OpenCloudOS-Kernel/drivers/vfio/vfio.c

2199 lines
56 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* VFIO core
*
* Copyright (C) 2012 Red Hat, Inc. All rights reserved.
* Author: Alex Williamson <alex.williamson@redhat.com>
*
* Derived from original vfio:
* Copyright 2010 Cisco Systems, Inc. All rights reserved.
* Author: Tom Lyon, pugs@cisco.com
*/
#include <linux/cdev.h>
#include <linux/compat.h>
#include <linux/device.h>
#include <linux/file.h>
#include <linux/anon_inodes.h>
#include <linux/fs.h>
#include <linux/idr.h>
#include <linux/iommu.h>
#include <linux/list.h>
#include <linux/miscdevice.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/pci.h>
#include <linux/rwsem.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/uaccess.h>
#include <linux/vfio.h>
#include <linux/wait.h>
vfio: Fix WARNING "do not call blocking ops when !TASK_RUNNING" vfio_dev_present() which is the condition to wait_event_interruptible_timeout(), will call vfio_group_get_device and try to acquire the mutex group->device_lock. wait_event_interruptible_timeout() will set the state of the current task to TASK_INTERRUPTIBLE, before doing the condition check. This means that we will try to acquire the mutex while already in a sleeping state. The scheduler warns us by giving the following warning: [ 4050.264464] ------------[ cut here ]------------ [ 4050.264508] do not call blocking ops when !TASK_RUNNING; state=1 set at [<00000000b33c00e2>] prepare_to_wait_event+0x14a/0x188 [ 4050.264529] WARNING: CPU: 12 PID: 35924 at kernel/sched/core.c:6112 __might_sleep+0x76/0x90 .... 4050.264756] Call Trace: [ 4050.264765] ([<000000000017bbaa>] __might_sleep+0x72/0x90) [ 4050.264774] [<0000000000b97edc>] __mutex_lock+0x44/0x8c0 [ 4050.264782] [<0000000000b9878a>] mutex_lock_nested+0x32/0x40 [ 4050.264793] [<000003ff800d7abe>] vfio_group_get_device+0x36/0xa8 [vfio] [ 4050.264803] [<000003ff800d87c0>] vfio_del_group_dev+0x238/0x378 [vfio] [ 4050.264813] [<000003ff8015f67c>] mdev_remove+0x3c/0x68 [mdev] [ 4050.264825] [<00000000008e01b0>] device_release_driver_internal+0x168/0x268 [ 4050.264834] [<00000000008de692>] bus_remove_device+0x162/0x190 [ 4050.264843] [<00000000008daf42>] device_del+0x1e2/0x368 [ 4050.264851] [<00000000008db12c>] device_unregister+0x64/0x88 [ 4050.264862] [<000003ff8015ed84>] mdev_device_remove+0xec/0x130 [mdev] [ 4050.264872] [<000003ff8015f074>] remove_store+0x6c/0xa8 [mdev] [ 4050.264881] [<000000000046f494>] kernfs_fop_write+0x14c/0x1f8 [ 4050.264890] [<00000000003c1530>] __vfs_write+0x38/0x1a8 [ 4050.264899] [<00000000003c187c>] vfs_write+0xb4/0x198 [ 4050.264908] [<00000000003c1af2>] ksys_write+0x5a/0xb0 [ 4050.264916] [<0000000000b9e270>] system_call+0xdc/0x2d8 [ 4050.264925] 4 locks held by sh/35924: [ 4050.264933] #0: 000000001ef90325 (sb_writers#4){.+.+}, at: vfs_write+0x9e/0x198 [ 4050.264948] #1: 000000005c1ab0b3 (&of->mutex){+.+.}, at: kernfs_fop_write+0x1cc/0x1f8 [ 4050.264963] #2: 0000000034831ab8 (kn->count#297){++++}, at: kernfs_remove_self+0x12e/0x150 [ 4050.264979] #3: 00000000e152484f (&dev->mutex){....}, at: device_release_driver_internal+0x5c/0x268 [ 4050.264993] Last Breaking-Event-Address: [ 4050.265002] [<000000000017bbaa>] __might_sleep+0x72/0x90 [ 4050.265010] irq event stamp: 7039 [ 4050.265020] hardirqs last enabled at (7047): [<00000000001cee7a>] console_unlock+0x6d2/0x740 [ 4050.265029] hardirqs last disabled at (7054): [<00000000001ce87e>] console_unlock+0xd6/0x740 [ 4050.265040] softirqs last enabled at (6416): [<0000000000b8fe26>] __udelay+0xb6/0x100 [ 4050.265049] softirqs last disabled at (6415): [<0000000000b8fe06>] __udelay+0x96/0x100 [ 4050.265057] ---[ end trace d04a07d39d99a9f9 ]--- Let's fix this as described in the article https://lwn.net/Articles/628628/. Signed-off-by: Farhan Ali <alifm@linux.ibm.com> [remove now redundant vfio_dev_present()] Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2019-04-04 02:22:27 +08:00
#include <linux/sched/signal.h>
#include "vfio.h"
#define DRIVER_VERSION "0.3"
#define DRIVER_AUTHOR "Alex Williamson <alex.williamson@redhat.com>"
#define DRIVER_DESC "VFIO - User Level meta-driver"
static struct vfio {
struct class *class;
struct list_head iommu_drivers_list;
struct mutex iommu_drivers_lock;
struct list_head group_list;
struct mutex group_lock; /* locks group_list */
struct ida group_ida;
dev_t group_devt;
} vfio;
struct vfio_iommu_driver {
const struct vfio_iommu_driver_ops *ops;
struct list_head vfio_next;
};
struct vfio_container {
struct kref kref;
struct list_head group_list;
struct rw_semaphore group_lock;
struct vfio_iommu_driver *iommu_driver;
void *iommu_data;
bool noiommu;
};
struct vfio_group {
struct device dev;
struct cdev cdev;
refcount_t users;
unsigned int container_users;
struct iommu_group *iommu_group;
struct vfio_container *container;
struct list_head device_list;
struct mutex device_lock;
struct list_head vfio_next;
struct list_head container_next;
enum vfio_group_type type;
unsigned int dev_counter;
struct rw_semaphore group_rwsem;
struct kvm *kvm;
vfio: Simplify the life cycle of the group FD Once userspace opens a group FD it is prevented from opening another instance of that same group FD until all the prior group FDs and users of the container are done. The first is done trivially by checking the group->opened during group FD open. However, things get a little weird if userspace creates a device FD and then closes the group FD. The group FD still cannot be re-opened, but this time it is because the group->container is still set and container_users is elevated by the device FD. Due to this mismatched lifecycle we have the vfio_group_try_dissolve_container() which tries to auto-free a container after the group FD is closed but the device FD remains open. Instead have the device FD hold onto a reference to the single group FD. This directly prevents vfio_group_fops_release() from being called when any device FD exists and makes the lifecycle model more understandable. vfio_group_try_dissolve_container() is removed as the only place a container is auto-deleted is during vfio_group_fops_release(). At this point the container_users is either 1 or 0 since all device FDs must be closed. Change group->opened to group->opened_file which points to the single struct file * that is open for the group. If the group->open_file is NULL then group->container == NULL. If all device FDs have closed then the group's notifier list must be empty. Reviewed-by: Kevin Tian <kevin.tian@intel.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Nicolin Chen <nicolinc@nvidia.com> Tested-by: Matthew Rosato <mjrosato@linux.ibm.com> Link: https://lore.kernel.org/r/5-v2-d035a1842d81+1bf-vfio_group_locking_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-05-17 07:41:21 +08:00
struct file *opened_file;
struct blocking_notifier_head notifier;
};
#ifdef CONFIG_VFIO_NOIOMMU
static bool noiommu __read_mostly;
module_param_named(enable_unsafe_noiommu_mode,
noiommu, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(enable_unsafe_noiommu_mode, "Enable UNSAFE, no-IOMMU mode. This mode provides no device isolation, no DMA translation, no host kernel protection, cannot be used for device assignment to virtual machines, requires RAWIO permissions, and will taint the kernel. If you do not know what this is for, step away. (default: false)");
#endif
vfio: Provide better generic support for open/release vfio_device_ops Currently the driver ops have an open/release pair that is called once each time a device FD is opened or closed. Add an additional set of open/close_device() ops which are called when the device FD is opened for the first time and closed for the last time. An analysis shows that all of the drivers require this semantic. Some are open coding it as part of their reflck implementation, and some are just buggy and miss it completely. To retain the current semantics PCI and FSL depend on, introduce the idea of a "device set" which is a grouping of vfio_device's that share the same lock around opening. The device set is established by providing a 'set_id' pointer. All vfio_device's that provide the same pointer will be joined to the same singleton memory and lock across the whole set. This effectively replaces the oddly named reflck. After conversion the set_id will be sourced from: - A struct device from a fsl_mc_device (fsl) - A struct pci_slot (pci) - A struct pci_bus (pci) - The struct vfio_device (everything) The design ensures that the above pointers are live as long as the vfio_device is registered, so they form reliable unique keys to group vfio_devices into sets. This implementation uses xarray instead of searching through the driver core structures, which simplifies the somewhat tricky locking in this area. Following patches convert all the drivers. Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Link: https://lore.kernel.org/r/4-v4-9ea22c5e6afb+1adf-vfio_reflck_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-08-06 09:19:00 +08:00
static DEFINE_XARRAY(vfio_device_set_xa);
static const struct file_operations vfio_group_fops;
vfio: Provide better generic support for open/release vfio_device_ops Currently the driver ops have an open/release pair that is called once each time a device FD is opened or closed. Add an additional set of open/close_device() ops which are called when the device FD is opened for the first time and closed for the last time. An analysis shows that all of the drivers require this semantic. Some are open coding it as part of their reflck implementation, and some are just buggy and miss it completely. To retain the current semantics PCI and FSL depend on, introduce the idea of a "device set" which is a grouping of vfio_device's that share the same lock around opening. The device set is established by providing a 'set_id' pointer. All vfio_device's that provide the same pointer will be joined to the same singleton memory and lock across the whole set. This effectively replaces the oddly named reflck. After conversion the set_id will be sourced from: - A struct device from a fsl_mc_device (fsl) - A struct pci_slot (pci) - A struct pci_bus (pci) - The struct vfio_device (everything) The design ensures that the above pointers are live as long as the vfio_device is registered, so they form reliable unique keys to group vfio_devices into sets. This implementation uses xarray instead of searching through the driver core structures, which simplifies the somewhat tricky locking in this area. Following patches convert all the drivers. Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Link: https://lore.kernel.org/r/4-v4-9ea22c5e6afb+1adf-vfio_reflck_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-08-06 09:19:00 +08:00
int vfio_assign_device_set(struct vfio_device *device, void *set_id)
{
unsigned long idx = (unsigned long)set_id;
struct vfio_device_set *new_dev_set;
struct vfio_device_set *dev_set;
if (WARN_ON(!set_id))
return -EINVAL;
/*
* Atomically acquire a singleton object in the xarray for this set_id
*/
xa_lock(&vfio_device_set_xa);
dev_set = xa_load(&vfio_device_set_xa, idx);
if (dev_set)
goto found_get_ref;
xa_unlock(&vfio_device_set_xa);
new_dev_set = kzalloc(sizeof(*new_dev_set), GFP_KERNEL);
if (!new_dev_set)
return -ENOMEM;
mutex_init(&new_dev_set->lock);
INIT_LIST_HEAD(&new_dev_set->device_list);
new_dev_set->set_id = set_id;
xa_lock(&vfio_device_set_xa);
dev_set = __xa_cmpxchg(&vfio_device_set_xa, idx, NULL, new_dev_set,
GFP_KERNEL);
if (!dev_set) {
dev_set = new_dev_set;
goto found_get_ref;
}
kfree(new_dev_set);
if (xa_is_err(dev_set)) {
xa_unlock(&vfio_device_set_xa);
return xa_err(dev_set);
}
found_get_ref:
dev_set->device_count++;
xa_unlock(&vfio_device_set_xa);
mutex_lock(&dev_set->lock);
device->dev_set = dev_set;
list_add_tail(&device->dev_set_list, &dev_set->device_list);
mutex_unlock(&dev_set->lock);
return 0;
}
EXPORT_SYMBOL_GPL(vfio_assign_device_set);
static void vfio_release_device_set(struct vfio_device *device)
{
struct vfio_device_set *dev_set = device->dev_set;
if (!dev_set)
return;
mutex_lock(&dev_set->lock);
list_del(&device->dev_set_list);
mutex_unlock(&dev_set->lock);
xa_lock(&vfio_device_set_xa);
if (!--dev_set->device_count) {
__xa_erase(&vfio_device_set_xa,
(unsigned long)dev_set->set_id);
mutex_destroy(&dev_set->lock);
kfree(dev_set);
}
xa_unlock(&vfio_device_set_xa);
}
#ifdef CONFIG_VFIO_NOIOMMU
static void *vfio_noiommu_open(unsigned long arg)
{
if (arg != VFIO_NOIOMMU_IOMMU)
return ERR_PTR(-EINVAL);
if (!capable(CAP_SYS_RAWIO))
return ERR_PTR(-EPERM);
return NULL;
}
static void vfio_noiommu_release(void *iommu_data)
{
}
static long vfio_noiommu_ioctl(void *iommu_data,
unsigned int cmd, unsigned long arg)
{
if (cmd == VFIO_CHECK_EXTENSION)
return noiommu && (arg == VFIO_NOIOMMU_IOMMU) ? 1 : 0;
return -ENOTTY;
}
static int vfio_noiommu_attach_group(void *iommu_data,
struct iommu_group *iommu_group, enum vfio_group_type type)
{
return 0;
}
static void vfio_noiommu_detach_group(void *iommu_data,
struct iommu_group *iommu_group)
{
}
static const struct vfio_iommu_driver_ops vfio_noiommu_ops = {
.name = "vfio-noiommu",
.owner = THIS_MODULE,
.open = vfio_noiommu_open,
.release = vfio_noiommu_release,
.ioctl = vfio_noiommu_ioctl,
.attach_group = vfio_noiommu_attach_group,
.detach_group = vfio_noiommu_detach_group,
};
/*
* Only noiommu containers can use vfio-noiommu and noiommu containers can only
* use vfio-noiommu.
*/
static inline bool vfio_iommu_driver_allowed(struct vfio_container *container,
const struct vfio_iommu_driver *driver)
{
return container->noiommu == (driver->ops == &vfio_noiommu_ops);
}
#else
static inline bool vfio_iommu_driver_allowed(struct vfio_container *container,
const struct vfio_iommu_driver *driver)
{
return true;
}
#endif /* CONFIG_VFIO_NOIOMMU */
vfio: remove all kernel-doc notation vfio.c abuses (misuses) "/**", which indicates the beginning of kernel-doc notation in the kernel tree. This causes a bunch of kernel-doc complaints about this source file, so quieten all of them by changing all "/**" to "/*". vfio.c:236: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * IOMMU driver registration vfio.c:236: warning: missing initial short description on line: * IOMMU driver registration vfio.c:295: warning: expecting prototype for Container objects(). Prototype was for vfio_container_get() instead vfio.c:317: warning: expecting prototype for Group objects(). Prototype was for __vfio_group_get_from_iommu() instead vfio.c:496: warning: Function parameter or member 'device' not described in 'vfio_device_put' vfio.c:496: warning: expecting prototype for Device objects(). Prototype was for vfio_device_put() instead vfio.c:599: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Async device support vfio.c:599: warning: missing initial short description on line: * Async device support vfio.c:693: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO driver API vfio.c:693: warning: missing initial short description on line: * VFIO driver API vfio.c:835: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Get a reference to the vfio_device for a device. Even if the vfio.c:835: warning: missing initial short description on line: * Get a reference to the vfio_device for a device. Even if the vfio.c:969: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO base fd, /dev/vfio/vfio vfio.c:969: warning: missing initial short description on line: * VFIO base fd, /dev/vfio/vfio vfio.c:1187: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO Group fd, /dev/vfio/$GROUP vfio.c:1187: warning: missing initial short description on line: * VFIO Group fd, /dev/vfio/$GROUP vfio.c:1540: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO Device fd vfio.c:1540: warning: missing initial short description on line: * VFIO Device fd vfio.c:1615: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * External user API, exported by symbols to be linked dynamically. vfio.c:1615: warning: missing initial short description on line: * External user API, exported by symbols to be linked dynamically. vfio.c:1663: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * External user API, exported by symbols to be linked dynamically. vfio.c:1663: warning: missing initial short description on line: * External user API, exported by symbols to be linked dynamically. vfio.c:1742: warning: Function parameter or member 'caps' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'size' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'id' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'version' not described in 'vfio_info_cap_add' vfio.c:1742: warning: expecting prototype for Sub(). Prototype was for vfio_info_cap_add() instead vfio.c:2276: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Module/class support vfio.c:2276: warning: missing initial short description on line: * Module/class support Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Reported-by: kernel test robot <lkp@intel.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Eric Auger <eric.auger@redhat.com> Cc: Cornelia Huck <cohuck@redhat.com> Cc: kvm@vger.kernel.org Link: https://lore.kernel.org/r/38a9cb92-a473-40bf-b8f9-85cc5cfc2da4@infradead.org Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-11-11 07:19:40 +08:00
/*
* IOMMU driver registration
*/
int vfio_register_iommu_driver(const struct vfio_iommu_driver_ops *ops)
{
struct vfio_iommu_driver *driver, *tmp;
driver = kzalloc(sizeof(*driver), GFP_KERNEL);
if (!driver)
return -ENOMEM;
driver->ops = ops;
mutex_lock(&vfio.iommu_drivers_lock);
/* Check for duplicates */
list_for_each_entry(tmp, &vfio.iommu_drivers_list, vfio_next) {
if (tmp->ops == ops) {
mutex_unlock(&vfio.iommu_drivers_lock);
kfree(driver);
return -EINVAL;
}
}
list_add(&driver->vfio_next, &vfio.iommu_drivers_list);
mutex_unlock(&vfio.iommu_drivers_lock);
return 0;
}
EXPORT_SYMBOL_GPL(vfio_register_iommu_driver);
void vfio_unregister_iommu_driver(const struct vfio_iommu_driver_ops *ops)
{
struct vfio_iommu_driver *driver;
mutex_lock(&vfio.iommu_drivers_lock);
list_for_each_entry(driver, &vfio.iommu_drivers_list, vfio_next) {
if (driver->ops == ops) {
list_del(&driver->vfio_next);
mutex_unlock(&vfio.iommu_drivers_lock);
kfree(driver);
return;
}
}
mutex_unlock(&vfio.iommu_drivers_lock);
}
EXPORT_SYMBOL_GPL(vfio_unregister_iommu_driver);
static void vfio_group_get(struct vfio_group *group);
vfio: remove all kernel-doc notation vfio.c abuses (misuses) "/**", which indicates the beginning of kernel-doc notation in the kernel tree. This causes a bunch of kernel-doc complaints about this source file, so quieten all of them by changing all "/**" to "/*". vfio.c:236: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * IOMMU driver registration vfio.c:236: warning: missing initial short description on line: * IOMMU driver registration vfio.c:295: warning: expecting prototype for Container objects(). Prototype was for vfio_container_get() instead vfio.c:317: warning: expecting prototype for Group objects(). Prototype was for __vfio_group_get_from_iommu() instead vfio.c:496: warning: Function parameter or member 'device' not described in 'vfio_device_put' vfio.c:496: warning: expecting prototype for Device objects(). Prototype was for vfio_device_put() instead vfio.c:599: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Async device support vfio.c:599: warning: missing initial short description on line: * Async device support vfio.c:693: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO driver API vfio.c:693: warning: missing initial short description on line: * VFIO driver API vfio.c:835: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Get a reference to the vfio_device for a device. Even if the vfio.c:835: warning: missing initial short description on line: * Get a reference to the vfio_device for a device. Even if the vfio.c:969: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO base fd, /dev/vfio/vfio vfio.c:969: warning: missing initial short description on line: * VFIO base fd, /dev/vfio/vfio vfio.c:1187: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO Group fd, /dev/vfio/$GROUP vfio.c:1187: warning: missing initial short description on line: * VFIO Group fd, /dev/vfio/$GROUP vfio.c:1540: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO Device fd vfio.c:1540: warning: missing initial short description on line: * VFIO Device fd vfio.c:1615: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * External user API, exported by symbols to be linked dynamically. vfio.c:1615: warning: missing initial short description on line: * External user API, exported by symbols to be linked dynamically. vfio.c:1663: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * External user API, exported by symbols to be linked dynamically. vfio.c:1663: warning: missing initial short description on line: * External user API, exported by symbols to be linked dynamically. vfio.c:1742: warning: Function parameter or member 'caps' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'size' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'id' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'version' not described in 'vfio_info_cap_add' vfio.c:1742: warning: expecting prototype for Sub(). Prototype was for vfio_info_cap_add() instead vfio.c:2276: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Module/class support vfio.c:2276: warning: missing initial short description on line: * Module/class support Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Reported-by: kernel test robot <lkp@intel.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Eric Auger <eric.auger@redhat.com> Cc: Cornelia Huck <cohuck@redhat.com> Cc: kvm@vger.kernel.org Link: https://lore.kernel.org/r/38a9cb92-a473-40bf-b8f9-85cc5cfc2da4@infradead.org Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-11-11 07:19:40 +08:00
/*
* Container objects - containers are created when /dev/vfio/vfio is
* opened, but their lifecycle extends until the last user is done, so
* it's freed via kref. Must support container/group/device being
* closed in any order.
*/
static void vfio_container_get(struct vfio_container *container)
{
kref_get(&container->kref);
}
static void vfio_container_release(struct kref *kref)
{
struct vfio_container *container;
container = container_of(kref, struct vfio_container, kref);
kfree(container);
}
static void vfio_container_put(struct vfio_container *container)
{
kref_put(&container->kref, vfio_container_release);
}
vfio: remove all kernel-doc notation vfio.c abuses (misuses) "/**", which indicates the beginning of kernel-doc notation in the kernel tree. This causes a bunch of kernel-doc complaints about this source file, so quieten all of them by changing all "/**" to "/*". vfio.c:236: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * IOMMU driver registration vfio.c:236: warning: missing initial short description on line: * IOMMU driver registration vfio.c:295: warning: expecting prototype for Container objects(). Prototype was for vfio_container_get() instead vfio.c:317: warning: expecting prototype for Group objects(). Prototype was for __vfio_group_get_from_iommu() instead vfio.c:496: warning: Function parameter or member 'device' not described in 'vfio_device_put' vfio.c:496: warning: expecting prototype for Device objects(). Prototype was for vfio_device_put() instead vfio.c:599: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Async device support vfio.c:599: warning: missing initial short description on line: * Async device support vfio.c:693: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO driver API vfio.c:693: warning: missing initial short description on line: * VFIO driver API vfio.c:835: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Get a reference to the vfio_device for a device. Even if the vfio.c:835: warning: missing initial short description on line: * Get a reference to the vfio_device for a device. Even if the vfio.c:969: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO base fd, /dev/vfio/vfio vfio.c:969: warning: missing initial short description on line: * VFIO base fd, /dev/vfio/vfio vfio.c:1187: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO Group fd, /dev/vfio/$GROUP vfio.c:1187: warning: missing initial short description on line: * VFIO Group fd, /dev/vfio/$GROUP vfio.c:1540: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO Device fd vfio.c:1540: warning: missing initial short description on line: * VFIO Device fd vfio.c:1615: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * External user API, exported by symbols to be linked dynamically. vfio.c:1615: warning: missing initial short description on line: * External user API, exported by symbols to be linked dynamically. vfio.c:1663: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * External user API, exported by symbols to be linked dynamically. vfio.c:1663: warning: missing initial short description on line: * External user API, exported by symbols to be linked dynamically. vfio.c:1742: warning: Function parameter or member 'caps' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'size' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'id' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'version' not described in 'vfio_info_cap_add' vfio.c:1742: warning: expecting prototype for Sub(). Prototype was for vfio_info_cap_add() instead vfio.c:2276: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Module/class support vfio.c:2276: warning: missing initial short description on line: * Module/class support Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Reported-by: kernel test robot <lkp@intel.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Eric Auger <eric.auger@redhat.com> Cc: Cornelia Huck <cohuck@redhat.com> Cc: kvm@vger.kernel.org Link: https://lore.kernel.org/r/38a9cb92-a473-40bf-b8f9-85cc5cfc2da4@infradead.org Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-11-11 07:19:40 +08:00
/*
* Group objects - create, release, get, put, search
*/
static struct vfio_group *
__vfio_group_get_from_iommu(struct iommu_group *iommu_group)
{
struct vfio_group *group;
list_for_each_entry(group, &vfio.group_list, vfio_next) {
if (group->iommu_group == iommu_group) {
vfio_group_get(group);
return group;
}
}
return NULL;
}
static struct vfio_group *
vfio_group_get_from_iommu(struct iommu_group *iommu_group)
{
struct vfio_group *group;
mutex_lock(&vfio.group_lock);
group = __vfio_group_get_from_iommu(iommu_group);
mutex_unlock(&vfio.group_lock);
return group;
}
static void vfio_group_release(struct device *dev)
{
struct vfio_group *group = container_of(dev, struct vfio_group, dev);
mutex_destroy(&group->device_lock);
iommu_group_put(group->iommu_group);
ida_free(&vfio.group_ida, MINOR(group->dev.devt));
kfree(group);
}
static struct vfio_group *vfio_group_alloc(struct iommu_group *iommu_group,
enum vfio_group_type type)
{
struct vfio_group *group;
int minor;
group = kzalloc(sizeof(*group), GFP_KERNEL);
if (!group)
return ERR_PTR(-ENOMEM);
minor = ida_alloc_max(&vfio.group_ida, MINORMASK, GFP_KERNEL);
if (minor < 0) {
kfree(group);
return ERR_PTR(minor);
}
device_initialize(&group->dev);
group->dev.devt = MKDEV(MAJOR(vfio.group_devt), minor);
group->dev.class = vfio.class;
group->dev.release = vfio_group_release;
cdev_init(&group->cdev, &vfio_group_fops);
group->cdev.owner = THIS_MODULE;
refcount_set(&group->users, 1);
init_rwsem(&group->group_rwsem);
INIT_LIST_HEAD(&group->device_list);
mutex_init(&group->device_lock);
group->iommu_group = iommu_group;
/* put in vfio_group_release() */
iommu_group_ref_get(iommu_group);
group->type = type;
BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier);
return group;
}
static struct vfio_group *vfio_create_group(struct iommu_group *iommu_group,
enum vfio_group_type type)
{
struct vfio_group *group;
struct vfio_group *ret;
int err;
group = vfio_group_alloc(iommu_group, type);
if (IS_ERR(group))
return group;
err = dev_set_name(&group->dev, "%s%d",
group->type == VFIO_NO_IOMMU ? "noiommu-" : "",
iommu_group_id(iommu_group));
if (err) {
ret = ERR_PTR(err);
goto err_put;
}
mutex_lock(&vfio.group_lock);
/* Did we race creating this group? */
ret = __vfio_group_get_from_iommu(iommu_group);
if (ret)
goto err_unlock;
err = cdev_device_add(&group->cdev, &group->dev);
if (err) {
ret = ERR_PTR(err);
goto err_unlock;
}
list_add(&group->vfio_next, &vfio.group_list);
mutex_unlock(&vfio.group_lock);
return group;
err_unlock:
mutex_unlock(&vfio.group_lock);
err_put:
put_device(&group->dev);
return ret;
}
static void vfio_group_put(struct vfio_group *group)
{
if (!refcount_dec_and_mutex_lock(&group->users, &vfio.group_lock))
return;
vfio: Delete vfio_get/put_group from vfio_iommu_group_notifier() iommu_group_register_notifier()/iommu_group_unregister_notifier() are built using a blocking_notifier_chain which integrates a rwsem. The notifier function cannot be running outside its registration. When considering how the notifier function interacts with create/destroy of the group there are two fringe cases, the notifier starts before list_add(&vfio.group_list) and the notifier runs after the kref becomes 0. Prior to vfio_create_group() unlocking and returning we have container_users == 0 device_list == empty And this cannot change until the mutex is unlocked. After the kref goes to zero we must also have container_users == 0 device_list == empty Both are required because they are balanced operations and a 0 kref means some caller became unbalanced. Add the missing assertion that container_users must be zero as well. These two facts are important because when checking each operation we see: - IOMMU_GROUP_NOTIFY_ADD_DEVICE Empty device_list avoids the WARN_ON in vfio_group_nb_add_dev() 0 container_users ends the call - IOMMU_GROUP_NOTIFY_BOUND_DRIVER 0 container_users ends the call Finally, we have IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER, which only deletes items from the unbound list. During creation this list is empty, during kref == 0 nothing can read this list, and it will be freed soon. Since the vfio_group_release() doesn't hold the appropriate lock to manipulate the unbound_list and could race with the notifier, move the cleanup to directly before the kfree. This allows deleting all of the deferred group put code. Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Liu Yi L <yi.l.liu@intel.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Link: https://lore.kernel.org/r/1-v3-2fdfe4ca2cc6+18c-vfio_group_cdev_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-10-15 19:40:50 +08:00
/*
* These data structures all have paired operations that can only be
* undone when the caller holds a live reference on the group. Since all
* pairs must be undone these WARN_ON's indicate some caller did not
* properly hold the group reference.
*/
WARN_ON(!list_empty(&group->device_list));
WARN_ON(group->container || group->container_users);
WARN_ON(group->notifier.head);
list_del(&group->vfio_next);
cdev_device_del(&group->cdev, &group->dev);
mutex_unlock(&vfio.group_lock);
put_device(&group->dev);
}
static void vfio_group_get(struct vfio_group *group)
{
refcount_inc(&group->users);
}
vfio: remove all kernel-doc notation vfio.c abuses (misuses) "/**", which indicates the beginning of kernel-doc notation in the kernel tree. This causes a bunch of kernel-doc complaints about this source file, so quieten all of them by changing all "/**" to "/*". vfio.c:236: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * IOMMU driver registration vfio.c:236: warning: missing initial short description on line: * IOMMU driver registration vfio.c:295: warning: expecting prototype for Container objects(). Prototype was for vfio_container_get() instead vfio.c:317: warning: expecting prototype for Group objects(). Prototype was for __vfio_group_get_from_iommu() instead vfio.c:496: warning: Function parameter or member 'device' not described in 'vfio_device_put' vfio.c:496: warning: expecting prototype for Device objects(). Prototype was for vfio_device_put() instead vfio.c:599: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Async device support vfio.c:599: warning: missing initial short description on line: * Async device support vfio.c:693: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO driver API vfio.c:693: warning: missing initial short description on line: * VFIO driver API vfio.c:835: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Get a reference to the vfio_device for a device. Even if the vfio.c:835: warning: missing initial short description on line: * Get a reference to the vfio_device for a device. Even if the vfio.c:969: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO base fd, /dev/vfio/vfio vfio.c:969: warning: missing initial short description on line: * VFIO base fd, /dev/vfio/vfio vfio.c:1187: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO Group fd, /dev/vfio/$GROUP vfio.c:1187: warning: missing initial short description on line: * VFIO Group fd, /dev/vfio/$GROUP vfio.c:1540: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO Device fd vfio.c:1540: warning: missing initial short description on line: * VFIO Device fd vfio.c:1615: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * External user API, exported by symbols to be linked dynamically. vfio.c:1615: warning: missing initial short description on line: * External user API, exported by symbols to be linked dynamically. vfio.c:1663: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * External user API, exported by symbols to be linked dynamically. vfio.c:1663: warning: missing initial short description on line: * External user API, exported by symbols to be linked dynamically. vfio.c:1742: warning: Function parameter or member 'caps' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'size' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'id' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'version' not described in 'vfio_info_cap_add' vfio.c:1742: warning: expecting prototype for Sub(). Prototype was for vfio_info_cap_add() instead vfio.c:2276: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Module/class support vfio.c:2276: warning: missing initial short description on line: * Module/class support Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Reported-by: kernel test robot <lkp@intel.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Eric Auger <eric.auger@redhat.com> Cc: Cornelia Huck <cohuck@redhat.com> Cc: kvm@vger.kernel.org Link: https://lore.kernel.org/r/38a9cb92-a473-40bf-b8f9-85cc5cfc2da4@infradead.org Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-11-11 07:19:40 +08:00
/*
* Device objects - create, release, get, put, search
*/
/* Device reference always implies a group reference */
static void vfio_device_put(struct vfio_device *device)
{
if (refcount_dec_and_test(&device->refcount))
complete(&device->comp);
}
static bool vfio_device_try_get(struct vfio_device *device)
{
return refcount_inc_not_zero(&device->refcount);
}
static struct vfio_device *vfio_group_get_device(struct vfio_group *group,
struct device *dev)
{
struct vfio_device *device;
mutex_lock(&group->device_lock);
list_for_each_entry(device, &group->device_list, group_next) {
if (device->dev == dev && vfio_device_try_get(device)) {
mutex_unlock(&group->device_lock);
return device;
}
}
mutex_unlock(&group->device_lock);
return NULL;
}
vfio: remove all kernel-doc notation vfio.c abuses (misuses) "/**", which indicates the beginning of kernel-doc notation in the kernel tree. This causes a bunch of kernel-doc complaints about this source file, so quieten all of them by changing all "/**" to "/*". vfio.c:236: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * IOMMU driver registration vfio.c:236: warning: missing initial short description on line: * IOMMU driver registration vfio.c:295: warning: expecting prototype for Container objects(). Prototype was for vfio_container_get() instead vfio.c:317: warning: expecting prototype for Group objects(). Prototype was for __vfio_group_get_from_iommu() instead vfio.c:496: warning: Function parameter or member 'device' not described in 'vfio_device_put' vfio.c:496: warning: expecting prototype for Device objects(). Prototype was for vfio_device_put() instead vfio.c:599: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Async device support vfio.c:599: warning: missing initial short description on line: * Async device support vfio.c:693: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO driver API vfio.c:693: warning: missing initial short description on line: * VFIO driver API vfio.c:835: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Get a reference to the vfio_device for a device. Even if the vfio.c:835: warning: missing initial short description on line: * Get a reference to the vfio_device for a device. Even if the vfio.c:969: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO base fd, /dev/vfio/vfio vfio.c:969: warning: missing initial short description on line: * VFIO base fd, /dev/vfio/vfio vfio.c:1187: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO Group fd, /dev/vfio/$GROUP vfio.c:1187: warning: missing initial short description on line: * VFIO Group fd, /dev/vfio/$GROUP vfio.c:1540: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO Device fd vfio.c:1540: warning: missing initial short description on line: * VFIO Device fd vfio.c:1615: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * External user API, exported by symbols to be linked dynamically. vfio.c:1615: warning: missing initial short description on line: * External user API, exported by symbols to be linked dynamically. vfio.c:1663: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * External user API, exported by symbols to be linked dynamically. vfio.c:1663: warning: missing initial short description on line: * External user API, exported by symbols to be linked dynamically. vfio.c:1742: warning: Function parameter or member 'caps' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'size' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'id' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'version' not described in 'vfio_info_cap_add' vfio.c:1742: warning: expecting prototype for Sub(). Prototype was for vfio_info_cap_add() instead vfio.c:2276: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Module/class support vfio.c:2276: warning: missing initial short description on line: * Module/class support Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Reported-by: kernel test robot <lkp@intel.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Eric Auger <eric.auger@redhat.com> Cc: Cornelia Huck <cohuck@redhat.com> Cc: kvm@vger.kernel.org Link: https://lore.kernel.org/r/38a9cb92-a473-40bf-b8f9-85cc5cfc2da4@infradead.org Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-11-11 07:19:40 +08:00
/*
* VFIO driver API
*/
vfio: Split creation of a vfio_device into init and register ops This makes the struct vfio_device part of the public interface so it can be used with container_of and so forth, as is typical for a Linux subystem. This is the first step to bring some type-safety to the vfio interface by allowing the replacement of 'void *' and 'struct device *' inputs with a simple and clear 'struct vfio_device *' For now the self-allocating vfio_add_group_dev() interface is kept so each user can be updated as a separate patch. The expected usage pattern is driver core probe() function: my_device = kzalloc(sizeof(*mydevice)); vfio_init_group_dev(&my_device->vdev, dev, ops, mydevice); /* other driver specific prep */ vfio_register_group_dev(&my_device->vdev); dev_set_drvdata(dev, my_device); driver core remove() function: my_device = dev_get_drvdata(dev); vfio_unregister_group_dev(&my_device->vdev); /* other driver specific tear down */ kfree(my_device); Allowing the driver to be able to use the drvdata and vfio_device to go to/from its own data. The pattern also makes it clear that vfio_register_group_dev() must be last in the sequence, as once it is called the core code can immediately start calling ops. The init/register gap is provided to allow for the driver to do setup before ops can be called and thus avoid races. Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Liu Yi L <yi.l.liu@intel.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Max Gurtovoy <mgurtovoy@nvidia.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Message-Id: <3-v3-225de1400dfc+4e074-vfio1_jgg@nvidia.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-03-30 23:53:05 +08:00
void vfio_init_group_dev(struct vfio_device *device, struct device *dev,
const struct vfio_device_ops *ops)
{
vfio: Split creation of a vfio_device into init and register ops This makes the struct vfio_device part of the public interface so it can be used with container_of and so forth, as is typical for a Linux subystem. This is the first step to bring some type-safety to the vfio interface by allowing the replacement of 'void *' and 'struct device *' inputs with a simple and clear 'struct vfio_device *' For now the self-allocating vfio_add_group_dev() interface is kept so each user can be updated as a separate patch. The expected usage pattern is driver core probe() function: my_device = kzalloc(sizeof(*mydevice)); vfio_init_group_dev(&my_device->vdev, dev, ops, mydevice); /* other driver specific prep */ vfio_register_group_dev(&my_device->vdev); dev_set_drvdata(dev, my_device); driver core remove() function: my_device = dev_get_drvdata(dev); vfio_unregister_group_dev(&my_device->vdev); /* other driver specific tear down */ kfree(my_device); Allowing the driver to be able to use the drvdata and vfio_device to go to/from its own data. The pattern also makes it clear that vfio_register_group_dev() must be last in the sequence, as once it is called the core code can immediately start calling ops. The init/register gap is provided to allow for the driver to do setup before ops can be called and thus avoid races. Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Liu Yi L <yi.l.liu@intel.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Max Gurtovoy <mgurtovoy@nvidia.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Message-Id: <3-v3-225de1400dfc+4e074-vfio1_jgg@nvidia.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-03-30 23:53:05 +08:00
init_completion(&device->comp);
device->dev = dev;
device->ops = ops;
}
EXPORT_SYMBOL_GPL(vfio_init_group_dev);
void vfio_uninit_group_dev(struct vfio_device *device)
{
vfio: Provide better generic support for open/release vfio_device_ops Currently the driver ops have an open/release pair that is called once each time a device FD is opened or closed. Add an additional set of open/close_device() ops which are called when the device FD is opened for the first time and closed for the last time. An analysis shows that all of the drivers require this semantic. Some are open coding it as part of their reflck implementation, and some are just buggy and miss it completely. To retain the current semantics PCI and FSL depend on, introduce the idea of a "device set" which is a grouping of vfio_device's that share the same lock around opening. The device set is established by providing a 'set_id' pointer. All vfio_device's that provide the same pointer will be joined to the same singleton memory and lock across the whole set. This effectively replaces the oddly named reflck. After conversion the set_id will be sourced from: - A struct device from a fsl_mc_device (fsl) - A struct pci_slot (pci) - A struct pci_bus (pci) - The struct vfio_device (everything) The design ensures that the above pointers are live as long as the vfio_device is registered, so they form reliable unique keys to group vfio_devices into sets. This implementation uses xarray instead of searching through the driver core structures, which simplifies the somewhat tricky locking in this area. Following patches convert all the drivers. Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Link: https://lore.kernel.org/r/4-v4-9ea22c5e6afb+1adf-vfio_reflck_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-08-06 09:19:00 +08:00
vfio_release_device_set(device);
}
EXPORT_SYMBOL_GPL(vfio_uninit_group_dev);
static struct vfio_group *vfio_noiommu_group_alloc(struct device *dev,
enum vfio_group_type type)
{
struct iommu_group *iommu_group;
struct vfio_group *group;
int ret;
iommu_group = iommu_group_alloc();
if (IS_ERR(iommu_group))
return ERR_CAST(iommu_group);
iommu_group_set_name(iommu_group, "vfio-noiommu");
ret = iommu_group_add_device(iommu_group, dev);
if (ret)
goto out_put_group;
group = vfio_create_group(iommu_group, type);
if (IS_ERR(group)) {
ret = PTR_ERR(group);
goto out_remove_device;
}
iommu_group_put(iommu_group);
return group;
out_remove_device:
iommu_group_remove_device(dev);
out_put_group:
iommu_group_put(iommu_group);
return ERR_PTR(ret);
}
static struct vfio_group *vfio_group_find_or_alloc(struct device *dev)
{
struct iommu_group *iommu_group;
struct vfio_group *group;
iommu_group = iommu_group_get(dev);
#ifdef CONFIG_VFIO_NOIOMMU
if (!iommu_group && noiommu) {
/*
* With noiommu enabled, create an IOMMU group for devices that
* don't already have one, implying no IOMMU hardware/driver
* exists. Taint the kernel because we're about to give a DMA
* capable device to a user without IOMMU protection.
*/
group = vfio_noiommu_group_alloc(dev, VFIO_NO_IOMMU);
if (!IS_ERR(group)) {
add_taint(TAINT_USER, LOCKDEP_STILL_OK);
dev_warn(dev, "Adding kernel taint for vfio-noiommu group on device\n");
}
return group;
}
#endif
if (!iommu_group)
return ERR_PTR(-EINVAL);
group = vfio_group_get_from_iommu(iommu_group);
if (!group)
group = vfio_create_group(iommu_group, VFIO_IOMMU);
/* The vfio_group holds a reference to the iommu_group */
iommu_group_put(iommu_group);
return group;
}
static int __vfio_register_dev(struct vfio_device *device,
struct vfio_group *group)
vfio: Split creation of a vfio_device into init and register ops This makes the struct vfio_device part of the public interface so it can be used with container_of and so forth, as is typical for a Linux subystem. This is the first step to bring some type-safety to the vfio interface by allowing the replacement of 'void *' and 'struct device *' inputs with a simple and clear 'struct vfio_device *' For now the self-allocating vfio_add_group_dev() interface is kept so each user can be updated as a separate patch. The expected usage pattern is driver core probe() function: my_device = kzalloc(sizeof(*mydevice)); vfio_init_group_dev(&my_device->vdev, dev, ops, mydevice); /* other driver specific prep */ vfio_register_group_dev(&my_device->vdev); dev_set_drvdata(dev, my_device); driver core remove() function: my_device = dev_get_drvdata(dev); vfio_unregister_group_dev(&my_device->vdev); /* other driver specific tear down */ kfree(my_device); Allowing the driver to be able to use the drvdata and vfio_device to go to/from its own data. The pattern also makes it clear that vfio_register_group_dev() must be last in the sequence, as once it is called the core code can immediately start calling ops. The init/register gap is provided to allow for the driver to do setup before ops can be called and thus avoid races. Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Liu Yi L <yi.l.liu@intel.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Max Gurtovoy <mgurtovoy@nvidia.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Message-Id: <3-v3-225de1400dfc+4e074-vfio1_jgg@nvidia.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-03-30 23:53:05 +08:00
{
struct vfio_device *existing_device;
if (IS_ERR(group))
return PTR_ERR(group);
vfio: Provide better generic support for open/release vfio_device_ops Currently the driver ops have an open/release pair that is called once each time a device FD is opened or closed. Add an additional set of open/close_device() ops which are called when the device FD is opened for the first time and closed for the last time. An analysis shows that all of the drivers require this semantic. Some are open coding it as part of their reflck implementation, and some are just buggy and miss it completely. To retain the current semantics PCI and FSL depend on, introduce the idea of a "device set" which is a grouping of vfio_device's that share the same lock around opening. The device set is established by providing a 'set_id' pointer. All vfio_device's that provide the same pointer will be joined to the same singleton memory and lock across the whole set. This effectively replaces the oddly named reflck. After conversion the set_id will be sourced from: - A struct device from a fsl_mc_device (fsl) - A struct pci_slot (pci) - A struct pci_bus (pci) - The struct vfio_device (everything) The design ensures that the above pointers are live as long as the vfio_device is registered, so they form reliable unique keys to group vfio_devices into sets. This implementation uses xarray instead of searching through the driver core structures, which simplifies the somewhat tricky locking in this area. Following patches convert all the drivers. Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Link: https://lore.kernel.org/r/4-v4-9ea22c5e6afb+1adf-vfio_reflck_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-08-06 09:19:00 +08:00
/*
* If the driver doesn't specify a set then the device is added to a
* singleton set just for itself.
*/
if (!device->dev_set)
vfio_assign_device_set(device, device);
vfio: Split creation of a vfio_device into init and register ops This makes the struct vfio_device part of the public interface so it can be used with container_of and so forth, as is typical for a Linux subystem. This is the first step to bring some type-safety to the vfio interface by allowing the replacement of 'void *' and 'struct device *' inputs with a simple and clear 'struct vfio_device *' For now the self-allocating vfio_add_group_dev() interface is kept so each user can be updated as a separate patch. The expected usage pattern is driver core probe() function: my_device = kzalloc(sizeof(*mydevice)); vfio_init_group_dev(&my_device->vdev, dev, ops, mydevice); /* other driver specific prep */ vfio_register_group_dev(&my_device->vdev); dev_set_drvdata(dev, my_device); driver core remove() function: my_device = dev_get_drvdata(dev); vfio_unregister_group_dev(&my_device->vdev); /* other driver specific tear down */ kfree(my_device); Allowing the driver to be able to use the drvdata and vfio_device to go to/from its own data. The pattern also makes it clear that vfio_register_group_dev() must be last in the sequence, as once it is called the core code can immediately start calling ops. The init/register gap is provided to allow for the driver to do setup before ops can be called and thus avoid races. Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Liu Yi L <yi.l.liu@intel.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Max Gurtovoy <mgurtovoy@nvidia.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Message-Id: <3-v3-225de1400dfc+4e074-vfio1_jgg@nvidia.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-03-30 23:53:05 +08:00
existing_device = vfio_group_get_device(group, device->dev);
if (existing_device) {
dev_WARN(device->dev, "Device already exists on group %d\n",
iommu_group_id(group->iommu_group));
vfio: Split creation of a vfio_device into init and register ops This makes the struct vfio_device part of the public interface so it can be used with container_of and so forth, as is typical for a Linux subystem. This is the first step to bring some type-safety to the vfio interface by allowing the replacement of 'void *' and 'struct device *' inputs with a simple and clear 'struct vfio_device *' For now the self-allocating vfio_add_group_dev() interface is kept so each user can be updated as a separate patch. The expected usage pattern is driver core probe() function: my_device = kzalloc(sizeof(*mydevice)); vfio_init_group_dev(&my_device->vdev, dev, ops, mydevice); /* other driver specific prep */ vfio_register_group_dev(&my_device->vdev); dev_set_drvdata(dev, my_device); driver core remove() function: my_device = dev_get_drvdata(dev); vfio_unregister_group_dev(&my_device->vdev); /* other driver specific tear down */ kfree(my_device); Allowing the driver to be able to use the drvdata and vfio_device to go to/from its own data. The pattern also makes it clear that vfio_register_group_dev() must be last in the sequence, as once it is called the core code can immediately start calling ops. The init/register gap is provided to allow for the driver to do setup before ops can be called and thus avoid races. Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Liu Yi L <yi.l.liu@intel.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Max Gurtovoy <mgurtovoy@nvidia.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Message-Id: <3-v3-225de1400dfc+4e074-vfio1_jgg@nvidia.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-03-30 23:53:05 +08:00
vfio_device_put(existing_device);
if (group->type == VFIO_NO_IOMMU ||
group->type == VFIO_EMULATED_IOMMU)
iommu_group_remove_device(device->dev);
vfio_group_put(group);
return -EBUSY;
}
vfio: Split creation of a vfio_device into init and register ops This makes the struct vfio_device part of the public interface so it can be used with container_of and so forth, as is typical for a Linux subystem. This is the first step to bring some type-safety to the vfio interface by allowing the replacement of 'void *' and 'struct device *' inputs with a simple and clear 'struct vfio_device *' For now the self-allocating vfio_add_group_dev() interface is kept so each user can be updated as a separate patch. The expected usage pattern is driver core probe() function: my_device = kzalloc(sizeof(*mydevice)); vfio_init_group_dev(&my_device->vdev, dev, ops, mydevice); /* other driver specific prep */ vfio_register_group_dev(&my_device->vdev); dev_set_drvdata(dev, my_device); driver core remove() function: my_device = dev_get_drvdata(dev); vfio_unregister_group_dev(&my_device->vdev); /* other driver specific tear down */ kfree(my_device); Allowing the driver to be able to use the drvdata and vfio_device to go to/from its own data. The pattern also makes it clear that vfio_register_group_dev() must be last in the sequence, as once it is called the core code can immediately start calling ops. The init/register gap is provided to allow for the driver to do setup before ops can be called and thus avoid races. Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Liu Yi L <yi.l.liu@intel.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Max Gurtovoy <mgurtovoy@nvidia.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Message-Id: <3-v3-225de1400dfc+4e074-vfio1_jgg@nvidia.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-03-30 23:53:05 +08:00
/* Our reference on group is moved to the device */
device->group = group;
/* Refcounting can't start until the driver calls register */
refcount_set(&device->refcount, 1);
mutex_lock(&group->device_lock);
list_add(&device->group_next, &group->device_list);
group->dev_counter++;
mutex_unlock(&group->device_lock);
return 0;
}
int vfio_register_group_dev(struct vfio_device *device)
{
/*
* VFIO always sets IOMMU_CACHE because we offer no way for userspace to
* restore cache coherency.
*/
if (!iommu_capable(device->dev->bus, IOMMU_CAP_CACHE_COHERENCY))
return -EINVAL;
return __vfio_register_dev(device,
vfio_group_find_or_alloc(device->dev));
}
vfio: Split creation of a vfio_device into init and register ops This makes the struct vfio_device part of the public interface so it can be used with container_of and so forth, as is typical for a Linux subystem. This is the first step to bring some type-safety to the vfio interface by allowing the replacement of 'void *' and 'struct device *' inputs with a simple and clear 'struct vfio_device *' For now the self-allocating vfio_add_group_dev() interface is kept so each user can be updated as a separate patch. The expected usage pattern is driver core probe() function: my_device = kzalloc(sizeof(*mydevice)); vfio_init_group_dev(&my_device->vdev, dev, ops, mydevice); /* other driver specific prep */ vfio_register_group_dev(&my_device->vdev); dev_set_drvdata(dev, my_device); driver core remove() function: my_device = dev_get_drvdata(dev); vfio_unregister_group_dev(&my_device->vdev); /* other driver specific tear down */ kfree(my_device); Allowing the driver to be able to use the drvdata and vfio_device to go to/from its own data. The pattern also makes it clear that vfio_register_group_dev() must be last in the sequence, as once it is called the core code can immediately start calling ops. The init/register gap is provided to allow for the driver to do setup before ops can be called and thus avoid races. Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Liu Yi L <yi.l.liu@intel.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Max Gurtovoy <mgurtovoy@nvidia.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Message-Id: <3-v3-225de1400dfc+4e074-vfio1_jgg@nvidia.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-03-30 23:53:05 +08:00
EXPORT_SYMBOL_GPL(vfio_register_group_dev);
/*
* Register a virtual device without IOMMU backing. The user of this
* device must not be able to directly trigger unmediated DMA.
*/
int vfio_register_emulated_iommu_dev(struct vfio_device *device)
{
return __vfio_register_dev(device,
vfio_noiommu_group_alloc(device->dev, VFIO_EMULATED_IOMMU));
}
EXPORT_SYMBOL_GPL(vfio_register_emulated_iommu_dev);
static struct vfio_device *vfio_device_get_from_name(struct vfio_group *group,
char *buf)
{
struct vfio_device *it, *device = ERR_PTR(-ENODEV);
mutex_lock(&group->device_lock);
list_for_each_entry(it, &group->device_list, group_next) {
int ret;
if (it->ops->match) {
ret = it->ops->match(it, buf);
if (ret < 0) {
device = ERR_PTR(ret);
break;
}
} else {
ret = !strcmp(dev_name(it->dev), buf);
}
if (ret && vfio_device_try_get(it)) {
device = it;
break;
}
}
mutex_unlock(&group->device_lock);
return device;
}
/*
* Decrement the device reference count and wait for the device to be
* removed. Open file descriptors for the device... */
vfio: Split creation of a vfio_device into init and register ops This makes the struct vfio_device part of the public interface so it can be used with container_of and so forth, as is typical for a Linux subystem. This is the first step to bring some type-safety to the vfio interface by allowing the replacement of 'void *' and 'struct device *' inputs with a simple and clear 'struct vfio_device *' For now the self-allocating vfio_add_group_dev() interface is kept so each user can be updated as a separate patch. The expected usage pattern is driver core probe() function: my_device = kzalloc(sizeof(*mydevice)); vfio_init_group_dev(&my_device->vdev, dev, ops, mydevice); /* other driver specific prep */ vfio_register_group_dev(&my_device->vdev); dev_set_drvdata(dev, my_device); driver core remove() function: my_device = dev_get_drvdata(dev); vfio_unregister_group_dev(&my_device->vdev); /* other driver specific tear down */ kfree(my_device); Allowing the driver to be able to use the drvdata and vfio_device to go to/from its own data. The pattern also makes it clear that vfio_register_group_dev() must be last in the sequence, as once it is called the core code can immediately start calling ops. The init/register gap is provided to allow for the driver to do setup before ops can be called and thus avoid races. Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Liu Yi L <yi.l.liu@intel.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Max Gurtovoy <mgurtovoy@nvidia.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Message-Id: <3-v3-225de1400dfc+4e074-vfio1_jgg@nvidia.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-03-30 23:53:05 +08:00
void vfio_unregister_group_dev(struct vfio_device *device)
{
struct vfio_group *group = device->group;
unsigned int i = 0;
bool interrupted = false;
long rc;
vfio_device_put(device);
rc = try_wait_for_completion(&device->comp);
while (rc <= 0) {
if (device->ops->request)
device->ops->request(device, i++);
if (interrupted) {
rc = wait_for_completion_timeout(&device->comp,
HZ * 10);
} else {
rc = wait_for_completion_interruptible_timeout(
&device->comp, HZ * 10);
if (rc < 0) {
interrupted = true;
vfio: Split creation of a vfio_device into init and register ops This makes the struct vfio_device part of the public interface so it can be used with container_of and so forth, as is typical for a Linux subystem. This is the first step to bring some type-safety to the vfio interface by allowing the replacement of 'void *' and 'struct device *' inputs with a simple and clear 'struct vfio_device *' For now the self-allocating vfio_add_group_dev() interface is kept so each user can be updated as a separate patch. The expected usage pattern is driver core probe() function: my_device = kzalloc(sizeof(*mydevice)); vfio_init_group_dev(&my_device->vdev, dev, ops, mydevice); /* other driver specific prep */ vfio_register_group_dev(&my_device->vdev); dev_set_drvdata(dev, my_device); driver core remove() function: my_device = dev_get_drvdata(dev); vfio_unregister_group_dev(&my_device->vdev); /* other driver specific tear down */ kfree(my_device); Allowing the driver to be able to use the drvdata and vfio_device to go to/from its own data. The pattern also makes it clear that vfio_register_group_dev() must be last in the sequence, as once it is called the core code can immediately start calling ops. The init/register gap is provided to allow for the driver to do setup before ops can be called and thus avoid races. Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Liu Yi L <yi.l.liu@intel.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Max Gurtovoy <mgurtovoy@nvidia.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Message-Id: <3-v3-225de1400dfc+4e074-vfio1_jgg@nvidia.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-03-30 23:53:05 +08:00
dev_warn(device->dev,
"Device is currently in use, task"
" \"%s\" (%d) "
"blocked until device is released",
current->comm, task_pid_nr(current));
}
}
}
mutex_lock(&group->device_lock);
list_del(&device->group_next);
group->dev_counter--;
mutex_unlock(&group->device_lock);
vfio: Fix WARNING "do not call blocking ops when !TASK_RUNNING" vfio_dev_present() which is the condition to wait_event_interruptible_timeout(), will call vfio_group_get_device and try to acquire the mutex group->device_lock. wait_event_interruptible_timeout() will set the state of the current task to TASK_INTERRUPTIBLE, before doing the condition check. This means that we will try to acquire the mutex while already in a sleeping state. The scheduler warns us by giving the following warning: [ 4050.264464] ------------[ cut here ]------------ [ 4050.264508] do not call blocking ops when !TASK_RUNNING; state=1 set at [<00000000b33c00e2>] prepare_to_wait_event+0x14a/0x188 [ 4050.264529] WARNING: CPU: 12 PID: 35924 at kernel/sched/core.c:6112 __might_sleep+0x76/0x90 .... 4050.264756] Call Trace: [ 4050.264765] ([<000000000017bbaa>] __might_sleep+0x72/0x90) [ 4050.264774] [<0000000000b97edc>] __mutex_lock+0x44/0x8c0 [ 4050.264782] [<0000000000b9878a>] mutex_lock_nested+0x32/0x40 [ 4050.264793] [<000003ff800d7abe>] vfio_group_get_device+0x36/0xa8 [vfio] [ 4050.264803] [<000003ff800d87c0>] vfio_del_group_dev+0x238/0x378 [vfio] [ 4050.264813] [<000003ff8015f67c>] mdev_remove+0x3c/0x68 [mdev] [ 4050.264825] [<00000000008e01b0>] device_release_driver_internal+0x168/0x268 [ 4050.264834] [<00000000008de692>] bus_remove_device+0x162/0x190 [ 4050.264843] [<00000000008daf42>] device_del+0x1e2/0x368 [ 4050.264851] [<00000000008db12c>] device_unregister+0x64/0x88 [ 4050.264862] [<000003ff8015ed84>] mdev_device_remove+0xec/0x130 [mdev] [ 4050.264872] [<000003ff8015f074>] remove_store+0x6c/0xa8 [mdev] [ 4050.264881] [<000000000046f494>] kernfs_fop_write+0x14c/0x1f8 [ 4050.264890] [<00000000003c1530>] __vfs_write+0x38/0x1a8 [ 4050.264899] [<00000000003c187c>] vfs_write+0xb4/0x198 [ 4050.264908] [<00000000003c1af2>] ksys_write+0x5a/0xb0 [ 4050.264916] [<0000000000b9e270>] system_call+0xdc/0x2d8 [ 4050.264925] 4 locks held by sh/35924: [ 4050.264933] #0: 000000001ef90325 (sb_writers#4){.+.+}, at: vfs_write+0x9e/0x198 [ 4050.264948] #1: 000000005c1ab0b3 (&of->mutex){+.+.}, at: kernfs_fop_write+0x1cc/0x1f8 [ 4050.264963] #2: 0000000034831ab8 (kn->count#297){++++}, at: kernfs_remove_self+0x12e/0x150 [ 4050.264979] #3: 00000000e152484f (&dev->mutex){....}, at: device_release_driver_internal+0x5c/0x268 [ 4050.264993] Last Breaking-Event-Address: [ 4050.265002] [<000000000017bbaa>] __might_sleep+0x72/0x90 [ 4050.265010] irq event stamp: 7039 [ 4050.265020] hardirqs last enabled at (7047): [<00000000001cee7a>] console_unlock+0x6d2/0x740 [ 4050.265029] hardirqs last disabled at (7054): [<00000000001ce87e>] console_unlock+0xd6/0x740 [ 4050.265040] softirqs last enabled at (6416): [<0000000000b8fe26>] __udelay+0xb6/0x100 [ 4050.265049] softirqs last disabled at (6415): [<0000000000b8fe06>] __udelay+0x96/0x100 [ 4050.265057] ---[ end trace d04a07d39d99a9f9 ]--- Let's fix this as described in the article https://lwn.net/Articles/628628/. Signed-off-by: Farhan Ali <alifm@linux.ibm.com> [remove now redundant vfio_dev_present()] Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2019-04-04 02:22:27 +08:00
if (group->type == VFIO_NO_IOMMU || group->type == VFIO_EMULATED_IOMMU)
iommu_group_remove_device(device->dev);
vfio: Split creation of a vfio_device into init and register ops This makes the struct vfio_device part of the public interface so it can be used with container_of and so forth, as is typical for a Linux subystem. This is the first step to bring some type-safety to the vfio interface by allowing the replacement of 'void *' and 'struct device *' inputs with a simple and clear 'struct vfio_device *' For now the self-allocating vfio_add_group_dev() interface is kept so each user can be updated as a separate patch. The expected usage pattern is driver core probe() function: my_device = kzalloc(sizeof(*mydevice)); vfio_init_group_dev(&my_device->vdev, dev, ops, mydevice); /* other driver specific prep */ vfio_register_group_dev(&my_device->vdev); dev_set_drvdata(dev, my_device); driver core remove() function: my_device = dev_get_drvdata(dev); vfio_unregister_group_dev(&my_device->vdev); /* other driver specific tear down */ kfree(my_device); Allowing the driver to be able to use the drvdata and vfio_device to go to/from its own data. The pattern also makes it clear that vfio_register_group_dev() must be last in the sequence, as once it is called the core code can immediately start calling ops. The init/register gap is provided to allow for the driver to do setup before ops can be called and thus avoid races. Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Liu Yi L <yi.l.liu@intel.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Max Gurtovoy <mgurtovoy@nvidia.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Message-Id: <3-v3-225de1400dfc+4e074-vfio1_jgg@nvidia.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-03-30 23:53:05 +08:00
/* Matches the get in vfio_register_group_dev() */
vfio_group_put(group);
vfio: Split creation of a vfio_device into init and register ops This makes the struct vfio_device part of the public interface so it can be used with container_of and so forth, as is typical for a Linux subystem. This is the first step to bring some type-safety to the vfio interface by allowing the replacement of 'void *' and 'struct device *' inputs with a simple and clear 'struct vfio_device *' For now the self-allocating vfio_add_group_dev() interface is kept so each user can be updated as a separate patch. The expected usage pattern is driver core probe() function: my_device = kzalloc(sizeof(*mydevice)); vfio_init_group_dev(&my_device->vdev, dev, ops, mydevice); /* other driver specific prep */ vfio_register_group_dev(&my_device->vdev); dev_set_drvdata(dev, my_device); driver core remove() function: my_device = dev_get_drvdata(dev); vfio_unregister_group_dev(&my_device->vdev); /* other driver specific tear down */ kfree(my_device); Allowing the driver to be able to use the drvdata and vfio_device to go to/from its own data. The pattern also makes it clear that vfio_register_group_dev() must be last in the sequence, as once it is called the core code can immediately start calling ops. The init/register gap is provided to allow for the driver to do setup before ops can be called and thus avoid races. Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Liu Yi L <yi.l.liu@intel.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Max Gurtovoy <mgurtovoy@nvidia.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Message-Id: <3-v3-225de1400dfc+4e074-vfio1_jgg@nvidia.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-03-30 23:53:05 +08:00
}
EXPORT_SYMBOL_GPL(vfio_unregister_group_dev);
vfio: remove all kernel-doc notation vfio.c abuses (misuses) "/**", which indicates the beginning of kernel-doc notation in the kernel tree. This causes a bunch of kernel-doc complaints about this source file, so quieten all of them by changing all "/**" to "/*". vfio.c:236: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * IOMMU driver registration vfio.c:236: warning: missing initial short description on line: * IOMMU driver registration vfio.c:295: warning: expecting prototype for Container objects(). Prototype was for vfio_container_get() instead vfio.c:317: warning: expecting prototype for Group objects(). Prototype was for __vfio_group_get_from_iommu() instead vfio.c:496: warning: Function parameter or member 'device' not described in 'vfio_device_put' vfio.c:496: warning: expecting prototype for Device objects(). Prototype was for vfio_device_put() instead vfio.c:599: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Async device support vfio.c:599: warning: missing initial short description on line: * Async device support vfio.c:693: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO driver API vfio.c:693: warning: missing initial short description on line: * VFIO driver API vfio.c:835: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Get a reference to the vfio_device for a device. Even if the vfio.c:835: warning: missing initial short description on line: * Get a reference to the vfio_device for a device. Even if the vfio.c:969: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO base fd, /dev/vfio/vfio vfio.c:969: warning: missing initial short description on line: * VFIO base fd, /dev/vfio/vfio vfio.c:1187: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO Group fd, /dev/vfio/$GROUP vfio.c:1187: warning: missing initial short description on line: * VFIO Group fd, /dev/vfio/$GROUP vfio.c:1540: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO Device fd vfio.c:1540: warning: missing initial short description on line: * VFIO Device fd vfio.c:1615: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * External user API, exported by symbols to be linked dynamically. vfio.c:1615: warning: missing initial short description on line: * External user API, exported by symbols to be linked dynamically. vfio.c:1663: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * External user API, exported by symbols to be linked dynamically. vfio.c:1663: warning: missing initial short description on line: * External user API, exported by symbols to be linked dynamically. vfio.c:1742: warning: Function parameter or member 'caps' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'size' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'id' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'version' not described in 'vfio_info_cap_add' vfio.c:1742: warning: expecting prototype for Sub(). Prototype was for vfio_info_cap_add() instead vfio.c:2276: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Module/class support vfio.c:2276: warning: missing initial short description on line: * Module/class support Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Reported-by: kernel test robot <lkp@intel.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Eric Auger <eric.auger@redhat.com> Cc: Cornelia Huck <cohuck@redhat.com> Cc: kvm@vger.kernel.org Link: https://lore.kernel.org/r/38a9cb92-a473-40bf-b8f9-85cc5cfc2da4@infradead.org Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-11-11 07:19:40 +08:00
/*
* VFIO base fd, /dev/vfio/vfio
*/
static long vfio_ioctl_check_extension(struct vfio_container *container,
unsigned long arg)
{
struct vfio_iommu_driver *driver;
long ret = 0;
down_read(&container->group_lock);
driver = container->iommu_driver;
switch (arg) {
/* No base extensions yet */
default:
/*
* If no driver is set, poll all registered drivers for
* extensions and return the first positive result. If
* a driver is already set, further queries will be passed
* only to that driver.
*/
if (!driver) {
mutex_lock(&vfio.iommu_drivers_lock);
list_for_each_entry(driver, &vfio.iommu_drivers_list,
vfio_next) {
if (!list_empty(&container->group_list) &&
!vfio_iommu_driver_allowed(container,
driver))
continue;
if (!try_module_get(driver->ops->owner))
continue;
ret = driver->ops->ioctl(NULL,
VFIO_CHECK_EXTENSION,
arg);
module_put(driver->ops->owner);
if (ret > 0)
break;
}
mutex_unlock(&vfio.iommu_drivers_lock);
} else
ret = driver->ops->ioctl(container->iommu_data,
VFIO_CHECK_EXTENSION, arg);
}
up_read(&container->group_lock);
return ret;
}
/* hold write lock on container->group_lock */
static int __vfio_container_attach_groups(struct vfio_container *container,
struct vfio_iommu_driver *driver,
void *data)
{
struct vfio_group *group;
int ret = -ENODEV;
list_for_each_entry(group, &container->group_list, container_next) {
ret = driver->ops->attach_group(data, group->iommu_group,
group->type);
if (ret)
goto unwind;
}
return ret;
unwind:
list_for_each_entry_continue_reverse(group, &container->group_list,
container_next) {
driver->ops->detach_group(data, group->iommu_group);
}
return ret;
}
static long vfio_ioctl_set_iommu(struct vfio_container *container,
unsigned long arg)
{
struct vfio_iommu_driver *driver;
long ret = -ENODEV;
down_write(&container->group_lock);
/*
* The container is designed to be an unprivileged interface while
* the group can be assigned to specific users. Therefore, only by
* adding a group to a container does the user get the privilege of
* enabling the iommu, which may allocate finite resources. There
* is no unset_iommu, but by removing all the groups from a container,
* the container is deprivileged and returns to an unset state.
*/
if (list_empty(&container->group_list) || container->iommu_driver) {
up_write(&container->group_lock);
return -EINVAL;
}
mutex_lock(&vfio.iommu_drivers_lock);
list_for_each_entry(driver, &vfio.iommu_drivers_list, vfio_next) {
void *data;
if (!vfio_iommu_driver_allowed(container, driver))
continue;
if (!try_module_get(driver->ops->owner))
continue;
/*
* The arg magic for SET_IOMMU is the same as CHECK_EXTENSION,
* so test which iommu driver reported support for this
* extension and call open on them. We also pass them the
* magic, allowing a single driver to support multiple
* interfaces if they'd like.
*/
if (driver->ops->ioctl(NULL, VFIO_CHECK_EXTENSION, arg) <= 0) {
module_put(driver->ops->owner);
continue;
}
data = driver->ops->open(arg);
if (IS_ERR(data)) {
ret = PTR_ERR(data);
module_put(driver->ops->owner);
continue;
}
ret = __vfio_container_attach_groups(container, driver, data);
if (ret) {
driver->ops->release(data);
module_put(driver->ops->owner);
continue;
}
container->iommu_driver = driver;
container->iommu_data = data;
break;
}
mutex_unlock(&vfio.iommu_drivers_lock);
up_write(&container->group_lock);
return ret;
}
static long vfio_fops_unl_ioctl(struct file *filep,
unsigned int cmd, unsigned long arg)
{
struct vfio_container *container = filep->private_data;
struct vfio_iommu_driver *driver;
void *data;
long ret = -EINVAL;
if (!container)
return ret;
switch (cmd) {
case VFIO_GET_API_VERSION:
ret = VFIO_API_VERSION;
break;
case VFIO_CHECK_EXTENSION:
ret = vfio_ioctl_check_extension(container, arg);
break;
case VFIO_SET_IOMMU:
ret = vfio_ioctl_set_iommu(container, arg);
break;
default:
driver = container->iommu_driver;
data = container->iommu_data;
if (driver) /* passthrough all unrecognized ioctls */
ret = driver->ops->ioctl(data, cmd, arg);
}
return ret;
}
static int vfio_fops_open(struct inode *inode, struct file *filep)
{
struct vfio_container *container;
container = kzalloc(sizeof(*container), GFP_KERNEL);
if (!container)
return -ENOMEM;
INIT_LIST_HEAD(&container->group_list);
init_rwsem(&container->group_lock);
kref_init(&container->kref);
filep->private_data = container;
return 0;
}
static int vfio_fops_release(struct inode *inode, struct file *filep)
{
struct vfio_container *container = filep->private_data;
struct vfio_iommu_driver *driver = container->iommu_driver;
if (driver && driver->ops->notify)
driver->ops->notify(container->iommu_data,
VFIO_IOMMU_CONTAINER_CLOSE);
filep->private_data = NULL;
vfio_container_put(container);
return 0;
}
static const struct file_operations vfio_fops = {
.owner = THIS_MODULE,
.open = vfio_fops_open,
.release = vfio_fops_release,
.unlocked_ioctl = vfio_fops_unl_ioctl,
.compat_ioctl = compat_ptr_ioctl,
};
vfio: remove all kernel-doc notation vfio.c abuses (misuses) "/**", which indicates the beginning of kernel-doc notation in the kernel tree. This causes a bunch of kernel-doc complaints about this source file, so quieten all of them by changing all "/**" to "/*". vfio.c:236: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * IOMMU driver registration vfio.c:236: warning: missing initial short description on line: * IOMMU driver registration vfio.c:295: warning: expecting prototype for Container objects(). Prototype was for vfio_container_get() instead vfio.c:317: warning: expecting prototype for Group objects(). Prototype was for __vfio_group_get_from_iommu() instead vfio.c:496: warning: Function parameter or member 'device' not described in 'vfio_device_put' vfio.c:496: warning: expecting prototype for Device objects(). Prototype was for vfio_device_put() instead vfio.c:599: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Async device support vfio.c:599: warning: missing initial short description on line: * Async device support vfio.c:693: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO driver API vfio.c:693: warning: missing initial short description on line: * VFIO driver API vfio.c:835: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Get a reference to the vfio_device for a device. Even if the vfio.c:835: warning: missing initial short description on line: * Get a reference to the vfio_device for a device. Even if the vfio.c:969: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO base fd, /dev/vfio/vfio vfio.c:969: warning: missing initial short description on line: * VFIO base fd, /dev/vfio/vfio vfio.c:1187: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO Group fd, /dev/vfio/$GROUP vfio.c:1187: warning: missing initial short description on line: * VFIO Group fd, /dev/vfio/$GROUP vfio.c:1540: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO Device fd vfio.c:1540: warning: missing initial short description on line: * VFIO Device fd vfio.c:1615: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * External user API, exported by symbols to be linked dynamically. vfio.c:1615: warning: missing initial short description on line: * External user API, exported by symbols to be linked dynamically. vfio.c:1663: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * External user API, exported by symbols to be linked dynamically. vfio.c:1663: warning: missing initial short description on line: * External user API, exported by symbols to be linked dynamically. vfio.c:1742: warning: Function parameter or member 'caps' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'size' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'id' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'version' not described in 'vfio_info_cap_add' vfio.c:1742: warning: expecting prototype for Sub(). Prototype was for vfio_info_cap_add() instead vfio.c:2276: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Module/class support vfio.c:2276: warning: missing initial short description on line: * Module/class support Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Reported-by: kernel test robot <lkp@intel.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Eric Auger <eric.auger@redhat.com> Cc: Cornelia Huck <cohuck@redhat.com> Cc: kvm@vger.kernel.org Link: https://lore.kernel.org/r/38a9cb92-a473-40bf-b8f9-85cc5cfc2da4@infradead.org Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-11-11 07:19:40 +08:00
/*
* VFIO Group fd, /dev/vfio/$GROUP
*/
static void __vfio_group_unset_container(struct vfio_group *group)
{
struct vfio_container *container = group->container;
struct vfio_iommu_driver *driver;
vfio: Fully lock struct vfio_group::container This is necessary to avoid various user triggerable races, for instance racing SET_CONTAINER/UNSET_CONTAINER: ioctl(VFIO_GROUP_SET_CONTAINER) ioctl(VFIO_GROUP_UNSET_CONTAINER) vfio_group_unset_container int users = atomic_cmpxchg(&group->container_users, 1, 0); // users == 1 container_users == 0 __vfio_group_unset_container(group); container = group->container; vfio_group_set_container() if (!atomic_read(&group->container_users)) down_write(&container->group_lock); group->container = container; up_write(&container->group_lock); down_write(&container->group_lock); group->container = NULL; up_write(&container->group_lock); vfio_container_put(container); /* woops we lost/leaked the new container */ This can then go on to NULL pointer deref since container == 0 and container_users == 1. Wrap all touches of container, except those on a performance path with a known open device, with the group_rwsem. The only user of vfio_group_add_container_user() holds the user count for a simple operation, change it to just hold the group_lock over the operation and delete vfio_group_add_container_user(). Containers now only gain a user when a device FD is opened. Reviewed-by: Kevin Tian <kevin.tian@intel.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Nicolin Chen <nicolinc@nvidia.com> Tested-by: Matthew Rosato <mjrosato@linux.ibm.com> Link: https://lore.kernel.org/r/4-v2-d035a1842d81+1bf-vfio_group_locking_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-05-17 07:41:20 +08:00
lockdep_assert_held_write(&group->group_rwsem);
down_write(&container->group_lock);
driver = container->iommu_driver;
if (driver)
driver->ops->detach_group(container->iommu_data,
group->iommu_group);
if (group->type == VFIO_IOMMU)
iommu_group_release_dma_owner(group->iommu_group);
vfio: Set DMA ownership for VFIO devices Claim group dma ownership when an IOMMU group is set to a container, and release the dma ownership once the iommu group is unset from the container. This change disallows some unsafe bridge drivers to bind to non-ACS bridges while devices under them are assigned to user space. This is an intentional enhancement and possibly breaks some existing configurations. The recommendation to such an affected user would be that the previously allowed host bridge driver was unsafe for this use case and to continue to enable assignment of devices within that group, the driver should be unbound from the bridge device or replaced with the pci-stub driver. For any bridge driver, we consider it unsafe if it satisfies any of the following conditions: 1) The bridge driver uses DMA. Calling pci_set_master() or calling any kernel DMA API (dma_map_*() and etc.) is an indicate that the driver is doing DMA. 2) If the bridge driver uses MMIO, it should be tolerant to hostile userspace also touching the same MMIO registers via P2P DMA attacks. If the bridge driver turns out to be a safe one, it could be used as before by setting the driver's .driver_managed_dma field, just like what we have done in the pcieport driver. Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Acked-by: Alex Williamson <alex.williamson@redhat.com> Link: https://lore.kernel.org/r/20220418005000.897664-8-baolu.lu@linux.intel.com Signed-off-by: Joerg Roedel <jroedel@suse.de>
2022-04-18 08:49:56 +08:00
group->container = NULL;
group->container_users = 0;
list_del(&group->container_next);
/* Detaching the last group deprivileges a container, remove iommu */
if (driver && list_empty(&container->group_list)) {
driver->ops->release(container->iommu_data);
module_put(driver->ops->owner);
container->iommu_driver = NULL;
container->iommu_data = NULL;
}
up_write(&container->group_lock);
vfio_container_put(container);
}
/*
* VFIO_GROUP_UNSET_CONTAINER should fail if there are other users or
* if there was no container to unset. Since the ioctl is called on
* the group, we know that still exists, therefore the only valid
* transition here is 1->0.
*/
static int vfio_group_unset_container(struct vfio_group *group)
{
vfio: Fully lock struct vfio_group::container This is necessary to avoid various user triggerable races, for instance racing SET_CONTAINER/UNSET_CONTAINER: ioctl(VFIO_GROUP_SET_CONTAINER) ioctl(VFIO_GROUP_UNSET_CONTAINER) vfio_group_unset_container int users = atomic_cmpxchg(&group->container_users, 1, 0); // users == 1 container_users == 0 __vfio_group_unset_container(group); container = group->container; vfio_group_set_container() if (!atomic_read(&group->container_users)) down_write(&container->group_lock); group->container = container; up_write(&container->group_lock); down_write(&container->group_lock); group->container = NULL; up_write(&container->group_lock); vfio_container_put(container); /* woops we lost/leaked the new container */ This can then go on to NULL pointer deref since container == 0 and container_users == 1. Wrap all touches of container, except those on a performance path with a known open device, with the group_rwsem. The only user of vfio_group_add_container_user() holds the user count for a simple operation, change it to just hold the group_lock over the operation and delete vfio_group_add_container_user(). Containers now only gain a user when a device FD is opened. Reviewed-by: Kevin Tian <kevin.tian@intel.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Nicolin Chen <nicolinc@nvidia.com> Tested-by: Matthew Rosato <mjrosato@linux.ibm.com> Link: https://lore.kernel.org/r/4-v2-d035a1842d81+1bf-vfio_group_locking_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-05-17 07:41:20 +08:00
lockdep_assert_held_write(&group->group_rwsem);
if (!group->container)
return -EINVAL;
if (group->container_users != 1)
return -EBUSY;
__vfio_group_unset_container(group);
return 0;
}
static int vfio_group_set_container(struct vfio_group *group, int container_fd)
{
struct fd f;
struct vfio_container *container;
struct vfio_iommu_driver *driver;
int ret = 0;
vfio: Fully lock struct vfio_group::container This is necessary to avoid various user triggerable races, for instance racing SET_CONTAINER/UNSET_CONTAINER: ioctl(VFIO_GROUP_SET_CONTAINER) ioctl(VFIO_GROUP_UNSET_CONTAINER) vfio_group_unset_container int users = atomic_cmpxchg(&group->container_users, 1, 0); // users == 1 container_users == 0 __vfio_group_unset_container(group); container = group->container; vfio_group_set_container() if (!atomic_read(&group->container_users)) down_write(&container->group_lock); group->container = container; up_write(&container->group_lock); down_write(&container->group_lock); group->container = NULL; up_write(&container->group_lock); vfio_container_put(container); /* woops we lost/leaked the new container */ This can then go on to NULL pointer deref since container == 0 and container_users == 1. Wrap all touches of container, except those on a performance path with a known open device, with the group_rwsem. The only user of vfio_group_add_container_user() holds the user count for a simple operation, change it to just hold the group_lock over the operation and delete vfio_group_add_container_user(). Containers now only gain a user when a device FD is opened. Reviewed-by: Kevin Tian <kevin.tian@intel.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Nicolin Chen <nicolinc@nvidia.com> Tested-by: Matthew Rosato <mjrosato@linux.ibm.com> Link: https://lore.kernel.org/r/4-v2-d035a1842d81+1bf-vfio_group_locking_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-05-17 07:41:20 +08:00
lockdep_assert_held_write(&group->group_rwsem);
if (group->container || WARN_ON(group->container_users))
return -EINVAL;
if (group->type == VFIO_NO_IOMMU && !capable(CAP_SYS_RAWIO))
return -EPERM;
f = fdget(container_fd);
if (!f.file)
return -EBADF;
/* Sanity check, is this really our fd? */
if (f.file->f_op != &vfio_fops) {
fdput(f);
return -EINVAL;
}
container = f.file->private_data;
WARN_ON(!container); /* fget ensures we don't race vfio_release */
down_write(&container->group_lock);
/* Real groups and fake groups cannot mix */
if (!list_empty(&container->group_list) &&
container->noiommu != (group->type == VFIO_NO_IOMMU)) {
ret = -EPERM;
goto unlock_out;
}
if (group->type == VFIO_IOMMU) {
ret = iommu_group_claim_dma_owner(group->iommu_group, f.file);
if (ret)
goto unlock_out;
}
vfio: Set DMA ownership for VFIO devices Claim group dma ownership when an IOMMU group is set to a container, and release the dma ownership once the iommu group is unset from the container. This change disallows some unsafe bridge drivers to bind to non-ACS bridges while devices under them are assigned to user space. This is an intentional enhancement and possibly breaks some existing configurations. The recommendation to such an affected user would be that the previously allowed host bridge driver was unsafe for this use case and to continue to enable assignment of devices within that group, the driver should be unbound from the bridge device or replaced with the pci-stub driver. For any bridge driver, we consider it unsafe if it satisfies any of the following conditions: 1) The bridge driver uses DMA. Calling pci_set_master() or calling any kernel DMA API (dma_map_*() and etc.) is an indicate that the driver is doing DMA. 2) If the bridge driver uses MMIO, it should be tolerant to hostile userspace also touching the same MMIO registers via P2P DMA attacks. If the bridge driver turns out to be a safe one, it could be used as before by setting the driver's .driver_managed_dma field, just like what we have done in the pcieport driver. Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Acked-by: Alex Williamson <alex.williamson@redhat.com> Link: https://lore.kernel.org/r/20220418005000.897664-8-baolu.lu@linux.intel.com Signed-off-by: Joerg Roedel <jroedel@suse.de>
2022-04-18 08:49:56 +08:00
driver = container->iommu_driver;
if (driver) {
ret = driver->ops->attach_group(container->iommu_data,
group->iommu_group,
group->type);
vfio: Set DMA ownership for VFIO devices Claim group dma ownership when an IOMMU group is set to a container, and release the dma ownership once the iommu group is unset from the container. This change disallows some unsafe bridge drivers to bind to non-ACS bridges while devices under them are assigned to user space. This is an intentional enhancement and possibly breaks some existing configurations. The recommendation to such an affected user would be that the previously allowed host bridge driver was unsafe for this use case and to continue to enable assignment of devices within that group, the driver should be unbound from the bridge device or replaced with the pci-stub driver. For any bridge driver, we consider it unsafe if it satisfies any of the following conditions: 1) The bridge driver uses DMA. Calling pci_set_master() or calling any kernel DMA API (dma_map_*() and etc.) is an indicate that the driver is doing DMA. 2) If the bridge driver uses MMIO, it should be tolerant to hostile userspace also touching the same MMIO registers via P2P DMA attacks. If the bridge driver turns out to be a safe one, it could be used as before by setting the driver's .driver_managed_dma field, just like what we have done in the pcieport driver. Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Acked-by: Alex Williamson <alex.williamson@redhat.com> Link: https://lore.kernel.org/r/20220418005000.897664-8-baolu.lu@linux.intel.com Signed-off-by: Joerg Roedel <jroedel@suse.de>
2022-04-18 08:49:56 +08:00
if (ret) {
if (group->type == VFIO_IOMMU)
iommu_group_release_dma_owner(
group->iommu_group);
goto unlock_out;
vfio: Set DMA ownership for VFIO devices Claim group dma ownership when an IOMMU group is set to a container, and release the dma ownership once the iommu group is unset from the container. This change disallows some unsafe bridge drivers to bind to non-ACS bridges while devices under them are assigned to user space. This is an intentional enhancement and possibly breaks some existing configurations. The recommendation to such an affected user would be that the previously allowed host bridge driver was unsafe for this use case and to continue to enable assignment of devices within that group, the driver should be unbound from the bridge device or replaced with the pci-stub driver. For any bridge driver, we consider it unsafe if it satisfies any of the following conditions: 1) The bridge driver uses DMA. Calling pci_set_master() or calling any kernel DMA API (dma_map_*() and etc.) is an indicate that the driver is doing DMA. 2) If the bridge driver uses MMIO, it should be tolerant to hostile userspace also touching the same MMIO registers via P2P DMA attacks. If the bridge driver turns out to be a safe one, it could be used as before by setting the driver's .driver_managed_dma field, just like what we have done in the pcieport driver. Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Acked-by: Alex Williamson <alex.williamson@redhat.com> Link: https://lore.kernel.org/r/20220418005000.897664-8-baolu.lu@linux.intel.com Signed-off-by: Joerg Roedel <jroedel@suse.de>
2022-04-18 08:49:56 +08:00
}
}
group->container = container;
group->container_users = 1;
container->noiommu = (group->type == VFIO_NO_IOMMU);
list_add(&group->container_next, &container->group_list);
/* Get a reference on the container and mark a user within the group */
vfio_container_get(container);
unlock_out:
up_write(&container->group_lock);
fdput(f);
return ret;
}
static const struct file_operations vfio_device_fops;
/* true if the vfio_device has open_device() called but not close_device() */
static bool vfio_assert_device_open(struct vfio_device *device)
{
return !WARN_ON_ONCE(!READ_ONCE(device->open_count));
}
static int vfio_device_assign_container(struct vfio_device *device)
{
struct vfio_group *group = device->group;
vfio: Fully lock struct vfio_group::container This is necessary to avoid various user triggerable races, for instance racing SET_CONTAINER/UNSET_CONTAINER: ioctl(VFIO_GROUP_SET_CONTAINER) ioctl(VFIO_GROUP_UNSET_CONTAINER) vfio_group_unset_container int users = atomic_cmpxchg(&group->container_users, 1, 0); // users == 1 container_users == 0 __vfio_group_unset_container(group); container = group->container; vfio_group_set_container() if (!atomic_read(&group->container_users)) down_write(&container->group_lock); group->container = container; up_write(&container->group_lock); down_write(&container->group_lock); group->container = NULL; up_write(&container->group_lock); vfio_container_put(container); /* woops we lost/leaked the new container */ This can then go on to NULL pointer deref since container == 0 and container_users == 1. Wrap all touches of container, except those on a performance path with a known open device, with the group_rwsem. The only user of vfio_group_add_container_user() holds the user count for a simple operation, change it to just hold the group_lock over the operation and delete vfio_group_add_container_user(). Containers now only gain a user when a device FD is opened. Reviewed-by: Kevin Tian <kevin.tian@intel.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Nicolin Chen <nicolinc@nvidia.com> Tested-by: Matthew Rosato <mjrosato@linux.ibm.com> Link: https://lore.kernel.org/r/4-v2-d035a1842d81+1bf-vfio_group_locking_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-05-17 07:41:20 +08:00
lockdep_assert_held_write(&group->group_rwsem);
if (!group->container || !group->container->iommu_driver ||
WARN_ON(!group->container_users))
return -EINVAL;
if (group->type == VFIO_NO_IOMMU && !capable(CAP_SYS_RAWIO))
return -EPERM;
vfio: Simplify the life cycle of the group FD Once userspace opens a group FD it is prevented from opening another instance of that same group FD until all the prior group FDs and users of the container are done. The first is done trivially by checking the group->opened during group FD open. However, things get a little weird if userspace creates a device FD and then closes the group FD. The group FD still cannot be re-opened, but this time it is because the group->container is still set and container_users is elevated by the device FD. Due to this mismatched lifecycle we have the vfio_group_try_dissolve_container() which tries to auto-free a container after the group FD is closed but the device FD remains open. Instead have the device FD hold onto a reference to the single group FD. This directly prevents vfio_group_fops_release() from being called when any device FD exists and makes the lifecycle model more understandable. vfio_group_try_dissolve_container() is removed as the only place a container is auto-deleted is during vfio_group_fops_release(). At this point the container_users is either 1 or 0 since all device FDs must be closed. Change group->opened to group->opened_file which points to the single struct file * that is open for the group. If the group->open_file is NULL then group->container == NULL. If all device FDs have closed then the group's notifier list must be empty. Reviewed-by: Kevin Tian <kevin.tian@intel.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Nicolin Chen <nicolinc@nvidia.com> Tested-by: Matthew Rosato <mjrosato@linux.ibm.com> Link: https://lore.kernel.org/r/5-v2-d035a1842d81+1bf-vfio_group_locking_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-05-17 07:41:21 +08:00
get_file(group->opened_file);
group->container_users++;
return 0;
}
vfio: Simplify the life cycle of the group FD Once userspace opens a group FD it is prevented from opening another instance of that same group FD until all the prior group FDs and users of the container are done. The first is done trivially by checking the group->opened during group FD open. However, things get a little weird if userspace creates a device FD and then closes the group FD. The group FD still cannot be re-opened, but this time it is because the group->container is still set and container_users is elevated by the device FD. Due to this mismatched lifecycle we have the vfio_group_try_dissolve_container() which tries to auto-free a container after the group FD is closed but the device FD remains open. Instead have the device FD hold onto a reference to the single group FD. This directly prevents vfio_group_fops_release() from being called when any device FD exists and makes the lifecycle model more understandable. vfio_group_try_dissolve_container() is removed as the only place a container is auto-deleted is during vfio_group_fops_release(). At this point the container_users is either 1 or 0 since all device FDs must be closed. Change group->opened to group->opened_file which points to the single struct file * that is open for the group. If the group->open_file is NULL then group->container == NULL. If all device FDs have closed then the group's notifier list must be empty. Reviewed-by: Kevin Tian <kevin.tian@intel.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Nicolin Chen <nicolinc@nvidia.com> Tested-by: Matthew Rosato <mjrosato@linux.ibm.com> Link: https://lore.kernel.org/r/5-v2-d035a1842d81+1bf-vfio_group_locking_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-05-17 07:41:21 +08:00
static void vfio_device_unassign_container(struct vfio_device *device)
{
down_write(&device->group->group_rwsem);
WARN_ON(device->group->container_users <= 1);
device->group->container_users--;
vfio: Simplify the life cycle of the group FD Once userspace opens a group FD it is prevented from opening another instance of that same group FD until all the prior group FDs and users of the container are done. The first is done trivially by checking the group->opened during group FD open. However, things get a little weird if userspace creates a device FD and then closes the group FD. The group FD still cannot be re-opened, but this time it is because the group->container is still set and container_users is elevated by the device FD. Due to this mismatched lifecycle we have the vfio_group_try_dissolve_container() which tries to auto-free a container after the group FD is closed but the device FD remains open. Instead have the device FD hold onto a reference to the single group FD. This directly prevents vfio_group_fops_release() from being called when any device FD exists and makes the lifecycle model more understandable. vfio_group_try_dissolve_container() is removed as the only place a container is auto-deleted is during vfio_group_fops_release(). At this point the container_users is either 1 or 0 since all device FDs must be closed. Change group->opened to group->opened_file which points to the single struct file * that is open for the group. If the group->open_file is NULL then group->container == NULL. If all device FDs have closed then the group's notifier list must be empty. Reviewed-by: Kevin Tian <kevin.tian@intel.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Nicolin Chen <nicolinc@nvidia.com> Tested-by: Matthew Rosato <mjrosato@linux.ibm.com> Link: https://lore.kernel.org/r/5-v2-d035a1842d81+1bf-vfio_group_locking_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-05-17 07:41:21 +08:00
fput(device->group->opened_file);
up_write(&device->group->group_rwsem);
}
static struct file *vfio_device_open(struct vfio_device *device)
{
struct file *filep;
int ret;
vfio: Fully lock struct vfio_group::container This is necessary to avoid various user triggerable races, for instance racing SET_CONTAINER/UNSET_CONTAINER: ioctl(VFIO_GROUP_SET_CONTAINER) ioctl(VFIO_GROUP_UNSET_CONTAINER) vfio_group_unset_container int users = atomic_cmpxchg(&group->container_users, 1, 0); // users == 1 container_users == 0 __vfio_group_unset_container(group); container = group->container; vfio_group_set_container() if (!atomic_read(&group->container_users)) down_write(&container->group_lock); group->container = container; up_write(&container->group_lock); down_write(&container->group_lock); group->container = NULL; up_write(&container->group_lock); vfio_container_put(container); /* woops we lost/leaked the new container */ This can then go on to NULL pointer deref since container == 0 and container_users == 1. Wrap all touches of container, except those on a performance path with a known open device, with the group_rwsem. The only user of vfio_group_add_container_user() holds the user count for a simple operation, change it to just hold the group_lock over the operation and delete vfio_group_add_container_user(). Containers now only gain a user when a device FD is opened. Reviewed-by: Kevin Tian <kevin.tian@intel.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Nicolin Chen <nicolinc@nvidia.com> Tested-by: Matthew Rosato <mjrosato@linux.ibm.com> Link: https://lore.kernel.org/r/4-v2-d035a1842d81+1bf-vfio_group_locking_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-05-17 07:41:20 +08:00
down_write(&device->group->group_rwsem);
ret = vfio_device_assign_container(device);
vfio: Fully lock struct vfio_group::container This is necessary to avoid various user triggerable races, for instance racing SET_CONTAINER/UNSET_CONTAINER: ioctl(VFIO_GROUP_SET_CONTAINER) ioctl(VFIO_GROUP_UNSET_CONTAINER) vfio_group_unset_container int users = atomic_cmpxchg(&group->container_users, 1, 0); // users == 1 container_users == 0 __vfio_group_unset_container(group); container = group->container; vfio_group_set_container() if (!atomic_read(&group->container_users)) down_write(&container->group_lock); group->container = container; up_write(&container->group_lock); down_write(&container->group_lock); group->container = NULL; up_write(&container->group_lock); vfio_container_put(container); /* woops we lost/leaked the new container */ This can then go on to NULL pointer deref since container == 0 and container_users == 1. Wrap all touches of container, except those on a performance path with a known open device, with the group_rwsem. The only user of vfio_group_add_container_user() holds the user count for a simple operation, change it to just hold the group_lock over the operation and delete vfio_group_add_container_user(). Containers now only gain a user when a device FD is opened. Reviewed-by: Kevin Tian <kevin.tian@intel.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Nicolin Chen <nicolinc@nvidia.com> Tested-by: Matthew Rosato <mjrosato@linux.ibm.com> Link: https://lore.kernel.org/r/4-v2-d035a1842d81+1bf-vfio_group_locking_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-05-17 07:41:20 +08:00
up_write(&device->group->group_rwsem);
if (ret)
return ERR_PTR(ret);
if (!try_module_get(device->dev->driver->owner)) {
vfio: Provide better generic support for open/release vfio_device_ops Currently the driver ops have an open/release pair that is called once each time a device FD is opened or closed. Add an additional set of open/close_device() ops which are called when the device FD is opened for the first time and closed for the last time. An analysis shows that all of the drivers require this semantic. Some are open coding it as part of their reflck implementation, and some are just buggy and miss it completely. To retain the current semantics PCI and FSL depend on, introduce the idea of a "device set" which is a grouping of vfio_device's that share the same lock around opening. The device set is established by providing a 'set_id' pointer. All vfio_device's that provide the same pointer will be joined to the same singleton memory and lock across the whole set. This effectively replaces the oddly named reflck. After conversion the set_id will be sourced from: - A struct device from a fsl_mc_device (fsl) - A struct pci_slot (pci) - A struct pci_bus (pci) - The struct vfio_device (everything) The design ensures that the above pointers are live as long as the vfio_device is registered, so they form reliable unique keys to group vfio_devices into sets. This implementation uses xarray instead of searching through the driver core structures, which simplifies the somewhat tricky locking in this area. Following patches convert all the drivers. Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Link: https://lore.kernel.org/r/4-v4-9ea22c5e6afb+1adf-vfio_reflck_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-08-06 09:19:00 +08:00
ret = -ENODEV;
goto err_unassign_container;
}
vfio: Provide better generic support for open/release vfio_device_ops Currently the driver ops have an open/release pair that is called once each time a device FD is opened or closed. Add an additional set of open/close_device() ops which are called when the device FD is opened for the first time and closed for the last time. An analysis shows that all of the drivers require this semantic. Some are open coding it as part of their reflck implementation, and some are just buggy and miss it completely. To retain the current semantics PCI and FSL depend on, introduce the idea of a "device set" which is a grouping of vfio_device's that share the same lock around opening. The device set is established by providing a 'set_id' pointer. All vfio_device's that provide the same pointer will be joined to the same singleton memory and lock across the whole set. This effectively replaces the oddly named reflck. After conversion the set_id will be sourced from: - A struct device from a fsl_mc_device (fsl) - A struct pci_slot (pci) - A struct pci_bus (pci) - The struct vfio_device (everything) The design ensures that the above pointers are live as long as the vfio_device is registered, so they form reliable unique keys to group vfio_devices into sets. This implementation uses xarray instead of searching through the driver core structures, which simplifies the somewhat tricky locking in this area. Following patches convert all the drivers. Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Link: https://lore.kernel.org/r/4-v4-9ea22c5e6afb+1adf-vfio_reflck_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-08-06 09:19:00 +08:00
mutex_lock(&device->dev_set->lock);
device->open_count++;
if (device->open_count == 1) {
/*
* Here we pass the KVM pointer with the group under the read
* lock. If the device driver will use it, it must obtain a
* reference and release it during close_device.
*/
down_read(&device->group->group_rwsem);
device->kvm = device->group->kvm;
if (device->ops->open_device) {
ret = device->ops->open_device(device);
if (ret)
goto err_undo_count;
}
up_read(&device->group->group_rwsem);
vfio: Provide better generic support for open/release vfio_device_ops Currently the driver ops have an open/release pair that is called once each time a device FD is opened or closed. Add an additional set of open/close_device() ops which are called when the device FD is opened for the first time and closed for the last time. An analysis shows that all of the drivers require this semantic. Some are open coding it as part of their reflck implementation, and some are just buggy and miss it completely. To retain the current semantics PCI and FSL depend on, introduce the idea of a "device set" which is a grouping of vfio_device's that share the same lock around opening. The device set is established by providing a 'set_id' pointer. All vfio_device's that provide the same pointer will be joined to the same singleton memory and lock across the whole set. This effectively replaces the oddly named reflck. After conversion the set_id will be sourced from: - A struct device from a fsl_mc_device (fsl) - A struct pci_slot (pci) - A struct pci_bus (pci) - The struct vfio_device (everything) The design ensures that the above pointers are live as long as the vfio_device is registered, so they form reliable unique keys to group vfio_devices into sets. This implementation uses xarray instead of searching through the driver core structures, which simplifies the somewhat tricky locking in this area. Following patches convert all the drivers. Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Link: https://lore.kernel.org/r/4-v4-9ea22c5e6afb+1adf-vfio_reflck_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-08-06 09:19:00 +08:00
}
mutex_unlock(&device->dev_set->lock);
/*
* We can't use anon_inode_getfd() because we need to modify
* the f_mode flags directly to allow more than just ioctls
*/
filep = anon_inode_getfile("[vfio-device]", &vfio_device_fops,
device, O_RDWR);
if (IS_ERR(filep)) {
ret = PTR_ERR(filep);
goto err_close_device;
}
/*
* TODO: add an anon_inode interface to do this.
* Appears to be missing by lack of need rather than
* explicitly prevented. Now there's need.
*/
filep->f_mode |= (FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE);
if (device->group->type == VFIO_NO_IOMMU)
dev_warn(device->dev, "vfio-noiommu device opened by user "
"(%s:%d)\n", current->comm, task_pid_nr(current));
/*
* On success the ref of device is moved to the file and
* put in vfio_device_fops_release()
*/
return filep;
vfio: Provide better generic support for open/release vfio_device_ops Currently the driver ops have an open/release pair that is called once each time a device FD is opened or closed. Add an additional set of open/close_device() ops which are called when the device FD is opened for the first time and closed for the last time. An analysis shows that all of the drivers require this semantic. Some are open coding it as part of their reflck implementation, and some are just buggy and miss it completely. To retain the current semantics PCI and FSL depend on, introduce the idea of a "device set" which is a grouping of vfio_device's that share the same lock around opening. The device set is established by providing a 'set_id' pointer. All vfio_device's that provide the same pointer will be joined to the same singleton memory and lock across the whole set. This effectively replaces the oddly named reflck. After conversion the set_id will be sourced from: - A struct device from a fsl_mc_device (fsl) - A struct pci_slot (pci) - A struct pci_bus (pci) - The struct vfio_device (everything) The design ensures that the above pointers are live as long as the vfio_device is registered, so they form reliable unique keys to group vfio_devices into sets. This implementation uses xarray instead of searching through the driver core structures, which simplifies the somewhat tricky locking in this area. Following patches convert all the drivers. Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Link: https://lore.kernel.org/r/4-v4-9ea22c5e6afb+1adf-vfio_reflck_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-08-06 09:19:00 +08:00
err_close_device:
mutex_lock(&device->dev_set->lock);
down_read(&device->group->group_rwsem);
vfio: Provide better generic support for open/release vfio_device_ops Currently the driver ops have an open/release pair that is called once each time a device FD is opened or closed. Add an additional set of open/close_device() ops which are called when the device FD is opened for the first time and closed for the last time. An analysis shows that all of the drivers require this semantic. Some are open coding it as part of their reflck implementation, and some are just buggy and miss it completely. To retain the current semantics PCI and FSL depend on, introduce the idea of a "device set" which is a grouping of vfio_device's that share the same lock around opening. The device set is established by providing a 'set_id' pointer. All vfio_device's that provide the same pointer will be joined to the same singleton memory and lock across the whole set. This effectively replaces the oddly named reflck. After conversion the set_id will be sourced from: - A struct device from a fsl_mc_device (fsl) - A struct pci_slot (pci) - A struct pci_bus (pci) - The struct vfio_device (everything) The design ensures that the above pointers are live as long as the vfio_device is registered, so they form reliable unique keys to group vfio_devices into sets. This implementation uses xarray instead of searching through the driver core structures, which simplifies the somewhat tricky locking in this area. Following patches convert all the drivers. Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Link: https://lore.kernel.org/r/4-v4-9ea22c5e6afb+1adf-vfio_reflck_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-08-06 09:19:00 +08:00
if (device->open_count == 1 && device->ops->close_device)
device->ops->close_device(device);
err_undo_count:
device->open_count--;
if (device->open_count == 0 && device->kvm)
device->kvm = NULL;
up_read(&device->group->group_rwsem);
vfio: Provide better generic support for open/release vfio_device_ops Currently the driver ops have an open/release pair that is called once each time a device FD is opened or closed. Add an additional set of open/close_device() ops which are called when the device FD is opened for the first time and closed for the last time. An analysis shows that all of the drivers require this semantic. Some are open coding it as part of their reflck implementation, and some are just buggy and miss it completely. To retain the current semantics PCI and FSL depend on, introduce the idea of a "device set" which is a grouping of vfio_device's that share the same lock around opening. The device set is established by providing a 'set_id' pointer. All vfio_device's that provide the same pointer will be joined to the same singleton memory and lock across the whole set. This effectively replaces the oddly named reflck. After conversion the set_id will be sourced from: - A struct device from a fsl_mc_device (fsl) - A struct pci_slot (pci) - A struct pci_bus (pci) - The struct vfio_device (everything) The design ensures that the above pointers are live as long as the vfio_device is registered, so they form reliable unique keys to group vfio_devices into sets. This implementation uses xarray instead of searching through the driver core structures, which simplifies the somewhat tricky locking in this area. Following patches convert all the drivers. Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Link: https://lore.kernel.org/r/4-v4-9ea22c5e6afb+1adf-vfio_reflck_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-08-06 09:19:00 +08:00
mutex_unlock(&device->dev_set->lock);
module_put(device->dev->driver->owner);
err_unassign_container:
vfio: Simplify the life cycle of the group FD Once userspace opens a group FD it is prevented from opening another instance of that same group FD until all the prior group FDs and users of the container are done. The first is done trivially by checking the group->opened during group FD open. However, things get a little weird if userspace creates a device FD and then closes the group FD. The group FD still cannot be re-opened, but this time it is because the group->container is still set and container_users is elevated by the device FD. Due to this mismatched lifecycle we have the vfio_group_try_dissolve_container() which tries to auto-free a container after the group FD is closed but the device FD remains open. Instead have the device FD hold onto a reference to the single group FD. This directly prevents vfio_group_fops_release() from being called when any device FD exists and makes the lifecycle model more understandable. vfio_group_try_dissolve_container() is removed as the only place a container is auto-deleted is during vfio_group_fops_release(). At this point the container_users is either 1 or 0 since all device FDs must be closed. Change group->opened to group->opened_file which points to the single struct file * that is open for the group. If the group->open_file is NULL then group->container == NULL. If all device FDs have closed then the group's notifier list must be empty. Reviewed-by: Kevin Tian <kevin.tian@intel.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Nicolin Chen <nicolinc@nvidia.com> Tested-by: Matthew Rosato <mjrosato@linux.ibm.com> Link: https://lore.kernel.org/r/5-v2-d035a1842d81+1bf-vfio_group_locking_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-05-17 07:41:21 +08:00
vfio_device_unassign_container(device);
return ERR_PTR(ret);
}
static int vfio_group_get_device_fd(struct vfio_group *group, char *buf)
{
struct vfio_device *device;
struct file *filep;
int fdno;
int ret;
device = vfio_device_get_from_name(group, buf);
if (IS_ERR(device))
return PTR_ERR(device);
fdno = get_unused_fd_flags(O_CLOEXEC);
if (fdno < 0) {
ret = fdno;
goto err_put_device;
}
filep = vfio_device_open(device);
if (IS_ERR(filep)) {
ret = PTR_ERR(filep);
goto err_put_fdno;
}
fd_install(fdno, filep);
return fdno;
err_put_fdno:
put_unused_fd(fdno);
err_put_device:
vfio: Provide better generic support for open/release vfio_device_ops Currently the driver ops have an open/release pair that is called once each time a device FD is opened or closed. Add an additional set of open/close_device() ops which are called when the device FD is opened for the first time and closed for the last time. An analysis shows that all of the drivers require this semantic. Some are open coding it as part of their reflck implementation, and some are just buggy and miss it completely. To retain the current semantics PCI and FSL depend on, introduce the idea of a "device set" which is a grouping of vfio_device's that share the same lock around opening. The device set is established by providing a 'set_id' pointer. All vfio_device's that provide the same pointer will be joined to the same singleton memory and lock across the whole set. This effectively replaces the oddly named reflck. After conversion the set_id will be sourced from: - A struct device from a fsl_mc_device (fsl) - A struct pci_slot (pci) - A struct pci_bus (pci) - The struct vfio_device (everything) The design ensures that the above pointers are live as long as the vfio_device is registered, so they form reliable unique keys to group vfio_devices into sets. This implementation uses xarray instead of searching through the driver core structures, which simplifies the somewhat tricky locking in this area. Following patches convert all the drivers. Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Link: https://lore.kernel.org/r/4-v4-9ea22c5e6afb+1adf-vfio_reflck_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-08-06 09:19:00 +08:00
vfio_device_put(device);
return ret;
}
static long vfio_group_fops_unl_ioctl(struct file *filep,
unsigned int cmd, unsigned long arg)
{
struct vfio_group *group = filep->private_data;
long ret = -ENOTTY;
switch (cmd) {
case VFIO_GROUP_GET_STATUS:
{
struct vfio_group_status status;
unsigned long minsz;
minsz = offsetofend(struct vfio_group_status, flags);
if (copy_from_user(&status, (void __user *)arg, minsz))
return -EFAULT;
if (status.argsz < minsz)
return -EINVAL;
status.flags = 0;
vfio: Fully lock struct vfio_group::container This is necessary to avoid various user triggerable races, for instance racing SET_CONTAINER/UNSET_CONTAINER: ioctl(VFIO_GROUP_SET_CONTAINER) ioctl(VFIO_GROUP_UNSET_CONTAINER) vfio_group_unset_container int users = atomic_cmpxchg(&group->container_users, 1, 0); // users == 1 container_users == 0 __vfio_group_unset_container(group); container = group->container; vfio_group_set_container() if (!atomic_read(&group->container_users)) down_write(&container->group_lock); group->container = container; up_write(&container->group_lock); down_write(&container->group_lock); group->container = NULL; up_write(&container->group_lock); vfio_container_put(container); /* woops we lost/leaked the new container */ This can then go on to NULL pointer deref since container == 0 and container_users == 1. Wrap all touches of container, except those on a performance path with a known open device, with the group_rwsem. The only user of vfio_group_add_container_user() holds the user count for a simple operation, change it to just hold the group_lock over the operation and delete vfio_group_add_container_user(). Containers now only gain a user when a device FD is opened. Reviewed-by: Kevin Tian <kevin.tian@intel.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Nicolin Chen <nicolinc@nvidia.com> Tested-by: Matthew Rosato <mjrosato@linux.ibm.com> Link: https://lore.kernel.org/r/4-v2-d035a1842d81+1bf-vfio_group_locking_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-05-17 07:41:20 +08:00
down_read(&group->group_rwsem);
if (group->container)
status.flags |= VFIO_GROUP_FLAGS_CONTAINER_SET |
VFIO_GROUP_FLAGS_VIABLE;
else if (!iommu_group_dma_owner_claimed(group->iommu_group))
status.flags |= VFIO_GROUP_FLAGS_VIABLE;
vfio: Fully lock struct vfio_group::container This is necessary to avoid various user triggerable races, for instance racing SET_CONTAINER/UNSET_CONTAINER: ioctl(VFIO_GROUP_SET_CONTAINER) ioctl(VFIO_GROUP_UNSET_CONTAINER) vfio_group_unset_container int users = atomic_cmpxchg(&group->container_users, 1, 0); // users == 1 container_users == 0 __vfio_group_unset_container(group); container = group->container; vfio_group_set_container() if (!atomic_read(&group->container_users)) down_write(&container->group_lock); group->container = container; up_write(&container->group_lock); down_write(&container->group_lock); group->container = NULL; up_write(&container->group_lock); vfio_container_put(container); /* woops we lost/leaked the new container */ This can then go on to NULL pointer deref since container == 0 and container_users == 1. Wrap all touches of container, except those on a performance path with a known open device, with the group_rwsem. The only user of vfio_group_add_container_user() holds the user count for a simple operation, change it to just hold the group_lock over the operation and delete vfio_group_add_container_user(). Containers now only gain a user when a device FD is opened. Reviewed-by: Kevin Tian <kevin.tian@intel.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Nicolin Chen <nicolinc@nvidia.com> Tested-by: Matthew Rosato <mjrosato@linux.ibm.com> Link: https://lore.kernel.org/r/4-v2-d035a1842d81+1bf-vfio_group_locking_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-05-17 07:41:20 +08:00
up_read(&group->group_rwsem);
if (copy_to_user((void __user *)arg, &status, minsz))
return -EFAULT;
ret = 0;
break;
}
case VFIO_GROUP_SET_CONTAINER:
{
int fd;
if (get_user(fd, (int __user *)arg))
return -EFAULT;
if (fd < 0)
return -EINVAL;
vfio: Fully lock struct vfio_group::container This is necessary to avoid various user triggerable races, for instance racing SET_CONTAINER/UNSET_CONTAINER: ioctl(VFIO_GROUP_SET_CONTAINER) ioctl(VFIO_GROUP_UNSET_CONTAINER) vfio_group_unset_container int users = atomic_cmpxchg(&group->container_users, 1, 0); // users == 1 container_users == 0 __vfio_group_unset_container(group); container = group->container; vfio_group_set_container() if (!atomic_read(&group->container_users)) down_write(&container->group_lock); group->container = container; up_write(&container->group_lock); down_write(&container->group_lock); group->container = NULL; up_write(&container->group_lock); vfio_container_put(container); /* woops we lost/leaked the new container */ This can then go on to NULL pointer deref since container == 0 and container_users == 1. Wrap all touches of container, except those on a performance path with a known open device, with the group_rwsem. The only user of vfio_group_add_container_user() holds the user count for a simple operation, change it to just hold the group_lock over the operation and delete vfio_group_add_container_user(). Containers now only gain a user when a device FD is opened. Reviewed-by: Kevin Tian <kevin.tian@intel.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Nicolin Chen <nicolinc@nvidia.com> Tested-by: Matthew Rosato <mjrosato@linux.ibm.com> Link: https://lore.kernel.org/r/4-v2-d035a1842d81+1bf-vfio_group_locking_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-05-17 07:41:20 +08:00
down_write(&group->group_rwsem);
ret = vfio_group_set_container(group, fd);
vfio: Fully lock struct vfio_group::container This is necessary to avoid various user triggerable races, for instance racing SET_CONTAINER/UNSET_CONTAINER: ioctl(VFIO_GROUP_SET_CONTAINER) ioctl(VFIO_GROUP_UNSET_CONTAINER) vfio_group_unset_container int users = atomic_cmpxchg(&group->container_users, 1, 0); // users == 1 container_users == 0 __vfio_group_unset_container(group); container = group->container; vfio_group_set_container() if (!atomic_read(&group->container_users)) down_write(&container->group_lock); group->container = container; up_write(&container->group_lock); down_write(&container->group_lock); group->container = NULL; up_write(&container->group_lock); vfio_container_put(container); /* woops we lost/leaked the new container */ This can then go on to NULL pointer deref since container == 0 and container_users == 1. Wrap all touches of container, except those on a performance path with a known open device, with the group_rwsem. The only user of vfio_group_add_container_user() holds the user count for a simple operation, change it to just hold the group_lock over the operation and delete vfio_group_add_container_user(). Containers now only gain a user when a device FD is opened. Reviewed-by: Kevin Tian <kevin.tian@intel.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Nicolin Chen <nicolinc@nvidia.com> Tested-by: Matthew Rosato <mjrosato@linux.ibm.com> Link: https://lore.kernel.org/r/4-v2-d035a1842d81+1bf-vfio_group_locking_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-05-17 07:41:20 +08:00
up_write(&group->group_rwsem);
break;
}
case VFIO_GROUP_UNSET_CONTAINER:
vfio: Fully lock struct vfio_group::container This is necessary to avoid various user triggerable races, for instance racing SET_CONTAINER/UNSET_CONTAINER: ioctl(VFIO_GROUP_SET_CONTAINER) ioctl(VFIO_GROUP_UNSET_CONTAINER) vfio_group_unset_container int users = atomic_cmpxchg(&group->container_users, 1, 0); // users == 1 container_users == 0 __vfio_group_unset_container(group); container = group->container; vfio_group_set_container() if (!atomic_read(&group->container_users)) down_write(&container->group_lock); group->container = container; up_write(&container->group_lock); down_write(&container->group_lock); group->container = NULL; up_write(&container->group_lock); vfio_container_put(container); /* woops we lost/leaked the new container */ This can then go on to NULL pointer deref since container == 0 and container_users == 1. Wrap all touches of container, except those on a performance path with a known open device, with the group_rwsem. The only user of vfio_group_add_container_user() holds the user count for a simple operation, change it to just hold the group_lock over the operation and delete vfio_group_add_container_user(). Containers now only gain a user when a device FD is opened. Reviewed-by: Kevin Tian <kevin.tian@intel.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Nicolin Chen <nicolinc@nvidia.com> Tested-by: Matthew Rosato <mjrosato@linux.ibm.com> Link: https://lore.kernel.org/r/4-v2-d035a1842d81+1bf-vfio_group_locking_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-05-17 07:41:20 +08:00
down_write(&group->group_rwsem);
ret = vfio_group_unset_container(group);
vfio: Fully lock struct vfio_group::container This is necessary to avoid various user triggerable races, for instance racing SET_CONTAINER/UNSET_CONTAINER: ioctl(VFIO_GROUP_SET_CONTAINER) ioctl(VFIO_GROUP_UNSET_CONTAINER) vfio_group_unset_container int users = atomic_cmpxchg(&group->container_users, 1, 0); // users == 1 container_users == 0 __vfio_group_unset_container(group); container = group->container; vfio_group_set_container() if (!atomic_read(&group->container_users)) down_write(&container->group_lock); group->container = container; up_write(&container->group_lock); down_write(&container->group_lock); group->container = NULL; up_write(&container->group_lock); vfio_container_put(container); /* woops we lost/leaked the new container */ This can then go on to NULL pointer deref since container == 0 and container_users == 1. Wrap all touches of container, except those on a performance path with a known open device, with the group_rwsem. The only user of vfio_group_add_container_user() holds the user count for a simple operation, change it to just hold the group_lock over the operation and delete vfio_group_add_container_user(). Containers now only gain a user when a device FD is opened. Reviewed-by: Kevin Tian <kevin.tian@intel.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Nicolin Chen <nicolinc@nvidia.com> Tested-by: Matthew Rosato <mjrosato@linux.ibm.com> Link: https://lore.kernel.org/r/4-v2-d035a1842d81+1bf-vfio_group_locking_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-05-17 07:41:20 +08:00
up_write(&group->group_rwsem);
break;
case VFIO_GROUP_GET_DEVICE_FD:
{
char *buf;
buf = strndup_user((const char __user *)arg, PAGE_SIZE);
if (IS_ERR(buf))
return PTR_ERR(buf);
ret = vfio_group_get_device_fd(group, buf);
kfree(buf);
break;
}
}
return ret;
}
static int vfio_group_fops_open(struct inode *inode, struct file *filep)
{
struct vfio_group *group =
container_of(inode->i_cdev, struct vfio_group, cdev);
int ret;
down_write(&group->group_rwsem);
/* users can be zero if this races with vfio_group_put() */
if (!refcount_inc_not_zero(&group->users)) {
ret = -ENODEV;
goto err_unlock;
}
if (group->type == VFIO_NO_IOMMU && !capable(CAP_SYS_RAWIO)) {
ret = -EPERM;
goto err_put;
}
/*
* Do we need multiple instances of the group open? Seems not.
*/
vfio: Simplify the life cycle of the group FD Once userspace opens a group FD it is prevented from opening another instance of that same group FD until all the prior group FDs and users of the container are done. The first is done trivially by checking the group->opened during group FD open. However, things get a little weird if userspace creates a device FD and then closes the group FD. The group FD still cannot be re-opened, but this time it is because the group->container is still set and container_users is elevated by the device FD. Due to this mismatched lifecycle we have the vfio_group_try_dissolve_container() which tries to auto-free a container after the group FD is closed but the device FD remains open. Instead have the device FD hold onto a reference to the single group FD. This directly prevents vfio_group_fops_release() from being called when any device FD exists and makes the lifecycle model more understandable. vfio_group_try_dissolve_container() is removed as the only place a container is auto-deleted is during vfio_group_fops_release(). At this point the container_users is either 1 or 0 since all device FDs must be closed. Change group->opened to group->opened_file which points to the single struct file * that is open for the group. If the group->open_file is NULL then group->container == NULL. If all device FDs have closed then the group's notifier list must be empty. Reviewed-by: Kevin Tian <kevin.tian@intel.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Nicolin Chen <nicolinc@nvidia.com> Tested-by: Matthew Rosato <mjrosato@linux.ibm.com> Link: https://lore.kernel.org/r/5-v2-d035a1842d81+1bf-vfio_group_locking_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-05-17 07:41:21 +08:00
if (group->opened_file) {
ret = -EBUSY;
goto err_put;
}
vfio: Simplify the life cycle of the group FD Once userspace opens a group FD it is prevented from opening another instance of that same group FD until all the prior group FDs and users of the container are done. The first is done trivially by checking the group->opened during group FD open. However, things get a little weird if userspace creates a device FD and then closes the group FD. The group FD still cannot be re-opened, but this time it is because the group->container is still set and container_users is elevated by the device FD. Due to this mismatched lifecycle we have the vfio_group_try_dissolve_container() which tries to auto-free a container after the group FD is closed but the device FD remains open. Instead have the device FD hold onto a reference to the single group FD. This directly prevents vfio_group_fops_release() from being called when any device FD exists and makes the lifecycle model more understandable. vfio_group_try_dissolve_container() is removed as the only place a container is auto-deleted is during vfio_group_fops_release(). At this point the container_users is either 1 or 0 since all device FDs must be closed. Change group->opened to group->opened_file which points to the single struct file * that is open for the group. If the group->open_file is NULL then group->container == NULL. If all device FDs have closed then the group's notifier list must be empty. Reviewed-by: Kevin Tian <kevin.tian@intel.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Nicolin Chen <nicolinc@nvidia.com> Tested-by: Matthew Rosato <mjrosato@linux.ibm.com> Link: https://lore.kernel.org/r/5-v2-d035a1842d81+1bf-vfio_group_locking_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-05-17 07:41:21 +08:00
group->opened_file = filep;
filep->private_data = group;
up_write(&group->group_rwsem);
return 0;
err_put:
vfio_group_put(group);
err_unlock:
up_write(&group->group_rwsem);
return ret;
}
static int vfio_group_fops_release(struct inode *inode, struct file *filep)
{
struct vfio_group *group = filep->private_data;
filep->private_data = NULL;
down_write(&group->group_rwsem);
vfio: Simplify the life cycle of the group FD Once userspace opens a group FD it is prevented from opening another instance of that same group FD until all the prior group FDs and users of the container are done. The first is done trivially by checking the group->opened during group FD open. However, things get a little weird if userspace creates a device FD and then closes the group FD. The group FD still cannot be re-opened, but this time it is because the group->container is still set and container_users is elevated by the device FD. Due to this mismatched lifecycle we have the vfio_group_try_dissolve_container() which tries to auto-free a container after the group FD is closed but the device FD remains open. Instead have the device FD hold onto a reference to the single group FD. This directly prevents vfio_group_fops_release() from being called when any device FD exists and makes the lifecycle model more understandable. vfio_group_try_dissolve_container() is removed as the only place a container is auto-deleted is during vfio_group_fops_release(). At this point the container_users is either 1 or 0 since all device FDs must be closed. Change group->opened to group->opened_file which points to the single struct file * that is open for the group. If the group->open_file is NULL then group->container == NULL. If all device FDs have closed then the group's notifier list must be empty. Reviewed-by: Kevin Tian <kevin.tian@intel.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Nicolin Chen <nicolinc@nvidia.com> Tested-by: Matthew Rosato <mjrosato@linux.ibm.com> Link: https://lore.kernel.org/r/5-v2-d035a1842d81+1bf-vfio_group_locking_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-05-17 07:41:21 +08:00
/*
* Device FDs hold a group file reference, therefore the group release
* is only called when there are no open devices.
*/
WARN_ON(group->notifier.head);
if (group->container) {
WARN_ON(group->container_users != 1);
vfio: Simplify the life cycle of the group FD Once userspace opens a group FD it is prevented from opening another instance of that same group FD until all the prior group FDs and users of the container are done. The first is done trivially by checking the group->opened during group FD open. However, things get a little weird if userspace creates a device FD and then closes the group FD. The group FD still cannot be re-opened, but this time it is because the group->container is still set and container_users is elevated by the device FD. Due to this mismatched lifecycle we have the vfio_group_try_dissolve_container() which tries to auto-free a container after the group FD is closed but the device FD remains open. Instead have the device FD hold onto a reference to the single group FD. This directly prevents vfio_group_fops_release() from being called when any device FD exists and makes the lifecycle model more understandable. vfio_group_try_dissolve_container() is removed as the only place a container is auto-deleted is during vfio_group_fops_release(). At this point the container_users is either 1 or 0 since all device FDs must be closed. Change group->opened to group->opened_file which points to the single struct file * that is open for the group. If the group->open_file is NULL then group->container == NULL. If all device FDs have closed then the group's notifier list must be empty. Reviewed-by: Kevin Tian <kevin.tian@intel.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Nicolin Chen <nicolinc@nvidia.com> Tested-by: Matthew Rosato <mjrosato@linux.ibm.com> Link: https://lore.kernel.org/r/5-v2-d035a1842d81+1bf-vfio_group_locking_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-05-17 07:41:21 +08:00
__vfio_group_unset_container(group);
}
group->opened_file = NULL;
up_write(&group->group_rwsem);
vfio_group_put(group);
return 0;
}
static const struct file_operations vfio_group_fops = {
.owner = THIS_MODULE,
.unlocked_ioctl = vfio_group_fops_unl_ioctl,
.compat_ioctl = compat_ptr_ioctl,
.open = vfio_group_fops_open,
.release = vfio_group_fops_release,
};
vfio: remove all kernel-doc notation vfio.c abuses (misuses) "/**", which indicates the beginning of kernel-doc notation in the kernel tree. This causes a bunch of kernel-doc complaints about this source file, so quieten all of them by changing all "/**" to "/*". vfio.c:236: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * IOMMU driver registration vfio.c:236: warning: missing initial short description on line: * IOMMU driver registration vfio.c:295: warning: expecting prototype for Container objects(). Prototype was for vfio_container_get() instead vfio.c:317: warning: expecting prototype for Group objects(). Prototype was for __vfio_group_get_from_iommu() instead vfio.c:496: warning: Function parameter or member 'device' not described in 'vfio_device_put' vfio.c:496: warning: expecting prototype for Device objects(). Prototype was for vfio_device_put() instead vfio.c:599: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Async device support vfio.c:599: warning: missing initial short description on line: * Async device support vfio.c:693: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO driver API vfio.c:693: warning: missing initial short description on line: * VFIO driver API vfio.c:835: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Get a reference to the vfio_device for a device. Even if the vfio.c:835: warning: missing initial short description on line: * Get a reference to the vfio_device for a device. Even if the vfio.c:969: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO base fd, /dev/vfio/vfio vfio.c:969: warning: missing initial short description on line: * VFIO base fd, /dev/vfio/vfio vfio.c:1187: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO Group fd, /dev/vfio/$GROUP vfio.c:1187: warning: missing initial short description on line: * VFIO Group fd, /dev/vfio/$GROUP vfio.c:1540: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO Device fd vfio.c:1540: warning: missing initial short description on line: * VFIO Device fd vfio.c:1615: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * External user API, exported by symbols to be linked dynamically. vfio.c:1615: warning: missing initial short description on line: * External user API, exported by symbols to be linked dynamically. vfio.c:1663: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * External user API, exported by symbols to be linked dynamically. vfio.c:1663: warning: missing initial short description on line: * External user API, exported by symbols to be linked dynamically. vfio.c:1742: warning: Function parameter or member 'caps' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'size' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'id' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'version' not described in 'vfio_info_cap_add' vfio.c:1742: warning: expecting prototype for Sub(). Prototype was for vfio_info_cap_add() instead vfio.c:2276: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Module/class support vfio.c:2276: warning: missing initial short description on line: * Module/class support Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Reported-by: kernel test robot <lkp@intel.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Eric Auger <eric.auger@redhat.com> Cc: Cornelia Huck <cohuck@redhat.com> Cc: kvm@vger.kernel.org Link: https://lore.kernel.org/r/38a9cb92-a473-40bf-b8f9-85cc5cfc2da4@infradead.org Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-11-11 07:19:40 +08:00
/*
* VFIO Device fd
*/
static int vfio_device_fops_release(struct inode *inode, struct file *filep)
{
struct vfio_device *device = filep->private_data;
vfio: Provide better generic support for open/release vfio_device_ops Currently the driver ops have an open/release pair that is called once each time a device FD is opened or closed. Add an additional set of open/close_device() ops which are called when the device FD is opened for the first time and closed for the last time. An analysis shows that all of the drivers require this semantic. Some are open coding it as part of their reflck implementation, and some are just buggy and miss it completely. To retain the current semantics PCI and FSL depend on, introduce the idea of a "device set" which is a grouping of vfio_device's that share the same lock around opening. The device set is established by providing a 'set_id' pointer. All vfio_device's that provide the same pointer will be joined to the same singleton memory and lock across the whole set. This effectively replaces the oddly named reflck. After conversion the set_id will be sourced from: - A struct device from a fsl_mc_device (fsl) - A struct pci_slot (pci) - A struct pci_bus (pci) - The struct vfio_device (everything) The design ensures that the above pointers are live as long as the vfio_device is registered, so they form reliable unique keys to group vfio_devices into sets. This implementation uses xarray instead of searching through the driver core structures, which simplifies the somewhat tricky locking in this area. Following patches convert all the drivers. Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Link: https://lore.kernel.org/r/4-v4-9ea22c5e6afb+1adf-vfio_reflck_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-08-06 09:19:00 +08:00
mutex_lock(&device->dev_set->lock);
vfio_assert_device_open(device);
down_read(&device->group->group_rwsem);
if (device->open_count == 1 && device->ops->close_device)
vfio: Provide better generic support for open/release vfio_device_ops Currently the driver ops have an open/release pair that is called once each time a device FD is opened or closed. Add an additional set of open/close_device() ops which are called when the device FD is opened for the first time and closed for the last time. An analysis shows that all of the drivers require this semantic. Some are open coding it as part of their reflck implementation, and some are just buggy and miss it completely. To retain the current semantics PCI and FSL depend on, introduce the idea of a "device set" which is a grouping of vfio_device's that share the same lock around opening. The device set is established by providing a 'set_id' pointer. All vfio_device's that provide the same pointer will be joined to the same singleton memory and lock across the whole set. This effectively replaces the oddly named reflck. After conversion the set_id will be sourced from: - A struct device from a fsl_mc_device (fsl) - A struct pci_slot (pci) - A struct pci_bus (pci) - The struct vfio_device (everything) The design ensures that the above pointers are live as long as the vfio_device is registered, so they form reliable unique keys to group vfio_devices into sets. This implementation uses xarray instead of searching through the driver core structures, which simplifies the somewhat tricky locking in this area. Following patches convert all the drivers. Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Link: https://lore.kernel.org/r/4-v4-9ea22c5e6afb+1adf-vfio_reflck_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-08-06 09:19:00 +08:00
device->ops->close_device(device);
up_read(&device->group->group_rwsem);
device->open_count--;
if (device->open_count == 0)
device->kvm = NULL;
vfio: Provide better generic support for open/release vfio_device_ops Currently the driver ops have an open/release pair that is called once each time a device FD is opened or closed. Add an additional set of open/close_device() ops which are called when the device FD is opened for the first time and closed for the last time. An analysis shows that all of the drivers require this semantic. Some are open coding it as part of their reflck implementation, and some are just buggy and miss it completely. To retain the current semantics PCI and FSL depend on, introduce the idea of a "device set" which is a grouping of vfio_device's that share the same lock around opening. The device set is established by providing a 'set_id' pointer. All vfio_device's that provide the same pointer will be joined to the same singleton memory and lock across the whole set. This effectively replaces the oddly named reflck. After conversion the set_id will be sourced from: - A struct device from a fsl_mc_device (fsl) - A struct pci_slot (pci) - A struct pci_bus (pci) - The struct vfio_device (everything) The design ensures that the above pointers are live as long as the vfio_device is registered, so they form reliable unique keys to group vfio_devices into sets. This implementation uses xarray instead of searching through the driver core structures, which simplifies the somewhat tricky locking in this area. Following patches convert all the drivers. Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Link: https://lore.kernel.org/r/4-v4-9ea22c5e6afb+1adf-vfio_reflck_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-08-06 09:19:00 +08:00
mutex_unlock(&device->dev_set->lock);
module_put(device->dev->driver->owner);
vfio: Simplify the life cycle of the group FD Once userspace opens a group FD it is prevented from opening another instance of that same group FD until all the prior group FDs and users of the container are done. The first is done trivially by checking the group->opened during group FD open. However, things get a little weird if userspace creates a device FD and then closes the group FD. The group FD still cannot be re-opened, but this time it is because the group->container is still set and container_users is elevated by the device FD. Due to this mismatched lifecycle we have the vfio_group_try_dissolve_container() which tries to auto-free a container after the group FD is closed but the device FD remains open. Instead have the device FD hold onto a reference to the single group FD. This directly prevents vfio_group_fops_release() from being called when any device FD exists and makes the lifecycle model more understandable. vfio_group_try_dissolve_container() is removed as the only place a container is auto-deleted is during vfio_group_fops_release(). At this point the container_users is either 1 or 0 since all device FDs must be closed. Change group->opened to group->opened_file which points to the single struct file * that is open for the group. If the group->open_file is NULL then group->container == NULL. If all device FDs have closed then the group's notifier list must be empty. Reviewed-by: Kevin Tian <kevin.tian@intel.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Nicolin Chen <nicolinc@nvidia.com> Tested-by: Matthew Rosato <mjrosato@linux.ibm.com> Link: https://lore.kernel.org/r/5-v2-d035a1842d81+1bf-vfio_group_locking_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-05-17 07:41:21 +08:00
vfio_device_unassign_container(device);
vfio_device_put(device);
return 0;
}
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
/*
* vfio_mig_get_next_state - Compute the next step in the FSM
* @cur_fsm - The current state the device is in
* @new_fsm - The target state to reach
* @next_fsm - Pointer to the next step to get to new_fsm
*
* Return 0 upon success, otherwise -errno
* Upon success the next step in the state progression between cur_fsm and
* new_fsm will be set in next_fsm.
*
* This breaks down requests for combination transitions into smaller steps and
* returns the next step to get to new_fsm. The function may need to be called
* multiple times before reaching new_fsm.
*
*/
int vfio_mig_get_next_state(struct vfio_device *device,
enum vfio_device_mig_state cur_fsm,
enum vfio_device_mig_state new_fsm,
enum vfio_device_mig_state *next_fsm)
{
enum { VFIO_DEVICE_NUM_STATES = VFIO_DEVICE_STATE_RUNNING_P2P + 1 };
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
/*
* The coding in this table requires the driver to implement the
* following FSM arcs:
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
* RESUMING -> STOP
* STOP -> RESUMING
* STOP -> STOP_COPY
* STOP_COPY -> STOP
*
* If P2P is supported then the driver must also implement these FSM
* arcs:
* RUNNING -> RUNNING_P2P
* RUNNING_P2P -> RUNNING
* RUNNING_P2P -> STOP
* STOP -> RUNNING_P2P
* Without P2P the driver must implement:
* RUNNING -> STOP
* STOP -> RUNNING
*
* The coding will step through multiple states for some combination
* transitions; if all optional features are supported, this means the
* following ones:
* RESUMING -> STOP -> RUNNING_P2P
* RESUMING -> STOP -> RUNNING_P2P -> RUNNING
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
* RESUMING -> STOP -> STOP_COPY
* RUNNING -> RUNNING_P2P -> STOP
* RUNNING -> RUNNING_P2P -> STOP -> RESUMING
* RUNNING -> RUNNING_P2P -> STOP -> STOP_COPY
* RUNNING_P2P -> STOP -> RESUMING
* RUNNING_P2P -> STOP -> STOP_COPY
* STOP -> RUNNING_P2P -> RUNNING
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
* STOP_COPY -> STOP -> RESUMING
* STOP_COPY -> STOP -> RUNNING_P2P
* STOP_COPY -> STOP -> RUNNING_P2P -> RUNNING
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
*/
static const u8 vfio_from_fsm_table[VFIO_DEVICE_NUM_STATES][VFIO_DEVICE_NUM_STATES] = {
[VFIO_DEVICE_STATE_STOP] = {
[VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_STOP,
[VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_RUNNING_P2P,
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
[VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_STOP_COPY,
[VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_RESUMING,
[VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_RUNNING_P2P,
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
[VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR,
},
[VFIO_DEVICE_STATE_RUNNING] = {
[VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_RUNNING_P2P,
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
[VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_RUNNING,
[VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_RUNNING_P2P,
[VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_RUNNING_P2P,
[VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_RUNNING_P2P,
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
[VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR,
},
[VFIO_DEVICE_STATE_STOP_COPY] = {
[VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_STOP,
[VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_STOP,
[VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_STOP_COPY,
[VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_STOP,
[VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_STOP,
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
[VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR,
},
[VFIO_DEVICE_STATE_RESUMING] = {
[VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_STOP,
[VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_STOP,
[VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_STOP,
[VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_RESUMING,
[VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_STOP,
[VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR,
},
[VFIO_DEVICE_STATE_RUNNING_P2P] = {
[VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_STOP,
[VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_RUNNING,
[VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_STOP,
[VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_STOP,
[VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_RUNNING_P2P,
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
[VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR,
},
[VFIO_DEVICE_STATE_ERROR] = {
[VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_ERROR,
[VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_ERROR,
[VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_ERROR,
[VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_ERROR,
[VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_ERROR,
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
[VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR,
},
};
static const unsigned int state_flags_table[VFIO_DEVICE_NUM_STATES] = {
[VFIO_DEVICE_STATE_STOP] = VFIO_MIGRATION_STOP_COPY,
[VFIO_DEVICE_STATE_RUNNING] = VFIO_MIGRATION_STOP_COPY,
[VFIO_DEVICE_STATE_STOP_COPY] = VFIO_MIGRATION_STOP_COPY,
[VFIO_DEVICE_STATE_RESUMING] = VFIO_MIGRATION_STOP_COPY,
[VFIO_DEVICE_STATE_RUNNING_P2P] =
VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P,
[VFIO_DEVICE_STATE_ERROR] = ~0U,
};
if (WARN_ON(cur_fsm >= ARRAY_SIZE(vfio_from_fsm_table) ||
(state_flags_table[cur_fsm] & device->migration_flags) !=
state_flags_table[cur_fsm]))
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
return -EINVAL;
if (new_fsm >= ARRAY_SIZE(vfio_from_fsm_table) ||
(state_flags_table[new_fsm] & device->migration_flags) !=
state_flags_table[new_fsm])
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
return -EINVAL;
/*
* Arcs touching optional and unsupported states are skipped over. The
* driver will instead see an arc from the original state to the next
* logical state, as per the above comment.
*/
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
*next_fsm = vfio_from_fsm_table[cur_fsm][new_fsm];
while ((state_flags_table[*next_fsm] & device->migration_flags) !=
state_flags_table[*next_fsm])
*next_fsm = vfio_from_fsm_table[*next_fsm][new_fsm];
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
return (*next_fsm != VFIO_DEVICE_STATE_ERROR) ? 0 : -EINVAL;
}
EXPORT_SYMBOL_GPL(vfio_mig_get_next_state);
/*
* Convert the drivers's struct file into a FD number and return it to userspace
*/
static int vfio_ioct_mig_return_fd(struct file *filp, void __user *arg,
struct vfio_device_feature_mig_state *mig)
{
int ret;
int fd;
fd = get_unused_fd_flags(O_CLOEXEC);
if (fd < 0) {
ret = fd;
goto out_fput;
}
mig->data_fd = fd;
if (copy_to_user(arg, mig, sizeof(*mig))) {
ret = -EFAULT;
goto out_put_unused;
}
fd_install(fd, filp);
return 0;
out_put_unused:
put_unused_fd(fd);
out_fput:
fput(filp);
return ret;
}
static int
vfio_ioctl_device_feature_mig_device_state(struct vfio_device *device,
u32 flags, void __user *arg,
size_t argsz)
{
size_t minsz =
offsetofend(struct vfio_device_feature_mig_state, data_fd);
struct vfio_device_feature_mig_state mig;
struct file *filp = NULL;
int ret;
if (!device->ops->migration_set_state ||
!device->ops->migration_get_state)
return -ENOTTY;
ret = vfio_check_feature(flags, argsz,
VFIO_DEVICE_FEATURE_SET |
VFIO_DEVICE_FEATURE_GET,
sizeof(mig));
if (ret != 1)
return ret;
if (copy_from_user(&mig, arg, minsz))
return -EFAULT;
if (flags & VFIO_DEVICE_FEATURE_GET) {
enum vfio_device_mig_state curr_state;
ret = device->ops->migration_get_state(device, &curr_state);
if (ret)
return ret;
mig.device_state = curr_state;
goto out_copy;
}
/* Handle the VFIO_DEVICE_FEATURE_SET */
filp = device->ops->migration_set_state(device, mig.device_state);
if (IS_ERR(filp) || !filp)
goto out_copy;
return vfio_ioct_mig_return_fd(filp, arg, &mig);
out_copy:
mig.data_fd = -1;
if (copy_to_user(arg, &mig, sizeof(mig)))
return -EFAULT;
if (IS_ERR(filp))
return PTR_ERR(filp);
return 0;
}
static int vfio_ioctl_device_feature_migration(struct vfio_device *device,
u32 flags, void __user *arg,
size_t argsz)
{
struct vfio_device_feature_migration mig = {
.flags = device->migration_flags,
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
};
int ret;
if (!device->ops->migration_set_state ||
!device->ops->migration_get_state)
return -ENOTTY;
ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_GET,
sizeof(mig));
if (ret != 1)
return ret;
if (copy_to_user(arg, &mig, sizeof(mig)))
return -EFAULT;
return 0;
}
static int vfio_ioctl_device_feature(struct vfio_device *device,
struct vfio_device_feature __user *arg)
{
size_t minsz = offsetofend(struct vfio_device_feature, flags);
struct vfio_device_feature feature;
if (copy_from_user(&feature, arg, minsz))
return -EFAULT;
if (feature.argsz < minsz)
return -EINVAL;
/* Check unknown flags */
if (feature.flags &
~(VFIO_DEVICE_FEATURE_MASK | VFIO_DEVICE_FEATURE_SET |
VFIO_DEVICE_FEATURE_GET | VFIO_DEVICE_FEATURE_PROBE))
return -EINVAL;
/* GET & SET are mutually exclusive except with PROBE */
if (!(feature.flags & VFIO_DEVICE_FEATURE_PROBE) &&
(feature.flags & VFIO_DEVICE_FEATURE_SET) &&
(feature.flags & VFIO_DEVICE_FEATURE_GET))
return -EINVAL;
switch (feature.flags & VFIO_DEVICE_FEATURE_MASK) {
vfio: Define device migration protocol v2 Replace the existing region based migration protocol with an ioctl based protocol. The two protocols have the same general semantic behaviors, but the way the data is transported is changed. This is the STOP_COPY portion of the new protocol, it defines the 5 states for basic stop and copy migration and the protocol to move the migration data in/out of the kernel. Compared to the clarification of the v1 protocol Alex proposed: https://lore.kernel.org/r/163909282574.728533.7460416142511440919.stgit@omen This has a few deliberate functional differences: - ERROR arcs allow the device function to remain unchanged. - The protocol is not required to return to the original state on transition failure. Instead userspace can execute an unwind back to the original state, reset, or do something else without needing kernel support. This simplifies the kernel design and should userspace choose a policy like always reset, avoids doing useless work in the kernel on error handling paths. - PRE_COPY is made optional, userspace must discover it before using it. This reflects the fact that the majority of drivers we are aware of right now will not implement PRE_COPY. - segmentation is not part of the data stream protocol, the receiver does not have to reproduce the framing boundaries. The hybrid FSM for the device_state is described as a Mealy machine by documenting each of the arcs the driver is required to implement. Defining the remaining set of old/new device_state transitions as 'combination transitions' which are naturally defined as taking multiple FSM arcs along the shortest path within the FSM's digraph allows a complete matrix of transitions. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE is defined to replace writing to the device_state field in the region. This allows returning a brand new FD whenever the requested transition opens a data transfer session. The VFIO core code implements the new feature and provides a helper function to the driver. Using the helper the driver only has to implement 6 of the FSM arcs and the other combination transitions are elaborated consistently from those arcs. A new VFIO_DEVICE_FEATURE of VFIO_DEVICE_FEATURE_MIGRATION is defined to report the capability for migration and indicate which set of states and arcs are supported by the device. The FSM provides a lot of flexibility to make backwards compatible extensions but the VFIO_DEVICE_FEATURE also allows for future breaking extensions for scenarios that cannot support even the basic STOP_COPY requirements. The VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE with the GET option (i.e. VFIO_DEVICE_FEATURE_GET) can be used to read the current migration state of the VFIO device. Data transfer sessions are now carried over a file descriptor, instead of the region. The FD functions for the lifetime of the data transfer session. read() and write() transfer the data with normal Linux stream FD semantics. This design allows future expansion to support poll(), io_uring, and other performance optimizations. The complicated mmap mode for data transfer is discarded as current qemu doesn't take meaningful advantage of it, and the new qemu implementation avoids substantially all the performance penalty of using a read() on the region. Link: https://lore.kernel.org/all/20220224142024.147653-10-yishaih@nvidia.com Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Reviewed-by: Alex Williamson <alex.williamson@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
2022-02-24 22:20:18 +08:00
case VFIO_DEVICE_FEATURE_MIGRATION:
return vfio_ioctl_device_feature_migration(
device, feature.flags, arg->data,
feature.argsz - minsz);
case VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE:
return vfio_ioctl_device_feature_mig_device_state(
device, feature.flags, arg->data,
feature.argsz - minsz);
default:
if (unlikely(!device->ops->device_feature))
return -EINVAL;
return device->ops->device_feature(device, feature.flags,
arg->data,
feature.argsz - minsz);
}
}
static long vfio_device_fops_unl_ioctl(struct file *filep,
unsigned int cmd, unsigned long arg)
{
struct vfio_device *device = filep->private_data;
switch (cmd) {
case VFIO_DEVICE_FEATURE:
return vfio_ioctl_device_feature(device, (void __user *)arg);
default:
if (unlikely(!device->ops->ioctl))
return -EINVAL;
return device->ops->ioctl(device, cmd, arg);
}
}
static ssize_t vfio_device_fops_read(struct file *filep, char __user *buf,
size_t count, loff_t *ppos)
{
struct vfio_device *device = filep->private_data;
if (unlikely(!device->ops->read))
return -EINVAL;
return device->ops->read(device, buf, count, ppos);
}
static ssize_t vfio_device_fops_write(struct file *filep,
const char __user *buf,
size_t count, loff_t *ppos)
{
struct vfio_device *device = filep->private_data;
if (unlikely(!device->ops->write))
return -EINVAL;
return device->ops->write(device, buf, count, ppos);
}
static int vfio_device_fops_mmap(struct file *filep, struct vm_area_struct *vma)
{
struct vfio_device *device = filep->private_data;
if (unlikely(!device->ops->mmap))
return -EINVAL;
return device->ops->mmap(device, vma);
}
static const struct file_operations vfio_device_fops = {
.owner = THIS_MODULE,
.release = vfio_device_fops_release,
.read = vfio_device_fops_read,
.write = vfio_device_fops_write,
.unlocked_ioctl = vfio_device_fops_unl_ioctl,
.compat_ioctl = compat_ptr_ioctl,
.mmap = vfio_device_fops_mmap,
};
/**
* vfio_file_iommu_group - Return the struct iommu_group for the vfio group file
* @file: VFIO group file
vfio: add external user support VFIO is designed to be used via ioctls on file descriptors returned by VFIO. However in some situations support for an external user is required. The first user is KVM on PPC64 (SPAPR TCE protocol) which is going to use the existing VFIO groups for exclusive access in real/virtual mode on a host to avoid passing map/unmap requests to the user space which would made things pretty slow. The protocol includes: 1. do normal VFIO init operation: - opening a new container; - attaching group(s) to it; - setting an IOMMU driver for a container. When IOMMU is set for a container, all groups in it are considered ready to use by an external user. 2. User space passes a group fd to an external user. The external user calls vfio_group_get_external_user() to verify that: - the group is initialized; - IOMMU is set for it. If both checks passed, vfio_group_get_external_user() increments the container user counter to prevent the VFIO group from disposal before KVM exits. 3. The external user calls vfio_external_user_iommu_id() to know an IOMMU ID. PPC64 KVM uses it to link logical bus number (LIOBN) with IOMMU ID. 4. When the external KVM finishes, it calls vfio_group_put_external_user() to release the VFIO group. This call decrements the container user counter. Everything gets released. The "vfio: Limit group opens" patch is also required for the consistency. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2013-08-06 00:52:36 +08:00
*
* The returned iommu_group is valid as long as a ref is held on the file.
vfio: add external user support VFIO is designed to be used via ioctls on file descriptors returned by VFIO. However in some situations support for an external user is required. The first user is KVM on PPC64 (SPAPR TCE protocol) which is going to use the existing VFIO groups for exclusive access in real/virtual mode on a host to avoid passing map/unmap requests to the user space which would made things pretty slow. The protocol includes: 1. do normal VFIO init operation: - opening a new container; - attaching group(s) to it; - setting an IOMMU driver for a container. When IOMMU is set for a container, all groups in it are considered ready to use by an external user. 2. User space passes a group fd to an external user. The external user calls vfio_group_get_external_user() to verify that: - the group is initialized; - IOMMU is set for it. If both checks passed, vfio_group_get_external_user() increments the container user counter to prevent the VFIO group from disposal before KVM exits. 3. The external user calls vfio_external_user_iommu_id() to know an IOMMU ID. PPC64 KVM uses it to link logical bus number (LIOBN) with IOMMU ID. 4. When the external KVM finishes, it calls vfio_group_put_external_user() to release the VFIO group. This call decrements the container user counter. Everything gets released. The "vfio: Limit group opens" patch is also required for the consistency. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2013-08-06 00:52:36 +08:00
*/
struct iommu_group *vfio_file_iommu_group(struct file *file)
vfio: add external user support VFIO is designed to be used via ioctls on file descriptors returned by VFIO. However in some situations support for an external user is required. The first user is KVM on PPC64 (SPAPR TCE protocol) which is going to use the existing VFIO groups for exclusive access in real/virtual mode on a host to avoid passing map/unmap requests to the user space which would made things pretty slow. The protocol includes: 1. do normal VFIO init operation: - opening a new container; - attaching group(s) to it; - setting an IOMMU driver for a container. When IOMMU is set for a container, all groups in it are considered ready to use by an external user. 2. User space passes a group fd to an external user. The external user calls vfio_group_get_external_user() to verify that: - the group is initialized; - IOMMU is set for it. If both checks passed, vfio_group_get_external_user() increments the container user counter to prevent the VFIO group from disposal before KVM exits. 3. The external user calls vfio_external_user_iommu_id() to know an IOMMU ID. PPC64 KVM uses it to link logical bus number (LIOBN) with IOMMU ID. 4. When the external KVM finishes, it calls vfio_group_put_external_user() to release the VFIO group. This call decrements the container user counter. Everything gets released. The "vfio: Limit group opens" patch is also required for the consistency. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2013-08-06 00:52:36 +08:00
{
struct vfio_group *group = file->private_data;
vfio: add external user support VFIO is designed to be used via ioctls on file descriptors returned by VFIO. However in some situations support for an external user is required. The first user is KVM on PPC64 (SPAPR TCE protocol) which is going to use the existing VFIO groups for exclusive access in real/virtual mode on a host to avoid passing map/unmap requests to the user space which would made things pretty slow. The protocol includes: 1. do normal VFIO init operation: - opening a new container; - attaching group(s) to it; - setting an IOMMU driver for a container. When IOMMU is set for a container, all groups in it are considered ready to use by an external user. 2. User space passes a group fd to an external user. The external user calls vfio_group_get_external_user() to verify that: - the group is initialized; - IOMMU is set for it. If both checks passed, vfio_group_get_external_user() increments the container user counter to prevent the VFIO group from disposal before KVM exits. 3. The external user calls vfio_external_user_iommu_id() to know an IOMMU ID. PPC64 KVM uses it to link logical bus number (LIOBN) with IOMMU ID. 4. When the external KVM finishes, it calls vfio_group_put_external_user() to release the VFIO group. This call decrements the container user counter. Everything gets released. The "vfio: Limit group opens" patch is also required for the consistency. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2013-08-06 00:52:36 +08:00
if (file->f_op != &vfio_group_fops)
return NULL;
return group->iommu_group;
vfio: add external user support VFIO is designed to be used via ioctls on file descriptors returned by VFIO. However in some situations support for an external user is required. The first user is KVM on PPC64 (SPAPR TCE protocol) which is going to use the existing VFIO groups for exclusive access in real/virtual mode on a host to avoid passing map/unmap requests to the user space which would made things pretty slow. The protocol includes: 1. do normal VFIO init operation: - opening a new container; - attaching group(s) to it; - setting an IOMMU driver for a container. When IOMMU is set for a container, all groups in it are considered ready to use by an external user. 2. User space passes a group fd to an external user. The external user calls vfio_group_get_external_user() to verify that: - the group is initialized; - IOMMU is set for it. If both checks passed, vfio_group_get_external_user() increments the container user counter to prevent the VFIO group from disposal before KVM exits. 3. The external user calls vfio_external_user_iommu_id() to know an IOMMU ID. PPC64 KVM uses it to link logical bus number (LIOBN) with IOMMU ID. 4. When the external KVM finishes, it calls vfio_group_put_external_user() to release the VFIO group. This call decrements the container user counter. Everything gets released. The "vfio: Limit group opens" patch is also required for the consistency. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2013-08-06 00:52:36 +08:00
}
EXPORT_SYMBOL_GPL(vfio_file_iommu_group);
vfio: add external user support VFIO is designed to be used via ioctls on file descriptors returned by VFIO. However in some situations support for an external user is required. The first user is KVM on PPC64 (SPAPR TCE protocol) which is going to use the existing VFIO groups for exclusive access in real/virtual mode on a host to avoid passing map/unmap requests to the user space which would made things pretty slow. The protocol includes: 1. do normal VFIO init operation: - opening a new container; - attaching group(s) to it; - setting an IOMMU driver for a container. When IOMMU is set for a container, all groups in it are considered ready to use by an external user. 2. User space passes a group fd to an external user. The external user calls vfio_group_get_external_user() to verify that: - the group is initialized; - IOMMU is set for it. If both checks passed, vfio_group_get_external_user() increments the container user counter to prevent the VFIO group from disposal before KVM exits. 3. The external user calls vfio_external_user_iommu_id() to know an IOMMU ID. PPC64 KVM uses it to link logical bus number (LIOBN) with IOMMU ID. 4. When the external KVM finishes, it calls vfio_group_put_external_user() to release the VFIO group. This call decrements the container user counter. Everything gets released. The "vfio: Limit group opens" patch is also required for the consistency. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2013-08-06 00:52:36 +08:00
/**
* vfio_file_enforced_coherent - True if the DMA associated with the VFIO file
* is always CPU cache coherent
* @file: VFIO group file
*
* Enforced coherency means that the IOMMU ignores things like the PCIe no-snoop
* bit in DMA transactions. A return of false indicates that the user has
* rights to access additional instructions such as wbinvd on x86.
*/
bool vfio_file_enforced_coherent(struct file *file)
{
struct vfio_group *group = file->private_data;
bool ret;
if (file->f_op != &vfio_group_fops)
return true;
vfio: Fully lock struct vfio_group::container This is necessary to avoid various user triggerable races, for instance racing SET_CONTAINER/UNSET_CONTAINER: ioctl(VFIO_GROUP_SET_CONTAINER) ioctl(VFIO_GROUP_UNSET_CONTAINER) vfio_group_unset_container int users = atomic_cmpxchg(&group->container_users, 1, 0); // users == 1 container_users == 0 __vfio_group_unset_container(group); container = group->container; vfio_group_set_container() if (!atomic_read(&group->container_users)) down_write(&container->group_lock); group->container = container; up_write(&container->group_lock); down_write(&container->group_lock); group->container = NULL; up_write(&container->group_lock); vfio_container_put(container); /* woops we lost/leaked the new container */ This can then go on to NULL pointer deref since container == 0 and container_users == 1. Wrap all touches of container, except those on a performance path with a known open device, with the group_rwsem. The only user of vfio_group_add_container_user() holds the user count for a simple operation, change it to just hold the group_lock over the operation and delete vfio_group_add_container_user(). Containers now only gain a user when a device FD is opened. Reviewed-by: Kevin Tian <kevin.tian@intel.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Nicolin Chen <nicolinc@nvidia.com> Tested-by: Matthew Rosato <mjrosato@linux.ibm.com> Link: https://lore.kernel.org/r/4-v2-d035a1842d81+1bf-vfio_group_locking_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-05-17 07:41:20 +08:00
down_read(&group->group_rwsem);
if (group->container) {
ret = vfio_ioctl_check_extension(group->container,
VFIO_DMA_CC_IOMMU);
} else {
/*
* Since the coherency state is determined only once a container
* is attached the user must do so before they can prove they
* have permission.
*/
ret = true;
}
vfio: Fully lock struct vfio_group::container This is necessary to avoid various user triggerable races, for instance racing SET_CONTAINER/UNSET_CONTAINER: ioctl(VFIO_GROUP_SET_CONTAINER) ioctl(VFIO_GROUP_UNSET_CONTAINER) vfio_group_unset_container int users = atomic_cmpxchg(&group->container_users, 1, 0); // users == 1 container_users == 0 __vfio_group_unset_container(group); container = group->container; vfio_group_set_container() if (!atomic_read(&group->container_users)) down_write(&container->group_lock); group->container = container; up_write(&container->group_lock); down_write(&container->group_lock); group->container = NULL; up_write(&container->group_lock); vfio_container_put(container); /* woops we lost/leaked the new container */ This can then go on to NULL pointer deref since container == 0 and container_users == 1. Wrap all touches of container, except those on a performance path with a known open device, with the group_rwsem. The only user of vfio_group_add_container_user() holds the user count for a simple operation, change it to just hold the group_lock over the operation and delete vfio_group_add_container_user(). Containers now only gain a user when a device FD is opened. Reviewed-by: Kevin Tian <kevin.tian@intel.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Nicolin Chen <nicolinc@nvidia.com> Tested-by: Matthew Rosato <mjrosato@linux.ibm.com> Link: https://lore.kernel.org/r/4-v2-d035a1842d81+1bf-vfio_group_locking_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-05-17 07:41:20 +08:00
up_read(&group->group_rwsem);
return ret;
}
EXPORT_SYMBOL_GPL(vfio_file_enforced_coherent);
/**
* vfio_file_set_kvm - Link a kvm with VFIO drivers
* @file: VFIO group file
* @kvm: KVM to link
*
* When a VFIO device is first opened the KVM will be available in
* device->kvm if one was associated with the group.
*/
void vfio_file_set_kvm(struct file *file, struct kvm *kvm)
vfio: add external user support VFIO is designed to be used via ioctls on file descriptors returned by VFIO. However in some situations support for an external user is required. The first user is KVM on PPC64 (SPAPR TCE protocol) which is going to use the existing VFIO groups for exclusive access in real/virtual mode on a host to avoid passing map/unmap requests to the user space which would made things pretty slow. The protocol includes: 1. do normal VFIO init operation: - opening a new container; - attaching group(s) to it; - setting an IOMMU driver for a container. When IOMMU is set for a container, all groups in it are considered ready to use by an external user. 2. User space passes a group fd to an external user. The external user calls vfio_group_get_external_user() to verify that: - the group is initialized; - IOMMU is set for it. If both checks passed, vfio_group_get_external_user() increments the container user counter to prevent the VFIO group from disposal before KVM exits. 3. The external user calls vfio_external_user_iommu_id() to know an IOMMU ID. PPC64 KVM uses it to link logical bus number (LIOBN) with IOMMU ID. 4. When the external KVM finishes, it calls vfio_group_put_external_user() to release the VFIO group. This call decrements the container user counter. Everything gets released. The "vfio: Limit group opens" patch is also required for the consistency. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2013-08-06 00:52:36 +08:00
{
struct vfio_group *group = file->private_data;
vfio: add external user support VFIO is designed to be used via ioctls on file descriptors returned by VFIO. However in some situations support for an external user is required. The first user is KVM on PPC64 (SPAPR TCE protocol) which is going to use the existing VFIO groups for exclusive access in real/virtual mode on a host to avoid passing map/unmap requests to the user space which would made things pretty slow. The protocol includes: 1. do normal VFIO init operation: - opening a new container; - attaching group(s) to it; - setting an IOMMU driver for a container. When IOMMU is set for a container, all groups in it are considered ready to use by an external user. 2. User space passes a group fd to an external user. The external user calls vfio_group_get_external_user() to verify that: - the group is initialized; - IOMMU is set for it. If both checks passed, vfio_group_get_external_user() increments the container user counter to prevent the VFIO group from disposal before KVM exits. 3. The external user calls vfio_external_user_iommu_id() to know an IOMMU ID. PPC64 KVM uses it to link logical bus number (LIOBN) with IOMMU ID. 4. When the external KVM finishes, it calls vfio_group_put_external_user() to release the VFIO group. This call decrements the container user counter. Everything gets released. The "vfio: Limit group opens" patch is also required for the consistency. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2013-08-06 00:52:36 +08:00
if (file->f_op != &vfio_group_fops)
return;
down_write(&group->group_rwsem);
group->kvm = kvm;
up_write(&group->group_rwsem);
}
EXPORT_SYMBOL_GPL(vfio_file_set_kvm);
/**
* vfio_file_has_dev - True if the VFIO file is a handle for device
* @file: VFIO file to check
* @device: Device that must be part of the file
*
* Returns true if given file has permission to manipulate the given device.
*/
bool vfio_file_has_dev(struct file *file, struct vfio_device *device)
vfio: add external user support VFIO is designed to be used via ioctls on file descriptors returned by VFIO. However in some situations support for an external user is required. The first user is KVM on PPC64 (SPAPR TCE protocol) which is going to use the existing VFIO groups for exclusive access in real/virtual mode on a host to avoid passing map/unmap requests to the user space which would made things pretty slow. The protocol includes: 1. do normal VFIO init operation: - opening a new container; - attaching group(s) to it; - setting an IOMMU driver for a container. When IOMMU is set for a container, all groups in it are considered ready to use by an external user. 2. User space passes a group fd to an external user. The external user calls vfio_group_get_external_user() to verify that: - the group is initialized; - IOMMU is set for it. If both checks passed, vfio_group_get_external_user() increments the container user counter to prevent the VFIO group from disposal before KVM exits. 3. The external user calls vfio_external_user_iommu_id() to know an IOMMU ID. PPC64 KVM uses it to link logical bus number (LIOBN) with IOMMU ID. 4. When the external KVM finishes, it calls vfio_group_put_external_user() to release the VFIO group. This call decrements the container user counter. Everything gets released. The "vfio: Limit group opens" patch is also required for the consistency. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2013-08-06 00:52:36 +08:00
{
struct vfio_group *group = file->private_data;
vfio: add external user support VFIO is designed to be used via ioctls on file descriptors returned by VFIO. However in some situations support for an external user is required. The first user is KVM on PPC64 (SPAPR TCE protocol) which is going to use the existing VFIO groups for exclusive access in real/virtual mode on a host to avoid passing map/unmap requests to the user space which would made things pretty slow. The protocol includes: 1. do normal VFIO init operation: - opening a new container; - attaching group(s) to it; - setting an IOMMU driver for a container. When IOMMU is set for a container, all groups in it are considered ready to use by an external user. 2. User space passes a group fd to an external user. The external user calls vfio_group_get_external_user() to verify that: - the group is initialized; - IOMMU is set for it. If both checks passed, vfio_group_get_external_user() increments the container user counter to prevent the VFIO group from disposal before KVM exits. 3. The external user calls vfio_external_user_iommu_id() to know an IOMMU ID. PPC64 KVM uses it to link logical bus number (LIOBN) with IOMMU ID. 4. When the external KVM finishes, it calls vfio_group_put_external_user() to release the VFIO group. This call decrements the container user counter. Everything gets released. The "vfio: Limit group opens" patch is also required for the consistency. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2013-08-06 00:52:36 +08:00
if (file->f_op != &vfio_group_fops)
return false;
return group == device->group;
}
EXPORT_SYMBOL_GPL(vfio_file_has_dev);
vfio: remove all kernel-doc notation vfio.c abuses (misuses) "/**", which indicates the beginning of kernel-doc notation in the kernel tree. This causes a bunch of kernel-doc complaints about this source file, so quieten all of them by changing all "/**" to "/*". vfio.c:236: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * IOMMU driver registration vfio.c:236: warning: missing initial short description on line: * IOMMU driver registration vfio.c:295: warning: expecting prototype for Container objects(). Prototype was for vfio_container_get() instead vfio.c:317: warning: expecting prototype for Group objects(). Prototype was for __vfio_group_get_from_iommu() instead vfio.c:496: warning: Function parameter or member 'device' not described in 'vfio_device_put' vfio.c:496: warning: expecting prototype for Device objects(). Prototype was for vfio_device_put() instead vfio.c:599: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Async device support vfio.c:599: warning: missing initial short description on line: * Async device support vfio.c:693: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO driver API vfio.c:693: warning: missing initial short description on line: * VFIO driver API vfio.c:835: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Get a reference to the vfio_device for a device. Even if the vfio.c:835: warning: missing initial short description on line: * Get a reference to the vfio_device for a device. Even if the vfio.c:969: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO base fd, /dev/vfio/vfio vfio.c:969: warning: missing initial short description on line: * VFIO base fd, /dev/vfio/vfio vfio.c:1187: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO Group fd, /dev/vfio/$GROUP vfio.c:1187: warning: missing initial short description on line: * VFIO Group fd, /dev/vfio/$GROUP vfio.c:1540: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO Device fd vfio.c:1540: warning: missing initial short description on line: * VFIO Device fd vfio.c:1615: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * External user API, exported by symbols to be linked dynamically. vfio.c:1615: warning: missing initial short description on line: * External user API, exported by symbols to be linked dynamically. vfio.c:1663: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * External user API, exported by symbols to be linked dynamically. vfio.c:1663: warning: missing initial short description on line: * External user API, exported by symbols to be linked dynamically. vfio.c:1742: warning: Function parameter or member 'caps' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'size' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'id' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'version' not described in 'vfio_info_cap_add' vfio.c:1742: warning: expecting prototype for Sub(). Prototype was for vfio_info_cap_add() instead vfio.c:2276: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Module/class support vfio.c:2276: warning: missing initial short description on line: * Module/class support Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Reported-by: kernel test robot <lkp@intel.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Eric Auger <eric.auger@redhat.com> Cc: Cornelia Huck <cohuck@redhat.com> Cc: kvm@vger.kernel.org Link: https://lore.kernel.org/r/38a9cb92-a473-40bf-b8f9-85cc5cfc2da4@infradead.org Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-11-11 07:19:40 +08:00
/*
* Sub-module support
*/
/*
* Helper for managing a buffer of info chain capabilities, allocate or
* reallocate a buffer with additional @size, filling in @id and @version
* of the capability. A pointer to the new capability is returned.
*
* NB. The chain is based at the head of the buffer, so new entries are
* added to the tail, vfio_info_cap_shift() should be called to fixup the
* next offsets prior to copying to the user buffer.
*/
struct vfio_info_cap_header *vfio_info_cap_add(struct vfio_info_cap *caps,
size_t size, u16 id, u16 version)
{
void *buf;
struct vfio_info_cap_header *header, *tmp;
buf = krealloc(caps->buf, caps->size + size, GFP_KERNEL);
if (!buf) {
kfree(caps->buf);
caps->size = 0;
return ERR_PTR(-ENOMEM);
}
caps->buf = buf;
header = buf + caps->size;
/* Eventually copied to user buffer, zero */
memset(header, 0, size);
header->id = id;
header->version = version;
/* Add to the end of the capability chain */
for (tmp = buf; tmp->next; tmp = buf + tmp->next)
; /* nothing */
tmp->next = caps->size;
caps->size += size;
return header;
}
EXPORT_SYMBOL_GPL(vfio_info_cap_add);
void vfio_info_cap_shift(struct vfio_info_cap *caps, size_t offset)
{
struct vfio_info_cap_header *tmp;
void *buf = (void *)caps->buf;
for (tmp = buf; tmp->next; tmp = buf + tmp->next - offset)
tmp->next += offset;
}
EXPORT_SYMBOL(vfio_info_cap_shift);
int vfio_info_add_capability(struct vfio_info_cap *caps,
struct vfio_info_cap_header *cap, size_t size)
{
struct vfio_info_cap_header *header;
header = vfio_info_cap_add(caps, size, cap->id, cap->version);
if (IS_ERR(header))
return PTR_ERR(header);
memcpy(header + 1, cap + 1, size - sizeof(*header));
return 0;
}
EXPORT_SYMBOL(vfio_info_add_capability);
int vfio_set_irqs_validate_and_prepare(struct vfio_irq_set *hdr, int num_irqs,
int max_irq_type, size_t *data_size)
{
unsigned long minsz;
size_t size;
minsz = offsetofend(struct vfio_irq_set, count);
if ((hdr->argsz < minsz) || (hdr->index >= max_irq_type) ||
(hdr->count >= (U32_MAX - hdr->start)) ||
(hdr->flags & ~(VFIO_IRQ_SET_DATA_TYPE_MASK |
VFIO_IRQ_SET_ACTION_TYPE_MASK)))
return -EINVAL;
if (data_size)
*data_size = 0;
if (hdr->start >= num_irqs || hdr->start + hdr->count > num_irqs)
return -EINVAL;
switch (hdr->flags & VFIO_IRQ_SET_DATA_TYPE_MASK) {
case VFIO_IRQ_SET_DATA_NONE:
size = 0;
break;
case VFIO_IRQ_SET_DATA_BOOL:
size = sizeof(uint8_t);
break;
case VFIO_IRQ_SET_DATA_EVENTFD:
size = sizeof(int32_t);
break;
default:
return -EINVAL;
}
if (size) {
if (hdr->argsz - minsz < hdr->count * size)
return -EINVAL;
if (!data_size)
return -EINVAL;
*data_size = hdr->count * size;
}
return 0;
}
EXPORT_SYMBOL(vfio_set_irqs_validate_and_prepare);
/*
* Pin a set of guest PFNs and return their associated host PFNs for local
* domain only.
* @device [in] : device
* @user_pfn [in]: array of user/guest PFNs to be pinned.
* @npage [in] : count of elements in user_pfn array. This count should not
* be greater VFIO_PIN_PAGES_MAX_ENTRIES.
* @prot [in] : protection flags
* @phys_pfn[out]: array of host PFNs
* Return error or number of pages pinned.
*/
int vfio_pin_pages(struct vfio_device *device, unsigned long *user_pfn,
int npage, int prot, unsigned long *phys_pfn)
{
struct vfio_container *container;
struct vfio_group *group = device->group;
struct vfio_iommu_driver *driver;
int ret;
if (!user_pfn || !phys_pfn || !npage ||
!vfio_assert_device_open(device))
return -EINVAL;
if (npage > VFIO_PIN_PAGES_MAX_ENTRIES)
return -E2BIG;
if (group->dev_counter > 1)
return -EINVAL;
vfio: Fully lock struct vfio_group::container This is necessary to avoid various user triggerable races, for instance racing SET_CONTAINER/UNSET_CONTAINER: ioctl(VFIO_GROUP_SET_CONTAINER) ioctl(VFIO_GROUP_UNSET_CONTAINER) vfio_group_unset_container int users = atomic_cmpxchg(&group->container_users, 1, 0); // users == 1 container_users == 0 __vfio_group_unset_container(group); container = group->container; vfio_group_set_container() if (!atomic_read(&group->container_users)) down_write(&container->group_lock); group->container = container; up_write(&container->group_lock); down_write(&container->group_lock); group->container = NULL; up_write(&container->group_lock); vfio_container_put(container); /* woops we lost/leaked the new container */ This can then go on to NULL pointer deref since container == 0 and container_users == 1. Wrap all touches of container, except those on a performance path with a known open device, with the group_rwsem. The only user of vfio_group_add_container_user() holds the user count for a simple operation, change it to just hold the group_lock over the operation and delete vfio_group_add_container_user(). Containers now only gain a user when a device FD is opened. Reviewed-by: Kevin Tian <kevin.tian@intel.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Nicolin Chen <nicolinc@nvidia.com> Tested-by: Matthew Rosato <mjrosato@linux.ibm.com> Link: https://lore.kernel.org/r/4-v2-d035a1842d81+1bf-vfio_group_locking_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-05-17 07:41:20 +08:00
/* group->container cannot change while a vfio device is open */
container = group->container;
driver = container->iommu_driver;
if (likely(driver && driver->ops->pin_pages))
ret = driver->ops->pin_pages(container->iommu_data,
group->iommu_group, user_pfn,
npage, prot, phys_pfn);
else
ret = -ENOTTY;
return ret;
}
EXPORT_SYMBOL(vfio_pin_pages);
/*
* Unpin set of host PFNs for local domain only.
* @device [in] : device
* @user_pfn [in]: array of user/guest PFNs to be unpinned. Number of user/guest
* PFNs should not be greater than VFIO_PIN_PAGES_MAX_ENTRIES.
* @npage [in] : count of elements in user_pfn array. This count should not
* be greater than VFIO_PIN_PAGES_MAX_ENTRIES.
* Return error or number of pages unpinned.
*/
int vfio_unpin_pages(struct vfio_device *device, unsigned long *user_pfn,
int npage)
{
struct vfio_container *container;
struct vfio_iommu_driver *driver;
int ret;
if (!user_pfn || !npage || !vfio_assert_device_open(device))
return -EINVAL;
if (npage > VFIO_PIN_PAGES_MAX_ENTRIES)
return -E2BIG;
vfio: Fully lock struct vfio_group::container This is necessary to avoid various user triggerable races, for instance racing SET_CONTAINER/UNSET_CONTAINER: ioctl(VFIO_GROUP_SET_CONTAINER) ioctl(VFIO_GROUP_UNSET_CONTAINER) vfio_group_unset_container int users = atomic_cmpxchg(&group->container_users, 1, 0); // users == 1 container_users == 0 __vfio_group_unset_container(group); container = group->container; vfio_group_set_container() if (!atomic_read(&group->container_users)) down_write(&container->group_lock); group->container = container; up_write(&container->group_lock); down_write(&container->group_lock); group->container = NULL; up_write(&container->group_lock); vfio_container_put(container); /* woops we lost/leaked the new container */ This can then go on to NULL pointer deref since container == 0 and container_users == 1. Wrap all touches of container, except those on a performance path with a known open device, with the group_rwsem. The only user of vfio_group_add_container_user() holds the user count for a simple operation, change it to just hold the group_lock over the operation and delete vfio_group_add_container_user(). Containers now only gain a user when a device FD is opened. Reviewed-by: Kevin Tian <kevin.tian@intel.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Nicolin Chen <nicolinc@nvidia.com> Tested-by: Matthew Rosato <mjrosato@linux.ibm.com> Link: https://lore.kernel.org/r/4-v2-d035a1842d81+1bf-vfio_group_locking_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-05-17 07:41:20 +08:00
/* group->container cannot change while a vfio device is open */
container = device->group->container;
driver = container->iommu_driver;
if (likely(driver && driver->ops->unpin_pages))
ret = driver->ops->unpin_pages(container->iommu_data, user_pfn,
npage);
else
ret = -ENOTTY;
return ret;
}
EXPORT_SYMBOL(vfio_unpin_pages);
/*
* This interface allows the CPUs to perform some sort of virtual DMA on
* behalf of the device.
*
* CPUs read/write from/into a range of IOVAs pointing to user space memory
* into/from a kernel buffer.
*
* As the read/write of user space memory is conducted via the CPUs and is
* not a real device DMA, it is not necessary to pin the user space memory.
*
* @device [in] : VFIO device
* @user_iova [in] : base IOVA of a user space buffer
* @data [in] : pointer to kernel buffer
* @len [in] : kernel buffer length
* @write : indicate read or write
* Return error code on failure or 0 on success.
*/
int vfio_dma_rw(struct vfio_device *device, dma_addr_t user_iova, void *data,
size_t len, bool write)
{
struct vfio_container *container;
struct vfio_iommu_driver *driver;
int ret = 0;
if (!data || len <= 0 || !vfio_assert_device_open(device))
return -EINVAL;
vfio: Fully lock struct vfio_group::container This is necessary to avoid various user triggerable races, for instance racing SET_CONTAINER/UNSET_CONTAINER: ioctl(VFIO_GROUP_SET_CONTAINER) ioctl(VFIO_GROUP_UNSET_CONTAINER) vfio_group_unset_container int users = atomic_cmpxchg(&group->container_users, 1, 0); // users == 1 container_users == 0 __vfio_group_unset_container(group); container = group->container; vfio_group_set_container() if (!atomic_read(&group->container_users)) down_write(&container->group_lock); group->container = container; up_write(&container->group_lock); down_write(&container->group_lock); group->container = NULL; up_write(&container->group_lock); vfio_container_put(container); /* woops we lost/leaked the new container */ This can then go on to NULL pointer deref since container == 0 and container_users == 1. Wrap all touches of container, except those on a performance path with a known open device, with the group_rwsem. The only user of vfio_group_add_container_user() holds the user count for a simple operation, change it to just hold the group_lock over the operation and delete vfio_group_add_container_user(). Containers now only gain a user when a device FD is opened. Reviewed-by: Kevin Tian <kevin.tian@intel.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Nicolin Chen <nicolinc@nvidia.com> Tested-by: Matthew Rosato <mjrosato@linux.ibm.com> Link: https://lore.kernel.org/r/4-v2-d035a1842d81+1bf-vfio_group_locking_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2022-05-17 07:41:20 +08:00
/* group->container cannot change while a vfio device is open */
container = device->group->container;
driver = container->iommu_driver;
if (likely(driver && driver->ops->dma_rw))
ret = driver->ops->dma_rw(container->iommu_data,
user_iova, data, len, write);
else
ret = -ENOTTY;
return ret;
}
EXPORT_SYMBOL(vfio_dma_rw);
static int vfio_register_iommu_notifier(struct vfio_group *group,
unsigned long *events,
struct notifier_block *nb)
{
struct vfio_container *container;
struct vfio_iommu_driver *driver;
int ret;
lockdep_assert_held_read(&group->group_rwsem);
container = group->container;
driver = container->iommu_driver;
if (likely(driver && driver->ops->register_notifier))
ret = driver->ops->register_notifier(container->iommu_data,
events, nb);
else
ret = -ENOTTY;
return ret;
}
static int vfio_unregister_iommu_notifier(struct vfio_group *group,
struct notifier_block *nb)
{
struct vfio_container *container;
struct vfio_iommu_driver *driver;
int ret;
lockdep_assert_held_read(&group->group_rwsem);
container = group->container;
driver = container->iommu_driver;
if (likely(driver && driver->ops->unregister_notifier))
ret = driver->ops->unregister_notifier(container->iommu_data,
nb);
else
ret = -ENOTTY;
return ret;
}
int vfio_register_notifier(struct vfio_device *device,
enum vfio_notify_type type, unsigned long *events,
struct notifier_block *nb)
{
struct vfio_group *group = device->group;
int ret;
if (!nb || !events || (*events == 0) ||
!vfio_assert_device_open(device))
return -EINVAL;
switch (type) {
case VFIO_IOMMU_NOTIFY:
ret = vfio_register_iommu_notifier(group, events, nb);
break;
default:
ret = -EINVAL;
}
return ret;
}
EXPORT_SYMBOL(vfio_register_notifier);
int vfio_unregister_notifier(struct vfio_device *device,
enum vfio_notify_type type,
struct notifier_block *nb)
{
struct vfio_group *group = device->group;
int ret;
if (!nb || !vfio_assert_device_open(device))
return -EINVAL;
switch (type) {
case VFIO_IOMMU_NOTIFY:
ret = vfio_unregister_iommu_notifier(group, nb);
break;
default:
ret = -EINVAL;
}
return ret;
}
EXPORT_SYMBOL(vfio_unregister_notifier);
vfio: remove all kernel-doc notation vfio.c abuses (misuses) "/**", which indicates the beginning of kernel-doc notation in the kernel tree. This causes a bunch of kernel-doc complaints about this source file, so quieten all of them by changing all "/**" to "/*". vfio.c:236: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * IOMMU driver registration vfio.c:236: warning: missing initial short description on line: * IOMMU driver registration vfio.c:295: warning: expecting prototype for Container objects(). Prototype was for vfio_container_get() instead vfio.c:317: warning: expecting prototype for Group objects(). Prototype was for __vfio_group_get_from_iommu() instead vfio.c:496: warning: Function parameter or member 'device' not described in 'vfio_device_put' vfio.c:496: warning: expecting prototype for Device objects(). Prototype was for vfio_device_put() instead vfio.c:599: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Async device support vfio.c:599: warning: missing initial short description on line: * Async device support vfio.c:693: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO driver API vfio.c:693: warning: missing initial short description on line: * VFIO driver API vfio.c:835: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Get a reference to the vfio_device for a device. Even if the vfio.c:835: warning: missing initial short description on line: * Get a reference to the vfio_device for a device. Even if the vfio.c:969: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO base fd, /dev/vfio/vfio vfio.c:969: warning: missing initial short description on line: * VFIO base fd, /dev/vfio/vfio vfio.c:1187: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO Group fd, /dev/vfio/$GROUP vfio.c:1187: warning: missing initial short description on line: * VFIO Group fd, /dev/vfio/$GROUP vfio.c:1540: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * VFIO Device fd vfio.c:1540: warning: missing initial short description on line: * VFIO Device fd vfio.c:1615: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * External user API, exported by symbols to be linked dynamically. vfio.c:1615: warning: missing initial short description on line: * External user API, exported by symbols to be linked dynamically. vfio.c:1663: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * External user API, exported by symbols to be linked dynamically. vfio.c:1663: warning: missing initial short description on line: * External user API, exported by symbols to be linked dynamically. vfio.c:1742: warning: Function parameter or member 'caps' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'size' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'id' not described in 'vfio_info_cap_add' vfio.c:1742: warning: Function parameter or member 'version' not described in 'vfio_info_cap_add' vfio.c:1742: warning: expecting prototype for Sub(). Prototype was for vfio_info_cap_add() instead vfio.c:2276: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst * Module/class support vfio.c:2276: warning: missing initial short description on line: * Module/class support Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Reported-by: kernel test robot <lkp@intel.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Eric Auger <eric.auger@redhat.com> Cc: Cornelia Huck <cohuck@redhat.com> Cc: kvm@vger.kernel.org Link: https://lore.kernel.org/r/38a9cb92-a473-40bf-b8f9-85cc5cfc2da4@infradead.org Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-11-11 07:19:40 +08:00
/*
* Module/class support
*/
static char *vfio_devnode(struct device *dev, umode_t *mode)
{
return kasprintf(GFP_KERNEL, "vfio/%s", dev_name(dev));
}
static struct miscdevice vfio_dev = {
.minor = VFIO_MINOR,
.name = "vfio",
.fops = &vfio_fops,
.nodename = "vfio/vfio",
.mode = S_IRUGO | S_IWUGO,
};
static int __init vfio_init(void)
{
int ret;
ida_init(&vfio.group_ida);
mutex_init(&vfio.group_lock);
mutex_init(&vfio.iommu_drivers_lock);
INIT_LIST_HEAD(&vfio.group_list);
INIT_LIST_HEAD(&vfio.iommu_drivers_list);
ret = misc_register(&vfio_dev);
if (ret) {
pr_err("vfio: misc device register failed\n");
return ret;
}
/* /dev/vfio/$GROUP */
vfio.class = class_create(THIS_MODULE, "vfio");
if (IS_ERR(vfio.class)) {
ret = PTR_ERR(vfio.class);
goto err_class;
}
vfio.class->devnode = vfio_devnode;
ret = alloc_chrdev_region(&vfio.group_devt, 0, MINORMASK + 1, "vfio");
if (ret)
goto err_alloc_chrdev;
pr_info(DRIVER_DESC " version: " DRIVER_VERSION "\n");
#ifdef CONFIG_VFIO_NOIOMMU
vfio_register_iommu_driver(&vfio_noiommu_ops);
#endif
return 0;
err_alloc_chrdev:
class_destroy(vfio.class);
vfio.class = NULL;
err_class:
misc_deregister(&vfio_dev);
return ret;
}
static void __exit vfio_cleanup(void)
{
WARN_ON(!list_empty(&vfio.group_list));
#ifdef CONFIG_VFIO_NOIOMMU
vfio_unregister_iommu_driver(&vfio_noiommu_ops);
#endif
ida_destroy(&vfio.group_ida);
unregister_chrdev_region(vfio.group_devt, MINORMASK + 1);
class_destroy(vfio.class);
vfio.class = NULL;
misc_deregister(&vfio_dev);
vfio: Provide better generic support for open/release vfio_device_ops Currently the driver ops have an open/release pair that is called once each time a device FD is opened or closed. Add an additional set of open/close_device() ops which are called when the device FD is opened for the first time and closed for the last time. An analysis shows that all of the drivers require this semantic. Some are open coding it as part of their reflck implementation, and some are just buggy and miss it completely. To retain the current semantics PCI and FSL depend on, introduce the idea of a "device set" which is a grouping of vfio_device's that share the same lock around opening. The device set is established by providing a 'set_id' pointer. All vfio_device's that provide the same pointer will be joined to the same singleton memory and lock across the whole set. This effectively replaces the oddly named reflck. After conversion the set_id will be sourced from: - A struct device from a fsl_mc_device (fsl) - A struct pci_slot (pci) - A struct pci_bus (pci) - The struct vfio_device (everything) The design ensures that the above pointers are live as long as the vfio_device is registered, so they form reliable unique keys to group vfio_devices into sets. This implementation uses xarray instead of searching through the driver core structures, which simplifies the somewhat tricky locking in this area. Following patches convert all the drivers. Signed-off-by: Yishai Hadas <yishaih@nvidia.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Link: https://lore.kernel.org/r/4-v4-9ea22c5e6afb+1adf-vfio_reflck_jgg@nvidia.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2021-08-06 09:19:00 +08:00
xa_destroy(&vfio_device_set_xa);
}
module_init(vfio_init);
module_exit(vfio_cleanup);
MODULE_VERSION(DRIVER_VERSION);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_ALIAS_MISCDEV(VFIO_MINOR);
MODULE_ALIAS("devname:vfio/vfio");
MODULE_SOFTDEP("post: vfio_iommu_type1 vfio_iommu_spapr_tce");