OpenCloudOS-Kernel/drivers/lightnvm/pblk-core.c

2237 lines
54 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
/*
* Copyright (C) 2016 CNEX Labs
* Initial release: Javier Gonzalez <javier@cnexlabs.com>
* Matias Bjorling <matias@cnexlabs.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* pblk-core.c - pblk's core functionality
*
*/
#define CREATE_TRACE_POINTS
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
#include "pblk.h"
#include "pblk-trace.h"
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
static void pblk_line_mark_bb(struct work_struct *work)
{
struct pblk_line_ws *line_ws = container_of(work, struct pblk_line_ws,
ws);
struct pblk *pblk = line_ws->pblk;
struct nvm_tgt_dev *dev = pblk->dev;
struct ppa_addr *ppa = line_ws->priv;
int ret;
ret = nvm_set_chunk_meta(dev, ppa, 1, NVM_BLK_T_GRWN_BAD);
if (ret) {
struct pblk_line *line;
int pos;
line = pblk_ppa_to_line(pblk, *ppa);
pos = pblk_ppa_to_pos(&dev->geo, *ppa);
pblk_err(pblk, "failed to mark bb, line:%d, pos:%d\n",
line->id, pos);
}
kfree(ppa);
mempool_free(line_ws, &pblk->gen_ws_pool);
}
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
static void pblk_mark_bb(struct pblk *pblk, struct pblk_line *line,
struct ppa_addr ppa_addr)
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
{
struct nvm_tgt_dev *dev = pblk->dev;
struct nvm_geo *geo = &dev->geo;
struct ppa_addr *ppa;
int pos = pblk_ppa_to_pos(geo, ppa_addr);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
pblk_debug(pblk, "erase failed: line:%d, pos:%d\n", line->id, pos);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
atomic_long_inc(&pblk->erase_failed);
atomic_dec(&line->blk_in_line);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
if (test_and_set_bit(pos, line->blk_bitmap))
pblk_err(pblk, "attempted to erase bb: line:%d, pos:%d\n",
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
line->id, pos);
/* Not necessary to mark bad blocks on 2.0 spec. */
if (geo->version == NVM_OCSSD_SPEC_20)
return;
ppa = kmalloc(sizeof(struct ppa_addr), GFP_ATOMIC);
if (!ppa)
return;
*ppa = ppa_addr;
pblk_gen_run_ws(pblk, NULL, ppa, pblk_line_mark_bb,
GFP_ATOMIC, pblk->bb_wq);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
}
static void __pblk_end_io_erase(struct pblk *pblk, struct nvm_rq *rqd)
{
struct nvm_tgt_dev *dev = pblk->dev;
struct nvm_geo *geo = &dev->geo;
struct nvm_chk_meta *chunk;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
struct pblk_line *line;
int pos;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
line = pblk_ppa_to_line(pblk, rqd->ppa_addr);
pos = pblk_ppa_to_pos(geo, rqd->ppa_addr);
chunk = &line->chks[pos];
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
atomic_dec(&line->left_seblks);
if (rqd->error) {
trace_pblk_chunk_reset(pblk_disk_name(pblk),
&rqd->ppa_addr, PBLK_CHUNK_RESET_FAILED);
chunk->state = NVM_CHK_ST_OFFLINE;
pblk_mark_bb(pblk, line, rqd->ppa_addr);
} else {
trace_pblk_chunk_reset(pblk_disk_name(pblk),
&rqd->ppa_addr, PBLK_CHUNK_RESET_DONE);
chunk->state = NVM_CHK_ST_FREE;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
}
trace_pblk_chunk_state(pblk_disk_name(pblk), &rqd->ppa_addr,
chunk->state);
atomic_dec(&pblk->inflight_io);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
}
/* Erase completion assumes that only one block is erased at the time */
static void pblk_end_io_erase(struct nvm_rq *rqd)
{
struct pblk *pblk = rqd->private;
__pblk_end_io_erase(pblk, rqd);
mempool_free(rqd, &pblk->e_rq_pool);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
}
/*
* Get information for all chunks from the device.
*
* The caller is responsible for freeing (vmalloc) the returned structure
*/
struct nvm_chk_meta *pblk_get_chunk_meta(struct pblk *pblk)
{
struct nvm_tgt_dev *dev = pblk->dev;
struct nvm_geo *geo = &dev->geo;
struct nvm_chk_meta *meta;
struct ppa_addr ppa;
unsigned long len;
int ret;
ppa.ppa = 0;
len = geo->all_chunks * sizeof(*meta);
meta = vzalloc(len);
if (!meta)
return ERR_PTR(-ENOMEM);
ret = nvm_get_chunk_meta(dev, ppa, geo->all_chunks, meta);
if (ret) {
vfree(meta);
return ERR_PTR(-EIO);
}
return meta;
}
struct nvm_chk_meta *pblk_chunk_get_off(struct pblk *pblk,
struct nvm_chk_meta *meta,
struct ppa_addr ppa)
{
struct nvm_tgt_dev *dev = pblk->dev;
struct nvm_geo *geo = &dev->geo;
int ch_off = ppa.m.grp * geo->num_chk * geo->num_lun;
int lun_off = ppa.m.pu * geo->num_chk;
int chk_off = ppa.m.chk;
return meta + ch_off + lun_off + chk_off;
}
void __pblk_map_invalidate(struct pblk *pblk, struct pblk_line *line,
u64 paddr)
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
{
struct pblk_line_mgmt *l_mg = &pblk->l_mg;
struct list_head *move_list = NULL;
/* Lines being reclaimed (GC'ed) cannot be invalidated. Before the L2P
* table is modified with reclaimed sectors, a check is done to endure
* that newer updates are not overwritten.
*/
spin_lock(&line->lock);
WARN_ON(line->state == PBLK_LINESTATE_FREE);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
if (test_and_set_bit(paddr, line->invalid_bitmap)) {
WARN_ONCE(1, "pblk: double invalidate\n");
spin_unlock(&line->lock);
return;
}
le32_add_cpu(line->vsc, -1);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
if (line->state == PBLK_LINESTATE_CLOSED)
move_list = pblk_line_gc_list(pblk, line);
spin_unlock(&line->lock);
if (move_list) {
spin_lock(&l_mg->gc_lock);
spin_lock(&line->lock);
/* Prevent moving a line that has just been chosen for GC */
if (line->state == PBLK_LINESTATE_GC) {
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
spin_unlock(&line->lock);
spin_unlock(&l_mg->gc_lock);
return;
}
spin_unlock(&line->lock);
list_move_tail(&line->list, move_list);
spin_unlock(&l_mg->gc_lock);
}
}
void pblk_map_invalidate(struct pblk *pblk, struct ppa_addr ppa)
{
struct pblk_line *line;
u64 paddr;
#ifdef CONFIG_NVM_PBLK_DEBUG
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
/* Callers must ensure that the ppa points to a device address */
BUG_ON(pblk_addr_in_cache(ppa));
BUG_ON(pblk_ppa_empty(ppa));
#endif
line = pblk_ppa_to_line(pblk, ppa);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
paddr = pblk_dev_ppa_to_line_addr(pblk, ppa);
__pblk_map_invalidate(pblk, line, paddr);
}
static void pblk_invalidate_range(struct pblk *pblk, sector_t slba,
unsigned int nr_secs)
{
sector_t lba;
spin_lock(&pblk->trans_lock);
for (lba = slba; lba < slba + nr_secs; lba++) {
struct ppa_addr ppa;
ppa = pblk_trans_map_get(pblk, lba);
if (!pblk_addr_in_cache(ppa) && !pblk_ppa_empty(ppa))
pblk_map_invalidate(pblk, ppa);
pblk_ppa_set_empty(&ppa);
pblk_trans_map_set(pblk, lba, ppa);
}
spin_unlock(&pblk->trans_lock);
}
int pblk_alloc_rqd_meta(struct pblk *pblk, struct nvm_rq *rqd)
{
struct nvm_tgt_dev *dev = pblk->dev;
rqd->meta_list = nvm_dev_dma_alloc(dev->parent, GFP_KERNEL,
&rqd->dma_meta_list);
if (!rqd->meta_list)
return -ENOMEM;
if (rqd->nr_ppas == 1)
return 0;
rqd->ppa_list = rqd->meta_list + pblk_dma_meta_size(pblk);
rqd->dma_ppa_list = rqd->dma_meta_list + pblk_dma_meta_size(pblk);
return 0;
}
void pblk_free_rqd_meta(struct pblk *pblk, struct nvm_rq *rqd)
{
struct nvm_tgt_dev *dev = pblk->dev;
if (rqd->meta_list)
nvm_dev_dma_free(dev->parent, rqd->meta_list,
rqd->dma_meta_list);
}
/* Caller must guarantee that the request is a valid type */
struct nvm_rq *pblk_alloc_rqd(struct pblk *pblk, int type)
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
{
mempool_t *pool;
struct nvm_rq *rqd;
int rq_size;
switch (type) {
case PBLK_WRITE:
case PBLK_WRITE_INT:
pool = &pblk->w_rq_pool;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
rq_size = pblk_w_rq_size;
break;
case PBLK_READ:
pool = &pblk->r_rq_pool;
rq_size = pblk_g_rq_size;
break;
default:
pool = &pblk->e_rq_pool;
rq_size = pblk_g_rq_size;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
}
rqd = mempool_alloc(pool, GFP_KERNEL);
memset(rqd, 0, rq_size);
return rqd;
}
/* Typically used on completion path. Cannot guarantee request consistency */
void pblk_free_rqd(struct pblk *pblk, struct nvm_rq *rqd, int type)
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
{
mempool_t *pool;
switch (type) {
case PBLK_WRITE:
kfree(((struct pblk_c_ctx *)nvm_rq_to_pdu(rqd))->lun_bitmap);
/* fall through */
case PBLK_WRITE_INT:
pool = &pblk->w_rq_pool;
break;
case PBLK_READ:
pool = &pblk->r_rq_pool;
break;
case PBLK_ERASE:
pool = &pblk->e_rq_pool;
break;
default:
pblk_err(pblk, "trying to free unknown rqd type\n");
return;
}
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
pblk_free_rqd_meta(pblk, rqd);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
mempool_free(rqd, pool);
}
void pblk_bio_free_pages(struct pblk *pblk, struct bio *bio, int off,
int nr_pages)
{
struct bio_vec bv;
int i;
WARN_ON(off + nr_pages != bio->bi_vcnt);
for (i = off; i < nr_pages + off; i++) {
bv = bio->bi_io_vec[i];
mempool_free(bv.bv_page, &pblk->page_bio_pool);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
}
}
int pblk_bio_add_pages(struct pblk *pblk, struct bio *bio, gfp_t flags,
int nr_pages)
{
struct request_queue *q = pblk->dev->q;
struct page *page;
int i, ret;
for (i = 0; i < nr_pages; i++) {
page = mempool_alloc(&pblk->page_bio_pool, flags);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
ret = bio_add_pc_page(q, bio, page, PBLK_EXPOSED_PAGE_SIZE, 0);
if (ret != PBLK_EXPOSED_PAGE_SIZE) {
pblk_err(pblk, "could not add page to bio\n");
mempool_free(page, &pblk->page_bio_pool);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
goto err;
}
}
return 0;
err:
pblk_bio_free_pages(pblk, bio, (bio->bi_vcnt - i), i);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
return -1;
}
void pblk_write_kick(struct pblk *pblk)
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
{
wake_up_process(pblk->writer_ts);
mod_timer(&pblk->wtimer, jiffies + msecs_to_jiffies(1000));
}
void pblk_write_timer_fn(struct timer_list *t)
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
{
struct pblk *pblk = from_timer(pblk, t, wtimer);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
/* kick the write thread every tick to flush outstanding data */
pblk_write_kick(pblk);
}
void pblk_write_should_kick(struct pblk *pblk)
{
unsigned int secs_avail = pblk_rb_read_count(&pblk->rwb);
if (secs_avail >= pblk->min_write_pgs_data)
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
pblk_write_kick(pblk);
}
static void pblk_wait_for_meta(struct pblk *pblk)
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
{
do {
if (!atomic_read(&pblk->inflight_io))
break;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
schedule();
} while (1);
}
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
static void pblk_flush_writer(struct pblk *pblk)
{
pblk_rb_flush(&pblk->rwb);
do {
if (!pblk_rb_sync_count(&pblk->rwb))
break;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
pblk_write_kick(pblk);
schedule();
} while (1);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
}
struct list_head *pblk_line_gc_list(struct pblk *pblk, struct pblk_line *line)
{
struct pblk_line_meta *lm = &pblk->lm;
struct pblk_line_mgmt *l_mg = &pblk->l_mg;
struct list_head *move_list = NULL;
int packed_meta = (le32_to_cpu(*line->vsc) / pblk->min_write_pgs_data)
* (pblk->min_write_pgs - pblk->min_write_pgs_data);
int vsc = le32_to_cpu(*line->vsc) + packed_meta;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
lockdep_assert_held(&line->lock);
if (line->w_err_gc->has_write_err) {
if (line->gc_group != PBLK_LINEGC_WERR) {
line->gc_group = PBLK_LINEGC_WERR;
move_list = &l_mg->gc_werr_list;
pblk_rl_werr_line_in(&pblk->rl);
}
} else if (!vsc) {
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
if (line->gc_group != PBLK_LINEGC_FULL) {
line->gc_group = PBLK_LINEGC_FULL;
move_list = &l_mg->gc_full_list;
}
} else if (vsc < lm->high_thrs) {
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
if (line->gc_group != PBLK_LINEGC_HIGH) {
line->gc_group = PBLK_LINEGC_HIGH;
move_list = &l_mg->gc_high_list;
}
} else if (vsc < lm->mid_thrs) {
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
if (line->gc_group != PBLK_LINEGC_MID) {
line->gc_group = PBLK_LINEGC_MID;
move_list = &l_mg->gc_mid_list;
}
} else if (vsc < line->sec_in_line) {
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
if (line->gc_group != PBLK_LINEGC_LOW) {
line->gc_group = PBLK_LINEGC_LOW;
move_list = &l_mg->gc_low_list;
}
} else if (vsc == line->sec_in_line) {
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
if (line->gc_group != PBLK_LINEGC_EMPTY) {
line->gc_group = PBLK_LINEGC_EMPTY;
move_list = &l_mg->gc_empty_list;
}
} else {
line->state = PBLK_LINESTATE_CORRUPT;
trace_pblk_line_state(pblk_disk_name(pblk), line->id,
line->state);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
line->gc_group = PBLK_LINEGC_NONE;
move_list = &l_mg->corrupt_list;
pblk_err(pblk, "corrupted vsc for line %d, vsc:%d (%d/%d/%d)\n",
line->id, vsc,
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
line->sec_in_line,
lm->high_thrs, lm->mid_thrs);
}
return move_list;
}
void pblk_discard(struct pblk *pblk, struct bio *bio)
{
sector_t slba = pblk_get_lba(bio);
sector_t nr_secs = pblk_get_secs(bio);
pblk_invalidate_range(pblk, slba, nr_secs);
}
void pblk_log_write_err(struct pblk *pblk, struct nvm_rq *rqd)
{
atomic_long_inc(&pblk->write_failed);
#ifdef CONFIG_NVM_PBLK_DEBUG
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
pblk_print_failed_rqd(pblk, rqd, rqd->error);
#endif
}
void pblk_log_read_err(struct pblk *pblk, struct nvm_rq *rqd)
{
/* Empty page read is not necessarily an error (e.g., L2P recovery) */
if (rqd->error == NVM_RSP_ERR_EMPTYPAGE) {
atomic_long_inc(&pblk->read_empty);
return;
}
switch (rqd->error) {
case NVM_RSP_WARN_HIGHECC:
atomic_long_inc(&pblk->read_high_ecc);
break;
case NVM_RSP_ERR_FAILECC:
case NVM_RSP_ERR_FAILCRC:
atomic_long_inc(&pblk->read_failed);
break;
default:
pblk_err(pblk, "unknown read error:%d\n", rqd->error);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
}
#ifdef CONFIG_NVM_PBLK_DEBUG
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
pblk_print_failed_rqd(pblk, rqd, rqd->error);
#endif
}
void pblk_set_sec_per_write(struct pblk *pblk, int sec_per_write)
{
pblk->sec_per_write = sec_per_write;
}
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
int pblk_submit_io(struct pblk *pblk, struct nvm_rq *rqd)
{
struct nvm_tgt_dev *dev = pblk->dev;
atomic_inc(&pblk->inflight_io);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
#ifdef CONFIG_NVM_PBLK_DEBUG
if (pblk_check_io(pblk, rqd))
return NVM_IO_ERR;
#endif
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
return nvm_submit_io(dev, rqd);
}
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
void pblk_check_chunk_state_update(struct pblk *pblk, struct nvm_rq *rqd)
{
struct ppa_addr *ppa_list = nvm_rq_to_ppa_list(rqd);
int i;
for (i = 0; i < rqd->nr_ppas; i++) {
struct ppa_addr *ppa = &ppa_list[i];
struct nvm_chk_meta *chunk = pblk_dev_ppa_to_chunk(pblk, *ppa);
u64 caddr = pblk_dev_ppa_to_chunk_addr(pblk, *ppa);
if (caddr == 0)
trace_pblk_chunk_state(pblk_disk_name(pblk),
ppa, NVM_CHK_ST_OPEN);
else if (caddr == (chunk->cnlb - 1))
trace_pblk_chunk_state(pblk_disk_name(pblk),
ppa, NVM_CHK_ST_CLOSED);
}
}
int pblk_submit_io_sync(struct pblk *pblk, struct nvm_rq *rqd)
{
struct nvm_tgt_dev *dev = pblk->dev;
int ret;
atomic_inc(&pblk->inflight_io);
#ifdef CONFIG_NVM_PBLK_DEBUG
if (pblk_check_io(pblk, rqd))
return NVM_IO_ERR;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
#endif
ret = nvm_submit_io_sync(dev, rqd);
if (trace_pblk_chunk_state_enabled() && !ret &&
rqd->opcode == NVM_OP_PWRITE)
pblk_check_chunk_state_update(pblk, rqd);
return ret;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
}
int pblk_submit_io_sync_sem(struct pblk *pblk, struct nvm_rq *rqd)
{
struct ppa_addr *ppa_list = nvm_rq_to_ppa_list(rqd);
int ret;
pblk_down_chunk(pblk, ppa_list[0]);
ret = pblk_submit_io_sync(pblk, rqd);
pblk_up_chunk(pblk, ppa_list[0]);
return ret;
}
static void pblk_bio_map_addr_endio(struct bio *bio)
{
bio_put(bio);
}
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
struct bio *pblk_bio_map_addr(struct pblk *pblk, void *data,
unsigned int nr_secs, unsigned int len,
int alloc_type, gfp_t gfp_mask)
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
{
struct nvm_tgt_dev *dev = pblk->dev;
void *kaddr = data;
struct page *page;
struct bio *bio;
int i, ret;
if (alloc_type == PBLK_KMALLOC_META)
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
return bio_map_kern(dev->q, kaddr, len, gfp_mask);
bio = bio_kmalloc(gfp_mask, nr_secs);
if (!bio)
return ERR_PTR(-ENOMEM);
for (i = 0; i < nr_secs; i++) {
page = vmalloc_to_page(kaddr);
if (!page) {
pblk_err(pblk, "could not map vmalloc bio\n");
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
bio_put(bio);
bio = ERR_PTR(-ENOMEM);
goto out;
}
ret = bio_add_pc_page(dev->q, bio, page, PAGE_SIZE, 0);
if (ret != PAGE_SIZE) {
pblk_err(pblk, "could not add page to bio\n");
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
bio_put(bio);
bio = ERR_PTR(-ENOMEM);
goto out;
}
kaddr += PAGE_SIZE;
}
bio->bi_end_io = pblk_bio_map_addr_endio;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
out:
return bio;
}
int pblk_calc_secs(struct pblk *pblk, unsigned long secs_avail,
unsigned long secs_to_flush, bool skip_meta)
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
{
int max = pblk->sec_per_write;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
int min = pblk->min_write_pgs;
int secs_to_sync = 0;
if (skip_meta && pblk->min_write_pgs_data != pblk->min_write_pgs)
min = max = pblk->min_write_pgs_data;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
if (secs_avail >= max)
secs_to_sync = max;
else if (secs_avail >= min)
secs_to_sync = min * (secs_avail / min);
else if (secs_to_flush)
secs_to_sync = min;
return secs_to_sync;
}
void pblk_dealloc_page(struct pblk *pblk, struct pblk_line *line, int nr_secs)
{
u64 addr;
int i;
spin_lock(&line->lock);
addr = find_next_zero_bit(line->map_bitmap,
pblk->lm.sec_per_line, line->cur_sec);
line->cur_sec = addr - nr_secs;
for (i = 0; i < nr_secs; i++, line->cur_sec--)
WARN_ON(!test_and_clear_bit(line->cur_sec, line->map_bitmap));
spin_unlock(&line->lock);
}
u64 __pblk_alloc_page(struct pblk *pblk, struct pblk_line *line, int nr_secs)
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
{
u64 addr;
int i;
lockdep_assert_held(&line->lock);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
/* logic error: ppa out-of-bounds. Prevent generating bad address */
if (line->cur_sec + nr_secs > pblk->lm.sec_per_line) {
WARN(1, "pblk: page allocation out of bounds\n");
nr_secs = pblk->lm.sec_per_line - line->cur_sec;
}
line->cur_sec = addr = find_next_zero_bit(line->map_bitmap,
pblk->lm.sec_per_line, line->cur_sec);
for (i = 0; i < nr_secs; i++, line->cur_sec++)
WARN_ON(test_and_set_bit(line->cur_sec, line->map_bitmap));
return addr;
}
u64 pblk_alloc_page(struct pblk *pblk, struct pblk_line *line, int nr_secs)
{
u64 addr;
/* Lock needed in case a write fails and a recovery needs to remap
* failed write buffer entries
*/
spin_lock(&line->lock);
addr = __pblk_alloc_page(pblk, line, nr_secs);
line->left_msecs -= nr_secs;
WARN(line->left_msecs < 0, "pblk: page allocation out of bounds\n");
spin_unlock(&line->lock);
return addr;
}
u64 pblk_lookup_page(struct pblk *pblk, struct pblk_line *line)
{
u64 paddr;
spin_lock(&line->lock);
paddr = find_next_zero_bit(line->map_bitmap,
pblk->lm.sec_per_line, line->cur_sec);
spin_unlock(&line->lock);
return paddr;
}
u64 pblk_line_smeta_start(struct pblk *pblk, struct pblk_line *line)
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
{
struct nvm_tgt_dev *dev = pblk->dev;
struct nvm_geo *geo = &dev->geo;
struct pblk_line_meta *lm = &pblk->lm;
int bit;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
/* This usually only happens on bad lines */
bit = find_first_zero_bit(line->blk_bitmap, lm->blk_per_line);
if (bit >= lm->blk_per_line)
return -1;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
return bit * geo->ws_opt;
}
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
int pblk_line_smeta_read(struct pblk *pblk, struct pblk_line *line)
{
struct nvm_tgt_dev *dev = pblk->dev;
struct pblk_line_meta *lm = &pblk->lm;
struct bio *bio;
struct ppa_addr *ppa_list;
struct nvm_rq rqd;
u64 paddr = pblk_line_smeta_start(pblk, line);
int i, ret;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
memset(&rqd, 0, sizeof(struct nvm_rq));
ret = pblk_alloc_rqd_meta(pblk, &rqd);
if (ret)
return ret;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
bio = bio_map_kern(dev->q, line->smeta, lm->smeta_len, GFP_KERNEL);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
if (IS_ERR(bio)) {
ret = PTR_ERR(bio);
goto clear_rqd;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
}
bio->bi_iter.bi_sector = 0; /* internal bio */
bio_set_op_attrs(bio, REQ_OP_READ, 0);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
rqd.bio = bio;
rqd.opcode = NVM_OP_PREAD;
rqd.nr_ppas = lm->smeta_sec;
rqd.is_seq = 1;
ppa_list = nvm_rq_to_ppa_list(&rqd);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
for (i = 0; i < lm->smeta_sec; i++, paddr++)
ppa_list[i] = addr_to_gen_ppa(pblk, paddr, line->id);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
ret = pblk_submit_io_sync(pblk, &rqd);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
if (ret) {
pblk_err(pblk, "smeta I/O submission failed: %d\n", ret);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
bio_put(bio);
goto clear_rqd;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
}
atomic_dec(&pblk->inflight_io);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
if (rqd.error && rqd.error != NVM_RSP_WARN_HIGHECC) {
pblk_log_read_err(pblk, &rqd);
ret = -EIO;
}
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
clear_rqd:
pblk_free_rqd_meta(pblk, &rqd);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
return ret;
}
static int pblk_line_smeta_write(struct pblk *pblk, struct pblk_line *line,
u64 paddr)
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
{
struct nvm_tgt_dev *dev = pblk->dev;
struct pblk_line_meta *lm = &pblk->lm;
struct bio *bio;
struct ppa_addr *ppa_list;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
struct nvm_rq rqd;
__le64 *lba_list = emeta_to_lbas(pblk, line->emeta->buf);
__le64 addr_empty = cpu_to_le64(ADDR_EMPTY);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
int i, ret;
memset(&rqd, 0, sizeof(struct nvm_rq));
ret = pblk_alloc_rqd_meta(pblk, &rqd);
if (ret)
return ret;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
bio = bio_map_kern(dev->q, line->smeta, lm->smeta_len, GFP_KERNEL);
if (IS_ERR(bio)) {
ret = PTR_ERR(bio);
goto clear_rqd;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
}
bio->bi_iter.bi_sector = 0; /* internal bio */
bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
rqd.bio = bio;
rqd.opcode = NVM_OP_PWRITE;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
rqd.nr_ppas = lm->smeta_sec;
rqd.is_seq = 1;
ppa_list = nvm_rq_to_ppa_list(&rqd);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
for (i = 0; i < lm->smeta_sec; i++, paddr++) {
struct pblk_sec_meta *meta = pblk_get_meta(pblk,
rqd.meta_list, i);
ppa_list[i] = addr_to_gen_ppa(pblk, paddr, line->id);
meta->lba = lba_list[paddr] = addr_empty;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
}
ret = pblk_submit_io_sync_sem(pblk, &rqd);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
if (ret) {
pblk_err(pblk, "smeta I/O submission failed: %d\n", ret);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
bio_put(bio);
goto clear_rqd;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
}
atomic_dec(&pblk->inflight_io);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
if (rqd.error) {
pblk_log_write_err(pblk, &rqd);
ret = -EIO;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
}
clear_rqd:
pblk_free_rqd_meta(pblk, &rqd);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
return ret;
}
int pblk_line_emeta_read(struct pblk *pblk, struct pblk_line *line,
void *emeta_buf)
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
{
struct nvm_tgt_dev *dev = pblk->dev;
struct nvm_geo *geo = &dev->geo;
struct pblk_line_mgmt *l_mg = &pblk->l_mg;
struct pblk_line_meta *lm = &pblk->lm;
void *ppa_list_buf, *meta_list;
struct bio *bio;
struct ppa_addr *ppa_list;
struct nvm_rq rqd;
u64 paddr = line->emeta_ssec;
dma_addr_t dma_ppa_list, dma_meta_list;
int min = pblk->min_write_pgs;
int left_ppas = lm->emeta_sec[0];
int line_id = line->id;
int rq_ppas, rq_len;
int i, j;
int ret;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
meta_list = nvm_dev_dma_alloc(dev->parent, GFP_KERNEL,
&dma_meta_list);
if (!meta_list)
return -ENOMEM;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
ppa_list_buf = meta_list + pblk_dma_meta_size(pblk);
dma_ppa_list = dma_meta_list + pblk_dma_meta_size(pblk);
next_rq:
memset(&rqd, 0, sizeof(struct nvm_rq));
rq_ppas = pblk_calc_secs(pblk, left_ppas, 0, false);
rq_len = rq_ppas * geo->csecs;
bio = pblk_bio_map_addr(pblk, emeta_buf, rq_ppas, rq_len,
l_mg->emeta_alloc_type, GFP_KERNEL);
if (IS_ERR(bio)) {
ret = PTR_ERR(bio);
goto free_rqd_dma;
}
bio->bi_iter.bi_sector = 0; /* internal bio */
bio_set_op_attrs(bio, REQ_OP_READ, 0);
rqd.bio = bio;
rqd.meta_list = meta_list;
rqd.ppa_list = ppa_list_buf;
rqd.dma_meta_list = dma_meta_list;
rqd.dma_ppa_list = dma_ppa_list;
rqd.opcode = NVM_OP_PREAD;
rqd.nr_ppas = rq_ppas;
ppa_list = nvm_rq_to_ppa_list(&rqd);
for (i = 0; i < rqd.nr_ppas; ) {
struct ppa_addr ppa = addr_to_gen_ppa(pblk, paddr, line_id);
int pos = pblk_ppa_to_pos(geo, ppa);
if (pblk_io_aligned(pblk, rq_ppas))
rqd.is_seq = 1;
while (test_bit(pos, line->blk_bitmap)) {
paddr += min;
if (pblk_boundary_paddr_checks(pblk, paddr)) {
bio_put(bio);
ret = -EINTR;
goto free_rqd_dma;
}
ppa = addr_to_gen_ppa(pblk, paddr, line_id);
pos = pblk_ppa_to_pos(geo, ppa);
}
if (pblk_boundary_paddr_checks(pblk, paddr + min)) {
bio_put(bio);
ret = -EINTR;
goto free_rqd_dma;
}
for (j = 0; j < min; j++, i++, paddr++)
ppa_list[i] = addr_to_gen_ppa(pblk, paddr, line_id);
}
ret = pblk_submit_io_sync(pblk, &rqd);
if (ret) {
pblk_err(pblk, "emeta I/O submission failed: %d\n", ret);
bio_put(bio);
goto free_rqd_dma;
}
atomic_dec(&pblk->inflight_io);
if (rqd.error && rqd.error != NVM_RSP_WARN_HIGHECC) {
pblk_log_read_err(pblk, &rqd);
ret = -EIO;
goto free_rqd_dma;
}
emeta_buf += rq_len;
left_ppas -= rq_ppas;
if (left_ppas)
goto next_rq;
free_rqd_dma:
nvm_dev_dma_free(dev->parent, rqd.meta_list, rqd.dma_meta_list);
return ret;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
}
static void pblk_setup_e_rq(struct pblk *pblk, struct nvm_rq *rqd,
struct ppa_addr ppa)
{
rqd->opcode = NVM_OP_ERASE;
rqd->ppa_addr = ppa;
rqd->nr_ppas = 1;
rqd->is_seq = 1;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
rqd->bio = NULL;
}
static int pblk_blk_erase_sync(struct pblk *pblk, struct ppa_addr ppa)
{
struct nvm_rq rqd = {NULL};
int ret;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
trace_pblk_chunk_reset(pblk_disk_name(pblk), &ppa,
PBLK_CHUNK_RESET_START);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
pblk_setup_e_rq(pblk, &rqd, ppa);
/* The write thread schedules erases so that it minimizes disturbances
* with writes. Thus, there is no need to take the LUN semaphore.
*/
ret = pblk_submit_io_sync(pblk, &rqd);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
rqd.private = pblk;
__pblk_end_io_erase(pblk, &rqd);
return ret;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
}
int pblk_line_erase(struct pblk *pblk, struct pblk_line *line)
{
struct pblk_line_meta *lm = &pblk->lm;
struct ppa_addr ppa;
int ret, bit = -1;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
/* Erase only good blocks, one at a time */
do {
spin_lock(&line->lock);
bit = find_next_zero_bit(line->erase_bitmap, lm->blk_per_line,
bit + 1);
if (bit >= lm->blk_per_line) {
spin_unlock(&line->lock);
break;
}
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
ppa = pblk->luns[bit].bppa; /* set ch and lun */
ppa.a.blk = line->id;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
atomic_dec(&line->left_eblks);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
WARN_ON(test_and_set_bit(bit, line->erase_bitmap));
spin_unlock(&line->lock);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
ret = pblk_blk_erase_sync(pblk, ppa);
if (ret) {
pblk_err(pblk, "failed to erase line %d\n", line->id);
return ret;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
}
} while (1);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
return 0;
}
static void pblk_line_setup_metadata(struct pblk_line *line,
struct pblk_line_mgmt *l_mg,
struct pblk_line_meta *lm)
{
int meta_line;
lockdep_assert_held(&l_mg->free_lock);
retry_meta:
meta_line = find_first_zero_bit(&l_mg->meta_bitmap, PBLK_DATA_LINES);
if (meta_line == PBLK_DATA_LINES) {
spin_unlock(&l_mg->free_lock);
io_schedule();
spin_lock(&l_mg->free_lock);
goto retry_meta;
}
set_bit(meta_line, &l_mg->meta_bitmap);
line->meta_line = meta_line;
line->smeta = l_mg->sline_meta[meta_line];
line->emeta = l_mg->eline_meta[meta_line];
memset(line->smeta, 0, lm->smeta_len);
memset(line->emeta->buf, 0, lm->emeta_len[0]);
line->emeta->mem = 0;
atomic_set(&line->emeta->sync, 0);
}
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
/* For now lines are always assumed full lines. Thus, smeta former and current
* lun bitmaps are omitted.
*/
static int pblk_line_init_metadata(struct pblk *pblk, struct pblk_line *line,
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
struct pblk_line *cur)
{
struct nvm_tgt_dev *dev = pblk->dev;
struct nvm_geo *geo = &dev->geo;
struct pblk_line_meta *lm = &pblk->lm;
struct pblk_line_mgmt *l_mg = &pblk->l_mg;
struct pblk_emeta *emeta = line->emeta;
struct line_emeta *emeta_buf = emeta->buf;
struct line_smeta *smeta_buf = (struct line_smeta *)line->smeta;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
int nr_blk_line;
/* After erasing the line, new bad blocks might appear and we risk
* having an invalid line
*/
nr_blk_line = lm->blk_per_line -
bitmap_weight(line->blk_bitmap, lm->blk_per_line);
if (nr_blk_line < lm->min_blk_line) {
spin_lock(&l_mg->free_lock);
spin_lock(&line->lock);
line->state = PBLK_LINESTATE_BAD;
trace_pblk_line_state(pblk_disk_name(pblk), line->id,
line->state);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
spin_unlock(&line->lock);
list_add_tail(&line->list, &l_mg->bad_list);
spin_unlock(&l_mg->free_lock);
pblk_debug(pblk, "line %d is bad\n", line->id);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
return 0;
}
/* Run-time metadata */
line->lun_bitmap = ((void *)(smeta_buf)) + sizeof(struct line_smeta);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
/* Mark LUNs allocated in this line (all for now) */
bitmap_set(line->lun_bitmap, 0, lm->lun_bitmap_len);
smeta_buf->header.identifier = cpu_to_le32(PBLK_MAGIC);
guid_copy((guid_t *)&smeta_buf->header.uuid, &pblk->instance_uuid);
smeta_buf->header.id = cpu_to_le32(line->id);
smeta_buf->header.type = cpu_to_le16(line->type);
smeta_buf->header.version_major = SMETA_VERSION_MAJOR;
smeta_buf->header.version_minor = SMETA_VERSION_MINOR;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
/* Start metadata */
smeta_buf->seq_nr = cpu_to_le64(line->seq_nr);
smeta_buf->window_wr_lun = cpu_to_le32(geo->all_luns);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
/* Fill metadata among lines */
if (cur) {
memcpy(line->lun_bitmap, cur->lun_bitmap, lm->lun_bitmap_len);
smeta_buf->prev_id = cpu_to_le32(cur->id);
cur->emeta->buf->next_id = cpu_to_le32(line->id);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
} else {
smeta_buf->prev_id = cpu_to_le32(PBLK_LINE_EMPTY);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
}
/* All smeta must be set at this point */
smeta_buf->header.crc = cpu_to_le32(
pblk_calc_meta_header_crc(pblk, &smeta_buf->header));
smeta_buf->crc = cpu_to_le32(pblk_calc_smeta_crc(pblk, smeta_buf));
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
/* End metadata */
memcpy(&emeta_buf->header, &smeta_buf->header,
sizeof(struct line_header));
emeta_buf->header.version_major = EMETA_VERSION_MAJOR;
emeta_buf->header.version_minor = EMETA_VERSION_MINOR;
emeta_buf->header.crc = cpu_to_le32(
pblk_calc_meta_header_crc(pblk, &emeta_buf->header));
emeta_buf->seq_nr = cpu_to_le64(line->seq_nr);
emeta_buf->nr_lbas = cpu_to_le64(line->sec_in_line);
emeta_buf->nr_valid_lbas = cpu_to_le64(0);
emeta_buf->next_id = cpu_to_le32(PBLK_LINE_EMPTY);
emeta_buf->crc = cpu_to_le32(0);
emeta_buf->prev_id = smeta_buf->prev_id;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
return 1;
}
static int pblk_line_alloc_bitmaps(struct pblk *pblk, struct pblk_line *line)
{
struct pblk_line_meta *lm = &pblk->lm;
struct pblk_line_mgmt *l_mg = &pblk->l_mg;
line->map_bitmap = mempool_alloc(l_mg->bitmap_pool, GFP_KERNEL);
if (!line->map_bitmap)
return -ENOMEM;
memset(line->map_bitmap, 0, lm->sec_bitmap_len);
/* will be initialized using bb info from map_bitmap */
line->invalid_bitmap = mempool_alloc(l_mg->bitmap_pool, GFP_KERNEL);
if (!line->invalid_bitmap) {
mempool_free(line->map_bitmap, l_mg->bitmap_pool);
line->map_bitmap = NULL;
return -ENOMEM;
}
return 0;
}
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
/* For now lines are always assumed full lines. Thus, smeta former and current
* lun bitmaps are omitted.
*/
static int pblk_line_init_bb(struct pblk *pblk, struct pblk_line *line,
int init)
{
struct nvm_tgt_dev *dev = pblk->dev;
struct nvm_geo *geo = &dev->geo;
struct pblk_line_meta *lm = &pblk->lm;
struct pblk_line_mgmt *l_mg = &pblk->l_mg;
u64 off;
int bit = -1;
int emeta_secs;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
line->sec_in_line = lm->sec_per_line;
/* Capture bad block information on line mapping bitmaps */
while ((bit = find_next_bit(line->blk_bitmap, lm->blk_per_line,
bit + 1)) < lm->blk_per_line) {
off = bit * geo->ws_opt;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
bitmap_shift_left(l_mg->bb_aux, l_mg->bb_template, off,
lm->sec_per_line);
bitmap_or(line->map_bitmap, line->map_bitmap, l_mg->bb_aux,
lm->sec_per_line);
line->sec_in_line -= geo->clba;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
}
/* Mark smeta metadata sectors as bad sectors */
bit = find_first_zero_bit(line->blk_bitmap, lm->blk_per_line);
off = bit * geo->ws_opt;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
bitmap_set(line->map_bitmap, off, lm->smeta_sec);
line->sec_in_line -= lm->smeta_sec;
line->cur_sec = off + lm->smeta_sec;
if (init && pblk_line_smeta_write(pblk, line, off)) {
pblk_debug(pblk, "line smeta I/O failed. Retry\n");
return 0;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
}
bitmap_copy(line->invalid_bitmap, line->map_bitmap, lm->sec_per_line);
/* Mark emeta metadata sectors as bad sectors. We need to consider bad
* blocks to make sure that there are enough sectors to store emeta
*/
emeta_secs = lm->emeta_sec[0];
off = lm->sec_per_line;
while (emeta_secs) {
off -= geo->ws_opt;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
if (!test_bit(off, line->invalid_bitmap)) {
bitmap_set(line->invalid_bitmap, off, geo->ws_opt);
emeta_secs -= geo->ws_opt;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
}
}
line->emeta_ssec = off;
line->sec_in_line -= lm->emeta_sec[0];
line->nr_valid_lbas = 0;
line->left_msecs = line->sec_in_line;
*line->vsc = cpu_to_le32(line->sec_in_line);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
if (lm->sec_per_line - line->sec_in_line !=
bitmap_weight(line->invalid_bitmap, lm->sec_per_line)) {
spin_lock(&line->lock);
line->state = PBLK_LINESTATE_BAD;
trace_pblk_line_state(pblk_disk_name(pblk), line->id,
line->state);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
spin_unlock(&line->lock);
list_add_tail(&line->list, &l_mg->bad_list);
pblk_err(pblk, "unexpected line %d is bad\n", line->id);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
return 0;
}
return 1;
}
static int pblk_prepare_new_line(struct pblk *pblk, struct pblk_line *line)
{
struct pblk_line_meta *lm = &pblk->lm;
struct nvm_tgt_dev *dev = pblk->dev;
struct nvm_geo *geo = &dev->geo;
int blk_to_erase = atomic_read(&line->blk_in_line);
int i;
for (i = 0; i < lm->blk_per_line; i++) {
struct pblk_lun *rlun = &pblk->luns[i];
int pos = pblk_ppa_to_pos(geo, rlun->bppa);
int state = line->chks[pos].state;
/* Free chunks should not be erased */
if (state & NVM_CHK_ST_FREE) {
set_bit(pblk_ppa_to_pos(geo, rlun->bppa),
line->erase_bitmap);
blk_to_erase--;
}
}
return blk_to_erase;
}
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
static int pblk_line_prepare(struct pblk *pblk, struct pblk_line *line)
{
struct pblk_line_meta *lm = &pblk->lm;
int blk_in_line = atomic_read(&line->blk_in_line);
int blk_to_erase;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
/* Bad blocks do not need to be erased */
bitmap_copy(line->erase_bitmap, line->blk_bitmap, lm->blk_per_line);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
spin_lock(&line->lock);
/* If we have not written to this line, we need to mark up free chunks
* as already erased
*/
if (line->state == PBLK_LINESTATE_NEW) {
blk_to_erase = pblk_prepare_new_line(pblk, line);
line->state = PBLK_LINESTATE_FREE;
trace_pblk_line_state(pblk_disk_name(pblk), line->id,
line->state);
} else {
blk_to_erase = blk_in_line;
}
if (blk_in_line < lm->min_blk_line) {
spin_unlock(&line->lock);
return -EAGAIN;
}
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
if (line->state != PBLK_LINESTATE_FREE) {
WARN(1, "pblk: corrupted line %d, state %d\n",
line->id, line->state);
spin_unlock(&line->lock);
return -EINTR;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
}
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
line->state = PBLK_LINESTATE_OPEN;
trace_pblk_line_state(pblk_disk_name(pblk), line->id,
line->state);
atomic_set(&line->left_eblks, blk_to_erase);
atomic_set(&line->left_seblks, blk_to_erase);
line->meta_distance = lm->meta_distance;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
spin_unlock(&line->lock);
kref_init(&line->ref);
atomic_set(&line->sec_to_update, 0);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
return 0;
}
/* Line allocations in the recovery path are always single threaded */
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
int pblk_line_recov_alloc(struct pblk *pblk, struct pblk_line *line)
{
struct pblk_line_mgmt *l_mg = &pblk->l_mg;
int ret;
spin_lock(&l_mg->free_lock);
l_mg->data_line = line;
list_del(&line->list);
ret = pblk_line_prepare(pblk, line);
if (ret) {
list_add(&line->list, &l_mg->free_list);
spin_unlock(&l_mg->free_lock);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
return ret;
}
spin_unlock(&l_mg->free_lock);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
ret = pblk_line_alloc_bitmaps(pblk, line);
if (ret)
goto fail;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
if (!pblk_line_init_bb(pblk, line, 0)) {
ret = -EINTR;
goto fail;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
}
pblk_rl_free_lines_dec(&pblk->rl, line, true);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
return 0;
fail:
spin_lock(&l_mg->free_lock);
list_add(&line->list, &l_mg->free_list);
spin_unlock(&l_mg->free_lock);
return ret;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
}
void pblk_line_recov_close(struct pblk *pblk, struct pblk_line *line)
{
struct pblk_line_mgmt *l_mg = &pblk->l_mg;
mempool_free(line->map_bitmap, l_mg->bitmap_pool);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
line->map_bitmap = NULL;
line->smeta = NULL;
line->emeta = NULL;
}
static void pblk_line_reinit(struct pblk_line *line)
{
*line->vsc = cpu_to_le32(EMPTY_ENTRY);
line->map_bitmap = NULL;
line->invalid_bitmap = NULL;
line->smeta = NULL;
line->emeta = NULL;
}
void pblk_line_free(struct pblk_line *line)
{
struct pblk *pblk = line->pblk;
struct pblk_line_mgmt *l_mg = &pblk->l_mg;
mempool_free(line->map_bitmap, l_mg->bitmap_pool);
mempool_free(line->invalid_bitmap, l_mg->bitmap_pool);
pblk_line_reinit(line);
}
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
struct pblk_line *pblk_line_get(struct pblk *pblk)
{
struct pblk_line_mgmt *l_mg = &pblk->l_mg;
struct pblk_line_meta *lm = &pblk->lm;
struct pblk_line *line;
int ret, bit;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
lockdep_assert_held(&l_mg->free_lock);
retry:
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
if (list_empty(&l_mg->free_list)) {
pblk_err(pblk, "no free lines\n");
return NULL;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
}
line = list_first_entry(&l_mg->free_list, struct pblk_line, list);
list_del(&line->list);
l_mg->nr_free_lines--;
bit = find_first_zero_bit(line->blk_bitmap, lm->blk_per_line);
if (unlikely(bit >= lm->blk_per_line)) {
spin_lock(&line->lock);
line->state = PBLK_LINESTATE_BAD;
trace_pblk_line_state(pblk_disk_name(pblk), line->id,
line->state);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
spin_unlock(&line->lock);
list_add_tail(&line->list, &l_mg->bad_list);
pblk_debug(pblk, "line %d is bad\n", line->id);
goto retry;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
}
ret = pblk_line_prepare(pblk, line);
if (ret) {
switch (ret) {
case -EAGAIN:
list_add(&line->list, &l_mg->bad_list);
goto retry;
case -EINTR:
list_add(&line->list, &l_mg->corrupt_list);
goto retry;
default:
pblk_err(pblk, "failed to prepare line %d\n", line->id);
list_add(&line->list, &l_mg->free_list);
l_mg->nr_free_lines++;
return NULL;
}
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
}
return line;
}
static struct pblk_line *pblk_line_retry(struct pblk *pblk,
struct pblk_line *line)
{
struct pblk_line_mgmt *l_mg = &pblk->l_mg;
struct pblk_line *retry_line;
retry:
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
spin_lock(&l_mg->free_lock);
retry_line = pblk_line_get(pblk);
if (!retry_line) {
l_mg->data_line = NULL;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
spin_unlock(&l_mg->free_lock);
return NULL;
}
retry_line->map_bitmap = line->map_bitmap;
retry_line->invalid_bitmap = line->invalid_bitmap;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
retry_line->smeta = line->smeta;
retry_line->emeta = line->emeta;
retry_line->meta_line = line->meta_line;
pblk_line_reinit(line);
l_mg->data_line = retry_line;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
spin_unlock(&l_mg->free_lock);
pblk_rl_free_lines_dec(&pblk->rl, line, false);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
if (pblk_line_erase(pblk, retry_line))
goto retry;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
return retry_line;
}
static void pblk_set_space_limit(struct pblk *pblk)
{
struct pblk_rl *rl = &pblk->rl;
atomic_set(&rl->rb_space, 0);
}
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
struct pblk_line *pblk_line_get_first_data(struct pblk *pblk)
{
struct pblk_line_mgmt *l_mg = &pblk->l_mg;
struct pblk_line *line;
spin_lock(&l_mg->free_lock);
line = pblk_line_get(pblk);
if (!line) {
spin_unlock(&l_mg->free_lock);
return NULL;
}
line->seq_nr = l_mg->d_seq_nr++;
line->type = PBLK_LINETYPE_DATA;
l_mg->data_line = line;
pblk_line_setup_metadata(line, l_mg, &pblk->lm);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
/* Allocate next line for preparation */
l_mg->data_next = pblk_line_get(pblk);
if (!l_mg->data_next) {
/* If we cannot get a new line, we need to stop the pipeline.
* Only allow as many writes in as we can store safely and then
* fail gracefully
*/
pblk_set_space_limit(pblk);
l_mg->data_next = NULL;
} else {
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
l_mg->data_next->seq_nr = l_mg->d_seq_nr++;
l_mg->data_next->type = PBLK_LINETYPE_DATA;
}
spin_unlock(&l_mg->free_lock);
if (pblk_line_alloc_bitmaps(pblk, line))
return NULL;
if (pblk_line_erase(pblk, line)) {
line = pblk_line_retry(pblk, line);
if (!line)
return NULL;
}
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
retry_setup:
if (!pblk_line_init_metadata(pblk, line, NULL)) {
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
line = pblk_line_retry(pblk, line);
if (!line)
return NULL;
goto retry_setup;
}
if (!pblk_line_init_bb(pblk, line, 1)) {
line = pblk_line_retry(pblk, line);
if (!line)
return NULL;
goto retry_setup;
}
pblk_rl_free_lines_dec(&pblk->rl, line, true);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
return line;
}
void pblk_ppa_to_line_put(struct pblk *pblk, struct ppa_addr ppa)
{
struct pblk_line *line;
line = pblk_ppa_to_line(pblk, ppa);
kref_put(&line->ref, pblk_line_put_wq);
}
void pblk_rq_to_line_put(struct pblk *pblk, struct nvm_rq *rqd)
{
struct ppa_addr *ppa_list = nvm_rq_to_ppa_list(rqd);
int i;
for (i = 0; i < rqd->nr_ppas; i++)
pblk_ppa_to_line_put(pblk, ppa_list[i]);
}
static void pblk_stop_writes(struct pblk *pblk, struct pblk_line *line)
{
lockdep_assert_held(&pblk->l_mg.free_lock);
pblk_set_space_limit(pblk);
pblk->state = PBLK_STATE_STOPPING;
trace_pblk_state(pblk_disk_name(pblk), pblk->state);
}
static void pblk_line_close_meta_sync(struct pblk *pblk)
{
struct pblk_line_mgmt *l_mg = &pblk->l_mg;
struct pblk_line_meta *lm = &pblk->lm;
struct pblk_line *line, *tline;
LIST_HEAD(list);
spin_lock(&l_mg->close_lock);
if (list_empty(&l_mg->emeta_list)) {
spin_unlock(&l_mg->close_lock);
return;
}
list_cut_position(&list, &l_mg->emeta_list, l_mg->emeta_list.prev);
spin_unlock(&l_mg->close_lock);
list_for_each_entry_safe(line, tline, &list, list) {
struct pblk_emeta *emeta = line->emeta;
while (emeta->mem < lm->emeta_len[0]) {
int ret;
ret = pblk_submit_meta_io(pblk, line);
if (ret) {
pblk_err(pblk, "sync meta line %d failed (%d)\n",
line->id, ret);
return;
}
}
}
pblk_wait_for_meta(pblk);
flush_workqueue(pblk->close_wq);
}
void __pblk_pipeline_flush(struct pblk *pblk)
{
struct pblk_line_mgmt *l_mg = &pblk->l_mg;
int ret;
spin_lock(&l_mg->free_lock);
if (pblk->state == PBLK_STATE_RECOVERING ||
pblk->state == PBLK_STATE_STOPPED) {
spin_unlock(&l_mg->free_lock);
return;
}
pblk->state = PBLK_STATE_RECOVERING;
trace_pblk_state(pblk_disk_name(pblk), pblk->state);
spin_unlock(&l_mg->free_lock);
pblk_flush_writer(pblk);
pblk_wait_for_meta(pblk);
ret = pblk_recov_pad(pblk);
if (ret) {
pblk_err(pblk, "could not close data on teardown(%d)\n", ret);
return;
}
flush_workqueue(pblk->bb_wq);
pblk_line_close_meta_sync(pblk);
}
void __pblk_pipeline_stop(struct pblk *pblk)
{
struct pblk_line_mgmt *l_mg = &pblk->l_mg;
spin_lock(&l_mg->free_lock);
pblk->state = PBLK_STATE_STOPPED;
trace_pblk_state(pblk_disk_name(pblk), pblk->state);
l_mg->data_line = NULL;
l_mg->data_next = NULL;
spin_unlock(&l_mg->free_lock);
}
void pblk_pipeline_stop(struct pblk *pblk)
{
__pblk_pipeline_flush(pblk);
__pblk_pipeline_stop(pblk);
}
struct pblk_line *pblk_line_replace_data(struct pblk *pblk)
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
{
struct pblk_line_mgmt *l_mg = &pblk->l_mg;
struct pblk_line *cur, *new = NULL;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
unsigned int left_seblks;
new = l_mg->data_next;
if (!new)
goto out;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
spin_lock(&l_mg->free_lock);
cur = l_mg->data_line;
l_mg->data_line = new;
pblk_line_setup_metadata(new, l_mg, &pblk->lm);
spin_unlock(&l_mg->free_lock);
retry_erase:
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
left_seblks = atomic_read(&new->left_seblks);
if (left_seblks) {
/* If line is not fully erased, erase it */
if (atomic_read(&new->left_eblks)) {
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
if (pblk_line_erase(pblk, new))
goto out;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
} else {
io_schedule();
}
goto retry_erase;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
}
if (pblk_line_alloc_bitmaps(pblk, new))
return NULL;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
retry_setup:
if (!pblk_line_init_metadata(pblk, new, cur)) {
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
new = pblk_line_retry(pblk, new);
if (!new)
goto out;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
goto retry_setup;
}
if (!pblk_line_init_bb(pblk, new, 1)) {
new = pblk_line_retry(pblk, new);
if (!new)
goto out;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
goto retry_setup;
}
pblk_rl_free_lines_dec(&pblk->rl, new, true);
/* Allocate next line for preparation */
spin_lock(&l_mg->free_lock);
l_mg->data_next = pblk_line_get(pblk);
if (!l_mg->data_next) {
/* If we cannot get a new line, we need to stop the pipeline.
* Only allow as many writes in as we can store safely and then
* fail gracefully
*/
pblk_stop_writes(pblk, new);
l_mg->data_next = NULL;
} else {
l_mg->data_next->seq_nr = l_mg->d_seq_nr++;
l_mg->data_next->type = PBLK_LINETYPE_DATA;
}
spin_unlock(&l_mg->free_lock);
out:
return new;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
}
static void __pblk_line_put(struct pblk *pblk, struct pblk_line *line)
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
{
struct pblk_line_mgmt *l_mg = &pblk->l_mg;
struct pblk_gc *gc = &pblk->gc;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
spin_lock(&line->lock);
WARN_ON(line->state != PBLK_LINESTATE_GC);
if (line->w_err_gc->has_gc_err) {
spin_unlock(&line->lock);
pblk_err(pblk, "line %d had errors during GC\n", line->id);
pblk_put_line_back(pblk, line);
line->w_err_gc->has_gc_err = 0;
return;
}
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
line->state = PBLK_LINESTATE_FREE;
trace_pblk_line_state(pblk_disk_name(pblk), line->id,
line->state);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
line->gc_group = PBLK_LINEGC_NONE;
pblk_line_free(line);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
if (line->w_err_gc->has_write_err) {
pblk_rl_werr_line_out(&pblk->rl);
line->w_err_gc->has_write_err = 0;
}
spin_unlock(&line->lock);
atomic_dec(&gc->pipeline_gc);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
spin_lock(&l_mg->free_lock);
list_add_tail(&line->list, &l_mg->free_list);
l_mg->nr_free_lines++;
spin_unlock(&l_mg->free_lock);
pblk_rl_free_lines_inc(&pblk->rl, line);
}
static void pblk_line_put_ws(struct work_struct *work)
{
struct pblk_line_ws *line_put_ws = container_of(work,
struct pblk_line_ws, ws);
struct pblk *pblk = line_put_ws->pblk;
struct pblk_line *line = line_put_ws->line;
__pblk_line_put(pblk, line);
mempool_free(line_put_ws, &pblk->gen_ws_pool);
}
void pblk_line_put(struct kref *ref)
{
struct pblk_line *line = container_of(ref, struct pblk_line, ref);
struct pblk *pblk = line->pblk;
__pblk_line_put(pblk, line);
}
void pblk_line_put_wq(struct kref *ref)
{
struct pblk_line *line = container_of(ref, struct pblk_line, ref);
struct pblk *pblk = line->pblk;
struct pblk_line_ws *line_put_ws;
line_put_ws = mempool_alloc(&pblk->gen_ws_pool, GFP_ATOMIC);
if (!line_put_ws)
return;
line_put_ws->pblk = pblk;
line_put_ws->line = line;
line_put_ws->priv = NULL;
INIT_WORK(&line_put_ws->ws, pblk_line_put_ws);
queue_work(pblk->r_end_wq, &line_put_ws->ws);
}
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
int pblk_blk_erase_async(struct pblk *pblk, struct ppa_addr ppa)
{
struct nvm_rq *rqd;
int err;
rqd = pblk_alloc_rqd(pblk, PBLK_ERASE);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
pblk_setup_e_rq(pblk, rqd, ppa);
rqd->end_io = pblk_end_io_erase;
rqd->private = pblk;
trace_pblk_chunk_reset(pblk_disk_name(pblk),
&ppa, PBLK_CHUNK_RESET_START);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
/* The write thread schedules erases so that it minimizes disturbances
* with writes. Thus, there is no need to take the LUN semaphore.
*/
err = pblk_submit_io(pblk, rqd);
if (err) {
struct nvm_tgt_dev *dev = pblk->dev;
struct nvm_geo *geo = &dev->geo;
pblk_err(pblk, "could not async erase line:%d,blk:%d\n",
pblk_ppa_to_line_id(ppa),
pblk_ppa_to_pos(geo, ppa));
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
}
return err;
}
struct pblk_line *pblk_line_get_data(struct pblk *pblk)
{
return pblk->l_mg.data_line;
}
/* For now, always erase next line */
struct pblk_line *pblk_line_get_erase(struct pblk *pblk)
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
{
return pblk->l_mg.data_next;
}
int pblk_line_is_full(struct pblk_line *line)
{
return (line->left_msecs == 0);
}
static void pblk_line_should_sync_meta(struct pblk *pblk)
{
if (pblk_rl_is_limit(&pblk->rl))
pblk_line_close_meta_sync(pblk);
}
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
void pblk_line_close(struct pblk *pblk, struct pblk_line *line)
{
struct nvm_tgt_dev *dev = pblk->dev;
struct nvm_geo *geo = &dev->geo;
struct pblk_line_meta *lm = &pblk->lm;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
struct pblk_line_mgmt *l_mg = &pblk->l_mg;
struct list_head *move_list;
int i;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
#ifdef CONFIG_NVM_PBLK_DEBUG
WARN(!bitmap_full(line->map_bitmap, lm->sec_per_line),
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
"pblk: corrupt closed line %d\n", line->id);
#endif
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
spin_lock(&l_mg->free_lock);
WARN_ON(!test_and_clear_bit(line->meta_line, &l_mg->meta_bitmap));
spin_unlock(&l_mg->free_lock);
spin_lock(&l_mg->gc_lock);
spin_lock(&line->lock);
WARN_ON(line->state != PBLK_LINESTATE_OPEN);
line->state = PBLK_LINESTATE_CLOSED;
move_list = pblk_line_gc_list(pblk, line);
list_add_tail(&line->list, move_list);
mempool_free(line->map_bitmap, l_mg->bitmap_pool);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
line->map_bitmap = NULL;
line->smeta = NULL;
line->emeta = NULL;
for (i = 0; i < lm->blk_per_line; i++) {
struct pblk_lun *rlun = &pblk->luns[i];
int pos = pblk_ppa_to_pos(geo, rlun->bppa);
int state = line->chks[pos].state;
if (!(state & NVM_CHK_ST_OFFLINE))
state = NVM_CHK_ST_CLOSED;
}
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
spin_unlock(&line->lock);
spin_unlock(&l_mg->gc_lock);
trace_pblk_line_state(pblk_disk_name(pblk), line->id,
line->state);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
}
void pblk_line_close_meta(struct pblk *pblk, struct pblk_line *line)
{
struct pblk_line_mgmt *l_mg = &pblk->l_mg;
struct pblk_line_meta *lm = &pblk->lm;
struct pblk_emeta *emeta = line->emeta;
struct line_emeta *emeta_buf = emeta->buf;
struct wa_counters *wa = emeta_to_wa(lm, emeta_buf);
/* No need for exact vsc value; avoid a big line lock and take aprox. */
memcpy(emeta_to_vsc(pblk, emeta_buf), l_mg->vsc_list, lm->vsc_list_len);
memcpy(emeta_to_bb(emeta_buf), line->blk_bitmap, lm->blk_bitmap_len);
wa->user = cpu_to_le64(atomic64_read(&pblk->user_wa));
wa->pad = cpu_to_le64(atomic64_read(&pblk->pad_wa));
wa->gc = cpu_to_le64(atomic64_read(&pblk->gc_wa));
if (le32_to_cpu(emeta_buf->header.identifier) != PBLK_MAGIC) {
emeta_buf->header.identifier = cpu_to_le32(PBLK_MAGIC);
guid_copy((guid_t *)&emeta_buf->header.uuid,
&pblk->instance_uuid);
emeta_buf->header.id = cpu_to_le32(line->id);
emeta_buf->header.type = cpu_to_le16(line->type);
emeta_buf->header.version_major = EMETA_VERSION_MAJOR;
emeta_buf->header.version_minor = EMETA_VERSION_MINOR;
emeta_buf->header.crc = cpu_to_le32(
pblk_calc_meta_header_crc(pblk, &emeta_buf->header));
}
emeta_buf->nr_valid_lbas = cpu_to_le64(line->nr_valid_lbas);
emeta_buf->crc = cpu_to_le32(pblk_calc_emeta_crc(pblk, emeta_buf));
spin_lock(&l_mg->close_lock);
spin_lock(&line->lock);
/* Update the in-memory start address for emeta, in case it has
* shifted due to write errors
*/
if (line->emeta_ssec != line->cur_sec)
line->emeta_ssec = line->cur_sec;
list_add_tail(&line->list, &l_mg->emeta_list);
spin_unlock(&line->lock);
spin_unlock(&l_mg->close_lock);
pblk_line_should_sync_meta(pblk);
}
static void pblk_save_lba_list(struct pblk *pblk, struct pblk_line *line)
{
struct pblk_line_meta *lm = &pblk->lm;
struct pblk_line_mgmt *l_mg = &pblk->l_mg;
unsigned int lba_list_size = lm->emeta_len[2];
struct pblk_w_err_gc *w_err_gc = line->w_err_gc;
struct pblk_emeta *emeta = line->emeta;
w_err_gc->lba_list = pblk_malloc(lba_list_size,
l_mg->emeta_alloc_type, GFP_KERNEL);
memcpy(w_err_gc->lba_list, emeta_to_lbas(pblk, emeta->buf),
lba_list_size);
}
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
void pblk_line_close_ws(struct work_struct *work)
{
struct pblk_line_ws *line_ws = container_of(work, struct pblk_line_ws,
ws);
struct pblk *pblk = line_ws->pblk;
struct pblk_line *line = line_ws->line;
struct pblk_w_err_gc *w_err_gc = line->w_err_gc;
/* Write errors makes the emeta start address stored in smeta invalid,
* so keep a copy of the lba list until we've gc'd the line
*/
if (w_err_gc->has_write_err)
pblk_save_lba_list(pblk, line);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
pblk_line_close(pblk, line);
mempool_free(line_ws, &pblk->gen_ws_pool);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
}
void pblk_gen_run_ws(struct pblk *pblk, struct pblk_line *line, void *priv,
void (*work)(struct work_struct *), gfp_t gfp_mask,
struct workqueue_struct *wq)
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
{
struct pblk_line_ws *line_ws;
line_ws = mempool_alloc(&pblk->gen_ws_pool, gfp_mask);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
line_ws->pblk = pblk;
line_ws->line = line;
line_ws->priv = priv;
INIT_WORK(&line_ws->ws, work);
queue_work(wq, &line_ws->ws);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
}
static void __pblk_down_chunk(struct pblk *pblk, int pos)
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
{
struct pblk_lun *rlun = &pblk->luns[pos];
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
int ret;
/*
* Only send one inflight I/O per LUN. Since we map at a page
* granurality, all ppas in the I/O will map to the same LUN
*/
ret = down_timeout(&rlun->wr_sem, msecs_to_jiffies(30000));
if (ret == -ETIME || ret == -EINTR)
pblk_err(pblk, "taking lun semaphore timed out: err %d\n",
-ret);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
}
void pblk_down_chunk(struct pblk *pblk, struct ppa_addr ppa)
{
struct nvm_tgt_dev *dev = pblk->dev;
struct nvm_geo *geo = &dev->geo;
int pos = pblk_ppa_to_pos(geo, ppa);
__pblk_down_chunk(pblk, pos);
}
void pblk_down_rq(struct pblk *pblk, struct ppa_addr ppa,
unsigned long *lun_bitmap)
{
struct nvm_tgt_dev *dev = pblk->dev;
struct nvm_geo *geo = &dev->geo;
int pos = pblk_ppa_to_pos(geo, ppa);
/* If the LUN has been locked for this same request, do no attempt to
* lock it again
*/
if (test_and_set_bit(pos, lun_bitmap))
return;
__pblk_down_chunk(pblk, pos);
}
void pblk_up_chunk(struct pblk *pblk, struct ppa_addr ppa)
{
struct nvm_tgt_dev *dev = pblk->dev;
struct nvm_geo *geo = &dev->geo;
struct pblk_lun *rlun;
int pos = pblk_ppa_to_pos(geo, ppa);
rlun = &pblk->luns[pos];
up(&rlun->wr_sem);
}
void pblk_up_rq(struct pblk *pblk, unsigned long *lun_bitmap)
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
{
struct nvm_tgt_dev *dev = pblk->dev;
struct nvm_geo *geo = &dev->geo;
struct pblk_lun *rlun;
int num_lun = geo->all_luns;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
int bit = -1;
while ((bit = find_next_bit(lun_bitmap, num_lun, bit + 1)) < num_lun) {
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
rlun = &pblk->luns[bit];
up(&rlun->wr_sem);
}
}
void pblk_update_map(struct pblk *pblk, sector_t lba, struct ppa_addr ppa)
{
struct ppa_addr ppa_l2p;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
/* logic error: lba out-of-bounds. Ignore update */
if (!(lba < pblk->capacity)) {
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
WARN(1, "pblk: corrupted L2P map request\n");
return;
}
spin_lock(&pblk->trans_lock);
ppa_l2p = pblk_trans_map_get(pblk, lba);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
if (!pblk_addr_in_cache(ppa_l2p) && !pblk_ppa_empty(ppa_l2p))
pblk_map_invalidate(pblk, ppa_l2p);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
pblk_trans_map_set(pblk, lba, ppa);
spin_unlock(&pblk->trans_lock);
}
void pblk_update_map_cache(struct pblk *pblk, sector_t lba, struct ppa_addr ppa)
{
#ifdef CONFIG_NVM_PBLK_DEBUG
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
/* Callers must ensure that the ppa points to a cache address */
BUG_ON(!pblk_addr_in_cache(ppa));
BUG_ON(pblk_rb_pos_oob(&pblk->rwb, pblk_addr_to_cacheline(ppa)));
#endif
pblk_update_map(pblk, lba, ppa);
}
int pblk_update_map_gc(struct pblk *pblk, sector_t lba, struct ppa_addr ppa_new,
struct pblk_line *gc_line, u64 paddr_gc)
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
{
struct ppa_addr ppa_l2p, ppa_gc;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
int ret = 1;
#ifdef CONFIG_NVM_PBLK_DEBUG
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
/* Callers must ensure that the ppa points to a cache address */
BUG_ON(!pblk_addr_in_cache(ppa_new));
BUG_ON(pblk_rb_pos_oob(&pblk->rwb, pblk_addr_to_cacheline(ppa_new)));
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
#endif
/* logic error: lba out-of-bounds. Ignore update */
if (!(lba < pblk->capacity)) {
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
WARN(1, "pblk: corrupted L2P map request\n");
return 0;
}
spin_lock(&pblk->trans_lock);
ppa_l2p = pblk_trans_map_get(pblk, lba);
ppa_gc = addr_to_gen_ppa(pblk, paddr_gc, gc_line->id);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
if (!pblk_ppa_comp(ppa_l2p, ppa_gc)) {
spin_lock(&gc_line->lock);
WARN(!test_bit(paddr_gc, gc_line->invalid_bitmap),
"pblk: corrupted GC update");
spin_unlock(&gc_line->lock);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
ret = 0;
goto out;
}
pblk_trans_map_set(pblk, lba, ppa_new);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
out:
spin_unlock(&pblk->trans_lock);
return ret;
}
void pblk_update_map_dev(struct pblk *pblk, sector_t lba,
struct ppa_addr ppa_mapped, struct ppa_addr ppa_cache)
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
{
struct ppa_addr ppa_l2p;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
#ifdef CONFIG_NVM_PBLK_DEBUG
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
/* Callers must ensure that the ppa points to a device address */
BUG_ON(pblk_addr_in_cache(ppa_mapped));
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
#endif
/* Invalidate and discard padded entries */
if (lba == ADDR_EMPTY) {
atomic64_inc(&pblk->pad_wa);
#ifdef CONFIG_NVM_PBLK_DEBUG
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
atomic_long_inc(&pblk->padded_wb);
#endif
if (!pblk_ppa_empty(ppa_mapped))
pblk_map_invalidate(pblk, ppa_mapped);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
return;
}
/* logic error: lba out-of-bounds. Ignore update */
if (!(lba < pblk->capacity)) {
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
WARN(1, "pblk: corrupted L2P map request\n");
return;
}
spin_lock(&pblk->trans_lock);
ppa_l2p = pblk_trans_map_get(pblk, lba);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
/* Do not update L2P if the cacheline has been updated. In this case,
* the mapped ppa must be invalidated
*/
if (!pblk_ppa_comp(ppa_l2p, ppa_cache)) {
if (!pblk_ppa_empty(ppa_mapped))
pblk_map_invalidate(pblk, ppa_mapped);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
goto out;
}
#ifdef CONFIG_NVM_PBLK_DEBUG
WARN_ON(!pblk_addr_in_cache(ppa_l2p) && !pblk_ppa_empty(ppa_l2p));
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
#endif
pblk_trans_map_set(pblk, lba, ppa_mapped);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
out:
spin_unlock(&pblk->trans_lock);
}
int pblk_lookup_l2p_seq(struct pblk *pblk, struct ppa_addr *ppas,
sector_t blba, int nr_secs, bool *from_cache)
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
{
int i;
spin_lock(&pblk->trans_lock);
for (i = 0; i < nr_secs; i++) {
struct ppa_addr ppa;
ppa = ppas[i] = pblk_trans_map_get(pblk, blba + i);
/* If the L2P entry maps to a line, the reference is valid */
if (!pblk_ppa_empty(ppa) && !pblk_addr_in_cache(ppa)) {
struct pblk_line *line = pblk_ppa_to_line(pblk, ppa);
if (i > 0 && *from_cache)
break;
*from_cache = false;
kref_get(&line->ref);
} else {
if (i > 0 && !*from_cache)
break;
*from_cache = true;
}
}
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
spin_unlock(&pblk->trans_lock);
return i;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
}
void pblk_lookup_l2p_rand(struct pblk *pblk, struct ppa_addr *ppas,
u64 *lba_list, int nr_secs)
{
u64 lba;
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
int i;
spin_lock(&pblk->trans_lock);
for (i = 0; i < nr_secs; i++) {
lba = lba_list[i];
if (lba != ADDR_EMPTY) {
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
/* logic error: lba out-of-bounds. Ignore update */
if (!(lba < pblk->capacity)) {
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16 02:55:50 +08:00
WARN(1, "pblk: corrupted L2P map request\n");
continue;
}
ppas[i] = pblk_trans_map_get(pblk, lba);
}
}
spin_unlock(&pblk->trans_lock);
}
void *pblk_get_meta_for_writes(struct pblk *pblk, struct nvm_rq *rqd)
{
void *buffer;
if (pblk_is_oob_meta_supported(pblk)) {
/* Just use OOB metadata buffer as always */
buffer = rqd->meta_list;
} else {
/* We need to reuse last page of request (packed metadata)
* in similar way as traditional oob metadata
*/
buffer = page_to_virt(
rqd->bio->bi_io_vec[rqd->bio->bi_vcnt - 1].bv_page);
}
return buffer;
}
void pblk_get_packed_meta(struct pblk *pblk, struct nvm_rq *rqd)
{
void *meta_list = rqd->meta_list;
void *page;
int i = 0;
if (pblk_is_oob_meta_supported(pblk))
return;
page = page_to_virt(rqd->bio->bi_io_vec[rqd->bio->bi_vcnt - 1].bv_page);
/* We need to fill oob meta buffer with data from packed metadata */
for (; i < rqd->nr_ppas; i++)
memcpy(pblk_get_meta(pblk, meta_list, i),
page + (i * sizeof(struct pblk_sec_meta)),
sizeof(struct pblk_sec_meta));
}