OpenCloudOS-Kernel/include/linux/kexec.h

350 lines
9.5 KiB
C
Raw Normal View History

#ifndef LINUX_KEXEC_H
#define LINUX_KEXEC_H
#define IND_DESTINATION_BIT 0
#define IND_INDIRECTION_BIT 1
#define IND_DONE_BIT 2
#define IND_SOURCE_BIT 3
#define IND_DESTINATION (1 << IND_DESTINATION_BIT)
#define IND_INDIRECTION (1 << IND_INDIRECTION_BIT)
#define IND_DONE (1 << IND_DONE_BIT)
#define IND_SOURCE (1 << IND_SOURCE_BIT)
#define IND_FLAGS (IND_DESTINATION | IND_INDIRECTION | IND_DONE | IND_SOURCE)
#if !defined(__ASSEMBLY__)
crash: move crashkernel parsing and vmcore related code under CONFIG_CRASH_CORE Patch series "kexec/fadump: remove dependency with CONFIG_KEXEC and reuse crashkernel parameter for fadump", v4. Traditionally, kdump is used to save vmcore in case of a crash. Some architectures like powerpc can save vmcore using architecture specific support instead of kexec/kdump mechanism. Such architecture specific support also needs to reserve memory, to be used by dump capture kernel. crashkernel parameter can be a reused, for memory reservation, by such architecture specific infrastructure. This patchset removes dependency with CONFIG_KEXEC for crashkernel parameter and vmcoreinfo related code as it can be reused without kexec support. Also, crashkernel parameter is reused instead of fadump_reserve_mem to reserve memory for fadump. The first patch moves crashkernel parameter parsing and vmcoreinfo related code under CONFIG_CRASH_CORE instead of CONFIG_KEXEC_CORE. The second patch reuses the definitions of append_elf_note() & final_note() functions under CONFIG_CRASH_CORE in IA64 arch code. The third patch removes dependency on CONFIG_KEXEC for firmware-assisted dump (fadump) in powerpc. The next patch reuses crashkernel parameter for reserving memory for fadump, instead of the fadump_reserve_mem parameter. This has the advantage of using all syntaxes crashkernel parameter supports, for fadump as well. The last patch updates fadump kernel documentation about use of crashkernel parameter. This patch (of 5): Traditionally, kdump is used to save vmcore in case of a crash. Some architectures like powerpc can save vmcore using architecture specific support instead of kexec/kdump mechanism. Such architecture specific support also needs to reserve memory, to be used by dump capture kernel. crashkernel parameter can be a reused, for memory reservation, by such architecture specific infrastructure. But currently, code related to vmcoreinfo and parsing of crashkernel parameter is built under CONFIG_KEXEC_CORE. This patch introduces CONFIG_CRASH_CORE and moves the above mentioned code under this config, allowing code reuse without dependency on CONFIG_KEXEC. There is no functional change with this patch. Link: http://lkml.kernel.org/r/149035338104.6881.4550894432615189948.stgit@hbathini.in.ibm.com Signed-off-by: Hari Bathini <hbathini@linux.vnet.ibm.com> Acked-by: Dave Young <dyoung@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-09 06:56:18 +08:00
#include <linux/crash_core.h>
#include <asm/io.h>
#include <uapi/linux/kexec.h>
2015-09-10 06:38:55 +08:00
#ifdef CONFIG_KEXEC_CORE
#include <linux/list.h>
#include <linux/compat.h>
#include <linux/ioport.h>
#include <linux/module.h>
#include <asm/kexec.h>
/* Verify architecture specific macros are defined */
#ifndef KEXEC_SOURCE_MEMORY_LIMIT
#error KEXEC_SOURCE_MEMORY_LIMIT not defined
#endif
#ifndef KEXEC_DESTINATION_MEMORY_LIMIT
#error KEXEC_DESTINATION_MEMORY_LIMIT not defined
#endif
#ifndef KEXEC_CONTROL_MEMORY_LIMIT
#error KEXEC_CONTROL_MEMORY_LIMIT not defined
#endif
#ifndef KEXEC_CONTROL_MEMORY_GFP
#define KEXEC_CONTROL_MEMORY_GFP (GFP_KERNEL | __GFP_NORETRY)
#endif
#ifndef KEXEC_CONTROL_PAGE_SIZE
#error KEXEC_CONTROL_PAGE_SIZE not defined
#endif
#ifndef KEXEC_ARCH
#error KEXEC_ARCH not defined
#endif
#ifndef KEXEC_CRASH_CONTROL_MEMORY_LIMIT
#define KEXEC_CRASH_CONTROL_MEMORY_LIMIT KEXEC_CONTROL_MEMORY_LIMIT
#endif
#ifndef KEXEC_CRASH_MEM_ALIGN
#define KEXEC_CRASH_MEM_ALIGN PAGE_SIZE
#endif
crash: move crashkernel parsing and vmcore related code under CONFIG_CRASH_CORE Patch series "kexec/fadump: remove dependency with CONFIG_KEXEC and reuse crashkernel parameter for fadump", v4. Traditionally, kdump is used to save vmcore in case of a crash. Some architectures like powerpc can save vmcore using architecture specific support instead of kexec/kdump mechanism. Such architecture specific support also needs to reserve memory, to be used by dump capture kernel. crashkernel parameter can be a reused, for memory reservation, by such architecture specific infrastructure. This patchset removes dependency with CONFIG_KEXEC for crashkernel parameter and vmcoreinfo related code as it can be reused without kexec support. Also, crashkernel parameter is reused instead of fadump_reserve_mem to reserve memory for fadump. The first patch moves crashkernel parameter parsing and vmcoreinfo related code under CONFIG_CRASH_CORE instead of CONFIG_KEXEC_CORE. The second patch reuses the definitions of append_elf_note() & final_note() functions under CONFIG_CRASH_CORE in IA64 arch code. The third patch removes dependency on CONFIG_KEXEC for firmware-assisted dump (fadump) in powerpc. The next patch reuses crashkernel parameter for reserving memory for fadump, instead of the fadump_reserve_mem parameter. This has the advantage of using all syntaxes crashkernel parameter supports, for fadump as well. The last patch updates fadump kernel documentation about use of crashkernel parameter. This patch (of 5): Traditionally, kdump is used to save vmcore in case of a crash. Some architectures like powerpc can save vmcore using architecture specific support instead of kexec/kdump mechanism. Such architecture specific support also needs to reserve memory, to be used by dump capture kernel. crashkernel parameter can be a reused, for memory reservation, by such architecture specific infrastructure. But currently, code related to vmcoreinfo and parsing of crashkernel parameter is built under CONFIG_KEXEC_CORE. This patch introduces CONFIG_CRASH_CORE and moves the above mentioned code under this config, allowing code reuse without dependency on CONFIG_KEXEC. There is no functional change with this patch. Link: http://lkml.kernel.org/r/149035338104.6881.4550894432615189948.stgit@hbathini.in.ibm.com Signed-off-by: Hari Bathini <hbathini@linux.vnet.ibm.com> Acked-by: Dave Young <dyoung@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-09 06:56:18 +08:00
#define KEXEC_CORE_NOTE_NAME CRASH_CORE_NOTE_NAME
/*
* The per-cpu notes area is a list of notes terminated by a "NULL"
* note header. For kdump, the code in vmcore.c runs in the context
* of the second kernel to combine them into one note.
*/
#ifndef KEXEC_NOTE_BYTES
crash: move crashkernel parsing and vmcore related code under CONFIG_CRASH_CORE Patch series "kexec/fadump: remove dependency with CONFIG_KEXEC and reuse crashkernel parameter for fadump", v4. Traditionally, kdump is used to save vmcore in case of a crash. Some architectures like powerpc can save vmcore using architecture specific support instead of kexec/kdump mechanism. Such architecture specific support also needs to reserve memory, to be used by dump capture kernel. crashkernel parameter can be a reused, for memory reservation, by such architecture specific infrastructure. This patchset removes dependency with CONFIG_KEXEC for crashkernel parameter and vmcoreinfo related code as it can be reused without kexec support. Also, crashkernel parameter is reused instead of fadump_reserve_mem to reserve memory for fadump. The first patch moves crashkernel parameter parsing and vmcoreinfo related code under CONFIG_CRASH_CORE instead of CONFIG_KEXEC_CORE. The second patch reuses the definitions of append_elf_note() & final_note() functions under CONFIG_CRASH_CORE in IA64 arch code. The third patch removes dependency on CONFIG_KEXEC for firmware-assisted dump (fadump) in powerpc. The next patch reuses crashkernel parameter for reserving memory for fadump, instead of the fadump_reserve_mem parameter. This has the advantage of using all syntaxes crashkernel parameter supports, for fadump as well. The last patch updates fadump kernel documentation about use of crashkernel parameter. This patch (of 5): Traditionally, kdump is used to save vmcore in case of a crash. Some architectures like powerpc can save vmcore using architecture specific support instead of kexec/kdump mechanism. Such architecture specific support also needs to reserve memory, to be used by dump capture kernel. crashkernel parameter can be a reused, for memory reservation, by such architecture specific infrastructure. But currently, code related to vmcoreinfo and parsing of crashkernel parameter is built under CONFIG_KEXEC_CORE. This patch introduces CONFIG_CRASH_CORE and moves the above mentioned code under this config, allowing code reuse without dependency on CONFIG_KEXEC. There is no functional change with this patch. Link: http://lkml.kernel.org/r/149035338104.6881.4550894432615189948.stgit@hbathini.in.ibm.com Signed-off-by: Hari Bathini <hbathini@linux.vnet.ibm.com> Acked-by: Dave Young <dyoung@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-09 06:56:18 +08:00
#define KEXEC_NOTE_BYTES CRASH_CORE_NOTE_BYTES
#endif
/*
* This structure is used to hold the arguments that are used when loading
* kernel binaries.
*/
typedef unsigned long kimage_entry_t;
struct kexec_segment {
/*
* This pointer can point to user memory if kexec_load() system
* call is used or will point to kernel memory if
* kexec_file_load() system call is used.
*
* Use ->buf when expecting to deal with user memory and use ->kbuf
* when expecting to deal with kernel memory.
*/
union {
void __user *buf;
void *kbuf;
};
size_t bufsz;
unsigned long mem;
size_t memsz;
};
#ifdef CONFIG_COMPAT
struct compat_kexec_segment {
compat_uptr_t buf;
compat_size_t bufsz;
compat_ulong_t mem; /* User space sees this as a (void *) ... */
compat_size_t memsz;
};
#endif
#ifdef CONFIG_KEXEC_FILE
struct purgatory_info {
/* Pointer to elf header of read only purgatory */
Elf_Ehdr *ehdr;
/* Pointer to purgatory sechdrs which are modifiable */
Elf_Shdr *sechdrs;
/*
* Temporary buffer location where purgatory is loaded and relocated
* This memory can be freed post image load
*/
void *purgatory_buf;
/* Address where purgatory is finally loaded and is executed from */
unsigned long purgatory_load_addr;
};
typedef int (kexec_probe_t)(const char *kernel_buf, unsigned long kernel_size);
typedef void *(kexec_load_t)(struct kimage *image, char *kernel_buf,
unsigned long kernel_len, char *initrd,
unsigned long initrd_len, char *cmdline,
unsigned long cmdline_len);
typedef int (kexec_cleanup_t)(void *loader_data);
#ifdef CONFIG_KEXEC_VERIFY_SIG
typedef int (kexec_verify_sig_t)(const char *kernel_buf,
unsigned long kernel_len);
#endif
struct kexec_file_ops {
kexec_probe_t *probe;
kexec_load_t *load;
kexec_cleanup_t *cleanup;
#ifdef CONFIG_KEXEC_VERIFY_SIG
kexec_verify_sig_t *verify_sig;
#endif
};
/**
* struct kexec_buf - parameters for finding a place for a buffer in memory
* @image: kexec image in which memory to search.
* @buffer: Contents which will be copied to the allocated memory.
* @bufsz: Size of @buffer.
* @mem: On return will have address of the buffer in memory.
* @memsz: Size for the buffer in memory.
* @buf_align: Minimum alignment needed.
* @buf_min: The buffer can't be placed below this address.
* @buf_max: The buffer can't be placed above this address.
* @top_down: Allocate from top of memory.
*/
struct kexec_buf {
struct kimage *image;
void *buffer;
unsigned long bufsz;
unsigned long mem;
unsigned long memsz;
unsigned long buf_align;
unsigned long buf_min;
unsigned long buf_max;
bool top_down;
};
int __weak arch_kexec_walk_mem(struct kexec_buf *kbuf,
int (*func)(u64, u64, void *));
extern int kexec_add_buffer(struct kexec_buf *kbuf);
int kexec_locate_mem_hole(struct kexec_buf *kbuf);
#endif /* CONFIG_KEXEC_FILE */
struct kimage {
kimage_entry_t head;
kimage_entry_t *entry;
kimage_entry_t *last_entry;
unsigned long start;
struct page *control_code_page;
kexec jump This patch provides an enhancement to kexec/kdump. It implements the following features: - Backup/restore memory used by the original kernel before/after kexec. - Save/restore CPU state before/after kexec. The features of this patch can be used as a general method to call program in physical mode (paging turning off). This can be used to call BIOS code under Linux. kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 Usage example of calling some physical mode code and return: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_KEXEC=y CONFIG_PM=y CONFIG_KEXEC_JUMP=y 2. Build patched kexec-tool or download the pre-built one. 3. Build some physical mode executable named such as "phy_mode" 4. Boot kernel compiled in step 1. 5. Load physical mode executable with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context --args-none phy_mode 6. Call physical mode executable with following shell command line: /sbin/kexec -e Implementation point: To support jumping without reserving memory. One shadow backup page (source page) is allocated for each page used by kexeced code image (destination page). When do kexec_load, the image of kexeced code is loaded into source pages, and before executing, the destination pages and the source pages are swapped, so the contents of destination pages are backupped. Before jumping to the kexeced code image and after jumping back to the original kernel, the destination pages and the source pages are swapped too. C ABI (calling convention) is used as communication protocol between kernel and called code. A flag named KEXEC_PRESERVE_CONTEXT for sys_kexec_load is added to indicate that the loaded kernel image is used for jumping back. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:07 +08:00
struct page *swap_page;
unsigned long nr_segments;
struct kexec_segment segment[KEXEC_SEGMENT_MAX];
struct list_head control_pages;
struct list_head dest_pages;
struct list_head unusable_pages;
/* Address of next control page to allocate for crash kernels. */
unsigned long control_page;
/* Flags to indicate special processing */
unsigned int type : 1;
#define KEXEC_TYPE_DEFAULT 0
#define KEXEC_TYPE_CRASH 1
kexec jump This patch provides an enhancement to kexec/kdump. It implements the following features: - Backup/restore memory used by the original kernel before/after kexec. - Save/restore CPU state before/after kexec. The features of this patch can be used as a general method to call program in physical mode (paging turning off). This can be used to call BIOS code under Linux. kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 Usage example of calling some physical mode code and return: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_KEXEC=y CONFIG_PM=y CONFIG_KEXEC_JUMP=y 2. Build patched kexec-tool or download the pre-built one. 3. Build some physical mode executable named such as "phy_mode" 4. Boot kernel compiled in step 1. 5. Load physical mode executable with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context --args-none phy_mode 6. Call physical mode executable with following shell command line: /sbin/kexec -e Implementation point: To support jumping without reserving memory. One shadow backup page (source page) is allocated for each page used by kexeced code image (destination page). When do kexec_load, the image of kexeced code is loaded into source pages, and before executing, the destination pages and the source pages are swapped, so the contents of destination pages are backupped. Before jumping to the kexeced code image and after jumping back to the original kernel, the destination pages and the source pages are swapped too. C ABI (calling convention) is used as communication protocol between kernel and called code. A flag named KEXEC_PRESERVE_CONTEXT for sys_kexec_load is added to indicate that the loaded kernel image is used for jumping back. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:07 +08:00
unsigned int preserve_context : 1;
/* If set, we are using file mode kexec syscall */
unsigned int file_mode:1;
#ifdef ARCH_HAS_KIMAGE_ARCH
struct kimage_arch arch;
#endif
#ifdef CONFIG_KEXEC_FILE
/* Additional fields for file based kexec syscall */
void *kernel_buf;
unsigned long kernel_buf_len;
void *initrd_buf;
unsigned long initrd_buf_len;
char *cmdline_buf;
unsigned long cmdline_buf_len;
/* File operations provided by image loader */
struct kexec_file_ops *fops;
/* Image loader handling the kernel can store a pointer here */
void *image_loader_data;
/* Information for loading purgatory */
struct purgatory_info purgatory_info;
#endif
};
/* kexec interface functions */
kexec jump This patch provides an enhancement to kexec/kdump. It implements the following features: - Backup/restore memory used by the original kernel before/after kexec. - Save/restore CPU state before/after kexec. The features of this patch can be used as a general method to call program in physical mode (paging turning off). This can be used to call BIOS code under Linux. kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 Usage example of calling some physical mode code and return: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_KEXEC=y CONFIG_PM=y CONFIG_KEXEC_JUMP=y 2. Build patched kexec-tool or download the pre-built one. 3. Build some physical mode executable named such as "phy_mode" 4. Boot kernel compiled in step 1. 5. Load physical mode executable with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context --args-none phy_mode 6. Call physical mode executable with following shell command line: /sbin/kexec -e Implementation point: To support jumping without reserving memory. One shadow backup page (source page) is allocated for each page used by kexeced code image (destination page). When do kexec_load, the image of kexeced code is loaded into source pages, and before executing, the destination pages and the source pages are swapped, so the contents of destination pages are backupped. Before jumping to the kexeced code image and after jumping back to the original kernel, the destination pages and the source pages are swapped too. C ABI (calling convention) is used as communication protocol between kernel and called code. A flag named KEXEC_PRESERVE_CONTEXT for sys_kexec_load is added to indicate that the loaded kernel image is used for jumping back. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:07 +08:00
extern void machine_kexec(struct kimage *image);
extern int machine_kexec_prepare(struct kimage *image);
extern void machine_kexec_cleanup(struct kimage *image);
extern asmlinkage long sys_kexec_load(unsigned long entry,
unsigned long nr_segments,
struct kexec_segment __user *segments,
unsigned long flags);
kexec jump This patch provides an enhancement to kexec/kdump. It implements the following features: - Backup/restore memory used by the original kernel before/after kexec. - Save/restore CPU state before/after kexec. The features of this patch can be used as a general method to call program in physical mode (paging turning off). This can be used to call BIOS code under Linux. kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 Usage example of calling some physical mode code and return: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_KEXEC=y CONFIG_PM=y CONFIG_KEXEC_JUMP=y 2. Build patched kexec-tool or download the pre-built one. 3. Build some physical mode executable named such as "phy_mode" 4. Boot kernel compiled in step 1. 5. Load physical mode executable with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context --args-none phy_mode 6. Call physical mode executable with following shell command line: /sbin/kexec -e Implementation point: To support jumping without reserving memory. One shadow backup page (source page) is allocated for each page used by kexeced code image (destination page). When do kexec_load, the image of kexeced code is loaded into source pages, and before executing, the destination pages and the source pages are swapped, so the contents of destination pages are backupped. Before jumping to the kexeced code image and after jumping back to the original kernel, the destination pages and the source pages are swapped too. C ABI (calling convention) is used as communication protocol between kernel and called code. A flag named KEXEC_PRESERVE_CONTEXT for sys_kexec_load is added to indicate that the loaded kernel image is used for jumping back. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:07 +08:00
extern int kernel_kexec(void);
extern struct page *kimage_alloc_control_pages(struct kimage *image,
unsigned int order);
extern int kexec_load_purgatory(struct kimage *image, unsigned long min,
unsigned long max, int top_down,
unsigned long *load_addr);
extern int kexec_purgatory_get_set_symbol(struct kimage *image,
const char *name, void *buf,
unsigned int size, bool get_value);
extern void *kexec_purgatory_get_symbol_addr(struct kimage *image,
const char *name);
kexec: Fix race between panic() and crash_kexec() Currently, panic() and crash_kexec() can be called at the same time. For example (x86 case): CPU 0: oops_end() crash_kexec() mutex_trylock() // acquired nmi_shootdown_cpus() // stop other CPUs CPU 1: panic() crash_kexec() mutex_trylock() // failed to acquire smp_send_stop() // stop other CPUs infinite loop If CPU 1 calls smp_send_stop() before nmi_shootdown_cpus(), kdump fails. In another case: CPU 0: oops_end() crash_kexec() mutex_trylock() // acquired <NMI> io_check_error() panic() crash_kexec() mutex_trylock() // failed to acquire infinite loop Clearly, this is an undesirable result. To fix this problem, this patch changes crash_kexec() to exclude others by using the panic_cpu atomic. Signed-off-by: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Baoquan He <bhe@redhat.com> Cc: Dave Young <dyoung@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: kexec@lists.infradead.org Cc: linux-doc@vger.kernel.org Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Minfei Huang <mnfhuang@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Seth Jennings <sjenning@redhat.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: x86-ml <x86@kernel.org> Link: http://lkml.kernel.org/r/20151210014630.25437.94161.stgit@softrs Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-12-14 18:19:11 +08:00
extern void __crash_kexec(struct pt_regs *);
extern void crash_kexec(struct pt_regs *);
int kexec_should_crash(struct task_struct *);
int kexec_crash_loaded(void);
void crash_save_cpu(struct pt_regs *regs, int cpu);
extern struct kimage *kexec_image;
extern struct kimage *kexec_crash_image;
kexec: add sysctl to disable kexec_load For general-purpose (i.e. distro) kernel builds it makes sense to build with CONFIG_KEXEC to allow end users to choose what kind of things they want to do with kexec. However, in the face of trying to lock down a system with such a kernel, there needs to be a way to disable kexec_load (much like module loading can be disabled). Without this, it is too easy for the root user to modify kernel memory even when CONFIG_STRICT_DEVMEM and modules_disabled are set. With this change, it is still possible to load an image for use later, then disable kexec_load so the image (or lack of image) can't be altered. The intention is for using this in environments where "perfect" enforcement is hard. Without a verified boot, along with verified modules, and along with verified kexec, this is trying to give a system a better chance to defend itself (or at least grow the window of discoverability) against attack in the face of a privilege escalation. In my mind, I consider several boot scenarios: 1) Verified boot of read-only verified root fs loading fd-based verification of kexec images. 2) Secure boot of writable root fs loading signed kexec images. 3) Regular boot loading kexec (e.g. kcrash) image early and locking it. 4) Regular boot with no control of kexec image at all. 1 and 2 don't exist yet, but will soon once the verified kexec series has landed. 4 is the state of things now. The gap between 2 and 4 is too large, so this change creates scenario 3, a middle-ground above 4 when 2 and 1 are not possible for a system. Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Rik van Riel <riel@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Eric Biederman <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-24 07:55:59 +08:00
extern int kexec_load_disabled;
#ifndef kexec_flush_icache_page
#define kexec_flush_icache_page(page)
#endif
kexec jump This patch provides an enhancement to kexec/kdump. It implements the following features: - Backup/restore memory used by the original kernel before/after kexec. - Save/restore CPU state before/after kexec. The features of this patch can be used as a general method to call program in physical mode (paging turning off). This can be used to call BIOS code under Linux. kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 Usage example of calling some physical mode code and return: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_KEXEC=y CONFIG_PM=y CONFIG_KEXEC_JUMP=y 2. Build patched kexec-tool or download the pre-built one. 3. Build some physical mode executable named such as "phy_mode" 4. Boot kernel compiled in step 1. 5. Load physical mode executable with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context --args-none phy_mode 6. Call physical mode executable with following shell command line: /sbin/kexec -e Implementation point: To support jumping without reserving memory. One shadow backup page (source page) is allocated for each page used by kexeced code image (destination page). When do kexec_load, the image of kexeced code is loaded into source pages, and before executing, the destination pages and the source pages are swapped, so the contents of destination pages are backupped. Before jumping to the kexeced code image and after jumping back to the original kernel, the destination pages and the source pages are swapped too. C ABI (calling convention) is used as communication protocol between kernel and called code. A flag named KEXEC_PRESERVE_CONTEXT for sys_kexec_load is added to indicate that the loaded kernel image is used for jumping back. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:07 +08:00
/* List of defined/legal kexec flags */
#ifndef CONFIG_KEXEC_JUMP
#define KEXEC_FLAGS KEXEC_ON_CRASH
#else
#define KEXEC_FLAGS (KEXEC_ON_CRASH | KEXEC_PRESERVE_CONTEXT)
#endif
/* List of defined/legal kexec file flags */
#define KEXEC_FILE_FLAGS (KEXEC_FILE_UNLOAD | KEXEC_FILE_ON_CRASH | \
KEXEC_FILE_NO_INITRAMFS)
/* Location of a reserved region to hold the crash kernel.
*/
extern struct resource crashk_res;
extern struct resource crashk_low_res;
extern note_buf_t __percpu *crash_notes;
/* flag to track if kexec reboot is in progress */
extern bool kexec_in_progress;
int crash_shrink_memory(unsigned long new_size);
size_t crash_get_memory_size(void);
void crash_free_reserved_phys_range(unsigned long begin, unsigned long end);
int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
unsigned long buf_len);
void * __weak arch_kexec_kernel_image_load(struct kimage *image);
int __weak arch_kimage_file_post_load_cleanup(struct kimage *image);
int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
unsigned long buf_len);
int __weak arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr,
Elf_Shdr *sechdrs, unsigned int relsec);
int __weak arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
unsigned int relsec);
void arch_kexec_protect_crashkres(void);
void arch_kexec_unprotect_crashkres(void);
#ifndef page_to_boot_pfn
static inline unsigned long page_to_boot_pfn(struct page *page)
{
return page_to_pfn(page);
}
#endif
#ifndef boot_pfn_to_page
static inline struct page *boot_pfn_to_page(unsigned long boot_pfn)
{
return pfn_to_page(boot_pfn);
}
#endif
#ifndef phys_to_boot_phys
static inline unsigned long phys_to_boot_phys(phys_addr_t phys)
{
return phys;
}
#endif
#ifndef boot_phys_to_phys
static inline phys_addr_t boot_phys_to_phys(unsigned long boot_phys)
{
return boot_phys;
}
#endif
static inline unsigned long virt_to_boot_phys(void *addr)
{
return phys_to_boot_phys(__pa((unsigned long)addr));
}
static inline void *boot_phys_to_virt(unsigned long entry)
{
return phys_to_virt(boot_phys_to_phys(entry));
}
2015-09-10 06:38:55 +08:00
#else /* !CONFIG_KEXEC_CORE */
struct pt_regs;
struct task_struct;
kexec: Fix race between panic() and crash_kexec() Currently, panic() and crash_kexec() can be called at the same time. For example (x86 case): CPU 0: oops_end() crash_kexec() mutex_trylock() // acquired nmi_shootdown_cpus() // stop other CPUs CPU 1: panic() crash_kexec() mutex_trylock() // failed to acquire smp_send_stop() // stop other CPUs infinite loop If CPU 1 calls smp_send_stop() before nmi_shootdown_cpus(), kdump fails. In another case: CPU 0: oops_end() crash_kexec() mutex_trylock() // acquired <NMI> io_check_error() panic() crash_kexec() mutex_trylock() // failed to acquire infinite loop Clearly, this is an undesirable result. To fix this problem, this patch changes crash_kexec() to exclude others by using the panic_cpu atomic. Signed-off-by: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Baoquan He <bhe@redhat.com> Cc: Dave Young <dyoung@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: kexec@lists.infradead.org Cc: linux-doc@vger.kernel.org Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Minfei Huang <mnfhuang@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Seth Jennings <sjenning@redhat.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: x86-ml <x86@kernel.org> Link: http://lkml.kernel.org/r/20151210014630.25437.94161.stgit@softrs Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-12-14 18:19:11 +08:00
static inline void __crash_kexec(struct pt_regs *regs) { }
static inline void crash_kexec(struct pt_regs *regs) { }
static inline int kexec_should_crash(struct task_struct *p) { return 0; }
static inline int kexec_crash_loaded(void) { return 0; }
#define kexec_in_progress false
2015-09-10 06:38:55 +08:00
#endif /* CONFIG_KEXEC_CORE */
#endif /* !defined(__ASSEBMLY__) */
#endif /* LINUX_KEXEC_H */