
return ret;
}
if (!(val & E2P_CMD_BUSY))
return 0;
udelay(40);
} while (!time_after(jiffies, start_time + HZ));
netdev_warn(dev->net, "EEPROM is busy\n");
return -EIO;
}
static int smsc75xx_read_eeprom(struct usbnet *dev, u32 offset, u32 length,
u8 *data)
{
u32 val;
int i, ret;
BUG_ON(!dev);
BUG_ON(!data);
ret = smsc75xx_eeprom_confirm_not_busy(dev);
if (ret)
return ret;
for (i = 0; i < length; i++) {
val = E2P_CMD_BUSY | E2P_CMD_READ | (offset & E2P_CMD_ADDR);
ret = smsc75xx_write_reg(dev, E2P_CMD, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing E2P_CMD\n");
return ret;
}
ret = smsc75xx_wait_eeprom(dev);
if (ret < 0)
return ret;
ret = smsc75xx_read_reg(dev, E2P_DATA, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading E2P_DATA\n");
return ret;
}
data[i] = val & 0xFF;
offset++;
}
return 0;
}
static int smsc75xx_write_eeprom(struct usbnet *dev, u32 offset, u32 length,
u8 *data)
{
u32 val;
int i, ret;
BUG_ON(!dev);
BUG_ON(!data);
ret = smsc75xx_eeprom_confirm_not_busy(dev);
if (ret)
return ret;
/* Issue write/erase enable command */
val = E2P_CMD_BUSY | E2P_CMD_EWEN;
ret = smsc75xx_write_reg(dev, E2P_CMD, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing E2P_CMD\n");
return ret;
}
ret = smsc75xx_wait_eeprom(dev);
if (ret < 0)
return ret;
for (i = 0; i < length; i++) {
/* Fill data register */
val = data[i];
ret = smsc75xx_write_reg(dev, E2P_DATA, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing E2P_DATA\n");
return ret;
}
/* Send "write" command */
val = E2P_CMD_BUSY | E2P_CMD_WRITE | (offset & E2P_CMD_ADDR);
ret = smsc75xx_write_reg(dev, E2P_CMD, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing E2P_CMD\n");
return ret;
}
ret = smsc75xx_wait_eeprom(dev);
if (ret < 0)
return ret;
offset++;
}
return 0;
}
static int smsc75xx_dataport_wait_not_busy(struct usbnet *dev)
{
int i, ret;
for (i = 0; i < 100; i++) {
u32 dp_sel;
ret = smsc75xx_read_reg(dev, DP_SEL, &dp_sel);
if (ret < 0) {
netdev_warn(dev->net, "Error reading DP_SEL\n");
return ret;
}
if (dp_sel & DP_SEL_DPRDY)
return 0;
udelay(40);
}
netdev_warn(dev->net, "smsc75xx_dataport_wait_not_busy timed out\n");
return -EIO;
}
static int smsc75xx_dataport_write(struct usbnet *dev, u32 ram_select, u32 addr,
u32 length, u32 *buf)
{
struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]);
u32 dp_sel;
int i, ret;
mutex_lock(&pdata->dataport_mutex);
ret = smsc75xx_dataport_wait_not_busy(dev);
if (ret < 0) {
netdev_warn(dev->net, "smsc75xx_dataport_write busy on entry\n");
goto done;
}
ret = smsc75xx_read_reg(dev, DP_SEL, &dp_sel);
if (ret < 0) {
netdev_warn(dev->net, "Error reading DP_SEL\n");
goto done;
}
dp_sel &= ~DP_SEL_RSEL;
dp_sel |= ram_select;
ret = smsc75xx_write_reg(dev, DP_SEL, dp_sel);
if (ret < 0) {
netdev_warn(dev->net, "Error writing DP_SEL\n");
goto done;
}
for (i = 0; i < length; i++) {
ret = smsc75xx_write_reg(dev, DP_ADDR, addr + i);
if (ret < 0) {
netdev_warn(dev->net, "Error writing DP_ADDR\n");
goto done;
}
ret = smsc75xx_write_reg(dev, DP_DATA, buf[i]);
if (ret < 0) {
netdev_warn(dev->net, "Error writing DP_DATA\n");
goto done;
}
ret = smsc75xx_write_reg(dev, DP_CMD, DP_CMD_WRITE);
if (ret < 0) {
netdev_warn(dev->net, "Error writing DP_CMD\n");
goto done;
}
ret = smsc75xx_dataport_wait_not_busy(dev);
if (ret < 0) {
netdev_warn(dev->net, "smsc75xx_dataport_write timeout\n");
goto done;
}
}
done:
mutex_unlock(&pdata->dataport_mutex);
return ret;
}
/* returns hash bit number for given MAC address */
static u32 smsc75xx_hash(char addr[ETH_ALEN])
{
return (ether_crc(ETH_ALEN, addr) >> 23) & 0x1ff;
}
static void smsc75xx_deferred_multicast_write(struct work_struct *param)
{
struct smsc75xx_priv *pdata =
container_of(param, struct smsc75xx_priv, set_multicast);
struct usbnet *dev = pdata->dev;
int ret;
netif_dbg(dev, drv, dev->net, "deferred multicast write 0x%08x\n",
pdata->rfe_ctl);
smsc75xx_dataport_write(dev, DP_SEL_VHF, DP_SEL_VHF_VLAN_LEN,
DP_SEL_VHF_HASH_LEN, pdata->multicast_hash_table);
ret = smsc75xx_write_reg(dev, RFE_CTL, pdata->rfe_ctl);
if (ret < 0)
netdev_warn(dev->net, "Error writing RFE_CRL\n");
}
static void smsc75xx_set_multicast(struct net_device *netdev)
{
struct usbnet *dev = netdev_priv(netdev);
struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]);
unsigned long flags;
int i;
spin_lock_irqsave(&pdata->rfe_ctl_lock, flags);
pdata->rfe_ctl &=
~(RFE_CTL_AU | RFE_CTL_AM | RFE_CTL_DPF | RFE_CTL_MHF);
pdata->rfe_ctl |= RFE_CTL_AB;
for (i = 0; i < DP_SEL_VHF_HASH_LEN; i++)
pdata->multicast_hash_table[i] = 0;
if (dev->net->flags & IFF_PROMISC) {
netif_dbg(dev, drv, dev->net, "promiscuous mode enabled\n");
pdata->rfe_ctl |= RFE_CTL_AM | RFE_CTL_AU;
} else if (dev->net->flags & IFF_ALLMULTI) {
netif_dbg(dev, drv, dev->net, "receive all multicast enabled\n");
pdata->rfe_ctl |= RFE_CTL_AM | RFE_CTL_DPF;
} else if (!netdev_mc_empty(dev->net)) {
struct netdev_hw_addr *ha;
netif_dbg(dev, drv, dev->net, "receive multicast hash filter\n");
pdata->rfe_ctl |= RFE_CTL_MHF | RFE_CTL_DPF;
netdev_for_each_mc_addr(ha, netdev) {
u32 bitnum = smsc75xx_hash(ha->addr);
pdata->multicast_hash_table[bitnum / 32] |=
(1 << (bitnum % 32));
}
} else {
netif_dbg(dev, drv, dev->net, "receive own packets only\n");
pdata->rfe_ctl |= RFE_CTL_DPF;
}
spin_unlock_irqrestore(&pdata->rfe_ctl_lock, flags);
/* defer register writes to a sleepable context */
schedule_work(&pdata->set_multicast);
}
static int smsc75xx_update_flowcontrol(struct usbnet *dev, u8 duplex,
u16 lcladv, u16 rmtadv)
{
u32 flow = 0, fct_flow = 0;
int ret;
if (duplex == DUPLEX_FULL) {
u8 cap = mii_resolve_flowctrl_fdx(lcladv, rmtadv);
if (cap & FLOW_CTRL_TX) {
flow = (FLOW_TX_FCEN | 0xFFFF);
/* set fct_flow thresholds to 20% and 80% */
fct_flow = (8 << 8) | 32;
}
if (cap & FLOW_CTRL_RX)
flow |= FLOW_RX_FCEN;
netif_dbg(dev, link, dev->net, "rx pause %s, tx pause %s\n",
(cap & FLOW_CTRL_RX ? "enabled" : "disabled"),
(cap & FLOW_CTRL_TX ? "enabled" : "disabled"));
} else {
netif_dbg(dev, link, dev->net, "half duplex\n");
}
ret = smsc75xx_write_reg(dev, FLOW, flow);
if (ret < 0) {
netdev_warn(dev->net, "Error writing FLOW\n");
return ret;
}
ret = smsc75xx_write_reg(dev, FCT_FLOW, fct_flow);
if (ret < 0) {
netdev_warn(dev->net, "Error writing FCT_FLOW\n");
return ret;
}
return 0;
}
static int smsc75xx_link_reset(struct usbnet *dev)
{
struct mii_if_info *mii = &dev->mii;
struct ethtool_cmd ecmd = { .cmd = ETHTOOL_GSET };
u16 lcladv, rmtadv;
int ret;
/* write to clear phy interrupt status */
smsc75xx_mdio_write(dev->net, mii->phy_id, PHY_INT_SRC,
PHY_INT_SRC_CLEAR_ALL);
ret = smsc75xx_write_reg(dev, INT_STS, INT_STS_CLEAR_ALL);
if (ret < 0) {
netdev_warn(dev->net, "Error writing INT_STS\n");
return ret;
}
mii_check_media(mii, 1, 1);
mii_ethtool_gset(&dev->mii, &ecmd);
lcladv = smsc75xx_mdio_read(dev->net, mii->phy_id, MII_ADVERTISE);
rmtadv = smsc75xx_mdio_read(dev->net, mii->phy_id, MII_LPA);
netif_dbg(dev, link, dev->net, "speed: %u duplex: %d lcladv: %04x rmtadv: %04x\n",
ethtool_cmd_speed(&ecmd), ecmd.duplex, lcladv, rmtadv);
return smsc75xx_update_flowcontrol(dev, ecmd.duplex, lcladv, rmtadv);
}
static void smsc75xx_status(struct usbnet *dev, struct urb *urb)
{
u32 intdata;
if (urb->actual_length != 4) {
netdev_warn(dev->net, "unexpected urb length %d\n",
urb->actual_length);
return;
}
memcpy(&intdata, urb->transfer_buffer, 4);
le32_to_cpus(&intdata);
netif_dbg(dev, link, dev->net, "intdata: 0x%08X\n", intdata);
if (intdata & INT_ENP_PHY_INT)
usbnet_defer_kevent(dev, EVENT_LINK_RESET);
else
netdev_warn(dev->net, "unexpected interrupt, intdata=0x%08X\n",
intdata);
}
static int smsc75xx_ethtool_get_eeprom_len(struct net_device *net)
{
return MAX_EEPROM_SIZE;
}
static int smsc75xx_ethtool_get_eeprom(struct net_device *netdev,
struct ethtool_eeprom *ee, u8 *data)
{
struct usbnet *dev = netdev_priv(netdev);
ee->magic = LAN75XX_EEPROM_MAGIC;
return smsc75xx_read_eeprom(dev, ee->offset, ee->len, data);
}
static int smsc75xx_ethtool_set_eeprom(struct net_device *netdev,
struct ethtool_eeprom *ee, u8 *data)
{
struct usbnet *dev = netdev_priv(netdev);
if (ee->magic != LAN75XX_EEPROM_MAGIC) {
netdev_warn(dev->net, "EEPROM: magic value mismatch: 0x%x\n",
ee->magic);
return -EINVAL;
}
return smsc75xx_write_eeprom(dev, ee->offset, ee->len, data);
}
static void smsc75xx_ethtool_get_wol(struct net_device *net,
struct ethtool_wolinfo *wolinfo)
{
struct usbnet *dev = netdev_priv(net);
struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]);
wolinfo->supported = SUPPORTED_WAKE;
wolinfo->wolopts = pdata->wolopts;
}
static int smsc75xx_ethtool_set_wol(struct net_device *net,
struct ethtool_wolinfo *wolinfo)
{
struct usbnet *dev = netdev_priv(net);
struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]);
int ret;
if (wolinfo->wolopts & ~SUPPORTED_WAKE)
return -EINVAL;
pdata->wolopts = wolinfo->wolopts & SUPPORTED_WAKE;
ret = device_set_wakeup_enable(&dev->udev->dev, pdata->wolopts);
if (ret < 0)
netdev_warn(dev->net, "device_set_wakeup_enable error %d\n", ret);
return ret;
}
static const struct ethtool_ops smsc75xx_ethtool_ops = {
.get_link = usbnet_get_link,
.nway_reset = usbnet_nway_reset,
.get_drvinfo = usbnet_get_drvinfo,
.get_msglevel = usbnet_get_msglevel,
.set_msglevel = usbnet_set_msglevel,
.get_eeprom_len = smsc75xx_ethtool_get_eeprom_len,
.get_eeprom = smsc75xx_ethtool_get_eeprom,
.set_eeprom = smsc75xx_ethtool_set_eeprom,
.get_wol = smsc75xx_ethtool_get_wol,
.set_wol = smsc75xx_ethtool_set_wol,
.get_link_ksettings = usbnet_get_link_ksettings,
.set_link_ksettings = usbnet_set_link_ksettings,
};
static int smsc75xx_ioctl(struct net_device *netdev, struct ifreq *rq, int cmd)
{
struct usbnet *dev = netdev_priv(netdev);
if (!netif_running(netdev))
return -EINVAL;
return generic_mii_ioctl(&dev->mii, if_mii(rq), cmd, NULL);
}
static void smsc75xx_init_mac_address(struct usbnet *dev)
{
const u8 *mac_addr;
/* maybe the boot loader passed the MAC address in devicetree */
mac_addr = of_get_mac_address(dev->udev->dev.of_node);
if (mac_addr) {
memcpy(dev->net->dev_addr, mac_addr, ETH_ALEN);
return;
}
/* try reading mac address from EEPROM */
if (smsc75xx_read_eeprom(dev, EEPROM_MAC_OFFSET, ETH_ALEN,
dev->net->dev_addr) == 0) {
if (is_valid_ether_addr(dev->net->dev_addr)) {
/* eeprom values are valid so use them */
netif_dbg(dev, ifup, dev->net,
"MAC address read from EEPROM\n");
return;
}
}
/* no useful static MAC address found. generate a random one */
eth_hw_addr_random(dev->net);
netif_dbg(dev, ifup, dev->net, "MAC address set to eth_random_addr\n");
}
static int smsc75xx_set_mac_address(struct usbnet *dev)
{
u32 addr_lo = dev->net->dev_addr[0] | dev->net->dev_addr[1] << 8 |
dev->net->dev_addr[2] << 16 | dev->net->dev_addr[3] << 24;
u32 addr_hi = dev->net->dev_addr[4] | dev->net->dev_addr[5] << 8;
int ret = smsc75xx_write_reg(dev, RX_ADDRH, addr_hi);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write RX_ADDRH: %d\n", ret);
return ret;
}
ret = smsc75xx_write_reg(dev, RX_ADDRL, addr_lo);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write RX_ADDRL: %d\n", ret);
return ret;
}
addr_hi |= ADDR_FILTX_FB_VALID;
ret = smsc75xx_write_reg(dev, ADDR_FILTX, addr_hi);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write ADDR_FILTX: %d\n", ret);
return ret;
}
ret = smsc75xx_write_reg(dev, ADDR_FILTX + 4, addr_lo);
if (ret < 0)
netdev_warn(dev->net, "Failed to write ADDR_FILTX+4: %d\n", ret);
return ret;
}
static int smsc75xx_phy_initialize(struct usbnet *dev)
{
int bmcr, ret, timeout = 0;
/* Initialize MII structure */
dev->mii.dev = dev->net;
dev->mii.mdio_read = smsc75xx_mdio_read;
dev->mii.mdio_write = smsc75xx_mdio_write;
dev->mii.phy_id_mask = 0x1f;
dev->mii.reg_num_mask = 0x1f;
dev->mii.supports_gmii = 1;
dev->mii.phy_id = SMSC75XX_INTERNAL_PHY_ID;
/* reset phy and wait for reset to complete */
smsc75xx_mdio_write(dev->net, dev->mii.phy_id, MII_BMCR, BMCR_RESET);
do {
msleep(10);
bmcr = smsc75xx_mdio_read(dev->net, dev->mii.phy_id, MII_BMCR);
if (bmcr < 0) {
netdev_warn(dev->net, "Error reading MII_BMCR\n");
return bmcr;
}
timeout++;
} while ((bmcr & BMCR_RESET) && (timeout < 100));
if (timeout >= 100) {
netdev_warn(dev->net, "timeout on PHY Reset\n");
return -EIO;
}
/* phy workaround for gig link */
smsc75xx_phy_gig_workaround(dev);
smsc75xx_mdio_write(dev->net, dev->mii.phy_id, MII_ADVERTISE,
ADVERTISE_ALL | ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP |
ADVERTISE_PAUSE_ASYM);
smsc75xx_mdio_write(dev->net, dev->mii.phy_id, MII_CTRL1000,
ADVERTISE_1000FULL);
/* read and write to clear phy interrupt status */
ret = smsc75xx_mdio_read(dev->net, dev->mii.phy_id, PHY_INT_SRC);
if (ret < 0) {
netdev_warn(dev->net, "Error reading PHY_INT_SRC\n");
return ret;
}
smsc75xx_mdio_write(dev->net, dev->mii.phy_id, PHY_INT_SRC, 0xffff);
smsc75xx_mdio_write(dev->net, dev->mii.phy_id, PHY_INT_MASK,
PHY_INT_MASK_DEFAULT);
mii_nway_restart(&dev->mii);
netif_dbg(dev, ifup, dev->net, "phy initialised successfully\n");
return 0;
}
static int smsc75xx_set_rx_max_frame_length(struct usbnet *dev, int size)
{
int ret = 0;
u32 buf;
bool rxenabled;
ret = smsc75xx_read_reg(dev, MAC_RX, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read MAC_RX: %d\n", ret);
return ret;
}
rxenabled = ((buf & MAC_RX_RXEN) != 0);
if (rxenabled) {
buf &= ~MAC_RX_RXEN;
ret = smsc75xx_write_reg(dev, MAC_RX, buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write MAC_RX: %d\n", ret);
return ret;
}
}
/* add 4 to size for FCS */
buf &= ~MAC_RX_MAX_SIZE;
buf |= (((size + 4) << MAC_RX_MAX_SIZE_SHIFT) & MAC_RX_MAX_SIZE);
ret = smsc75xx_write_reg(dev, MAC_RX, buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write MAC_RX: %d\n", ret);
return ret;
}
if (rxenabled) {
buf |= MAC_RX_RXEN;
ret = smsc75xx_write_reg(dev, MAC_RX, buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write MAC_RX: %d\n", ret);
return ret;
}
}
return 0;
}
static int smsc75xx_change_mtu(struct net_device *netdev, int new_mtu)
{
struct usbnet *dev = netdev_priv(netdev);
int ret;
ret = smsc75xx_set_rx_max_frame_length(dev, new_mtu + ETH_HLEN);
if (ret < 0) {
netdev_warn(dev->net, "Failed to set mac rx frame length\n");
return ret;
}
return usbnet_change_mtu(netdev, new_mtu);
}
/* Enable or disable Rx checksum offload engine */
static int smsc75xx_set_features(struct net_device *netdev,
netdev_features_t features)
{
struct usbnet *dev = netdev_priv(netdev);
struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]);
unsigned long flags;
int ret;
spin_lock_irqsave(&pdata->rfe_ctl_lock, flags);
if (features & NETIF_F_RXCSUM)
pdata->rfe_ctl |= RFE_CTL_TCPUDP_CKM | RFE_CTL_IP_CKM;
else
pdata->rfe_ctl &= ~(RFE_CTL_TCPUDP_CKM | RFE_CTL_IP_CKM);
spin_unlock_irqrestore(&pdata->rfe_ctl_lock, flags);
/* it's racing here! */
ret = smsc75xx_write_reg(dev, RFE_CTL, pdata->rfe_ctl);
if (ret < 0) {
netdev_warn(dev->net, "Error writing RFE_CTL\n");
return ret;
}
return 0;
}
static int smsc75xx_wait_ready(struct usbnet *dev, int in_pm)
{
int timeout = 0;
do {
u32 buf;
int ret;
ret = __smsc75xx_read_reg(dev, PMT_CTL, &buf, in_pm);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read PMT_CTL: %d\n", ret);
return ret;
}
if (buf & PMT_CTL_DEV_RDY)
return 0;
msleep(10);
timeout++;
} while (timeout < 100);
netdev_warn(dev->net, "timeout waiting for device ready\n");
return -EIO;
}
static int smsc75xx_phy_gig_workaround(struct usbnet *dev)
{
struct mii_if_info *mii = &dev->mii;
int ret = 0, timeout = 0;
u32 buf, link_up = 0;
/* Set the phy in Gig loopback */
smsc75xx_mdio_write(dev->net, mii->phy_id, MII_BMCR, 0x4040);
/* Wait for the link up */
do {
link_up = smsc75xx_link_ok_nopm(dev);
usleep_range(10000, 20000);
timeout++;
} while ((!link_up) && (timeout < 1000));
if (timeout >= 1000) {
netdev_warn(dev->net, "Timeout waiting for PHY link up\n");
return -EIO;
}
/* phy reset */
ret = smsc75xx_read_reg(dev, PMT_CTL, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read PMT_CTL: %d\n", ret);
return ret;
}
buf |= PMT_CTL_PHY_RST;
ret = smsc75xx_write_reg(dev, PMT_CTL, buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write PMT_CTL: %d\n", ret);
return ret;
}
timeout = 0;
do {
usleep_range(10000, 20000);
ret = smsc75xx_read_reg(dev, PMT_CTL, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read PMT_CTL: %d\n",
ret);
return ret;
}
timeout++;
} while ((buf & PMT_CTL_PHY_RST) && (timeout < 100));
if (timeout >= 100) {
netdev_warn(dev->net, "timeout waiting for PHY Reset\n");
return -EIO;
}
return 0;
}
static int smsc75xx_reset(struct usbnet *dev)
{
struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]);
u32 buf;
int ret = 0, timeout;
netif_dbg(dev, ifup, dev->net, "entering smsc75xx_reset\n");
ret = smsc75xx_wait_ready(dev, 0);
if (ret < 0) {
netdev_warn(dev->net, "device not ready in smsc75xx_reset\n");
return ret;
}
ret = smsc75xx_read_reg(dev, HW_CFG, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read HW_CFG: %d\n", ret);
return ret;
}
buf |= HW_CFG_LRST;
ret = smsc75xx_write_reg(dev, HW_CFG, buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write HW_CFG: %d\n", ret);
return ret;
}
timeout = 0;
do {
msleep(10);
ret = smsc75xx_read_reg(dev, HW_CFG, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read HW_CFG: %d\n", ret);
return ret;
}
timeout++;
} while ((buf & HW_CFG_LRST) && (timeout < 100));
if (timeout >= 100) {
netdev_warn(dev->net, "timeout on completion of Lite Reset\n");
return -EIO;
}
netif_dbg(dev, ifup, dev->net, "Lite reset complete, resetting PHY\n");
ret = smsc75xx_read_reg(dev, PMT_CTL, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read PMT_CTL: %d\n", ret);
return ret;
}
buf |= PMT_CTL_PHY_RST;
ret = smsc75xx_write_reg(dev, PMT_CTL, buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write PMT_CTL: %d\n", ret);
return ret;
}
timeout = 0;
do {
msleep(10);
ret = smsc75xx_read_reg(dev, PMT_CTL, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read PMT_CTL: %d\n", ret);
return ret;
}
timeout++;
} while ((buf & PMT_CTL_PHY_RST) && (timeout < 100));
if (timeout >= 100) {
netdev_warn(dev->net, "timeout waiting for PHY Reset\n");
return -EIO;
}
netif_dbg(dev, ifup, dev->net, "PHY reset complete\n");
ret = smsc75xx_set_mac_address(dev);
if (ret < 0) {
netdev_warn(dev->net, "Failed to set mac address\n");
return ret;
}
netif_dbg(dev, ifup, dev->net, "MAC Address: %pM\n",
dev->net->dev_addr);
ret = smsc75xx_read_reg(dev, HW_CFG, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read HW_CFG: %d\n", ret);
return ret;
}
netif_dbg(dev, ifup, dev->net, "Read Value from HW_CFG : 0x%08x\n",
buf);
buf |= HW_CFG_BIR;
ret = smsc75xx_write_reg(dev, HW_CFG, buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write HW_CFG: %d\n", ret);
return ret;
}
ret = smsc75xx_read_reg(dev, HW_CFG, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read HW_CFG: %d\n", ret);
return ret;
}
netif_dbg(dev, ifup, dev->net, "Read Value from HW_CFG after writing HW_CFG_BIR: 0x%08x\n",
buf);
if (!turbo_mode) {
buf = 0;
dev->rx_urb_size = MAX_SINGLE_PACKET_SIZE;
} else if (dev->udev->speed == USB_SPEED_HIGH) {
buf = DEFAULT_HS_BURST_CAP_SIZE / HS_USB_PKT_SIZE;
dev->rx_urb_size = DEFAULT_HS_BURST_CAP_SIZE;
} else {
buf = DEFAULT_FS_BURST_CAP_SIZE / FS_USB_PKT_SIZE;
dev->rx_urb_size = DEFAULT_FS_BURST_CAP_SIZE;
}
netif_dbg(dev, ifup, dev->net, "rx_urb_size=%ld\n",
(ulong)dev->rx_urb_size);
ret = smsc75xx_write_reg(dev, BURST_CAP, buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write BURST_CAP: %d\n", ret);
return ret;
}
ret = smsc75xx_read_reg(dev, BURST_CAP, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read BURST_CAP: %d\n", ret);
return ret;
}
netif_dbg(dev, ifup, dev->net,
"Read Value from BURST_CAP after writing: 0x%08x\n", buf);
ret = smsc75xx_write_reg(dev, BULK_IN_DLY, DEFAULT_BULK_IN_DELAY);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write BULK_IN_DLY: %d\n", ret);
return ret;
}
ret = smsc75xx_read_reg(dev, BULK_IN_DLY, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read BULK_IN_DLY: %d\n", ret);
return ret;
}
netif_dbg(dev, ifup, dev->net,
"Read Value from BULK_IN_DLY after writing: 0x%08x\n", buf);
if (turbo_mode) {
ret = smsc75xx_read_reg(dev, HW_CFG, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read HW_CFG: %d\n", ret);
return ret;
}
netif_dbg(dev, ifup, dev->net, "HW_CFG: 0x%08x\n", buf);
buf |= (HW_CFG_MEF | HW_CFG_BCE);
ret = smsc75xx_write_reg(dev, HW_CFG, buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write HW_CFG: %d\n", ret);
return ret;
}
ret = smsc75xx_read_reg(dev, HW_CFG, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read HW_CFG: %d\n", ret);
return ret;
}
netif_dbg(dev, ifup, dev->net, "HW_CFG: 0x%08x\n", buf);
}
/* set FIFO sizes */
buf = (MAX_RX_FIFO_SIZE - 512) / 512;
ret = smsc75xx_write_reg(dev, FCT_RX_FIFO_END, buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write FCT_RX_FIFO_END: %d\n", ret);
return ret;
}
netif_dbg(dev, ifup, dev->net, "FCT_RX_FIFO_END set to 0x%08x\n", buf);
buf = (MAX_TX_FIFO_SIZE - 512) / 512;
ret = smsc75xx_write_reg(dev, FCT_TX_FIFO_END, buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write FCT_TX_FIFO_END: %d\n", ret);
return ret;
}
netif_dbg(dev, ifup, dev->net, "FCT_TX_FIFO_END set to 0x%08x\n", buf);
ret = smsc75xx_write_reg(dev, INT_STS, INT_STS_CLEAR_ALL);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write INT_STS: %d\n", ret);
return ret;
}
ret = smsc75xx_read_reg(dev, ID_REV, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read ID_REV: %d\n", ret);
return ret;
}
netif_dbg(dev, ifup, dev->net, "ID_REV = 0x%08x\n", buf);
ret = smsc75xx_read_reg(dev, E2P_CMD, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read E2P_CMD: %d\n", ret);
return ret;
}
/* only set default GPIO/LED settings if no EEPROM is detected */
if (!(buf & E2P_CMD_LOADED)) {
ret = smsc75xx_read_reg(dev, LED_GPIO_CFG, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read LED_GPIO_CFG: %d\n", ret);
return ret;
}
buf &= ~(LED_GPIO_CFG_LED2_FUN_SEL | LED_GPIO_CFG_LED10_FUN_SEL);
buf |= LED_GPIO_CFG_LEDGPIO_EN | LED_GPIO_CFG_LED2_FUN_SEL;
ret = smsc75xx_write_reg(dev, LED_GPIO_CFG, buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write LED_GPIO_CFG: %d\n", ret);
return ret;
}
}
ret = smsc75xx_write_reg(dev, FLOW, 0);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write FLOW: %d\n", ret);
return ret;
}
ret = smsc75xx_write_reg(dev, FCT_FLOW, 0);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write FCT_FLOW: %d\n", ret);
return ret;
}
/* Don't need rfe_ctl_lock during initialisation */
ret = smsc75xx_read_reg(dev, RFE_CTL, &pdata->rfe_ctl);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read RFE_CTL: %d\n", ret);
return ret;
}
pdata->rfe_ctl |= RFE_CTL_AB | RFE_CTL_DPF;
ret = smsc75xx_write_reg(dev, RFE_CTL, pdata->rfe_ctl);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write RFE_CTL: %d\n", ret);
return ret;
}
ret = smsc75xx_read_reg(dev, RFE_CTL, &pdata->rfe_ctl);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read RFE_CTL: %d\n", ret);
return ret;
}
netif_dbg(dev, ifup, dev->net, "RFE_CTL set to 0x%08x\n",
pdata->rfe_ctl);
/* Enable or disable checksum offload engines */
smsc75xx_set_features(dev->net, dev->net->features);
smsc75xx_set_multicast(dev->net);
ret = smsc75xx_phy_initialize(dev);
if (ret < 0) {
netdev_warn(dev->net, "Failed to initialize PHY: %d\n", ret);
return ret;
}
ret = smsc75xx_read_reg(dev, INT_EP_CTL, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read INT_EP_CTL: %d\n", ret);
return ret;
}
/* enable PHY interrupts */
buf |= INT_ENP_PHY_INT;
ret = smsc75xx_write_reg(dev, INT_EP_CTL, buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write INT_EP_CTL: %d\n", ret);
return ret;
}
/* allow mac to detect speed and duplex from phy */
ret = smsc75xx_read_reg(dev, MAC_CR, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read MAC_CR: %d\n", ret);
return ret;
}
buf |= (MAC_CR_ADD | MAC_CR_ASD);
ret = smsc75xx_write_reg(dev, MAC_CR, buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write MAC_CR: %d\n", ret);
return ret;
}
ret = smsc75xx_read_reg(dev, MAC_TX, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read MAC_TX: %d\n", ret);
return ret;
}
buf |= MAC_TX_TXEN;
ret = smsc75xx_write_reg(dev, MAC_TX, buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write MAC_TX: %d\n", ret);
return ret;
}
netif_dbg(dev, ifup, dev->net, "MAC_TX set to 0x%08x\n", buf);
ret = smsc75xx_read_reg(dev, FCT_TX_CTL, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read FCT_TX_CTL: %d\n", ret);
return ret;
}
buf |= FCT_TX_CTL_EN;
ret = smsc75xx_write_reg(dev, FCT_TX_CTL, buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write FCT_TX_CTL: %d\n", ret);
return ret;
}
netif_dbg(dev, ifup, dev->net, "FCT_TX_CTL set to 0x%08x\n", buf);
ret = smsc75xx_set_rx_max_frame_length(dev, dev->net->mtu + ETH_HLEN);
if (ret < 0) {
netdev_warn(dev->net, "Failed to set max rx frame length\n");
return ret;
}
ret = smsc75xx_read_reg(dev, MAC_RX, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read MAC_RX: %d\n", ret);
return ret;
}
buf |= MAC_RX_RXEN;
ret = smsc75xx_write_reg(dev, MAC_RX, buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write MAC_RX: %d\n", ret);
return ret;
}
netif_dbg(dev, ifup, dev->net, "MAC_RX set to 0x%08x\n", buf);
ret = smsc75xx_read_reg(dev, FCT_RX_CTL, &buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read FCT_RX_CTL: %d\n", ret);
return ret;
}
buf |= FCT_RX_CTL_EN;
ret = smsc75xx_write_reg(dev, FCT_RX_CTL, buf);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write FCT_RX_CTL: %d\n", ret);
return ret;
}
netif_dbg(dev, ifup, dev->net, "FCT_RX_CTL set to 0x%08x\n", buf);
netif_dbg(dev, ifup, dev->net, "smsc75xx_reset, return 0\n");
return 0;
}
static const struct net_device_ops smsc75xx_netdev_ops = {
.ndo_open = usbnet_open,
.ndo_stop = usbnet_stop,
.ndo_start_xmit = usbnet_start_xmit,
.ndo_tx_timeout = usbnet_tx_timeout,
.ndo_get_stats64 = usbnet_get_stats64,
.ndo_change_mtu = smsc75xx_change_mtu,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
.ndo_do_ioctl = smsc75xx_ioctl,
.ndo_set_rx_mode = smsc75xx_set_multicast,
.ndo_set_features = smsc75xx_set_features,
};
static int smsc75xx_bind(struct usbnet *dev, struct usb_interface *intf)
{
struct smsc75xx_priv *pdata = NULL;
int ret;
printk(KERN_INFO SMSC_CHIPNAME " v" SMSC_DRIVER_VERSION "\n");
ret = usbnet_get_endpoints(dev, intf);
if (ret < 0) {
netdev_warn(dev->net, "usbnet_get_endpoints failed: %d\n", ret);
return ret;
}
dev->data[0] = (unsigned long)kzalloc(sizeof(struct smsc75xx_priv),
GFP_KERNEL);
pdata = (struct smsc75xx_priv *)(dev->data[0]);
if (!pdata)
return -ENOMEM;
pdata->dev = dev;
spin_lock_init(&pdata->rfe_ctl_lock);
mutex_init(&pdata->dataport_mutex);
INIT_WORK(&pdata->set_multicast, smsc75xx_deferred_multicast_write);
if (DEFAULT_TX_CSUM_ENABLE)
dev->net->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
if (DEFAULT_RX_CSUM_ENABLE)
dev->net->features |= NETIF_F_RXCSUM;
dev->net->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
NETIF_F_RXCSUM;
ret = smsc75xx_wait_ready(dev, 0);
if (ret < 0) {
netdev_warn(dev->net, "device not ready in smsc75xx_bind\n");
return ret;
}
smsc75xx_init_mac_address(dev);
/* Init all registers */
ret = smsc75xx_reset(dev);
if (ret < 0) {
netdev_warn(dev->net, "smsc75xx_reset error %d\n", ret);
return ret;
}
dev->net->netdev_ops = &smsc75xx_netdev_ops;
dev->net->ethtool_ops = &smsc75xx_ethtool_ops;
dev->net->flags |= IFF_MULTICAST;
dev->net->hard_header_len += SMSC75XX_TX_OVERHEAD;
dev->hard_mtu = dev->net->mtu + dev->net->hard_header_len;
dev->net->max_mtu = MAX_SINGLE_PACKET_SIZE;
return 0;
}
static void smsc75xx_unbind(struct usbnet *dev, struct usb_interface *intf)
{
struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]);
if (pdata) {
cancel_work_sync(&pdata->set_multicast);
netif_dbg(dev, ifdown, dev->net, "free pdata\n");
kfree(pdata);
pdata = NULL;
dev->data[0] = 0;
}
}
static u16 smsc_crc(const u8 *buffer, size_t len)
{
return bitrev16(crc16(0xFFFF, buffer, len));
}
static int smsc75xx_write_wuff(struct usbnet *dev, int filter, u32 wuf_cfg,
u32 wuf_mask1)
{
int cfg_base = WUF_CFGX + filter * 4;
int mask_base = WUF_MASKX + filter * 16;
int ret;
ret = smsc75xx_write_reg(dev, cfg_base, wuf_cfg);
if (ret < 0) {
netdev_warn(dev->net, "Error writing WUF_CFGX\n");
return ret;
}
ret = smsc75xx_write_reg(dev, mask_base, wuf_mask1);
if (ret < 0) {
netdev_warn(dev->net, "Error writing WUF_MASKX\n");
return ret;
}
ret = smsc75xx_write_reg(dev, mask_base + 4, 0);
if (ret < 0) {
netdev_warn(dev->net, "Error writing WUF_MASKX\n");
return ret;
}
ret = smsc75xx_write_reg(dev, mask_base + 8, 0);
if (ret < 0) {
netdev_warn(dev->net, "Error writing WUF_MASKX\n");
return ret;
}
ret = smsc75xx_write_reg(dev, mask_base + 12, 0);
if (ret < 0) {
netdev_warn(dev->net, "Error writing WUF_MASKX\n");
return ret;
}
return 0;
}
static int smsc75xx_enter_suspend0(struct usbnet *dev)
{
struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]);
u32 val;
int ret;
ret = smsc75xx_read_reg_nopm(dev, PMT_CTL, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading PMT_CTL\n");
return ret;
}
val &= (~(PMT_CTL_SUS_MODE | PMT_CTL_PHY_RST));
val |= PMT_CTL_SUS_MODE_0 | PMT_CTL_WOL_EN | PMT_CTL_WUPS;
ret = smsc75xx_write_reg_nopm(dev, PMT_CTL, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing PMT_CTL\n");
return ret;
}
pdata->suspend_flags |= SUSPEND_SUSPEND0;
return 0;
}
static int smsc75xx_enter_suspend1(struct usbnet *dev)
{
struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]);
u32 val;
int ret;
ret = smsc75xx_read_reg_nopm(dev, PMT_CTL, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading PMT_CTL\n");
return ret;
}
val &= ~(PMT_CTL_SUS_MODE | PMT_CTL_WUPS | PMT_CTL_PHY_RST);
val |= PMT_CTL_SUS_MODE_1;
ret = smsc75xx_write_reg_nopm(dev, PMT_CTL, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing PMT_CTL\n");
return ret;
}
/* clear wol status, enable energy detection */
val &= ~PMT_CTL_WUPS;
val |= (PMT_CTL_WUPS_ED | PMT_CTL_ED_EN);
ret = smsc75xx_write_reg_nopm(dev, PMT_CTL, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing PMT_CTL\n");
return ret;
}
pdata->suspend_flags |= SUSPEND_SUSPEND1;
return 0;
}
static int smsc75xx_enter_suspend2(struct usbnet *dev)
{
struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]);
u32 val;
int ret;
ret = smsc75xx_read_reg_nopm(dev, PMT_CTL, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading PMT_CTL\n");
return ret;
}
val &= ~(PMT_CTL_SUS_MODE | PMT_CTL_WUPS | PMT_CTL_PHY_RST);
val |= PMT_CTL_SUS_MODE_2;
ret = smsc75xx_write_reg_nopm(dev, PMT_CTL, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing PMT_CTL\n");
return ret;
}
pdata->suspend_flags |= SUSPEND_SUSPEND2;
return 0;
}
static int smsc75xx_enter_suspend3(struct usbnet *dev)
{
struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]);
u32 val;
int ret;
ret = smsc75xx_read_reg_nopm(dev, FCT_RX_CTL, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading FCT_RX_CTL\n");
return ret;
}
if (val & FCT_RX_CTL_RXUSED) {
netdev_dbg(dev->net, "rx fifo not empty in autosuspend\n");
return -EBUSY;
}
ret = smsc75xx_read_reg_nopm(dev, PMT_CTL, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading PMT_CTL\n");
return ret;
}
val &= ~(PMT_CTL_SUS_MODE | PMT_CTL_WUPS | PMT_CTL_PHY_RST);
val |= PMT_CTL_SUS_MODE_3 | PMT_CTL_RES_CLR_WKP_EN;
ret = smsc75xx_write_reg_nopm(dev, PMT_CTL, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing PMT_CTL\n");
return ret;
}
/* clear wol status */
val &= ~PMT_CTL_WUPS;
val |= PMT_CTL_WUPS_WOL;
ret = smsc75xx_write_reg_nopm(dev, PMT_CTL, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing PMT_CTL\n");
return ret;
}
pdata->suspend_flags |= SUSPEND_SUSPEND3;
return 0;
}
static int smsc75xx_enable_phy_wakeup_interrupts(struct usbnet *dev, u16 mask)
{
struct mii_if_info *mii = &dev->mii;
int ret;
netdev_dbg(dev->net, "enabling PHY wakeup interrupts\n");
/* read to clear */
ret = smsc75xx_mdio_read_nopm(dev->net, mii->phy_id, PHY_INT_SRC);
if (ret < 0) {
netdev_warn(dev->net, "Error reading PHY_INT_SRC\n");
return ret;
}
/* enable interrupt source */
ret = smsc75xx_mdio_read_nopm(dev->net, mii->phy_id, PHY_INT_MASK);
if (ret < 0) {
netdev_warn(dev->net, "Error reading PHY_INT_MASK\n");
return ret;
}
ret |= mask;
smsc75xx_mdio_write_nopm(dev->net, mii->phy_id, PHY_INT_MASK, ret);
return 0;
}
static int smsc75xx_link_ok_nopm(struct usbnet *dev)
{
struct mii_if_info *mii = &dev->mii;
int ret;
/* first, a dummy read, needed to latch some MII phys */
ret = smsc75xx_mdio_read_nopm(dev->net, mii->phy_id, MII_BMSR);
if (ret < 0) {
netdev_warn(dev->net, "Error reading MII_BMSR\n");
return ret;
}
ret = smsc75xx_mdio_read_nopm(dev->net, mii->phy_id, MII_BMSR);
if (ret < 0) {
netdev_warn(dev->net, "Error reading MII_BMSR\n");
return ret;
}
return !!(ret & BMSR_LSTATUS);
}
static int smsc75xx_autosuspend(struct usbnet *dev, u32 link_up)
{
int ret;
if (!netif_running(dev->net)) {
/* interface is ifconfig down so fully power down hw */
netdev_dbg(dev->net, "autosuspend entering SUSPEND2\n");
return smsc75xx_enter_suspend2(dev);
}
if (!link_up) {
/* link is down so enter EDPD mode */
netdev_dbg(dev->net, "autosuspend entering SUSPEND1\n");
/* enable PHY wakeup events for if cable is attached */
ret = smsc75xx_enable_phy_wakeup_interrupts(dev,
PHY_INT_MASK_ANEG_COMP);
if (ret < 0) {
netdev_warn(dev->net, "error enabling PHY wakeup ints\n");
return ret;
}
netdev_info(dev->net, "entering SUSPEND1 mode\n");
return smsc75xx_enter_suspend1(dev);
}
/* enable PHY wakeup events so we remote wakeup if cable is pulled */
ret = smsc75xx_enable_phy_wakeup_interrupts(dev,
PHY_INT_MASK_LINK_DOWN);
if (ret < 0) {
netdev_warn(dev->net, "error enabling PHY wakeup ints\n");
return ret;
}
netdev_dbg(dev->net, "autosuspend entering SUSPEND3\n");
return smsc75xx_enter_suspend3(dev);
}
static int smsc75xx_suspend(struct usb_interface *intf, pm_message_t message)
{
struct usbnet *dev = usb_get_intfdata(intf);
struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]);
u32 val, link_up;
int ret;
ret = usbnet_suspend(intf, message);
if (ret < 0) {
netdev_warn(dev->net, "usbnet_suspend error\n");
return ret;
}
if (pdata->suspend_flags) {
netdev_warn(dev->net, "error during last resume\n");
pdata->suspend_flags = 0;
}
/* determine if link is up using only _nopm functions */
link_up = smsc75xx_link_ok_nopm(dev);
if (message.event == PM_EVENT_AUTO_SUSPEND) {
ret = smsc75xx_autosuspend(dev, link_up);
goto done;
}
/* if we get this far we're not autosuspending */
/* if no wol options set, or if link is down and we're not waking on
* PHY activity, enter lowest power SUSPEND2 mode
*/
if (!(pdata->wolopts & SUPPORTED_WAKE) ||
!(link_up || (pdata->wolopts & WAKE_PHY))) {
netdev_info(dev->net, "entering SUSPEND2 mode\n");
/* disable energy detect (link up) & wake up events */
ret = smsc75xx_read_reg_nopm(dev, WUCSR, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading WUCSR\n");
goto done;
}
val &= ~(WUCSR_MPEN | WUCSR_WUEN);
ret = smsc75xx_write_reg_nopm(dev, WUCSR, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing WUCSR\n");
goto done;
}
ret = smsc75xx_read_reg_nopm(dev, PMT_CTL, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading PMT_CTL\n");
goto done;
}
val &= ~(PMT_CTL_ED_EN | PMT_CTL_WOL_EN);
ret = smsc75xx_write_reg_nopm(dev, PMT_CTL, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing PMT_CTL\n");
goto done;
}
ret = smsc75xx_enter_suspend2(dev);
goto done;
}
if (pdata->wolopts & WAKE_PHY) {
ret = smsc75xx_enable_phy_wakeup_interrupts(dev,
(PHY_INT_MASK_ANEG_COMP | PHY_INT_MASK_LINK_DOWN));
if (ret < 0) {
netdev_warn(dev->net, "error enabling PHY wakeup ints\n");
goto done;
}
/* if link is down then configure EDPD and enter SUSPEND1,
* otherwise enter SUSPEND0 below
*/
if (!link_up) {
struct mii_if_info *mii = &dev->mii;
netdev_info(dev->net, "entering SUSPEND1 mode\n");
/* enable energy detect power-down mode */
ret = smsc75xx_mdio_read_nopm(dev->net, mii->phy_id,
PHY_MODE_CTRL_STS);
if (ret < 0) {
netdev_warn(dev->net, "Error reading PHY_MODE_CTRL_STS\n");
goto done;
}
ret |= MODE_CTRL_STS_EDPWRDOWN;
smsc75xx_mdio_write_nopm(dev->net, mii->phy_id,
PHY_MODE_CTRL_STS, ret);
/* enter SUSPEND1 mode */
ret = smsc75xx_enter_suspend1(dev);
goto done;
}
}
if (pdata->wolopts & (WAKE_MCAST | WAKE_ARP)) {
int i, filter = 0;
/* disable all filters */
for (i = 0; i < WUF_NUM; i++) {
ret = smsc75xx_write_reg_nopm(dev, WUF_CFGX + i * 4, 0);
if (ret < 0) {
netdev_warn(dev->net, "Error writing WUF_CFGX\n");
goto done;
}
}
if (pdata->wolopts & WAKE_MCAST) {
const u8 mcast[] = {0x01, 0x00, 0x5E};
netdev_info(dev->net, "enabling multicast detection\n");
val = WUF_CFGX_EN | WUF_CFGX_ATYPE_MULTICAST
| smsc_crc(mcast, 3);
ret = smsc75xx_write_wuff(dev, filter++, val, 0x0007);
if (ret < 0) {
netdev_warn(dev->net, "Error writing wakeup filter\n");
goto done;
}
}
if (pdata->wolopts & WAKE_ARP) {
const u8 arp[] = {0x08, 0x06};
netdev_info(dev->net, "enabling ARP detection\n");
val = WUF_CFGX_EN | WUF_CFGX_ATYPE_ALL | (0x0C << 16)
| smsc_crc(arp, 2);
ret = smsc75xx_write_wuff(dev, filter++, val, 0x0003);
if (ret < 0) {
netdev_warn(dev->net, "Error writing wakeup filter\n");
goto done;
}
}
/* clear any pending pattern match packet status */
ret = smsc75xx_read_reg_nopm(dev, WUCSR, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading WUCSR\n");
goto done;
}
val |= WUCSR_WUFR;
ret = smsc75xx_write_reg_nopm(dev, WUCSR, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing WUCSR\n");
goto done;
}
netdev_info(dev->net, "enabling packet match detection\n");
ret = smsc75xx_read_reg_nopm(dev, WUCSR, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading WUCSR\n");
goto done;
}
val |= WUCSR_WUEN;
ret = smsc75xx_write_reg_nopm(dev, WUCSR, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing WUCSR\n");
goto done;
}
} else {
netdev_info(dev->net, "disabling packet match detection\n");
ret = smsc75xx_read_reg_nopm(dev, WUCSR, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading WUCSR\n");
goto done;
}
val &= ~WUCSR_WUEN;
ret = smsc75xx_write_reg_nopm(dev, WUCSR, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing WUCSR\n");
goto done;
}
}
/* disable magic, bcast & unicast wakeup sources */
ret = smsc75xx_read_reg_nopm(dev, WUCSR, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading WUCSR\n");
goto done;
}
val &= ~(WUCSR_MPEN | WUCSR_BCST_EN | WUCSR_PFDA_EN);
ret = smsc75xx_write_reg_nopm(dev, WUCSR, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing WUCSR\n");
goto done;
}
if (pdata->wolopts & WAKE_PHY) {
netdev_info(dev->net, "enabling PHY wakeup\n");
ret = smsc75xx_read_reg_nopm(dev, PMT_CTL, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading PMT_CTL\n");
goto done;
}
/* clear wol status, enable energy detection */
val &= ~PMT_CTL_WUPS;
val |= (PMT_CTL_WUPS_ED | PMT_CTL_ED_EN);
ret = smsc75xx_write_reg_nopm(dev, PMT_CTL, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing PMT_CTL\n");
goto done;
}
}
if (pdata->wolopts & WAKE_MAGIC) {
netdev_info(dev->net, "enabling magic packet wakeup\n");
ret = smsc75xx_read_reg_nopm(dev, WUCSR, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading WUCSR\n");
goto done;
}
/* clear any pending magic packet status */
val |= WUCSR_MPR | WUCSR_MPEN;
ret = smsc75xx_write_reg_nopm(dev, WUCSR, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing WUCSR\n");
goto done;
}
}
if (pdata->wolopts & WAKE_BCAST) {
netdev_info(dev->net, "enabling broadcast detection\n");
ret = smsc75xx_read_reg_nopm(dev, WUCSR, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading WUCSR\n");
goto done;
}
val |= WUCSR_BCAST_FR | WUCSR_BCST_EN;
ret = smsc75xx_write_reg_nopm(dev, WUCSR, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing WUCSR\n");
goto done;
}
}
if (pdata->wolopts & WAKE_UCAST) {
netdev_info(dev->net, "enabling unicast detection\n");
ret = smsc75xx_read_reg_nopm(dev, WUCSR, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading WUCSR\n");
goto done;
}
val |= WUCSR_WUFR | WUCSR_PFDA_EN;
ret = smsc75xx_write_reg_nopm(dev, WUCSR, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing WUCSR\n");
goto done;
}
}
/* enable receiver to enable frame reception */
ret = smsc75xx_read_reg_nopm(dev, MAC_RX, &val);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read MAC_RX: %d\n", ret);
goto done;
}
val |= MAC_RX_RXEN;
ret = smsc75xx_write_reg_nopm(dev, MAC_RX, val);
if (ret < 0) {
netdev_warn(dev->net, "Failed to write MAC_RX: %d\n", ret);
goto done;
}
/* some wol options are enabled, so enter SUSPEND0 */
netdev_info(dev->net, "entering SUSPEND0 mode\n");
ret = smsc75xx_enter_suspend0(dev);
done:
/*
* TODO: resume() might need to handle the suspend failure
* in system sleep
*/
if (ret && PMSG_IS_AUTO(message))
usbnet_resume(intf);
return ret;
}
static int smsc75xx_resume(struct usb_interface *intf)
{
struct usbnet *dev = usb_get_intfdata(intf);
struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]);
u8 suspend_flags = pdata->suspend_flags;
int ret;
u32 val;
netdev_dbg(dev->net, "resume suspend_flags=0x%02x\n", suspend_flags);
/* do this first to ensure it's cleared even in error case */
pdata->suspend_flags = 0;
if (suspend_flags & SUSPEND_ALLMODES) {
/* Disable wakeup sources */
ret = smsc75xx_read_reg_nopm(dev, WUCSR, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading WUCSR\n");
return ret;
}
val &= ~(WUCSR_WUEN | WUCSR_MPEN | WUCSR_PFDA_EN
| WUCSR_BCST_EN);
ret = smsc75xx_write_reg_nopm(dev, WUCSR, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing WUCSR\n");
return ret;
}
/* clear wake-up status */
ret = smsc75xx_read_reg_nopm(dev, PMT_CTL, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading PMT_CTL\n");
return ret;
}
val &= ~PMT_CTL_WOL_EN;
val |= PMT_CTL_WUPS;
ret = smsc75xx_write_reg_nopm(dev, PMT_CTL, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing PMT_CTL\n");
return ret;
}
}
if (suspend_flags & SUSPEND_SUSPEND2) {
netdev_info(dev->net, "resuming from SUSPEND2\n");
ret = smsc75xx_read_reg_nopm(dev, PMT_CTL, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading PMT_CTL\n");
return ret;
}
val |= PMT_CTL_PHY_PWRUP;
ret = smsc75xx_write_reg_nopm(dev, PMT_CTL, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing PMT_CTL\n");
return ret;
}
}
ret = smsc75xx_wait_ready(dev, 1);
if (ret < 0) {
netdev_warn(dev->net, "device not ready in smsc75xx_resume\n");
return ret;
}
return usbnet_resume(intf);
}
static void smsc75xx_rx_csum_offload(struct usbnet *dev, struct sk_buff *skb,
u32 rx_cmd_a, u32 rx_cmd_b)
{
if (!(dev->net->features & NETIF_F_RXCSUM) ||
unlikely(rx_cmd_a & RX_CMD_A_LCSM)) {
skb->ip_summed = CHECKSUM_NONE;
} else {
skb->csum = ntohs((u16)(rx_cmd_b >> RX_CMD_B_CSUM_SHIFT));
skb->ip_summed = CHECKSUM_COMPLETE;
}
}
static int smsc75xx_rx_fixup(struct usbnet *dev, struct sk_buff *skb)
{
usbnet: remove generic hard_header_len check This patch removes a generic hard_header_len check from the usbnet module that is causing dropped packages under certain circumstances for devices that send rx packets that cross urb boundaries. One example is the AX88772B which occasionally send rx packets that cross urb boundaries where the remaining partial packet is sent with no hardware header. When the buffer with a partial packet is of less number of octets than the value of hard_header_len the buffer is discarded by the usbnet module. With AX88772B this can be reproduced by using ping with a packet size between 1965-1976. The bug has been reported here: https://bugzilla.kernel.org/show_bug.cgi?id=29082 This patch introduces the following changes: - Removes the generic hard_header_len check in the rx_complete function in the usbnet module. - Introduces a ETH_HLEN check for skbs that are not cloned from within a rx_fixup callback. - For safety a hard_header_len check is added to each rx_fixup callback function that could be affected by this change. These extra checks could possibly be removed by someone who has the hardware to test. - Removes a call to dev_kfree_skb_any() and instead utilizes the dev->done list to queue skbs for cleanup. The changes place full responsibility on the rx_fixup callback functions that clone skbs to only pass valid skbs to the usbnet_skb_return function. Signed-off-by: Emil Goode <emilgoode@gmail.com> Reported-by: Igor Gnatenko <i.gnatenko.brain@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-02-14 00:50:19 +08:00
/* This check is no longer done by usbnet */
if (skb->len < dev->net->hard_header_len)
return 0;
while (skb->len > 0) {
u32 rx_cmd_a, rx_cmd_b, align_count, size;
struct sk_buff *ax_skb;
unsigned char *packet;
memcpy(&rx_cmd_a, skb->data, sizeof(rx_cmd_a));
le32_to_cpus(&rx_cmd_a);
skb_pull(skb, 4);
memcpy(&rx_cmd_b, skb->data, sizeof(rx_cmd_b));
le32_to_cpus(&rx_cmd_b);
skb_pull(skb, 4 + RXW_PADDING);
packet = skb->data;
/* get the packet length */
size = (rx_cmd_a & RX_CMD_A_LEN) - RXW_PADDING;
align_count = (4 - ((size + RXW_PADDING) % 4)) % 4;
if (unlikely(rx_cmd_a & RX_CMD_A_RED)) {
netif_dbg(dev, rx_err, dev->net,
"Error rx_cmd_a=0x%08x\n", rx_cmd_a);
dev->net->stats.rx_errors++;
dev->net->stats.rx_dropped++;
if (rx_cmd_a & RX_CMD_A_FCS)
dev->net->stats.rx_crc_errors++;
else if (rx_cmd_a & (RX_CMD_A_LONG | RX_CMD_A_RUNT))
dev->net->stats.rx_frame_errors++;
} else {
/* MAX_SINGLE_PACKET_SIZE + 4(CRC) + 2(COE) + 4(Vlan) */
if (unlikely(size > (MAX_SINGLE_PACKET_SIZE + ETH_HLEN + 12))) {
netif_dbg(dev, rx_err, dev->net,
"size err rx_cmd_a=0x%08x\n",
rx_cmd_a);
return 0;
}
/* last frame in this batch */
if (skb->len == size) {
smsc75xx_rx_csum_offload(dev, skb, rx_cmd_a,
rx_cmd_b);
skb_trim(skb, skb->len - 4); /* remove fcs */
skb->truesize = size + sizeof(struct sk_buff);
return 1;
}
ax_skb = skb_clone(skb, GFP_ATOMIC);
if (unlikely(!ax_skb)) {
netdev_warn(dev->net, "Error allocating skb\n");
return 0;
}
ax_skb->len = size;
ax_skb->data = packet;
skb_set_tail_pointer(ax_skb, size);
smsc75xx_rx_csum_offload(dev, ax_skb, rx_cmd_a,
rx_cmd_b);
skb_trim(ax_skb, ax_skb->len - 4); /* remove fcs */
ax_skb->truesize = size + sizeof(struct sk_buff);
usbnet_skb_return(dev, ax_skb);
}
skb_pull(skb, size);
/* padding bytes before the next frame starts */
if (skb->len)
skb_pull(skb, align_count);
}
return 1;
}
static struct sk_buff *smsc75xx_tx_fixup(struct usbnet *dev,
struct sk_buff *skb, gfp_t flags)
{
u32 tx_cmd_a, tx_cmd_b;
if (skb_cow_head(skb, SMSC75XX_TX_OVERHEAD)) {
dev_kfree_skb_any(skb);
return NULL;
}
tx_cmd_a = (u32)(skb->len & TX_CMD_A_LEN) | TX_CMD_A_FCS;
if (skb->ip_summed == CHECKSUM_PARTIAL)
tx_cmd_a |= TX_CMD_A_IPE | TX_CMD_A_TPE;
if (skb_is_gso(skb)) {
u16 mss = max(skb_shinfo(skb)->gso_size, TX_MSS_MIN);
tx_cmd_b = (mss << TX_CMD_B_MSS_SHIFT) & TX_CMD_B_MSS;
tx_cmd_a |= TX_CMD_A_LSO;
} else {
tx_cmd_b = 0;
}
skb_push(skb, 4);
cpu_to_le32s(&tx_cmd_b);
memcpy(skb->data, &tx_cmd_b, 4);
skb_push(skb, 4);
cpu_to_le32s(&tx_cmd_a);
memcpy(skb->data, &tx_cmd_a, 4);
return skb;
}
static int smsc75xx_manage_power(struct usbnet *dev, int on)
{
dev->intf->needs_remote_wakeup = on;
return 0;
}
static const struct driver_info smsc75xx_info = {
.description = "smsc75xx USB 2.0 Gigabit Ethernet",
.bind = smsc75xx_bind,
.unbind = smsc75xx_unbind,
.link_reset = smsc75xx_link_reset,
.reset = smsc75xx_reset,
.rx_fixup = smsc75xx_rx_fixup,
.tx_fixup = smsc75xx_tx_fixup,
.status = smsc75xx_status,
.manage_power = smsc75xx_manage_power,
.flags = FLAG_ETHER | FLAG_SEND_ZLP | FLAG_LINK_INTR,
};
static const struct usb_device_id products[] = {
{
/* SMSC7500 USB Gigabit Ethernet Device */
USB_DEVICE(USB_VENDOR_ID_SMSC, USB_PRODUCT_ID_LAN7500),
.driver_info = (unsigned long) &smsc75xx_info,
},
{
/* SMSC7500 USB Gigabit Ethernet Device */
USB_DEVICE(USB_VENDOR_ID_SMSC, USB_PRODUCT_ID_LAN7505),
.driver_info = (unsigned long) &smsc75xx_info,
},
{ }, /* END */
};
MODULE_DEVICE_TABLE(usb, products);
static struct usb_driver smsc75xx_driver = {
.name = SMSC_CHIPNAME,
.id_table = products,
.probe = usbnet_probe,
.suspend = smsc75xx_suspend,
.resume = smsc75xx_resume,
.reset_resume = smsc75xx_resume,
.disconnect = usbnet_disconnect,
USB: Disable hub-initiated LPM for comms devices. Hub-initiated LPM is not good for USB communications devices. Comms devices should be able to tell when their link can go into a lower power state, because they know when an incoming transmission is finished. Ideally, these devices would slam their links into a lower power state, using the device-initiated LPM, after finishing the last packet of their data transfer. If we enable the idle timeouts for the parent hubs to enable hub-initiated LPM, we will get a lot of useless LPM packets on the bus as the devices reject LPM transitions when they're in the middle of receiving data. Worse, some devices might blindly accept the hub-initiated LPM and power down their radios while they're in the middle of receiving a transmission. The Intel Windows folks are disabling hub-initiated LPM for all USB communications devices under a xHCI USB 3.0 host. In order to keep the Linux behavior as close as possible to Windows, we need to do the same in Linux. Set the disable_hub_initiated_lpm flag for for all USB communications drivers. I know there aren't currently any USB 3.0 devices that implement these class specifications, but we should be ready if they do. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Cc: Marcel Holtmann <marcel@holtmann.org> Cc: Gustavo Padovan <gustavo@padovan.org> Cc: Johan Hedberg <johan.hedberg@gmail.com> Cc: Hansjoerg Lipp <hjlipp@web.de> Cc: Tilman Schmidt <tilman@imap.cc> Cc: Karsten Keil <isdn@linux-pingi.de> Cc: Peter Korsgaard <jacmet@sunsite.dk> Cc: Jan Dumon <j.dumon@option.com> Cc: Petko Manolov <petkan@users.sourceforge.net> Cc: Steve Glendinning <steve.glendinning@smsc.com> Cc: "John W. Linville" <linville@tuxdriver.com> Cc: Kalle Valo <kvalo@qca.qualcomm.com> Cc: "Luis R. Rodriguez" <mcgrof@qca.qualcomm.com> Cc: Jouni Malinen <jouni@qca.qualcomm.com> Cc: Vasanthakumar Thiagarajan <vthiagar@qca.qualcomm.com> Cc: Senthil Balasubramanian <senthilb@qca.qualcomm.com> Cc: Christian Lamparter <chunkeey@googlemail.com> Cc: Brett Rudley <brudley@broadcom.com> Cc: Roland Vossen <rvossen@broadcom.com> Cc: Arend van Spriel <arend@broadcom.com> Cc: "Franky (Zhenhui) Lin" <frankyl@broadcom.com> Cc: Kan Yan <kanyan@broadcom.com> Cc: Dan Williams <dcbw@redhat.com> Cc: Jussi Kivilinna <jussi.kivilinna@mbnet.fi> Cc: Ivo van Doorn <IvDoorn@gmail.com> Cc: Gertjan van Wingerde <gwingerde@gmail.com> Cc: Helmut Schaa <helmut.schaa@googlemail.com> Cc: Herton Ronaldo Krzesinski <herton@canonical.com> Cc: Hin-Tak Leung <htl10@users.sourceforge.net> Cc: Larry Finger <Larry.Finger@lwfinger.net> Cc: Chaoming Li <chaoming_li@realsil.com.cn> Cc: Daniel Drake <dsd@gentoo.org> Cc: Ulrich Kunitz <kune@deine-taler.de> Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
2012-04-24 01:08:51 +08:00
.disable_hub_initiated_lpm = 1,
.supports_autosuspend = 1,
};
module_usb_driver(smsc75xx_driver);
MODULE_AUTHOR("Nancy Lin");
MODULE_AUTHOR("Steve Glendinning <steve.glendinning@shawell.net>");
MODULE_DESCRIPTION("SMSC75XX USB 2.0 Gigabit Ethernet Devices");
MODULE_LICENSE("GPL");