OpenCloudOS-Kernel/drivers/clk/baikal-t1/ccu-pll.h

73 lines
1.8 KiB
C
Raw Normal View History

clk: Add Baikal-T1 CCU PLLs driver Baikal-T1 is supposed to be supplied with a high-frequency external oscillator. But in order to create signals suitable for each IP-block embedded into the SoC the oscillator output is primarily connected to a set of CCU PLLs. There are five of them to create clocks for the MIPS P5600 cores, an embedded DDR controller, SATA, Ethernet and PCIe domains. The last three domains though named by the biggest system interfaces in fact include nearly all of the rest SoC peripherals. Each of the PLLs is based on True Circuits TSMC CLN28HPM IP-core with an interface wrapper (so called safe PLL' clocks switcher) to simplify the PLL configuration procedure. This driver creates the of-based hardware clocks to use them then in the corresponding subsystems. In order to simplify the driver code we split the functionality up into the PLLs clocks operations and hardware clocks declaration/registration procedures. Even though the PLLs are based on the same IP-core, they may have some differences. In particular, some CCU PLLs support the output clock change without gating them (like CPU or PCIe PLLs), while the others don't, some CCU PLLs are critical and aren't supposed to be gated. In order to cover all of these cases the hardware clocks driver is designed with an info-descriptor pattern. So there are special static descriptors declared for each PLL, which is then used to create a hardware clock with proper operations. Additionally debugfs-files are provided for each PLL' field to make sure the implemented rate-PLLs-dividers calculation algorithm is correct. Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru> Cc: Alexey Malahov <Alexey.Malahov@baikalelectronics.ru> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Rob Herring <robh+dt@kernel.org> Cc: linux-mips@vger.kernel.org Cc: devicetree@vger.kernel.org Link: https://lore.kernel.org/r/20200526222056.18072-4-Sergey.Semin@baikalelectronics.ru [sboyd@kernel.org: Silence sparse warning about initializing structs with NULL vs. integer] Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2020-05-27 06:20:55 +08:00
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2020 BAIKAL ELECTRONICS, JSC
*
* Baikal-T1 CCU PLL interface driver
*/
#ifndef __CLK_BT1_CCU_PLL_H__
#define __CLK_BT1_CCU_PLL_H__
#include <linux/clk-provider.h>
#include <linux/spinlock.h>
#include <linux/regmap.h>
#include <linux/bits.h>
#include <linux/of.h>
clk: baikal-t1: Convert to platform device driver In accordance with the way the MIPS platform is normally design there are only six clock sources which need to be available on the kernel start in order to one end up booting correctly: + CPU PLL: needed by the r4k and MIPS GIC timer drivers. The former one is initialized by the arch code, while the later one is implemented in the mips-gic-timer.c driver as the OF-declared timer. + PCIe PLL: required as a parental clock source for the APB/timer domains. + APB clock: needed in order to access all the SoC CSRs at least for the timer OF-declared drivers. + APB Timer{0-2} clocks: these are the DW APB timers which drivers dw_apb_timer_of.c are implemented as the OF-declared timers. So as long as the clocks above are available early the kernel will normally work. Let's convert the Baikal-T1 CCU drivers to the platform device drivers keeping that in mind. Generally speaking the conversion isn't that complicated since the driver infrastructure has been designed as flexible enough for that. First we need to add a new PLL/Divider clock features flag which indicates the corresponding clock source as a basic one and that clock sources will be available on the kernel early boot stages. Second the internal PLL/Divider descriptors need to be initialized with -EPROBE_DEFER value as the corresponding clock source is unavailable at the early stages. They will be allocated and initialized on the Baikal-T1 clock platform driver probe procedure. Finally the already available PLL/Divider init functions need to be split up into two ones: init procedure performed in the framework of the OF-declared clock initialization (of_clk_init()), and the probe procedure called by the platform devices bus driver. Note the later method will just continue the system clocks initialization started in the former one. Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru> Link: https://lore.kernel.org/r/20220929225402.9696-9-Sergey.Semin@baikalelectronics.ru [sboyd@kernel.org: Remove module things because the Kconfig is still bool] Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2022-09-30 06:54:02 +08:00
/*
* CCU PLL private flags
* @CCU_PLL_BASIC: Basic PLL required by the kernel as early as possible.
*/
#define CCU_PLL_BASIC BIT(0)
clk: Add Baikal-T1 CCU PLLs driver Baikal-T1 is supposed to be supplied with a high-frequency external oscillator. But in order to create signals suitable for each IP-block embedded into the SoC the oscillator output is primarily connected to a set of CCU PLLs. There are five of them to create clocks for the MIPS P5600 cores, an embedded DDR controller, SATA, Ethernet and PCIe domains. The last three domains though named by the biggest system interfaces in fact include nearly all of the rest SoC peripherals. Each of the PLLs is based on True Circuits TSMC CLN28HPM IP-core with an interface wrapper (so called safe PLL' clocks switcher) to simplify the PLL configuration procedure. This driver creates the of-based hardware clocks to use them then in the corresponding subsystems. In order to simplify the driver code we split the functionality up into the PLLs clocks operations and hardware clocks declaration/registration procedures. Even though the PLLs are based on the same IP-core, they may have some differences. In particular, some CCU PLLs support the output clock change without gating them (like CPU or PCIe PLLs), while the others don't, some CCU PLLs are critical and aren't supposed to be gated. In order to cover all of these cases the hardware clocks driver is designed with an info-descriptor pattern. So there are special static descriptors declared for each PLL, which is then used to create a hardware clock with proper operations. Additionally debugfs-files are provided for each PLL' field to make sure the implemented rate-PLLs-dividers calculation algorithm is correct. Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru> Cc: Alexey Malahov <Alexey.Malahov@baikalelectronics.ru> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Rob Herring <robh+dt@kernel.org> Cc: linux-mips@vger.kernel.org Cc: devicetree@vger.kernel.org Link: https://lore.kernel.org/r/20200526222056.18072-4-Sergey.Semin@baikalelectronics.ru [sboyd@kernel.org: Silence sparse warning about initializing structs with NULL vs. integer] Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2020-05-27 06:20:55 +08:00
/*
* struct ccu_pll_init_data - CCU PLL initialization data
* @id: Clock private identifier.
* @name: Clocks name.
* @parent_name: Clocks parent name in a fw node.
* @base: PLL registers base address with respect to the sys_regs base.
* @sys_regs: Baikal-T1 System Controller registers map.
* @np: Pointer to the node describing the CCU PLLs.
* @flags: PLL clock flags.
clk: baikal-t1: Convert to platform device driver In accordance with the way the MIPS platform is normally design there are only six clock sources which need to be available on the kernel start in order to one end up booting correctly: + CPU PLL: needed by the r4k and MIPS GIC timer drivers. The former one is initialized by the arch code, while the later one is implemented in the mips-gic-timer.c driver as the OF-declared timer. + PCIe PLL: required as a parental clock source for the APB/timer domains. + APB clock: needed in order to access all the SoC CSRs at least for the timer OF-declared drivers. + APB Timer{0-2} clocks: these are the DW APB timers which drivers dw_apb_timer_of.c are implemented as the OF-declared timers. So as long as the clocks above are available early the kernel will normally work. Let's convert the Baikal-T1 CCU drivers to the platform device drivers keeping that in mind. Generally speaking the conversion isn't that complicated since the driver infrastructure has been designed as flexible enough for that. First we need to add a new PLL/Divider clock features flag which indicates the corresponding clock source as a basic one and that clock sources will be available on the kernel early boot stages. Second the internal PLL/Divider descriptors need to be initialized with -EPROBE_DEFER value as the corresponding clock source is unavailable at the early stages. They will be allocated and initialized on the Baikal-T1 clock platform driver probe procedure. Finally the already available PLL/Divider init functions need to be split up into two ones: init procedure performed in the framework of the OF-declared clock initialization (of_clk_init()), and the probe procedure called by the platform devices bus driver. Note the later method will just continue the system clocks initialization started in the former one. Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru> Link: https://lore.kernel.org/r/20220929225402.9696-9-Sergey.Semin@baikalelectronics.ru [sboyd@kernel.org: Remove module things because the Kconfig is still bool] Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2022-09-30 06:54:02 +08:00
* @features: PLL private features.
clk: Add Baikal-T1 CCU PLLs driver Baikal-T1 is supposed to be supplied with a high-frequency external oscillator. But in order to create signals suitable for each IP-block embedded into the SoC the oscillator output is primarily connected to a set of CCU PLLs. There are five of them to create clocks for the MIPS P5600 cores, an embedded DDR controller, SATA, Ethernet and PCIe domains. The last three domains though named by the biggest system interfaces in fact include nearly all of the rest SoC peripherals. Each of the PLLs is based on True Circuits TSMC CLN28HPM IP-core with an interface wrapper (so called safe PLL' clocks switcher) to simplify the PLL configuration procedure. This driver creates the of-based hardware clocks to use them then in the corresponding subsystems. In order to simplify the driver code we split the functionality up into the PLLs clocks operations and hardware clocks declaration/registration procedures. Even though the PLLs are based on the same IP-core, they may have some differences. In particular, some CCU PLLs support the output clock change without gating them (like CPU or PCIe PLLs), while the others don't, some CCU PLLs are critical and aren't supposed to be gated. In order to cover all of these cases the hardware clocks driver is designed with an info-descriptor pattern. So there are special static descriptors declared for each PLL, which is then used to create a hardware clock with proper operations. Additionally debugfs-files are provided for each PLL' field to make sure the implemented rate-PLLs-dividers calculation algorithm is correct. Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru> Cc: Alexey Malahov <Alexey.Malahov@baikalelectronics.ru> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Rob Herring <robh+dt@kernel.org> Cc: linux-mips@vger.kernel.org Cc: devicetree@vger.kernel.org Link: https://lore.kernel.org/r/20200526222056.18072-4-Sergey.Semin@baikalelectronics.ru [sboyd@kernel.org: Silence sparse warning about initializing structs with NULL vs. integer] Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2020-05-27 06:20:55 +08:00
*/
struct ccu_pll_init_data {
unsigned int id;
const char *name;
const char *parent_name;
unsigned int base;
struct regmap *sys_regs;
struct device_node *np;
unsigned long flags;
clk: baikal-t1: Convert to platform device driver In accordance with the way the MIPS platform is normally design there are only six clock sources which need to be available on the kernel start in order to one end up booting correctly: + CPU PLL: needed by the r4k and MIPS GIC timer drivers. The former one is initialized by the arch code, while the later one is implemented in the mips-gic-timer.c driver as the OF-declared timer. + PCIe PLL: required as a parental clock source for the APB/timer domains. + APB clock: needed in order to access all the SoC CSRs at least for the timer OF-declared drivers. + APB Timer{0-2} clocks: these are the DW APB timers which drivers dw_apb_timer_of.c are implemented as the OF-declared timers. So as long as the clocks above are available early the kernel will normally work. Let's convert the Baikal-T1 CCU drivers to the platform device drivers keeping that in mind. Generally speaking the conversion isn't that complicated since the driver infrastructure has been designed as flexible enough for that. First we need to add a new PLL/Divider clock features flag which indicates the corresponding clock source as a basic one and that clock sources will be available on the kernel early boot stages. Second the internal PLL/Divider descriptors need to be initialized with -EPROBE_DEFER value as the corresponding clock source is unavailable at the early stages. They will be allocated and initialized on the Baikal-T1 clock platform driver probe procedure. Finally the already available PLL/Divider init functions need to be split up into two ones: init procedure performed in the framework of the OF-declared clock initialization (of_clk_init()), and the probe procedure called by the platform devices bus driver. Note the later method will just continue the system clocks initialization started in the former one. Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru> Link: https://lore.kernel.org/r/20220929225402.9696-9-Sergey.Semin@baikalelectronics.ru [sboyd@kernel.org: Remove module things because the Kconfig is still bool] Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2022-09-30 06:54:02 +08:00
unsigned long features;
clk: Add Baikal-T1 CCU PLLs driver Baikal-T1 is supposed to be supplied with a high-frequency external oscillator. But in order to create signals suitable for each IP-block embedded into the SoC the oscillator output is primarily connected to a set of CCU PLLs. There are five of them to create clocks for the MIPS P5600 cores, an embedded DDR controller, SATA, Ethernet and PCIe domains. The last three domains though named by the biggest system interfaces in fact include nearly all of the rest SoC peripherals. Each of the PLLs is based on True Circuits TSMC CLN28HPM IP-core with an interface wrapper (so called safe PLL' clocks switcher) to simplify the PLL configuration procedure. This driver creates the of-based hardware clocks to use them then in the corresponding subsystems. In order to simplify the driver code we split the functionality up into the PLLs clocks operations and hardware clocks declaration/registration procedures. Even though the PLLs are based on the same IP-core, they may have some differences. In particular, some CCU PLLs support the output clock change without gating them (like CPU or PCIe PLLs), while the others don't, some CCU PLLs are critical and aren't supposed to be gated. In order to cover all of these cases the hardware clocks driver is designed with an info-descriptor pattern. So there are special static descriptors declared for each PLL, which is then used to create a hardware clock with proper operations. Additionally debugfs-files are provided for each PLL' field to make sure the implemented rate-PLLs-dividers calculation algorithm is correct. Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru> Cc: Alexey Malahov <Alexey.Malahov@baikalelectronics.ru> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Rob Herring <robh+dt@kernel.org> Cc: linux-mips@vger.kernel.org Cc: devicetree@vger.kernel.org Link: https://lore.kernel.org/r/20200526222056.18072-4-Sergey.Semin@baikalelectronics.ru [sboyd@kernel.org: Silence sparse warning about initializing structs with NULL vs. integer] Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2020-05-27 06:20:55 +08:00
};
/*
* struct ccu_pll - CCU PLL descriptor
* @hw: clk_hw of the PLL.
* @id: Clock private identifier.
* @reg_ctl: PLL control register base.
* @reg_ctl1: PLL control1 register base.
* @sys_regs: Baikal-T1 System Controller registers map.
* @lock: PLL state change spin-lock.
*/
struct ccu_pll {
struct clk_hw hw;
unsigned int id;
unsigned int reg_ctl;
unsigned int reg_ctl1;
struct regmap *sys_regs;
spinlock_t lock;
};
#define to_ccu_pll(_hw) container_of(_hw, struct ccu_pll, hw)
static inline struct clk_hw *ccu_pll_get_clk_hw(struct ccu_pll *pll)
{
return pll ? &pll->hw : NULL;
}
struct ccu_pll *ccu_pll_hw_register(const struct ccu_pll_init_data *init);
void ccu_pll_hw_unregister(struct ccu_pll *pll);
#endif /* __CLK_BT1_CCU_PLL_H__ */