OpenCloudOS-Kernel/net/decnet/sysctl_net_decnet.c

374 lines
7.2 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
// SPDX-License-Identifier: GPL-2.0
/*
* DECnet An implementation of the DECnet protocol suite for the LINUX
* operating system. DECnet is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* DECnet sysctl support functions
*
* Author: Steve Whitehouse <SteveW@ACM.org>
*
*
* Changes:
* Steve Whitehouse - C99 changes and default device handling
* Steve Whitehouse - Memory buffer settings, like the tcp ones
*
*/
#include <linux/mm.h>
#include <linux/sysctl.h>
#include <linux/fs.h>
#include <linux/netdevice.h>
#include <linux/string.h>
#include <net/neighbour.h>
#include <net/dst.h>
#include <net/flow.h>
#include <linux/uaccess.h>
#include <net/dn.h>
#include <net/dn_dev.h>
#include <net/dn_route.h>
int decnet_debug_level;
int decnet_time_wait = 30;
int decnet_dn_count = 1;
int decnet_di_count = 3;
int decnet_dr_count = 3;
int decnet_log_martians = 1;
int decnet_no_fc_max_cwnd = NSP_MIN_WINDOW;
/* Reasonable defaults, I hope, based on tcp's defaults */
long sysctl_decnet_mem[3] = { 768 << 3, 1024 << 3, 1536 << 3 };
int sysctl_decnet_wmem[3] = { 4 * 1024, 16 * 1024, 128 * 1024 };
int sysctl_decnet_rmem[3] = { 4 * 1024, 87380, 87380 * 2 };
#ifdef CONFIG_SYSCTL
extern int decnet_dst_gc_interval;
static int min_decnet_time_wait[] = { 5 };
static int max_decnet_time_wait[] = { 600 };
static int min_state_count[] = { 1 };
static int max_state_count[] = { NSP_MAXRXTSHIFT };
static int min_decnet_dst_gc_interval[] = { 1 };
static int max_decnet_dst_gc_interval[] = { 60 };
static int min_decnet_no_fc_max_cwnd[] = { NSP_MIN_WINDOW };
static int max_decnet_no_fc_max_cwnd[] = { NSP_MAX_WINDOW };
static char node_name[7] = "???";
static struct ctl_table_header *dn_table_header = NULL;
/*
* ctype.h :-)
*/
#define ISNUM(x) (((x) >= '0') && ((x) <= '9'))
#define ISLOWER(x) (((x) >= 'a') && ((x) <= 'z'))
#define ISUPPER(x) (((x) >= 'A') && ((x) <= 'Z'))
#define ISALPHA(x) (ISLOWER(x) || ISUPPER(x))
#define INVALID_END_CHAR(x) (ISNUM(x) || ISALPHA(x))
static void strip_it(char *str)
{
for(;;) {
switch (*str) {
case ' ':
case '\n':
case '\r':
case ':':
*str = 0;
/* Fallthrough */
case 0:
return;
}
str++;
}
}
/*
* Simple routine to parse an ascii DECnet address
* into a network order address.
*/
static int parse_addr(__le16 *addr, char *str)
{
__u16 area, node;
while(*str && !ISNUM(*str)) str++;
if (*str == 0)
return -1;
area = (*str++ - '0');
if (ISNUM(*str)) {
area *= 10;
area += (*str++ - '0');
}
if (*str++ != '.')
return -1;
if (!ISNUM(*str))
return -1;
node = *str++ - '0';
if (ISNUM(*str)) {
node *= 10;
node += (*str++ - '0');
}
if (ISNUM(*str)) {
node *= 10;
node += (*str++ - '0');
}
if (ISNUM(*str)) {
node *= 10;
node += (*str++ - '0');
}
if ((node > 1023) || (area > 63))
return -1;
if (INVALID_END_CHAR(*str))
return -1;
*addr = cpu_to_le16((area << 10) | node);
return 0;
}
static int dn_node_address_handler(struct ctl_table *table, int write,
void __user *buffer,
size_t *lenp, loff_t *ppos)
{
char addr[DN_ASCBUF_LEN];
size_t len;
__le16 dnaddr;
if (!*lenp || (*ppos && !write)) {
*lenp = 0;
return 0;
}
if (write) {
len = (*lenp < DN_ASCBUF_LEN) ? *lenp : (DN_ASCBUF_LEN-1);
if (copy_from_user(addr, buffer, len))
return -EFAULT;
addr[len] = 0;
strip_it(addr);
if (parse_addr(&dnaddr, addr))
return -EINVAL;
dn_dev_devices_off();
decnet_address = dnaddr;
dn_dev_devices_on();
*ppos += len;
return 0;
}
dn_addr2asc(le16_to_cpu(decnet_address), addr);
len = strlen(addr);
addr[len++] = '\n';
if (len > *lenp) len = *lenp;
if (copy_to_user(buffer, addr, len))
return -EFAULT;
*lenp = len;
*ppos += len;
return 0;
}
static int dn_def_dev_handler(struct ctl_table *table, int write,
void __user *buffer,
size_t *lenp, loff_t *ppos)
{
size_t len;
struct net_device *dev;
char devname[17];
if (!*lenp || (*ppos && !write)) {
*lenp = 0;
return 0;
}
if (write) {
if (*lenp > 16)
return -E2BIG;
if (copy_from_user(devname, buffer, *lenp))
return -EFAULT;
devname[*lenp] = 0;
strip_it(devname);
[NET]: Make the device list and device lookups per namespace. This patch makes most of the generic device layer network namespace safe. This patch makes dev_base_head a network namespace variable, and then it picks up a few associated variables. The functions: dev_getbyhwaddr dev_getfirsthwbytype dev_get_by_flags dev_get_by_name __dev_get_by_name dev_get_by_index __dev_get_by_index dev_ioctl dev_ethtool dev_load wireless_process_ioctl were modified to take a network namespace argument, and deal with it. vlan_ioctl_set and brioctl_set were modified so their hooks will receive a network namespace argument. So basically anthing in the core of the network stack that was affected to by the change of dev_base was modified to handle multiple network namespaces. The rest of the network stack was simply modified to explicitly use &init_net the initial network namespace. This can be fixed when those components of the network stack are modified to handle multiple network namespaces. For now the ifindex generator is left global. Fundametally ifindex numbers are per namespace, or else we will have corner case problems with migration when we get that far. At the same time there are assumptions in the network stack that the ifindex of a network device won't change. Making the ifindex number global seems a good compromise until the network stack can cope with ifindex changes when you change namespaces, and the like. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-18 02:56:21 +08:00
dev = dev_get_by_name(&init_net, devname);
if (dev == NULL)
return -ENODEV;
if (dev->dn_ptr == NULL) {
dev_put(dev);
return -ENODEV;
}
if (dn_dev_set_default(dev, 1)) {
dev_put(dev);
return -ENODEV;
}
*ppos += *lenp;
return 0;
}
dev = dn_dev_get_default();
if (dev == NULL) {
*lenp = 0;
return 0;
}
strcpy(devname, dev->name);
dev_put(dev);
len = strlen(devname);
devname[len++] = '\n';
if (len > *lenp) len = *lenp;
if (copy_to_user(buffer, devname, len))
return -EFAULT;
*lenp = len;
*ppos += len;
return 0;
}
static struct ctl_table dn_table[] = {
{
.procname = "node_address",
.maxlen = 7,
.mode = 0644,
.proc_handler = dn_node_address_handler,
},
{
.procname = "node_name",
.data = node_name,
.maxlen = 7,
.mode = 0644,
.proc_handler = proc_dostring,
},
{
.procname = "default_device",
.maxlen = 16,
.mode = 0644,
.proc_handler = dn_def_dev_handler,
},
{
.procname = "time_wait",
.data = &decnet_time_wait,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = &min_decnet_time_wait,
.extra2 = &max_decnet_time_wait
},
{
.procname = "dn_count",
.data = &decnet_dn_count,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = &min_state_count,
.extra2 = &max_state_count
},
{
.procname = "di_count",
.data = &decnet_di_count,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = &min_state_count,
.extra2 = &max_state_count
},
{
.procname = "dr_count",
.data = &decnet_dr_count,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = &min_state_count,
.extra2 = &max_state_count
},
{
.procname = "dst_gc_interval",
.data = &decnet_dst_gc_interval,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = &min_decnet_dst_gc_interval,
.extra2 = &max_decnet_dst_gc_interval
},
{
.procname = "no_fc_max_cwnd",
.data = &decnet_no_fc_max_cwnd,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = &min_decnet_no_fc_max_cwnd,
.extra2 = &max_decnet_no_fc_max_cwnd
},
{
.procname = "decnet_mem",
.data = &sysctl_decnet_mem,
.maxlen = sizeof(sysctl_decnet_mem),
.mode = 0644,
.proc_handler = proc_doulongvec_minmax
},
{
.procname = "decnet_rmem",
.data = &sysctl_decnet_rmem,
.maxlen = sizeof(sysctl_decnet_rmem),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "decnet_wmem",
.data = &sysctl_decnet_wmem,
.maxlen = sizeof(sysctl_decnet_wmem),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "debug",
.data = &decnet_debug_level,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{ }
};
void dn_register_sysctl(void)
{
dn_table_header = register_net_sysctl(&init_net, "net/decnet", dn_table);
}
void dn_unregister_sysctl(void)
{
unregister_net_sysctl_table(dn_table_header);
}
#else /* CONFIG_SYSCTL */
void dn_unregister_sysctl(void)
{
}
void dn_register_sysctl(void)
{
}
#endif