OpenCloudOS-Kernel/drivers/net/ethernet/sgi/ioc3-eth.c

1589 lines
40 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/* Driver for SGI's IOC3 based Ethernet cards as found in the PCI card.
*
* Copyright (C) 1999, 2000, 01, 03, 06 Ralf Baechle
* Copyright (C) 1995, 1999, 2000, 2001 by Silicon Graphics, Inc.
*
* References:
* o IOC3 ASIC specification 4.51, 1996-04-18
* o IEEE 802.3 specification, 2000 edition
* o DP38840A Specification, National Semiconductor, March 1997
*
* To do:
*
* o Handle allocation failures in ioc3_alloc_skb() more gracefully.
* o Handle allocation failures in ioc3_init_rings().
* o Use prefetching for large packets. What is a good lower limit for
* prefetching?
* o We're probably allocating a bit too much memory.
* o Use hardware checksums.
* o Convert to using a IOC3 meta driver.
* o Which PHYs might possibly be attached to the IOC3 in real live,
* which workarounds are required for them? Do we ever have Lucent's?
* o For the 2.5 branch kill the mii-tool ioctls.
*/
#define IOC3_NAME "ioc3-eth"
#define IOC3_VERSION "2.6.3-4"
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/crc32.h>
#include <linux/mii.h>
#include <linux/in.h>
#include <linux/io.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/dma-mapping.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/gfp.h>
#ifdef CONFIG_SERIAL_8250
#include <linux/serial_core.h>
#include <linux/serial_8250.h>
#include <linux/serial_reg.h>
#endif
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/skbuff.h>
#include <net/ip.h>
#include <asm/byteorder.h>
#include <asm/pgtable.h>
#include <linux/uaccess.h>
#include <asm/sn/types.h>
#include <asm/sn/ioc3.h>
#include <asm/pci/bridge.h>
/* Number of RX buffers. This is tunable in the range of 16 <= x < 512.
* The value must be a power of two.
*/
#define RX_BUFFS 64
#define RX_RING_ENTRIES 512 /* fixed in hardware */
#define RX_RING_MASK (RX_RING_ENTRIES - 1)
/* 128 TX buffers (not tunable) */
#define TX_RING_ENTRIES 128
#define TX_RING_MASK (TX_RING_ENTRIES - 1)
#define ETCSR_FD ((17 << ETCSR_IPGR2_SHIFT) | (11 << ETCSR_IPGR1_SHIFT) | 21)
#define ETCSR_HD ((21 << ETCSR_IPGR2_SHIFT) | (21 << ETCSR_IPGR1_SHIFT) | 21)
/* Private per NIC data of the driver. */
struct ioc3_private {
struct ioc3_ethregs *regs;
struct ioc3 *all_regs;
u32 *ssram;
unsigned long *rxr; /* pointer to receiver ring */
struct ioc3_etxd *txr;
struct sk_buff *rx_skbs[RX_RING_ENTRIES];
struct sk_buff *tx_skbs[TX_RING_ENTRIES];
int rx_ci; /* RX consumer index */
int rx_pi; /* RX producer index */
int tx_ci; /* TX consumer index */
int tx_pi; /* TX producer index */
int txqlen;
u32 emcr, ehar_h, ehar_l;
spinlock_t ioc3_lock;
struct mii_if_info mii;
struct net_device *dev;
struct pci_dev *pdev;
/* Members used by autonegotiation */
struct timer_list ioc3_timer;
};
static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
static void ioc3_set_multicast_list(struct net_device *dev);
static netdev_tx_t ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev);
static void ioc3_timeout(struct net_device *dev);
static inline unsigned int ioc3_hash(const unsigned char *addr);
static inline void ioc3_stop(struct ioc3_private *ip);
static void ioc3_init(struct net_device *dev);
static const char ioc3_str[] = "IOC3 Ethernet";
static const struct ethtool_ops ioc3_ethtool_ops;
/* We use this to acquire receive skb's that we can DMA directly into. */
#define IOC3_CACHELINE 128UL
static inline unsigned long aligned_rx_skb_addr(unsigned long addr)
{
return (~addr + 1) & (IOC3_CACHELINE - 1UL);
}
static inline struct sk_buff *ioc3_alloc_skb(unsigned long length,
unsigned int gfp_mask)
{
struct sk_buff *skb;
skb = alloc_skb(length + IOC3_CACHELINE - 1, gfp_mask);
if (likely(skb)) {
int offset = aligned_rx_skb_addr((unsigned long)skb->data);
if (offset)
skb_reserve(skb, offset);
}
return skb;
}
static inline unsigned long ioc3_map(void *ptr, unsigned long vdev)
{
#ifdef CONFIG_SGI_IP27
vdev <<= 57; /* Shift to PCI64_ATTR_VIRTUAL */
return vdev | (0xaUL << PCI64_ATTR_TARG_SHFT) | PCI64_ATTR_PREF |
((unsigned long)ptr & TO_PHYS_MASK);
#else
return virt_to_bus(ptr);
#endif
}
/* BEWARE: The IOC3 documentation documents the size of rx buffers as
* 1644 while it's actually 1664. This one was nasty to track down ...
*/
#define RX_OFFSET 10
#define RX_BUF_ALLOC_SIZE (1664 + RX_OFFSET + IOC3_CACHELINE)
#define IOC3_SIZE 0x100000
static inline u32 mcr_pack(u32 pulse, u32 sample)
{
return (pulse << 10) | (sample << 2);
}
static int nic_wait(u32 __iomem *mcr)
{
u32 m;
do {
m = readl(mcr);
} while (!(m & 2));
return m & 1;
}
static int nic_reset(u32 __iomem *mcr)
{
int presence;
writel(mcr_pack(500, 65), mcr);
presence = nic_wait(mcr);
writel(mcr_pack(0, 500), mcr);
nic_wait(mcr);
return presence;
}
static inline int nic_read_bit(u32 __iomem *mcr)
{
int result;
writel(mcr_pack(6, 13), mcr);
result = nic_wait(mcr);
writel(mcr_pack(0, 100), mcr);
nic_wait(mcr);
return result;
}
static inline void nic_write_bit(u32 __iomem *mcr, int bit)
{
if (bit)
writel(mcr_pack(6, 110), mcr);
else
writel(mcr_pack(80, 30), mcr);
nic_wait(mcr);
}
/* Read a byte from an iButton device
*/
static u32 nic_read_byte(u32 __iomem *mcr)
{
u32 result = 0;
int i;
for (i = 0; i < 8; i++)
result = (result >> 1) | (nic_read_bit(mcr) << 7);
return result;
}
/* Write a byte to an iButton device
*/
static void nic_write_byte(u32 __iomem *mcr, int byte)
{
int i, bit;
for (i = 8; i; i--) {
bit = byte & 1;
byte >>= 1;
nic_write_bit(mcr, bit);
}
}
static u64 nic_find(u32 __iomem *mcr, int *last)
{
int a, b, index, disc;
u64 address = 0;
nic_reset(mcr);
/* Search ROM. */
nic_write_byte(mcr, 0xf0);
/* Algorithm from ``Book of iButton Standards''. */
for (index = 0, disc = 0; index < 64; index++) {
a = nic_read_bit(mcr);
b = nic_read_bit(mcr);
if (a && b) {
pr_warn("NIC search failed (not fatal).\n");
*last = 0;
return 0;
}
if (!a && !b) {
if (index == *last) {
address |= 1UL << index;
} else if (index > *last) {
address &= ~(1UL << index);
disc = index;
} else if ((address & (1UL << index)) == 0) {
disc = index;
}
nic_write_bit(mcr, address & (1UL << index));
continue;
} else {
if (a)
address |= 1UL << index;
else
address &= ~(1UL << index);
nic_write_bit(mcr, a);
continue;
}
}
*last = disc;
return address;
}
static int nic_init(u32 __iomem *mcr)
{
const char *unknown = "unknown";
const char *type = unknown;
u8 crc;
u8 serial[6];
int save = 0, i;
while (1) {
u64 reg;
reg = nic_find(mcr, &save);
switch (reg & 0xff) {
case 0x91:
type = "DS1981U";
break;
default:
if (save == 0) {
/* Let the caller try again. */
return -1;
}
continue;
}
nic_reset(mcr);
/* Match ROM. */
nic_write_byte(mcr, 0x55);
for (i = 0; i < 8; i++)
nic_write_byte(mcr, (reg >> (i << 3)) & 0xff);
reg >>= 8; /* Shift out type. */
for (i = 0; i < 6; i++) {
serial[i] = reg & 0xff;
reg >>= 8;
}
crc = reg & 0xff;
break;
}
pr_info("Found %s NIC", type);
if (type != unknown)
pr_cont(" registration number %pM, CRC %02x", serial, crc);
pr_cont(".\n");
return 0;
}
/* Read the NIC (Number-In-a-Can) device used to store the MAC address on
* SN0 / SN00 nodeboards and PCI cards.
*/
static void ioc3_get_eaddr_nic(struct ioc3_private *ip)
{
u32 __iomem *mcr = &ip->all_regs->mcr;
int tries = 2; /* There may be some problem with the battery? */
u8 nic[14];
int i;
writel(1 << 21, &ip->all_regs->gpcr_s);
while (tries--) {
if (!nic_init(mcr))
break;
udelay(500);
}
if (tries < 0) {
pr_err("Failed to read MAC address\n");
return;
}
/* Read Memory. */
nic_write_byte(mcr, 0xf0);
nic_write_byte(mcr, 0x00);
nic_write_byte(mcr, 0x00);
for (i = 13; i >= 0; i--)
nic[i] = nic_read_byte(mcr);
for (i = 2; i < 8; i++)
ip->dev->dev_addr[i - 2] = nic[i];
}
/* Ok, this is hosed by design. It's necessary to know what machine the
* NIC is in in order to know how to read the NIC address. We also have
* to know if it's a PCI card or a NIC in on the node board ...
*/
static void ioc3_get_eaddr(struct ioc3_private *ip)
{
ioc3_get_eaddr_nic(ip);
pr_info("Ethernet address is %pM.\n", ip->dev->dev_addr);
}
static void __ioc3_set_mac_address(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
writel((dev->dev_addr[5] << 8) |
dev->dev_addr[4],
&ip->regs->emar_h);
writel((dev->dev_addr[3] << 24) |
(dev->dev_addr[2] << 16) |
(dev->dev_addr[1] << 8) |
dev->dev_addr[0],
&ip->regs->emar_l);
}
static int ioc3_set_mac_address(struct net_device *dev, void *addr)
{
struct ioc3_private *ip = netdev_priv(dev);
struct sockaddr *sa = addr;
memcpy(dev->dev_addr, sa->sa_data, dev->addr_len);
spin_lock_irq(&ip->ioc3_lock);
__ioc3_set_mac_address(dev);
spin_unlock_irq(&ip->ioc3_lock);
return 0;
}
/* Caller must hold the ioc3_lock ever for MII readers. This is also
* used to protect the transmitter side but it's low contention.
*/
static int ioc3_mdio_read(struct net_device *dev, int phy, int reg)
{
struct ioc3_private *ip = netdev_priv(dev);
struct ioc3_ethregs *regs = ip->regs;
while (readl(&regs->micr) & MICR_BUSY)
;
writel((phy << MICR_PHYADDR_SHIFT) | reg | MICR_READTRIG,
&regs->micr);
while (readl(&regs->micr) & MICR_BUSY)
;
return readl(&regs->midr_r) & MIDR_DATA_MASK;
}
static void ioc3_mdio_write(struct net_device *dev, int phy, int reg, int data)
{
struct ioc3_private *ip = netdev_priv(dev);
struct ioc3_ethregs *regs = ip->regs;
while (readl(&regs->micr) & MICR_BUSY)
;
writel(data, &regs->midr_w);
writel((phy << MICR_PHYADDR_SHIFT) | reg, &regs->micr);
while (readl(&regs->micr) & MICR_BUSY)
;
}
static int ioc3_mii_init(struct ioc3_private *ip);
static struct net_device_stats *ioc3_get_stats(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
struct ioc3_ethregs *regs = ip->regs;
dev->stats.collisions += readl(&regs->etcdc) & ETCDC_COLLCNT_MASK;
return &dev->stats;
}
static void ioc3_tcpudp_checksum(struct sk_buff *skb, u32 hwsum, int len)
{
struct ethhdr *eh = eth_hdr(skb);
unsigned int proto;
unsigned char *cp;
struct iphdr *ih;
u32 csum, ehsum;
u16 *ew;
/* Did hardware handle the checksum at all? The cases we can handle
* are:
*
* - TCP and UDP checksums of IPv4 only.
* - IPv6 would be doable but we keep that for later ...
* - Only unfragmented packets. Did somebody already tell you
* fragmentation is evil?
* - don't care about packet size. Worst case when processing a
* malformed packet we'll try to access the packet at ip header +
* 64 bytes which is still inside the skb. Even in the unlikely
* case where the checksum is right the higher layers will still
* drop the packet as appropriate.
*/
if (eh->h_proto != htons(ETH_P_IP))
return;
ih = (struct iphdr *)((char *)eh + ETH_HLEN);
if (ip_is_fragment(ih))
return;
proto = ih->protocol;
if (proto != IPPROTO_TCP && proto != IPPROTO_UDP)
return;
/* Same as tx - compute csum of pseudo header */
csum = hwsum +
(ih->tot_len - (ih->ihl << 2)) +
htons((u16)ih->protocol) +
(ih->saddr >> 16) + (ih->saddr & 0xffff) +
(ih->daddr >> 16) + (ih->daddr & 0xffff);
/* Sum up ethernet dest addr, src addr and protocol */
ew = (u16 *)eh;
ehsum = ew[0] + ew[1] + ew[2] + ew[3] + ew[4] + ew[5] + ew[6];
ehsum = (ehsum & 0xffff) + (ehsum >> 16);
ehsum = (ehsum & 0xffff) + (ehsum >> 16);
csum += 0xffff ^ ehsum;
/* In the next step we also subtract the 1's complement
* checksum of the trailing ethernet CRC.
*/
cp = (char *)eh + len; /* points at trailing CRC */
if (len & 1) {
csum += 0xffff ^ (u16)((cp[1] << 8) | cp[0]);
csum += 0xffff ^ (u16)((cp[3] << 8) | cp[2]);
} else {
csum += 0xffff ^ (u16)((cp[0] << 8) | cp[1]);
csum += 0xffff ^ (u16)((cp[2] << 8) | cp[3]);
}
csum = (csum & 0xffff) + (csum >> 16);
csum = (csum & 0xffff) + (csum >> 16);
if (csum == 0xffff)
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
static inline void ioc3_rx(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
struct sk_buff *skb, *new_skb;
int rx_entry, n_entry, len;
struct ioc3_erxbuf *rxb;
unsigned long *rxr;
u32 w0, err;
rxr = ip->rxr; /* Ring base */
rx_entry = ip->rx_ci; /* RX consume index */
n_entry = ip->rx_pi;
skb = ip->rx_skbs[rx_entry];
rxb = (struct ioc3_erxbuf *)(skb->data - RX_OFFSET);
w0 = be32_to_cpu(rxb->w0);
while (w0 & ERXBUF_V) {
err = be32_to_cpu(rxb->err); /* It's valid ... */
if (err & ERXBUF_GOODPKT) {
len = ((w0 >> ERXBUF_BYTECNT_SHIFT) & 0x7ff) - 4;
skb_trim(skb, len);
skb->protocol = eth_type_trans(skb, dev);
new_skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
if (!new_skb) {
/* Ouch, drop packet and just recycle packet
* to keep the ring filled.
*/
dev->stats.rx_dropped++;
new_skb = skb;
goto next;
}
if (likely(dev->features & NETIF_F_RXCSUM))
ioc3_tcpudp_checksum(skb,
w0 & ERXBUF_IPCKSUM_MASK,
len);
netif_rx(skb);
ip->rx_skbs[rx_entry] = NULL; /* Poison */
/* Because we reserve afterwards. */
skb_put(new_skb, (1664 + RX_OFFSET));
rxb = (struct ioc3_erxbuf *)new_skb->data;
skb_reserve(new_skb, RX_OFFSET);
dev->stats.rx_packets++; /* Statistics */
dev->stats.rx_bytes += len;
} else {
/* The frame is invalid and the skb never
* reached the network layer so we can just
* recycle it.
*/
new_skb = skb;
dev->stats.rx_errors++;
}
if (err & ERXBUF_CRCERR) /* Statistics */
dev->stats.rx_crc_errors++;
if (err & ERXBUF_FRAMERR)
dev->stats.rx_frame_errors++;
next:
ip->rx_skbs[n_entry] = new_skb;
rxr[n_entry] = cpu_to_be64(ioc3_map(rxb, 1));
rxb->w0 = 0; /* Clear valid flag */
n_entry = (n_entry + 1) & RX_RING_MASK; /* Update erpir */
/* Now go on to the next ring entry. */
rx_entry = (rx_entry + 1) & RX_RING_MASK;
skb = ip->rx_skbs[rx_entry];
rxb = (struct ioc3_erxbuf *)(skb->data - RX_OFFSET);
w0 = be32_to_cpu(rxb->w0);
}
writel((n_entry << 3) | ERPIR_ARM, &ip->regs->erpir);
ip->rx_pi = n_entry;
ip->rx_ci = rx_entry;
}
static inline void ioc3_tx(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
struct ioc3_ethregs *regs = ip->regs;
unsigned long packets, bytes;
int tx_entry, o_entry;
struct sk_buff *skb;
u32 etcir;
spin_lock(&ip->ioc3_lock);
etcir = readl(&regs->etcir);
tx_entry = (etcir >> 7) & TX_RING_MASK;
o_entry = ip->tx_ci;
packets = 0;
bytes = 0;
while (o_entry != tx_entry) {
packets++;
skb = ip->tx_skbs[o_entry];
bytes += skb->len;
dev_consume_skb_irq(skb);
ip->tx_skbs[o_entry] = NULL;
o_entry = (o_entry + 1) & TX_RING_MASK; /* Next */
etcir = readl(&regs->etcir); /* More pkts sent? */
tx_entry = (etcir >> 7) & TX_RING_MASK;
}
dev->stats.tx_packets += packets;
dev->stats.tx_bytes += bytes;
ip->txqlen -= packets;
if (netif_queue_stopped(dev) && ip->txqlen < TX_RING_ENTRIES)
netif_wake_queue(dev);
ip->tx_ci = o_entry;
spin_unlock(&ip->ioc3_lock);
}
/* Deal with fatal IOC3 errors. This condition might be caused by a hard or
* software problems, so we should try to recover
* more gracefully if this ever happens. In theory we might be flooded
* with such error interrupts if something really goes wrong, so we might
* also consider to take the interface down.
*/
static void ioc3_error(struct net_device *dev, u32 eisr)
{
struct ioc3_private *ip = netdev_priv(dev);
spin_lock(&ip->ioc3_lock);
if (eisr & EISR_RXOFLO)
net_err_ratelimited("%s: RX overflow.\n", dev->name);
if (eisr & EISR_RXBUFOFLO)
net_err_ratelimited("%s: RX buffer overflow.\n", dev->name);
if (eisr & EISR_RXMEMERR)
net_err_ratelimited("%s: RX PCI error.\n", dev->name);
if (eisr & EISR_RXPARERR)
net_err_ratelimited("%s: RX SSRAM parity error.\n", dev->name);
if (eisr & EISR_TXBUFUFLO)
net_err_ratelimited("%s: TX buffer underflow.\n", dev->name);
if (eisr & EISR_TXMEMERR)
net_err_ratelimited("%s: TX PCI error.\n", dev->name);
ioc3_stop(ip);
ioc3_init(dev);
ioc3_mii_init(ip);
netif_wake_queue(dev);
spin_unlock(&ip->ioc3_lock);
}
/* The interrupt handler does all of the Rx thread work and cleans up
* after the Tx thread.
*/
static irqreturn_t ioc3_interrupt(int irq, void *dev_id)
{
struct ioc3_private *ip = netdev_priv(dev_id);
struct ioc3_ethregs *regs = ip->regs;
u32 eisr;
eisr = readl(&regs->eisr);
writel(eisr, &regs->eisr);
readl(&regs->eisr); /* Flush */
if (eisr & (EISR_RXOFLO | EISR_RXBUFOFLO | EISR_RXMEMERR |
EISR_RXPARERR | EISR_TXBUFUFLO | EISR_TXMEMERR))
ioc3_error(dev_id, eisr);
if (eisr & EISR_RXTIMERINT)
ioc3_rx(dev_id);
if (eisr & EISR_TXEXPLICIT)
ioc3_tx(dev_id);
return IRQ_HANDLED;
}
static inline void ioc3_setup_duplex(struct ioc3_private *ip)
{
struct ioc3_ethregs *regs = ip->regs;
if (ip->mii.full_duplex) {
writel(ETCSR_FD, &regs->etcsr);
ip->emcr |= EMCR_DUPLEX;
} else {
writel(ETCSR_HD, &regs->etcsr);
ip->emcr &= ~EMCR_DUPLEX;
}
writel(ip->emcr, &regs->emcr);
}
static void ioc3_timer(struct timer_list *t)
{
struct ioc3_private *ip = from_timer(ip, t, ioc3_timer);
/* Print the link status if it has changed */
mii_check_media(&ip->mii, 1, 0);
ioc3_setup_duplex(ip);
ip->ioc3_timer.expires = jiffies + ((12 * HZ) / 10); /* 1.2s */
add_timer(&ip->ioc3_timer);
}
/* Try to find a PHY. There is no apparent relation between the MII addresses
* in the SGI documentation and what we find in reality, so we simply probe
* for the PHY. It seems IOC3 PHYs usually live on address 31. One of my
* onboard IOC3s has the special oddity that probing doesn't seem to find it
* yet the interface seems to work fine, so if probing fails we for now will
* simply default to PHY 31 instead of bailing out.
*/
static int ioc3_mii_init(struct ioc3_private *ip)
{
int ioc3_phy_workaround = 1;
int i, found = 0, res = 0;
u16 word;
for (i = 0; i < 32; i++) {
word = ioc3_mdio_read(ip->dev, i, MII_PHYSID1);
if (word != 0xffff && word != 0x0000) {
found = 1;
break; /* Found a PHY */
}
}
if (!found) {
if (ioc3_phy_workaround) {
i = 31;
} else {
ip->mii.phy_id = -1;
res = -ENODEV;
goto out;
}
}
ip->mii.phy_id = i;
out:
return res;
}
static void ioc3_mii_start(struct ioc3_private *ip)
{
ip->ioc3_timer.expires = jiffies + (12 * HZ) / 10; /* 1.2 sec. */
add_timer(&ip->ioc3_timer);
}
static inline void ioc3_clean_tx_ring(struct ioc3_private *ip)
{
struct sk_buff *skb;
int i;
for (i = 0; i < TX_RING_ENTRIES; i++) {
skb = ip->tx_skbs[i];
if (skb) {
ip->tx_skbs[i] = NULL;
dev_kfree_skb_any(skb);
}
ip->txr[i].cmd = 0;
}
ip->tx_pi = 0;
ip->tx_ci = 0;
}
static void ioc3_free_rings(struct ioc3_private *ip)
{
int rx_entry, n_entry;
ioc3_clean_tx_ring(ip);
n_entry = ip->rx_ci;
rx_entry = ip->rx_pi;
while (n_entry != rx_entry) {
dev_kfree_skb_any(ip->rx_skbs[n_entry]);
n_entry = (n_entry + 1) & RX_RING_MASK;
}
}
static void ioc3_alloc_rings(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
struct ioc3_erxbuf *rxb;
int i;
/* Now the rx buffers. The RX ring may be larger but
* we only allocate 16 buffers for now. Need to tune
* this for performance and memory later.
*/
for (i = 0; i < RX_BUFFS; i++) {
struct sk_buff *skb;
skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
if (!skb) {
show_free_areas(0, NULL);
continue;
}
ip->rx_skbs[i] = skb;
/* Because we reserve afterwards. */
skb_put(skb, (1664 + RX_OFFSET));
rxb = (struct ioc3_erxbuf *)skb->data;
rxb->w0 = 0; /* Clear valid flag */
ip->rxr[i] = cpu_to_be64(ioc3_map(rxb, 1));
skb_reserve(skb, RX_OFFSET);
}
ip->rx_ci = 0;
ip->rx_pi = RX_BUFFS;
ip->tx_pi = 0;
ip->tx_ci = 0;
}
static void ioc3_init_rings(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
struct ioc3_ethregs *regs = ip->regs;
unsigned long ring;
ioc3_free_rings(ip);
ioc3_alloc_rings(dev);
ioc3_clean_tx_ring(ip);
/* Now the rx ring base, consume & produce registers. */
ring = ioc3_map(ip->rxr, 0);
writel(ring >> 32, &regs->erbr_h);
writel(ring & 0xffffffff, &regs->erbr_l);
writel(ip->rx_ci << 3, &regs->ercir);
writel((ip->rx_pi << 3) | ERPIR_ARM, &regs->erpir);
ring = ioc3_map(ip->txr, 0);
ip->txqlen = 0; /* nothing queued */
/* Now the tx ring base, consume & produce registers. */
writel(ring >> 32, &regs->etbr_h);
writel(ring & 0xffffffff, &regs->etbr_l);
writel(ip->tx_pi << 7, &regs->etpir);
writel(ip->tx_ci << 7, &regs->etcir);
readl(&regs->etcir); /* Flush */
}
static inline void ioc3_ssram_disc(struct ioc3_private *ip)
{
struct ioc3_ethregs *regs = ip->regs;
u32 *ssram0 = &ip->ssram[0x0000];
u32 *ssram1 = &ip->ssram[0x4000];
u32 pattern = 0x5555;
/* Assume the larger size SSRAM and enable parity checking */
writel(readl(&regs->emcr) | (EMCR_BUFSIZ | EMCR_RAMPAR), &regs->emcr);
readl(&regs->emcr); /* Flush */
writel(pattern, ssram0);
writel(~pattern & IOC3_SSRAM_DM, ssram1);
if ((readl(ssram0) & IOC3_SSRAM_DM) != pattern ||
(readl(ssram1) & IOC3_SSRAM_DM) != (~pattern & IOC3_SSRAM_DM)) {
/* set ssram size to 64 KB */
ip->emcr |= EMCR_RAMPAR;
writel(readl(&regs->emcr) & ~EMCR_BUFSIZ, &regs->emcr);
} else {
ip->emcr |= EMCR_BUFSIZ | EMCR_RAMPAR;
}
}
static void ioc3_init(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
struct ioc3_ethregs *regs = ip->regs;
del_timer_sync(&ip->ioc3_timer); /* Kill if running */
writel(EMCR_RST, &regs->emcr); /* Reset */
readl(&regs->emcr); /* Flush WB */
udelay(4); /* Give it time ... */
writel(0, &regs->emcr);
readl(&regs->emcr);
/* Misc registers */
#ifdef CONFIG_SGI_IP27
/* Barrier on last store */
writel(PCI64_ATTR_BAR >> 32, &regs->erbar);
#else
/* Let PCI API get it right */
writel(0, &regs->erbar);
#endif
readl(&regs->etcdc); /* Clear on read */
writel(15, &regs->ercsr); /* RX low watermark */
writel(0, &regs->ertr); /* Interrupt immediately */
__ioc3_set_mac_address(dev);
writel(ip->ehar_h, &regs->ehar_h);
writel(ip->ehar_l, &regs->ehar_l);
writel(42, &regs->ersr); /* XXX should be random */
ioc3_init_rings(dev);
ip->emcr |= ((RX_OFFSET / 2) << EMCR_RXOFF_SHIFT) | EMCR_TXDMAEN |
EMCR_TXEN | EMCR_RXDMAEN | EMCR_RXEN | EMCR_PADEN;
writel(ip->emcr, &regs->emcr);
writel(EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
EISR_TXEXPLICIT | EISR_TXMEMERR, &regs->eier);
readl(&regs->eier);
}
static inline void ioc3_stop(struct ioc3_private *ip)
{
struct ioc3_ethregs *regs = ip->regs;
writel(0, &regs->emcr); /* Shutup */
writel(0, &regs->eier); /* Disable interrupts */
readl(&regs->eier); /* Flush */
}
static int ioc3_open(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
if (request_irq(dev->irq, ioc3_interrupt, IRQF_SHARED, ioc3_str, dev)) {
netdev_err(dev, "Can't get irq %d\n", dev->irq);
return -EAGAIN;
}
ip->ehar_h = 0;
ip->ehar_l = 0;
ioc3_init(dev);
ioc3_mii_start(ip);
netif_start_queue(dev);
return 0;
}
static int ioc3_close(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
del_timer_sync(&ip->ioc3_timer);
netif_stop_queue(dev);
ioc3_stop(ip);
free_irq(dev->irq, dev);
ioc3_free_rings(ip);
return 0;
}
/* MENET cards have four IOC3 chips, which are attached to two sets of
* PCI slot resources each: the primary connections are on slots
* 0..3 and the secondaries are on 4..7
*
* All four ethernets are brought out to connectors; six serial ports
* (a pair from each of the first three IOC3s) are brought out to
* MiniDINs; all other subdevices are left swinging in the wind, leave
* them disabled.
*/
static int ioc3_adjacent_is_ioc3(struct pci_dev *pdev, int slot)
{
struct pci_dev *dev = pci_get_slot(pdev->bus, PCI_DEVFN(slot, 0));
int ret = 0;
if (dev) {
if (dev->vendor == PCI_VENDOR_ID_SGI &&
dev->device == PCI_DEVICE_ID_SGI_IOC3)
ret = 1;
pci_dev_put(dev);
}
return ret;
}
static int ioc3_is_menet(struct pci_dev *pdev)
{
return !pdev->bus->parent &&
ioc3_adjacent_is_ioc3(pdev, 0) &&
ioc3_adjacent_is_ioc3(pdev, 1) &&
ioc3_adjacent_is_ioc3(pdev, 2);
}
#ifdef CONFIG_SERIAL_8250
/* Note about serial ports and consoles:
* For console output, everyone uses the IOC3 UARTA (offset 0x178)
* connected to the master node (look in ip27_setup_console() and
* ip27prom_console_write()).
*
* For serial (/dev/ttyS0 etc), we can not have hardcoded serial port
* addresses on a partitioned machine. Since we currently use the ioc3
* serial ports, we use dynamic serial port discovery that the serial.c
* driver uses for pci/pnp ports (there is an entry for the SGI ioc3
* boards in pci_boards[]). Unfortunately, UARTA's pio address is greater
* than UARTB's, although UARTA on o200s has traditionally been known as
* port 0. So, we just use one serial port from each ioc3 (since the
* serial driver adds addresses to get to higher ports).
*
* The first one to do a register_console becomes the preferred console
* (if there is no kernel command line console= directive). /dev/console
* (ie 5, 1) is then "aliased" into the device number returned by the
* "device" routine referred to in this console structure
* (ip27prom_console_dev).
*
* Also look in ip27-pci.c:pci_fixup_ioc3() for some comments on working
* around ioc3 oddities in this respect.
*
* The IOC3 serials use a 22MHz clock rate with an additional divider which
* can be programmed in the SCR register if the DLAB bit is set.
*
* Register to interrupt zero because we share the interrupt with
* the serial driver which we don't properly support yet.
*
* Can't use UPF_IOREMAP as the whole of IOC3 resources have already been
* registered.
*/
static void ioc3_8250_register(struct ioc3_uartregs __iomem *uart)
{
#define COSMISC_CONSTANT 6
struct uart_8250_port port = {
.port = {
.irq = 0,
.flags = UPF_SKIP_TEST | UPF_BOOT_AUTOCONF,
.iotype = UPIO_MEM,
.regshift = 0,
.uartclk = (22000000 << 1) / COSMISC_CONSTANT,
.membase = (unsigned char __iomem *)uart,
.mapbase = (unsigned long)uart,
}
};
unsigned char lcr;
lcr = readb(&uart->iu_lcr);
writeb(lcr | UART_LCR_DLAB, &uart->iu_lcr);
writeb(COSMISC_CONSTANT, &uart->iu_scr);
writeb(lcr, &uart->iu_lcr);
readb(&uart->iu_lcr);
serial8250_register_8250_port(&port);
}
static void ioc3_serial_probe(struct pci_dev *pdev, struct ioc3 *ioc3)
{
u32 sio_iec;
/* We need to recognice and treat the fourth MENET serial as it
* does not have an SuperIO chip attached to it, therefore attempting
* to access it will result in bus errors. We call something an
* MENET if PCI slot 0, 1, 2 and 3 of a master PCI bus all have an IOC3
* in it. This is paranoid but we want to avoid blowing up on a
* showhorn PCI box that happens to have 4 IOC3 cards in it so it's
* not paranoid enough ...
*/
if (ioc3_is_menet(pdev) && PCI_SLOT(pdev->devfn) == 3)
return;
/* Switch IOC3 to PIO mode. It probably already was but let's be
* paranoid
*/
writel(GPCR_UARTA_MODESEL | GPCR_UARTB_MODESEL, &ioc3->gpcr_s);
readl(&ioc3->gpcr_s);
writel(0, &ioc3->gppr[6]);
readl(&ioc3->gppr[6]);
writel(0, &ioc3->gppr[7]);
readl(&ioc3->gppr[7]);
writel(readl(&ioc3->port_a.sscr) & ~SSCR_DMA_EN, &ioc3->port_a.sscr);
readl(&ioc3->port_a.sscr);
writel(readl(&ioc3->port_b.sscr) & ~SSCR_DMA_EN, &ioc3->port_b.sscr);
readl(&ioc3->port_b.sscr);
/* Disable all SA/B interrupts except for SA/B_INT in SIO_IEC. */
sio_iec = readl(&ioc3->sio_iec);
sio_iec &= ~(SIO_IR_SA_TX_MT | SIO_IR_SA_RX_FULL |
SIO_IR_SA_RX_HIGH | SIO_IR_SA_RX_TIMER |
SIO_IR_SA_DELTA_DCD | SIO_IR_SA_DELTA_CTS |
SIO_IR_SA_TX_EXPLICIT | SIO_IR_SA_MEMERR);
sio_iec |= SIO_IR_SA_INT;
sio_iec &= ~(SIO_IR_SB_TX_MT | SIO_IR_SB_RX_FULL |
SIO_IR_SB_RX_HIGH | SIO_IR_SB_RX_TIMER |
SIO_IR_SB_DELTA_DCD | SIO_IR_SB_DELTA_CTS |
SIO_IR_SB_TX_EXPLICIT | SIO_IR_SB_MEMERR);
sio_iec |= SIO_IR_SB_INT;
writel(sio_iec, &ioc3->sio_iec);
writel(0, &ioc3->port_a.sscr);
writel(0, &ioc3->port_b.sscr);
ioc3_8250_register(&ioc3->sregs.uarta);
ioc3_8250_register(&ioc3->sregs.uartb);
}
#endif
static const struct net_device_ops ioc3_netdev_ops = {
.ndo_open = ioc3_open,
.ndo_stop = ioc3_close,
.ndo_start_xmit = ioc3_start_xmit,
.ndo_tx_timeout = ioc3_timeout,
.ndo_get_stats = ioc3_get_stats,
.ndo_set_rx_mode = ioc3_set_multicast_list,
.ndo_do_ioctl = ioc3_ioctl,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = ioc3_set_mac_address,
};
static int ioc3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
unsigned int sw_physid1, sw_physid2;
struct net_device *dev = NULL;
struct ioc3_private *ip;
struct ioc3 *ioc3;
unsigned long ioc3_base, ioc3_size;
u32 vendor, model, rev;
int err, pci_using_dac;
/* Configure DMA attributes. */
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
if (!err) {
pci_using_dac = 1;
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
if (err < 0) {
pr_err("%s: Unable to obtain 64 bit DMA for consistent allocations\n",
pci_name(pdev));
goto out;
}
} else {
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (err) {
pr_err("%s: No usable DMA configuration, aborting.\n",
pci_name(pdev));
goto out;
}
pci_using_dac = 0;
}
if (pci_enable_device(pdev))
return -ENODEV;
dev = alloc_etherdev(sizeof(struct ioc3_private));
if (!dev) {
err = -ENOMEM;
goto out_disable;
}
if (pci_using_dac)
dev->features |= NETIF_F_HIGHDMA;
err = pci_request_regions(pdev, "ioc3");
if (err)
goto out_free;
SET_NETDEV_DEV(dev, &pdev->dev);
ip = netdev_priv(dev);
ip->dev = dev;
dev->irq = pdev->irq;
ioc3_base = pci_resource_start(pdev, 0);
ioc3_size = pci_resource_len(pdev, 0);
ioc3 = (struct ioc3 *)ioremap(ioc3_base, ioc3_size);
if (!ioc3) {
pr_err("ioc3eth(%s): ioremap failed, goodbye.\n",
pci_name(pdev));
err = -ENOMEM;
goto out_res;
}
ip->regs = &ioc3->eth;
ip->ssram = ioc3->ssram;
ip->all_regs = ioc3;
#ifdef CONFIG_SERIAL_8250
ioc3_serial_probe(pdev, ioc3);
#endif
spin_lock_init(&ip->ioc3_lock);
timer_setup(&ip->ioc3_timer, ioc3_timer, 0);
ioc3_stop(ip);
/* Allocate rx ring. 4kb = 512 entries, must be 4kb aligned */
ip->rxr = (unsigned long *)get_zeroed_page(GFP_KERNEL);
if (!ip->rxr) {
pr_err("ioc3-eth: rx ring allocation failed\n");
err = -ENOMEM;
goto out_stop;
}
/* Allocate tx rings. 16kb = 128 bufs, must be 16kb aligned */
ip->txr = (struct ioc3_etxd *)__get_free_pages(GFP_KERNEL, 2);
if (!ip->txr) {
pr_err("ioc3-eth: tx ring allocation failed\n");
err = -ENOMEM;
goto out_stop;
}
ioc3_init(dev);
ip->pdev = pdev;
ip->mii.phy_id_mask = 0x1f;
ip->mii.reg_num_mask = 0x1f;
ip->mii.dev = dev;
ip->mii.mdio_read = ioc3_mdio_read;
ip->mii.mdio_write = ioc3_mdio_write;
ioc3_mii_init(ip);
if (ip->mii.phy_id == -1) {
pr_err("ioc3-eth(%s): Didn't find a PHY, goodbye.\n",
pci_name(pdev));
err = -ENODEV;
goto out_stop;
}
ioc3_mii_start(ip);
ioc3_ssram_disc(ip);
ioc3_get_eaddr(ip);
/* The IOC3-specific entries in the device structure. */
dev->watchdog_timeo = 5 * HZ;
dev->netdev_ops = &ioc3_netdev_ops;
dev->ethtool_ops = &ioc3_ethtool_ops;
dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_RXCSUM;
dev->features = NETIF_F_IP_CSUM;
sw_physid1 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID1);
sw_physid2 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID2);
err = register_netdev(dev);
if (err)
goto out_stop;
mii_check_media(&ip->mii, 1, 1);
ioc3_setup_duplex(ip);
vendor = (sw_physid1 << 12) | (sw_physid2 >> 4);
model = (sw_physid2 >> 4) & 0x3f;
rev = sw_physid2 & 0xf;
netdev_info(dev, "Using PHY %d, vendor 0x%x, model %d, rev %d.\n",
ip->mii.phy_id, vendor, model, rev);
netdev_info(dev, "IOC3 SSRAM has %d kbyte.\n",
ip->emcr & EMCR_BUFSIZ ? 128 : 64);
return 0;
out_stop:
ioc3_stop(ip);
del_timer_sync(&ip->ioc3_timer);
ioc3_free_rings(ip);
if (ip->rxr)
free_page((unsigned long)ip->rxr);
if (ip->txr)
free_pages((unsigned long)ip->txr, 2);
kfree(ip->txr);
out_res:
pci_release_regions(pdev);
out_free:
free_netdev(dev);
out_disable:
/* We should call pci_disable_device(pdev); here if the IOC3 wasn't
* such a weird device ...
*/
out:
return err;
}
static void ioc3_remove_one(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct ioc3_private *ip = netdev_priv(dev);
free_page((unsigned long)ip->rxr);
free_pages((unsigned long)ip->txr, 2);
unregister_netdev(dev);
del_timer_sync(&ip->ioc3_timer);
iounmap(ip->all_regs);
pci_release_regions(pdev);
free_netdev(dev);
/* We should call pci_disable_device(pdev); here if the IOC3 wasn't
* such a weird device ...
*/
}
static const struct pci_device_id ioc3_pci_tbl[] = {
{ PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_IOC3, PCI_ANY_ID, PCI_ANY_ID },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, ioc3_pci_tbl);
static struct pci_driver ioc3_driver = {
.name = "ioc3-eth",
.id_table = ioc3_pci_tbl,
.probe = ioc3_probe,
.remove = ioc3_remove_one,
};
static netdev_tx_t ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
struct ioc3_etxd *desc;
unsigned long data;
unsigned int len;
int produce;
u32 w0 = 0;
/* IOC3 has a fairly simple minded checksumming hardware which simply
* adds up the 1's complement checksum for the entire packet and
* inserts it at an offset which can be specified in the descriptor
* into the transmit packet. This means we have to compensate for the
* MAC header which should not be summed and the TCP/UDP pseudo headers
* manually.
*/
if (skb->ip_summed == CHECKSUM_PARTIAL) {
const struct iphdr *ih = ip_hdr(skb);
const int proto = ntohs(ih->protocol);
unsigned int csoff;
u32 csum, ehsum;
u16 *eh;
/* The MAC header. skb->mac seem the logic approach
* to find the MAC header - except it's a NULL pointer ...
*/
eh = (u16 *)skb->data;
/* Sum up dest addr, src addr and protocol */
ehsum = eh[0] + eh[1] + eh[2] + eh[3] + eh[4] + eh[5] + eh[6];
/* Fold ehsum. can't use csum_fold which negates also ... */
ehsum = (ehsum & 0xffff) + (ehsum >> 16);
ehsum = (ehsum & 0xffff) + (ehsum >> 16);
/* Skip IP header; it's sum is always zero and was
* already filled in by ip_output.c
*/
csum = csum_tcpudp_nofold(ih->saddr, ih->daddr,
ih->tot_len - (ih->ihl << 2),
proto, 0xffff ^ ehsum);
csum = (csum & 0xffff) + (csum >> 16); /* Fold again */
csum = (csum & 0xffff) + (csum >> 16);
csoff = ETH_HLEN + (ih->ihl << 2);
if (proto == IPPROTO_UDP) {
csoff += offsetof(struct udphdr, check);
udp_hdr(skb)->check = csum;
}
if (proto == IPPROTO_TCP) {
csoff += offsetof(struct tcphdr, check);
tcp_hdr(skb)->check = csum;
}
w0 = ETXD_DOCHECKSUM | (csoff << ETXD_CHKOFF_SHIFT);
}
spin_lock_irq(&ip->ioc3_lock);
data = (unsigned long)skb->data;
len = skb->len;
produce = ip->tx_pi;
desc = &ip->txr[produce];
if (len <= 104) {
/* Short packet, let's copy it directly into the ring. */
skb_copy_from_linear_data(skb, desc->data, skb->len);
if (len < ETH_ZLEN) {
/* Very short packet, pad with zeros at the end. */
memset(desc->data + len, 0, ETH_ZLEN - len);
len = ETH_ZLEN;
}
desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_D0V | w0);
desc->bufcnt = cpu_to_be32(len);
} else if ((data ^ (data + len - 1)) & 0x4000) {
unsigned long b2 = (data | 0x3fffUL) + 1UL;
unsigned long s1 = b2 - data;
unsigned long s2 = data + len - b2;
desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE |
ETXD_B1V | ETXD_B2V | w0);
desc->bufcnt = cpu_to_be32((s1 << ETXD_B1CNT_SHIFT) |
(s2 << ETXD_B2CNT_SHIFT));
desc->p1 = cpu_to_be64(ioc3_map(skb->data, 1));
desc->p2 = cpu_to_be64(ioc3_map((void *)b2, 1));
} else {
/* Normal sized packet that doesn't cross a page boundary. */
desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_B1V | w0);
desc->bufcnt = cpu_to_be32(len << ETXD_B1CNT_SHIFT);
desc->p1 = cpu_to_be64(ioc3_map(skb->data, 1));
}
mb(); /* make sure all descriptor changes are visible */
ip->tx_skbs[produce] = skb; /* Remember skb */
produce = (produce + 1) & TX_RING_MASK;
ip->tx_pi = produce;
writel(produce << 7, &ip->regs->etpir); /* Fire ... */
ip->txqlen++;
if (ip->txqlen >= (TX_RING_ENTRIES - 1))
netif_stop_queue(dev);
spin_unlock_irq(&ip->ioc3_lock);
return NETDEV_TX_OK;
}
static void ioc3_timeout(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
netdev_err(dev, "transmit timed out, resetting\n");
spin_lock_irq(&ip->ioc3_lock);
ioc3_stop(ip);
ioc3_init(dev);
ioc3_mii_init(ip);
ioc3_mii_start(ip);
spin_unlock_irq(&ip->ioc3_lock);
netif_wake_queue(dev);
}
/* Given a multicast ethernet address, this routine calculates the
* address's bit index in the logical address filter mask
*/
static inline unsigned int ioc3_hash(const unsigned char *addr)
{
unsigned int temp = 0;
int bits;
u32 crc;
crc = ether_crc_le(ETH_ALEN, addr);
crc &= 0x3f; /* bit reverse lowest 6 bits for hash index */
for (bits = 6; --bits >= 0; ) {
temp <<= 1;
temp |= (crc & 0x1);
crc >>= 1;
}
return temp;
}
static void ioc3_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct ioc3_private *ip = netdev_priv(dev);
strlcpy(info->driver, IOC3_NAME, sizeof(info->driver));
strlcpy(info->version, IOC3_VERSION, sizeof(info->version));
strlcpy(info->bus_info, pci_name(ip->pdev), sizeof(info->bus_info));
}
static int ioc3_get_link_ksettings(struct net_device *dev,
struct ethtool_link_ksettings *cmd)
{
struct ioc3_private *ip = netdev_priv(dev);
spin_lock_irq(&ip->ioc3_lock);
mii_ethtool_get_link_ksettings(&ip->mii, cmd);
spin_unlock_irq(&ip->ioc3_lock);
return 0;
}
static int ioc3_set_link_ksettings(struct net_device *dev,
const struct ethtool_link_ksettings *cmd)
{
struct ioc3_private *ip = netdev_priv(dev);
int rc;
spin_lock_irq(&ip->ioc3_lock);
rc = mii_ethtool_set_link_ksettings(&ip->mii, cmd);
spin_unlock_irq(&ip->ioc3_lock);
return rc;
}
static int ioc3_nway_reset(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
int rc;
spin_lock_irq(&ip->ioc3_lock);
rc = mii_nway_restart(&ip->mii);
spin_unlock_irq(&ip->ioc3_lock);
return rc;
}
static u32 ioc3_get_link(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
int rc;
spin_lock_irq(&ip->ioc3_lock);
rc = mii_link_ok(&ip->mii);
spin_unlock_irq(&ip->ioc3_lock);
return rc;
}
static const struct ethtool_ops ioc3_ethtool_ops = {
.get_drvinfo = ioc3_get_drvinfo,
.nway_reset = ioc3_nway_reset,
.get_link = ioc3_get_link,
.get_link_ksettings = ioc3_get_link_ksettings,
.set_link_ksettings = ioc3_set_link_ksettings,
};
static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct ioc3_private *ip = netdev_priv(dev);
int rc;
spin_lock_irq(&ip->ioc3_lock);
rc = generic_mii_ioctl(&ip->mii, if_mii(rq), cmd, NULL);
spin_unlock_irq(&ip->ioc3_lock);
return rc;
}
static void ioc3_set_multicast_list(struct net_device *dev)
{
struct ioc3_private *ip = netdev_priv(dev);
struct ioc3_ethregs *regs = ip->regs;
struct netdev_hw_addr *ha;
u64 ehar = 0;
netif_stop_queue(dev); /* Lock out others. */
if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
ip->emcr |= EMCR_PROMISC;
writel(ip->emcr, &regs->emcr);
readl(&regs->emcr);
} else {
ip->emcr &= ~EMCR_PROMISC;
writel(ip->emcr, &regs->emcr); /* Clear promiscuous. */
readl(&regs->emcr);
if ((dev->flags & IFF_ALLMULTI) ||
(netdev_mc_count(dev) > 64)) {
/* Too many for hashing to make sense or we want all
* multicast packets anyway, so skip computing all the
* hashes and just accept all packets.
*/
ip->ehar_h = 0xffffffff;
ip->ehar_l = 0xffffffff;
} else {
netdev_for_each_mc_addr(ha, dev) {
ehar |= (1UL << ioc3_hash(ha->addr));
}
ip->ehar_h = ehar >> 32;
ip->ehar_l = ehar & 0xffffffff;
}
writel(ip->ehar_h, &regs->ehar_h);
writel(ip->ehar_l, &regs->ehar_l);
}
netif_wake_queue(dev); /* Let us get going again. */
}
module_pci_driver(ioc3_driver);
MODULE_AUTHOR("Ralf Baechle <ralf@linux-mips.org>");
MODULE_DESCRIPTION("SGI IOC3 Ethernet driver");
MODULE_LICENSE("GPL");