OpenCloudOS-Kernel/drivers/gpu/drm/nouveau/nvc0_pm.c

600 lines
15 KiB
C
Raw Normal View History

/*
* Copyright 2011 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
*/
#include "nouveau_drm.h"
#include "nouveau_bios.h"
#include "nouveau_pm.h"
#include <subdev/bios/pll.h>
#include <subdev/bios.h>
#include <subdev/clock.h>
#include <subdev/timer.h>
#include <subdev/fb.h>
static u32 read_div(struct drm_device *, int, u32, u32);
static u32 read_pll(struct drm_device *, u32);
static u32
read_vco(struct drm_device *dev, u32 dsrc)
{
struct nouveau_device *device = nouveau_dev(dev);
u32 ssrc = nv_rd32(device, dsrc);
if (!(ssrc & 0x00000100))
return read_pll(dev, 0x00e800);
return read_pll(dev, 0x00e820);
}
static u32
read_pll(struct drm_device *dev, u32 pll)
{
struct nouveau_device *device = nouveau_dev(dev);
u32 ctrl = nv_rd32(device, pll + 0);
u32 coef = nv_rd32(device, pll + 4);
u32 P = (coef & 0x003f0000) >> 16;
u32 N = (coef & 0x0000ff00) >> 8;
u32 M = (coef & 0x000000ff) >> 0;
u32 sclk, doff;
if (!(ctrl & 0x00000001))
return 0;
switch (pll & 0xfff000) {
case 0x00e000:
sclk = 27000;
P = 1;
break;
case 0x137000:
doff = (pll - 0x137000) / 0x20;
sclk = read_div(dev, doff, 0x137120, 0x137140);
break;
case 0x132000:
switch (pll) {
case 0x132000:
sclk = read_pll(dev, 0x132020);
break;
case 0x132020:
sclk = read_div(dev, 0, 0x137320, 0x137330);
break;
default:
return 0;
}
break;
default:
return 0;
}
return sclk * N / M / P;
}
static u32
read_div(struct drm_device *dev, int doff, u32 dsrc, u32 dctl)
{
struct nouveau_device *device = nouveau_dev(dev);
u32 ssrc = nv_rd32(device, dsrc + (doff * 4));
u32 sctl = nv_rd32(device, dctl + (doff * 4));
switch (ssrc & 0x00000003) {
case 0:
if ((ssrc & 0x00030000) != 0x00030000)
return 27000;
return 108000;
case 2:
return 100000;
case 3:
if (sctl & 0x80000000) {
u32 sclk = read_vco(dev, dsrc + (doff * 4));
u32 sdiv = (sctl & 0x0000003f) + 2;
return (sclk * 2) / sdiv;
}
return read_vco(dev, dsrc + (doff * 4));
default:
return 0;
}
}
static u32
read_mem(struct drm_device *dev)
{
struct nouveau_device *device = nouveau_dev(dev);
u32 ssel = nv_rd32(device, 0x1373f0);
if (ssel & 0x00000001)
return read_div(dev, 0, 0x137300, 0x137310);
return read_pll(dev, 0x132000);
}
static u32
read_clk(struct drm_device *dev, int clk)
{
struct nouveau_device *device = nouveau_dev(dev);
u32 sctl = nv_rd32(device, 0x137250 + (clk * 4));
u32 ssel = nv_rd32(device, 0x137100);
u32 sclk, sdiv;
if (ssel & (1 << clk)) {
if (clk < 7)
sclk = read_pll(dev, 0x137000 + (clk * 0x20));
else
sclk = read_pll(dev, 0x1370e0);
sdiv = ((sctl & 0x00003f00) >> 8) + 2;
} else {
sclk = read_div(dev, clk, 0x137160, 0x1371d0);
sdiv = ((sctl & 0x0000003f) >> 0) + 2;
}
if (sctl & 0x80000000)
return (sclk * 2) / sdiv;
return sclk;
}
int
nvc0_pm_clocks_get(struct drm_device *dev, struct nouveau_pm_level *perflvl)
{
perflvl->shader = read_clk(dev, 0x00);
perflvl->core = perflvl->shader / 2;
perflvl->memory = read_mem(dev);
perflvl->rop = read_clk(dev, 0x01);
perflvl->hub07 = read_clk(dev, 0x02);
perflvl->hub06 = read_clk(dev, 0x07);
perflvl->hub01 = read_clk(dev, 0x08);
perflvl->copy = read_clk(dev, 0x09);
perflvl->daemon = read_clk(dev, 0x0c);
perflvl->vdec = read_clk(dev, 0x0e);
return 0;
}
struct nvc0_pm_clock {
u32 freq;
u32 ssel;
u32 mdiv;
u32 dsrc;
u32 ddiv;
u32 coef;
};
struct nvc0_pm_state {
struct nouveau_pm_level *perflvl;
struct nvc0_pm_clock eng[16];
struct nvc0_pm_clock mem;
};
static u32
calc_div(struct drm_device *dev, int clk, u32 ref, u32 freq, u32 *ddiv)
{
u32 div = min((ref * 2) / freq, (u32)65);
if (div < 2)
div = 2;
*ddiv = div - 2;
return (ref * 2) / div;
}
static u32
calc_src(struct drm_device *dev, int clk, u32 freq, u32 *dsrc, u32 *ddiv)
{
u32 sclk;
/* use one of the fixed frequencies if possible */
*ddiv = 0x00000000;
switch (freq) {
case 27000:
case 108000:
*dsrc = 0x00000000;
if (freq == 108000)
*dsrc |= 0x00030000;
return freq;
case 100000:
*dsrc = 0x00000002;
return freq;
default:
*dsrc = 0x00000003;
break;
}
/* otherwise, calculate the closest divider */
sclk = read_vco(dev, clk);
if (clk < 7)
sclk = calc_div(dev, clk, sclk, freq, ddiv);
return sclk;
}
static u32
calc_pll(struct drm_device *dev, int clk, u32 freq, u32 *coef)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_bios *bios = nouveau_bios(device);
struct nvbios_pll limits;
int N, M, P, ret;
ret = nvbios_pll_parse(bios, 0x137000 + (clk * 0x20), &limits);
if (ret)
return 0;
limits.refclk = read_div(dev, clk, 0x137120, 0x137140);
if (!limits.refclk)
return 0;
ret = nva3_calc_pll(dev, &limits, freq, &N, NULL, &M, &P);
if (ret <= 0)
return 0;
*coef = (P << 16) | (N << 8) | M;
return ret;
}
/* A (likely rather simplified and incomplete) view of the clock tree
*
* Key:
*
* S: source select
* D: divider
* P: pll
* F: switch
*
* Engine clocks:
*
* 137250(D) ---- 137100(F0) ---- 137160(S)/1371d0(D) ------------------- ref
* (F1) ---- 1370X0(P) ---- 137120(S)/137140(D) ---- ref
*
* Not all registers exist for all clocks. For example: clocks >= 8 don't
* have their own PLL (all tied to clock 7's PLL when in PLL mode), nor do
* they have the divider at 1371d0, though the source selection at 137160
* still exists. You must use the divider at 137250 for these instead.
*
* Memory clock:
*
* TBD, read_mem() above is likely very wrong...
*
*/
static int
calc_clk(struct drm_device *dev, int clk, struct nvc0_pm_clock *info, u32 freq)
{
u32 src0, div0, div1D, div1P = 0;
u32 clk0, clk1 = 0;
/* invalid clock domain */
if (!freq)
return 0;
/* first possible path, using only dividers */
clk0 = calc_src(dev, clk, freq, &src0, &div0);
clk0 = calc_div(dev, clk, clk0, freq, &div1D);
/* see if we can get any closer using PLLs */
if (clk0 != freq && (0x00004387 & (1 << clk))) {
if (clk < 7)
clk1 = calc_pll(dev, clk, freq, &info->coef);
else
clk1 = read_pll(dev, 0x1370e0);
clk1 = calc_div(dev, clk, clk1, freq, &div1P);
}
/* select the method which gets closest to target freq */
if (abs((int)freq - clk0) <= abs((int)freq - clk1)) {
info->dsrc = src0;
if (div0) {
info->ddiv |= 0x80000000;
info->ddiv |= div0 << 8;
info->ddiv |= div0;
}
if (div1D) {
info->mdiv |= 0x80000000;
info->mdiv |= div1D;
}
info->ssel = 0;
info->freq = clk0;
} else {
if (div1P) {
info->mdiv |= 0x80000000;
info->mdiv |= div1P << 8;
}
info->ssel = (1 << clk);
info->freq = clk1;
}
return 0;
}
static int
calc_mem(struct drm_device *dev, struct nvc0_pm_clock *info, u32 freq)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_bios *bios = nouveau_bios(device);
struct nvbios_pll pll;
int N, M, P, ret;
u32 ctrl;
/* mclk pll input freq comes from another pll, make sure it's on */
ctrl = nv_rd32(device, 0x132020);
if (!(ctrl & 0x00000001)) {
/* if not, program it to 567MHz. nfi where this value comes
* from - it looks like it's in the pll limits table for
* 132000 but the binary driver ignores all my attempts to
* change this value.
*/
nv_wr32(device, 0x137320, 0x00000103);
nv_wr32(device, 0x137330, 0x81200606);
nv_wait(device, 0x132020, 0x00010000, 0x00010000);
nv_wr32(device, 0x132024, 0x0001150f);
nv_mask(device, 0x132020, 0x00000001, 0x00000001);
nv_wait(device, 0x137390, 0x00020000, 0x00020000);
nv_mask(device, 0x132020, 0x00000004, 0x00000004);
}
/* for the moment, until the clock tree is better understood, use
* pll mode for all clock frequencies
*/
ret = nvbios_pll_parse(bios, 0x132000, &pll);
if (ret == 0) {
pll.refclk = read_pll(dev, 0x132020);
if (pll.refclk) {
ret = nva3_calc_pll(dev, &pll, freq, &N, NULL, &M, &P);
if (ret > 0) {
info->coef = (P << 16) | (N << 8) | M;
return 0;
}
}
}
return -EINVAL;
}
void *
nvc0_pm_clocks_pre(struct drm_device *dev, struct nouveau_pm_level *perflvl)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nvc0_pm_state *info;
int ret;
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (!info)
return ERR_PTR(-ENOMEM);
/* NFI why this is still in the performance table, the ROPCs appear
* to get their clock from clock 2 ("hub07", actually hub05 on this
* chip, but, anyway...) as well. nvatiming confirms hub05 and ROP
* are always the same freq with the binary driver even when the
* performance table says they should differ.
*/
if (device->chipset == 0xd9)
perflvl->rop = 0;
if ((ret = calc_clk(dev, 0x00, &info->eng[0x00], perflvl->shader)) ||
(ret = calc_clk(dev, 0x01, &info->eng[0x01], perflvl->rop)) ||
(ret = calc_clk(dev, 0x02, &info->eng[0x02], perflvl->hub07)) ||
(ret = calc_clk(dev, 0x07, &info->eng[0x07], perflvl->hub06)) ||
(ret = calc_clk(dev, 0x08, &info->eng[0x08], perflvl->hub01)) ||
(ret = calc_clk(dev, 0x09, &info->eng[0x09], perflvl->copy)) ||
(ret = calc_clk(dev, 0x0c, &info->eng[0x0c], perflvl->daemon)) ||
(ret = calc_clk(dev, 0x0e, &info->eng[0x0e], perflvl->vdec))) {
kfree(info);
return ERR_PTR(ret);
}
if (perflvl->memory) {
ret = calc_mem(dev, &info->mem, perflvl->memory);
if (ret) {
kfree(info);
return ERR_PTR(ret);
}
}
info->perflvl = perflvl;
return info;
}
static void
prog_clk(struct drm_device *dev, int clk, struct nvc0_pm_clock *info)
{
struct nouveau_device *device = nouveau_dev(dev);
/* program dividers at 137160/1371d0 first */
if (clk < 7 && !info->ssel) {
nv_mask(device, 0x1371d0 + (clk * 0x04), 0x80003f3f, info->ddiv);
nv_wr32(device, 0x137160 + (clk * 0x04), info->dsrc);
}
/* switch clock to non-pll mode */
nv_mask(device, 0x137100, (1 << clk), 0x00000000);
nv_wait(device, 0x137100, (1 << clk), 0x00000000);
/* reprogram pll */
if (clk < 7) {
/* make sure it's disabled first... */
u32 base = 0x137000 + (clk * 0x20);
u32 ctrl = nv_rd32(device, base + 0x00);
if (ctrl & 0x00000001) {
nv_mask(device, base + 0x00, 0x00000004, 0x00000000);
nv_mask(device, base + 0x00, 0x00000001, 0x00000000);
}
/* program it to new values, if necessary */
if (info->ssel) {
nv_wr32(device, base + 0x04, info->coef);
nv_mask(device, base + 0x00, 0x00000001, 0x00000001);
nv_wait(device, base + 0x00, 0x00020000, 0x00020000);
nv_mask(device, base + 0x00, 0x00020004, 0x00000004);
}
}
/* select pll/non-pll mode, and program final clock divider */
nv_mask(device, 0x137100, (1 << clk), info->ssel);
nv_wait(device, 0x137100, (1 << clk), info->ssel);
nv_mask(device, 0x137250 + (clk * 0x04), 0x00003f3f, info->mdiv);
}
static void
mclk_precharge(struct nouveau_mem_exec_func *exec)
{
}
static void
mclk_refresh(struct nouveau_mem_exec_func *exec)
{
}
static void
mclk_refresh_auto(struct nouveau_mem_exec_func *exec, bool enable)
{
struct nouveau_device *device = nouveau_dev(exec->dev);
nv_wr32(device, 0x10f210, enable ? 0x80000000 : 0x00000000);
}
static void
mclk_refresh_self(struct nouveau_mem_exec_func *exec, bool enable)
{
}
static void
mclk_wait(struct nouveau_mem_exec_func *exec, u32 nsec)
{
udelay((nsec + 500) / 1000);
}
static u32
mclk_mrg(struct nouveau_mem_exec_func *exec, int mr)
{
struct nouveau_device *device = nouveau_dev(exec->dev);
struct nouveau_fb *pfb = nouveau_fb(device);
if (pfb->ram->type != NV_MEM_TYPE_GDDR5) {
if (mr <= 1)
return nv_rd32(device, 0x10f300 + ((mr - 0) * 4));
return nv_rd32(device, 0x10f320 + ((mr - 2) * 4));
} else {
if (mr == 0)
return nv_rd32(device, 0x10f300 + (mr * 4));
else
if (mr <= 7)
return nv_rd32(device, 0x10f32c + (mr * 4));
return nv_rd32(device, 0x10f34c);
}
}
static void
mclk_mrs(struct nouveau_mem_exec_func *exec, int mr, u32 data)
{
struct nouveau_device *device = nouveau_dev(exec->dev);
struct nouveau_fb *pfb = nouveau_fb(device);
if (pfb->ram->type != NV_MEM_TYPE_GDDR5) {
if (mr <= 1) {
nv_wr32(device, 0x10f300 + ((mr - 0) * 4), data);
if (pfb->ram->ranks > 1)
nv_wr32(device, 0x10f308 + ((mr - 0) * 4), data);
} else
if (mr <= 3) {
nv_wr32(device, 0x10f320 + ((mr - 2) * 4), data);
if (pfb->ram->ranks > 1)
nv_wr32(device, 0x10f328 + ((mr - 2) * 4), data);
}
} else {
if (mr == 0) nv_wr32(device, 0x10f300 + (mr * 4), data);
else if (mr <= 7) nv_wr32(device, 0x10f32c + (mr * 4), data);
else if (mr == 15) nv_wr32(device, 0x10f34c, data);
}
}
static void
mclk_clock_set(struct nouveau_mem_exec_func *exec)
{
struct nouveau_device *device = nouveau_dev(exec->dev);
struct nvc0_pm_state *info = exec->priv;
u32 ctrl = nv_rd32(device, 0x132000);
nv_wr32(device, 0x137360, 0x00000001);
nv_wr32(device, 0x137370, 0x00000000);
nv_wr32(device, 0x137380, 0x00000000);
if (ctrl & 0x00000001)
nv_wr32(device, 0x132000, (ctrl &= ~0x00000001));
nv_wr32(device, 0x132004, info->mem.coef);
nv_wr32(device, 0x132000, (ctrl |= 0x00000001));
nv_wait(device, 0x137390, 0x00000002, 0x00000002);
nv_wr32(device, 0x132018, 0x00005000);
nv_wr32(device, 0x137370, 0x00000001);
nv_wr32(device, 0x137380, 0x00000001);
nv_wr32(device, 0x137360, 0x00000000);
}
static void
mclk_timing_set(struct nouveau_mem_exec_func *exec)
{
struct nouveau_device *device = nouveau_dev(exec->dev);
struct nvc0_pm_state *info = exec->priv;
struct nouveau_pm_level *perflvl = info->perflvl;
int i;
for (i = 0; i < 5; i++)
nv_wr32(device, 0x10f290 + (i * 4), perflvl->timing.reg[i]);
}
static void
prog_mem(struct drm_device *dev, struct nvc0_pm_state *info)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_mem_exec_func exec = {
.dev = dev,
.precharge = mclk_precharge,
.refresh = mclk_refresh,
.refresh_auto = mclk_refresh_auto,
.refresh_self = mclk_refresh_self,
.wait = mclk_wait,
.mrg = mclk_mrg,
.mrs = mclk_mrs,
.clock_set = mclk_clock_set,
.timing_set = mclk_timing_set,
.priv = info
};
if (device->chipset < 0xd0)
nv_wr32(device, 0x611200, 0x00003300);
else
nv_wr32(device, 0x62c000, 0x03030000);
nouveau_mem_exec(&exec, info->perflvl);
if (device->chipset < 0xd0)
nv_wr32(device, 0x611200, 0x00003330);
else
nv_wr32(device, 0x62c000, 0x03030300);
}
int
nvc0_pm_clocks_set(struct drm_device *dev, void *data)
{
struct nvc0_pm_state *info = data;
int i;
if (info->mem.coef)
prog_mem(dev, info);
for (i = 0; i < 16; i++) {
if (!info->eng[i].freq)
continue;
prog_clk(dev, i, &info->eng[i]);
}
kfree(info);
return 0;
}