OpenCloudOS-Kernel/arch/x86/kernel/tsc_sync.c

217 lines
5.4 KiB
C
Raw Normal View History

/*
* check TSC synchronization.
*
* Copyright (C) 2006, Red Hat, Inc., Ingo Molnar
*
* We check whether all boot CPUs have their TSC's synchronized,
* print a warning if not and turn off the TSC clock-source.
*
* The warp-check is point-to-point between two CPUs, the CPU
* initiating the bootup is the 'source CPU', the freshly booting
* CPU is the 'target CPU'.
*
* Only two CPUs may participate - they can enter in any order.
* ( The serial nature of the boot logic and the CPU hotplug lock
* protects against more than 2 CPUs entering this code. )
*/
#include <linux/spinlock.h>
#include <linux/kernel.h>
#include <linux/smp.h>
#include <linux/nmi.h>
#include <asm/tsc.h>
/*
* Entry/exit counters that make sure that both CPUs
* run the measurement code at once:
*/
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 06:23:59 +08:00
static atomic_t start_count;
static atomic_t stop_count;
/*
* We use a raw spinlock in this exceptional case, because
* we want to have the fastest, inlined, non-debug version
* of a critical section, to be able to prove TSC time-warps:
*/
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 06:23:59 +08:00
static arch_spinlock_t sync_lock = __ARCH_SPIN_LOCK_UNLOCKED;
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 06:23:59 +08:00
static cycles_t last_tsc;
static cycles_t max_warp;
static int nr_warps;
/*
* TSC-warp measurement loop running on both CPUs:
*/
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 06:23:59 +08:00
static void check_tsc_warp(unsigned int timeout)
{
cycles_t start, now, prev, end;
int i;
rdtsc_barrier();
start = get_cycles();
rdtsc_barrier();
/*
x86/tsc: Reduce the TSC sync check time for core-siblings For each logical CPU that is coming online, we spend 20msec for checking the TSC synchronization. And as this is done sequentially for each logical CPU boot, this time gets added up depending on the number of logical CPU's supported by the platform. Minimize this by using the socket topology information. If the target CPU coming online doesn't have any of its core-siblings online, a timeout of 20msec will be used for the TSC-warp measurement loop. Otherwise a smaller timeout of 2msec will be used, as we have some information about this socket already (and this information grows as we have more and more logical-siblings in that socket). Ideally we should be able to skip the TSC sync check on the other core-siblings, if the first logical CPU in a socket passed the sync test. But as the TSC is per-logical CPU and can potentially be modified wrongly by the bios before the OS boot, TSC sync test for smaller duration should be able to catch such errors. Also this will catch the condition where all the cores in the socket doesn't get reset at the same time. For example, with this modification, time spent in TSC sync checks on a 4 socket 10-core with HT system gets reduced from 1580msec to 212msec. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Acked-by: Arjan van de Ven <arjan@linux.intel.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Jack Steiner <steiner@sgi.com> Cc: venki@google.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/1328581940.29790.20.camel@sbsiddha-desk.sc.intel.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-02-07 10:32:20 +08:00
* The measurement runs for 'timeout' msecs:
*/
x86/tsc: Reduce the TSC sync check time for core-siblings For each logical CPU that is coming online, we spend 20msec for checking the TSC synchronization. And as this is done sequentially for each logical CPU boot, this time gets added up depending on the number of logical CPU's supported by the platform. Minimize this by using the socket topology information. If the target CPU coming online doesn't have any of its core-siblings online, a timeout of 20msec will be used for the TSC-warp measurement loop. Otherwise a smaller timeout of 2msec will be used, as we have some information about this socket already (and this information grows as we have more and more logical-siblings in that socket). Ideally we should be able to skip the TSC sync check on the other core-siblings, if the first logical CPU in a socket passed the sync test. But as the TSC is per-logical CPU and can potentially be modified wrongly by the bios before the OS boot, TSC sync test for smaller duration should be able to catch such errors. Also this will catch the condition where all the cores in the socket doesn't get reset at the same time. For example, with this modification, time spent in TSC sync checks on a 4 socket 10-core with HT system gets reduced from 1580msec to 212msec. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Acked-by: Arjan van de Ven <arjan@linux.intel.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Jack Steiner <steiner@sgi.com> Cc: venki@google.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/1328581940.29790.20.camel@sbsiddha-desk.sc.intel.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-02-07 10:32:20 +08:00
end = start + (cycles_t) tsc_khz * timeout;
now = start;
for (i = 0; ; i++) {
/*
* We take the global lock, measure TSC, save the
* previous TSC that was measured (possibly on
* another CPU) and update the previous TSC timestamp.
*/
arch_spin_lock(&sync_lock);
prev = last_tsc;
rdtsc_barrier();
now = get_cycles();
rdtsc_barrier();
last_tsc = now;
arch_spin_unlock(&sync_lock);
/*
* Be nice every now and then (and also check whether
* measurement is done [we also insert a 10 million
* loops safety exit, so we dont lock up in case the
* TSC readout is totally broken]):
*/
if (unlikely(!(i & 7))) {
if (now > end || i > 10000000)
break;
cpu_relax();
touch_nmi_watchdog();
}
/*
* Outside the critical section we can now see whether
* we saw a time-warp of the TSC going backwards:
*/
if (unlikely(prev > now)) {
arch_spin_lock(&sync_lock);
max_warp = max(max_warp, prev - now);
nr_warps++;
arch_spin_unlock(&sync_lock);
}
}
WARN(!(now-start),
"Warning: zero tsc calibration delta: %Ld [max: %Ld]\n",
now-start, end-start);
}
x86/tsc: Reduce the TSC sync check time for core-siblings For each logical CPU that is coming online, we spend 20msec for checking the TSC synchronization. And as this is done sequentially for each logical CPU boot, this time gets added up depending on the number of logical CPU's supported by the platform. Minimize this by using the socket topology information. If the target CPU coming online doesn't have any of its core-siblings online, a timeout of 20msec will be used for the TSC-warp measurement loop. Otherwise a smaller timeout of 2msec will be used, as we have some information about this socket already (and this information grows as we have more and more logical-siblings in that socket). Ideally we should be able to skip the TSC sync check on the other core-siblings, if the first logical CPU in a socket passed the sync test. But as the TSC is per-logical CPU and can potentially be modified wrongly by the bios before the OS boot, TSC sync test for smaller duration should be able to catch such errors. Also this will catch the condition where all the cores in the socket doesn't get reset at the same time. For example, with this modification, time spent in TSC sync checks on a 4 socket 10-core with HT system gets reduced from 1580msec to 212msec. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Acked-by: Arjan van de Ven <arjan@linux.intel.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Jack Steiner <steiner@sgi.com> Cc: venki@google.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/1328581940.29790.20.camel@sbsiddha-desk.sc.intel.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-02-07 10:32:20 +08:00
/*
* If the target CPU coming online doesn't have any of its core-siblings
* online, a timeout of 20msec will be used for the TSC-warp measurement
* loop. Otherwise a smaller timeout of 2msec will be used, as we have some
* information about this socket already (and this information grows as we
* have more and more logical-siblings in that socket).
*
* Ideally we should be able to skip the TSC sync check on the other
* core-siblings, if the first logical CPU in a socket passed the sync test.
* But as the TSC is per-logical CPU and can potentially be modified wrongly
* by the bios, TSC sync test for smaller duration should be able
* to catch such errors. Also this will catch the condition where all the
* cores in the socket doesn't get reset at the same time.
*/
static inline unsigned int loop_timeout(int cpu)
{
return (cpumask_weight(topology_core_cpumask(cpu)) > 1) ? 2 : 20;
x86/tsc: Reduce the TSC sync check time for core-siblings For each logical CPU that is coming online, we spend 20msec for checking the TSC synchronization. And as this is done sequentially for each logical CPU boot, this time gets added up depending on the number of logical CPU's supported by the platform. Minimize this by using the socket topology information. If the target CPU coming online doesn't have any of its core-siblings online, a timeout of 20msec will be used for the TSC-warp measurement loop. Otherwise a smaller timeout of 2msec will be used, as we have some information about this socket already (and this information grows as we have more and more logical-siblings in that socket). Ideally we should be able to skip the TSC sync check on the other core-siblings, if the first logical CPU in a socket passed the sync test. But as the TSC is per-logical CPU and can potentially be modified wrongly by the bios before the OS boot, TSC sync test for smaller duration should be able to catch such errors. Also this will catch the condition where all the cores in the socket doesn't get reset at the same time. For example, with this modification, time spent in TSC sync checks on a 4 socket 10-core with HT system gets reduced from 1580msec to 212msec. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Acked-by: Arjan van de Ven <arjan@linux.intel.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Jack Steiner <steiner@sgi.com> Cc: venki@google.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/1328581940.29790.20.camel@sbsiddha-desk.sc.intel.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-02-07 10:32:20 +08:00
}
/*
* Source CPU calls into this - it waits for the freshly booted
* target CPU to arrive and then starts the measurement:
*/
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 06:23:59 +08:00
void check_tsc_sync_source(int cpu)
{
int cpus = 2;
/*
* No need to check if we already know that the TSC is not
* synchronized:
*/
if (unsynchronized_tsc())
return;
if (tsc_clocksource_reliable) {
if (cpu == (nr_cpu_ids-1) || system_state != SYSTEM_BOOTING)
pr_info(
"Skipped synchronization checks as TSC is reliable.\n");
return;
}
/*
* Reset it - in case this is a second bootup:
*/
atomic_set(&stop_count, 0);
/*
* Wait for the target to arrive:
*/
while (atomic_read(&start_count) != cpus-1)
cpu_relax();
/*
* Trigger the target to continue into the measurement too:
*/
atomic_inc(&start_count);
x86/tsc: Reduce the TSC sync check time for core-siblings For each logical CPU that is coming online, we spend 20msec for checking the TSC synchronization. And as this is done sequentially for each logical CPU boot, this time gets added up depending on the number of logical CPU's supported by the platform. Minimize this by using the socket topology information. If the target CPU coming online doesn't have any of its core-siblings online, a timeout of 20msec will be used for the TSC-warp measurement loop. Otherwise a smaller timeout of 2msec will be used, as we have some information about this socket already (and this information grows as we have more and more logical-siblings in that socket). Ideally we should be able to skip the TSC sync check on the other core-siblings, if the first logical CPU in a socket passed the sync test. But as the TSC is per-logical CPU and can potentially be modified wrongly by the bios before the OS boot, TSC sync test for smaller duration should be able to catch such errors. Also this will catch the condition where all the cores in the socket doesn't get reset at the same time. For example, with this modification, time spent in TSC sync checks on a 4 socket 10-core with HT system gets reduced from 1580msec to 212msec. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Acked-by: Arjan van de Ven <arjan@linux.intel.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Jack Steiner <steiner@sgi.com> Cc: venki@google.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/1328581940.29790.20.camel@sbsiddha-desk.sc.intel.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-02-07 10:32:20 +08:00
check_tsc_warp(loop_timeout(cpu));
while (atomic_read(&stop_count) != cpus-1)
cpu_relax();
if (nr_warps) {
pr_warning("TSC synchronization [CPU#%d -> CPU#%d]:\n",
smp_processor_id(), cpu);
pr_warning("Measured %Ld cycles TSC warp between CPUs, "
"turning off TSC clock.\n", max_warp);
mark_tsc_unstable("check_tsc_sync_source failed");
} else {
pr_debug("TSC synchronization [CPU#%d -> CPU#%d]: passed\n",
smp_processor_id(), cpu);
}
x86: fix: s2ram + P4 + tsc = annoyance s2ram recently became useful here, except for the kernel's annoying habit of disabling my P4's perfectly good TSC. [ 107.894470] CPU 1 is now offline [ 107.894474] SMP alternatives: switching to UP code [ 107.895832] CPU0 attaching sched-domain: [ 107.895836] domain 0: span 1 [ 107.895838] groups: 1 [ 107.896097] CPU1 is down [ 3.726156] Intel machine check architecture supported. [ 3.726165] Intel machine check reporting enabled on CPU#0. [ 3.726167] CPU0: Intel P4/Xeon Extended MCE MSRs (12) available [ 3.726170] CPU0: Thermal monitoring enabled [ 3.726175] Back to C! [ 3.726708] Force enabled HPET at resume [ 3.726775] Enabling non-boot CPUs ... [ 3.727049] CPU0 attaching NULL sched-domain. [ 3.727165] SMP alternatives: switching to SMP code [ 3.727858] Booting processor 1/1 eip 3000 [ 3.727862] CPU 1 irqstacks, hard=b042f000 soft=b042d000 [ 3.738173] Initializing CPU#1 [ 3.798912] Calibrating delay using timer specific routine.. 5986.12 BogoMIPS (lpj=2993061) [ 3.798920] CPU: After generic identify, caps: bfebfbff 00000000 00000000 00000000 00004400 00000000 00000000 00000000 [ 3.798931] CPU: Trace cache: 12K uops, L1 D cache: 8K [ 3.798934] CPU: L2 cache: 512K [ 3.798936] CPU: Physical Processor ID: 0 [ 3.798938] CPU: After all inits, caps: bfebfbff 00000000 00000000 0000b080 00004400 00000000 00000000 00000000 [ 3.798946] Intel machine check architecture supported. [ 3.798952] Intel machine check reporting enabled on CPU#1. [ 3.798955] CPU1: Intel P4/Xeon Extended MCE MSRs (12) available [ 3.798959] CPU1: Thermal monitoring enabled [ 3.799161] CPU1: Intel(R) Pentium(R) 4 CPU 3.00GHz stepping 09 [ 3.799187] checking TSC synchronization [CPU#0 -> CPU#1]: [ 3.819181] Measured 63588552840 cycles TSC warp between CPUs, turning off TSC clock. [ 3.819184] Marking TSC unstable due to: check_tsc_sync_source failed. If check_tsc_warp() is called after initial boot, and the TSC has in the meantime been set (BIOS, user, silicon, elves) to a value lower than the last stored/stale value, we blame the TSC. Reset to pristine condition after every test. Signed-off-by: Mike Galbraith <efault@gmx.de> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 20:30:04 +08:00
/*
* Reset it - just in case we boot another CPU later:
*/
atomic_set(&start_count, 0);
nr_warps = 0;
max_warp = 0;
last_tsc = 0;
/*
* Let the target continue with the bootup:
*/
atomic_inc(&stop_count);
}
/*
* Freshly booted CPUs call into this:
*/
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 06:23:59 +08:00
void check_tsc_sync_target(void)
{
int cpus = 2;
if (unsynchronized_tsc() || tsc_clocksource_reliable)
return;
/*
* Register this CPU's participation and wait for the
* source CPU to start the measurement:
*/
atomic_inc(&start_count);
while (atomic_read(&start_count) != cpus)
cpu_relax();
x86/tsc: Reduce the TSC sync check time for core-siblings For each logical CPU that is coming online, we spend 20msec for checking the TSC synchronization. And as this is done sequentially for each logical CPU boot, this time gets added up depending on the number of logical CPU's supported by the platform. Minimize this by using the socket topology information. If the target CPU coming online doesn't have any of its core-siblings online, a timeout of 20msec will be used for the TSC-warp measurement loop. Otherwise a smaller timeout of 2msec will be used, as we have some information about this socket already (and this information grows as we have more and more logical-siblings in that socket). Ideally we should be able to skip the TSC sync check on the other core-siblings, if the first logical CPU in a socket passed the sync test. But as the TSC is per-logical CPU and can potentially be modified wrongly by the bios before the OS boot, TSC sync test for smaller duration should be able to catch such errors. Also this will catch the condition where all the cores in the socket doesn't get reset at the same time. For example, with this modification, time spent in TSC sync checks on a 4 socket 10-core with HT system gets reduced from 1580msec to 212msec. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Acked-by: Arjan van de Ven <arjan@linux.intel.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Jack Steiner <steiner@sgi.com> Cc: venki@google.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/1328581940.29790.20.camel@sbsiddha-desk.sc.intel.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-02-07 10:32:20 +08:00
check_tsc_warp(loop_timeout(smp_processor_id()));
/*
* Ok, we are done:
*/
atomic_inc(&stop_count);
/*
* Wait for the source CPU to print stuff:
*/
while (atomic_read(&stop_count) != cpus)
cpu_relax();
}