OpenCloudOS-Kernel/arch/sh/math-emu/math.c

507 lines
9.9 KiB
C
Raw Normal View History

/*
* arch/sh/math-emu/math.c
*
* Copyright (C) 2006 Takashi YOSHII <takasi-y@ops.dti.ne.jp>
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/sched/signal.h>
#include <linux/signal.h>
#include <linux/perf_event.h>
#include <linux/uaccess.h>
#include <asm/processor.h>
#include <asm/io.h>
#include "sfp-util.h"
#include <math-emu/soft-fp.h>
#include <math-emu/single.h>
#include <math-emu/double.h>
#define FPUL (fregs->fpul)
#define FPSCR (fregs->fpscr)
#define FPSCR_RM (FPSCR&3)
#define FPSCR_DN ((FPSCR>>18)&1)
#define FPSCR_PR ((FPSCR>>19)&1)
#define FPSCR_SZ ((FPSCR>>20)&1)
#define FPSCR_FR ((FPSCR>>21)&1)
#define FPSCR_MASK 0x003fffffUL
#define BANK(n) (n^(FPSCR_FR?16:0))
#define FR ((unsigned long*)(fregs->fp_regs))
#define FR0 (FR[BANK(0)])
#define FRn (FR[BANK(n)])
#define FRm (FR[BANK(m)])
#define DR ((unsigned long long*)(fregs->fp_regs))
#define DRn (DR[BANK(n)/2])
#define DRm (DR[BANK(m)/2])
#define XREG(n) (n^16)
#define XFn (FR[BANK(XREG(n))])
#define XFm (FR[BANK(XREG(m))])
#define XDn (DR[BANK(XREG(n))/2])
#define XDm (DR[BANK(XREG(m))/2])
#define R0 (regs->regs[0])
#define Rn (regs->regs[n])
#define Rm (regs->regs[m])
#define MWRITE(d,a) ({if(put_user(d, (typeof (d) __user *)a)) return -EFAULT;})
#define MREAD(d,a) ({if(get_user(d, (typeof (d) __user *)a)) return -EFAULT;})
#define PACK_S(r,f) FP_PACK_SP(&r,f)
#define UNPACK_S(f,r) FP_UNPACK_SP(f,&r)
#define PACK_D(r,f) \
{u32 t[2]; FP_PACK_DP(t,f); ((u32*)&r)[0]=t[1]; ((u32*)&r)[1]=t[0];}
#define UNPACK_D(f,r) \
{u32 t[2]; t[0]=((u32*)&r)[1]; t[1]=((u32*)&r)[0]; FP_UNPACK_DP(f,t);}
// 2 args instructions.
#define BOTH_PRmn(op,x) \
FP_DECL_EX; if(FPSCR_PR) op(D,x,DRm,DRn); else op(S,x,FRm,FRn);
#define CMP_X(SZ,R,M,N) do{ \
FP_DECL_##SZ(Fm); FP_DECL_##SZ(Fn); \
UNPACK_##SZ(Fm, M); UNPACK_##SZ(Fn, N); \
FP_CMP_##SZ(R, Fn, Fm, 2); }while(0)
#define EQ_X(SZ,R,M,N) do{ \
FP_DECL_##SZ(Fm); FP_DECL_##SZ(Fn); \
UNPACK_##SZ(Fm, M); UNPACK_##SZ(Fn, N); \
FP_CMP_EQ_##SZ(R, Fn, Fm); }while(0)
#define CMP(OP) ({ int r; BOTH_PRmn(OP##_X,r); r; })
static int
fcmp_gt(struct sh_fpu_soft_struct *fregs, struct pt_regs *regs, int m, int n)
{
if (CMP(CMP) > 0)
regs->sr |= 1;
else
regs->sr &= ~1;
return 0;
}
static int
fcmp_eq(struct sh_fpu_soft_struct *fregs, struct pt_regs *regs, int m, int n)
{
if (CMP(CMP /*EQ*/) == 0)
regs->sr |= 1;
else
regs->sr &= ~1;
return 0;
}
#define ARITH_X(SZ,OP,M,N) do{ \
FP_DECL_##SZ(Fm); FP_DECL_##SZ(Fn); FP_DECL_##SZ(Fr); \
UNPACK_##SZ(Fm, M); UNPACK_##SZ(Fn, N); \
FP_##OP##_##SZ(Fr, Fn, Fm); \
PACK_##SZ(N, Fr); }while(0)
static int
fadd(struct sh_fpu_soft_struct *fregs, struct pt_regs *regs, int m, int n)
{
BOTH_PRmn(ARITH_X, ADD);
return 0;
}
static int
fsub(struct sh_fpu_soft_struct *fregs, struct pt_regs *regs, int m, int n)
{
BOTH_PRmn(ARITH_X, SUB);
return 0;
}
static int
fmul(struct sh_fpu_soft_struct *fregs, struct pt_regs *regs, int m, int n)
{
BOTH_PRmn(ARITH_X, MUL);
return 0;
}
static int
fdiv(struct sh_fpu_soft_struct *fregs, struct pt_regs *regs, int m, int n)
{
BOTH_PRmn(ARITH_X, DIV);
return 0;
}
static int
fmac(struct sh_fpu_soft_struct *fregs, struct pt_regs *regs, int m, int n)
{
FP_DECL_EX;
FP_DECL_S(Fr);
FP_DECL_S(Ft);
FP_DECL_S(F0);
FP_DECL_S(Fm);
FP_DECL_S(Fn);
UNPACK_S(F0, FR0);
UNPACK_S(Fm, FRm);
UNPACK_S(Fn, FRn);
FP_MUL_S(Ft, Fm, F0);
FP_ADD_S(Fr, Fn, Ft);
PACK_S(FRn, Fr);
return 0;
}
// to process fmov's extension (odd n for DR access XD).
#define FMOV_EXT(x) if(x&1) x+=16-1
static int
fmov_idx_reg(struct sh_fpu_soft_struct *fregs, struct pt_regs *regs, int m,
int n)
{
if (FPSCR_SZ) {
FMOV_EXT(n);
MREAD(FRn, Rm + R0 + 4);
n++;
MREAD(FRn, Rm + R0);
} else {
MREAD(FRn, Rm + R0);
}
return 0;
}
static int
fmov_mem_reg(struct sh_fpu_soft_struct *fregs, struct pt_regs *regs, int m,
int n)
{
if (FPSCR_SZ) {
FMOV_EXT(n);
MREAD(FRn, Rm + 4);
n++;
MREAD(FRn, Rm);
} else {
MREAD(FRn, Rm);
}
return 0;
}
static int
fmov_inc_reg(struct sh_fpu_soft_struct *fregs, struct pt_regs *regs, int m,
int n)
{
if (FPSCR_SZ) {
FMOV_EXT(n);
MREAD(FRn, Rm + 4);
n++;
MREAD(FRn, Rm);
Rm += 8;
} else {
MREAD(FRn, Rm);
Rm += 4;
}
return 0;
}
static int
fmov_reg_idx(struct sh_fpu_soft_struct *fregs, struct pt_regs *regs, int m,
int n)
{
if (FPSCR_SZ) {
FMOV_EXT(m);
MWRITE(FRm, Rn + R0 + 4);
m++;
MWRITE(FRm, Rn + R0);
} else {
MWRITE(FRm, Rn + R0);
}
return 0;
}
static int
fmov_reg_mem(struct sh_fpu_soft_struct *fregs, struct pt_regs *regs, int m,
int n)
{
if (FPSCR_SZ) {
FMOV_EXT(m);
MWRITE(FRm, Rn + 4);
m++;
MWRITE(FRm, Rn);
} else {
MWRITE(FRm, Rn);
}
return 0;
}
static int
fmov_reg_dec(struct sh_fpu_soft_struct *fregs, struct pt_regs *regs, int m,
int n)
{
if (FPSCR_SZ) {
FMOV_EXT(m);
Rn -= 8;
MWRITE(FRm, Rn + 4);
m++;
MWRITE(FRm, Rn);
} else {
Rn -= 4;
MWRITE(FRm, Rn);
}
return 0;
}
static int
fmov_reg_reg(struct sh_fpu_soft_struct *fregs, struct pt_regs *regs, int m,
int n)
{
if (FPSCR_SZ) {
FMOV_EXT(m);
FMOV_EXT(n);
DRn = DRm;
} else {
FRn = FRm;
}
return 0;
}
static int
fnop_mn(struct sh_fpu_soft_struct *fregs, struct pt_regs *regs, int m, int n)
{
return -EINVAL;
}
// 1 arg instructions.
#define NOTYETn(i) static int i(struct sh_fpu_soft_struct *fregs, int n) \
{ printk( #i " not yet done.\n"); return 0; }
NOTYETn(ftrv)
NOTYETn(fsqrt)
NOTYETn(fipr)
NOTYETn(fsca)
NOTYETn(fsrra)
#define EMU_FLOAT_X(SZ,N) do { \
FP_DECL_##SZ(Fn); \
FP_FROM_INT_##SZ(Fn, FPUL, 32, int); \
PACK_##SZ(N, Fn); }while(0)
static int ffloat(struct sh_fpu_soft_struct *fregs, int n)
{
FP_DECL_EX;
if (FPSCR_PR)
EMU_FLOAT_X(D, DRn);
else
EMU_FLOAT_X(S, FRn);
return 0;
}
#define EMU_FTRC_X(SZ,N) do { \
FP_DECL_##SZ(Fn); \
UNPACK_##SZ(Fn, N); \
FP_TO_INT_##SZ(FPUL, Fn, 32, 1); }while(0)
static int ftrc(struct sh_fpu_soft_struct *fregs, int n)
{
FP_DECL_EX;
if (FPSCR_PR)
EMU_FTRC_X(D, DRn);
else
EMU_FTRC_X(S, FRn);
return 0;
}
static int fcnvsd(struct sh_fpu_soft_struct *fregs, int n)
{
FP_DECL_EX;
FP_DECL_S(Fn);
FP_DECL_D(Fr);
UNPACK_S(Fn, FPUL);
FP_CONV(D, S, 2, 1, Fr, Fn);
PACK_D(DRn, Fr);
return 0;
}
static int fcnvds(struct sh_fpu_soft_struct *fregs, int n)
{
FP_DECL_EX;
FP_DECL_D(Fn);
FP_DECL_S(Fr);
UNPACK_D(Fn, DRn);
FP_CONV(S, D, 1, 2, Fr, Fn);
PACK_S(FPUL, Fr);
return 0;
}
static int fxchg(struct sh_fpu_soft_struct *fregs, int flag)
{
FPSCR ^= flag;
return 0;
}
static int fsts(struct sh_fpu_soft_struct *fregs, int n)
{
FRn = FPUL;
return 0;
}
static int flds(struct sh_fpu_soft_struct *fregs, int n)
{
FPUL = FRn;
return 0;
}
static int fneg(struct sh_fpu_soft_struct *fregs, int n)
{
FRn ^= (1 << (_FP_W_TYPE_SIZE - 1));
return 0;
}
static int fabs(struct sh_fpu_soft_struct *fregs, int n)
{
FRn &= ~(1 << (_FP_W_TYPE_SIZE - 1));
return 0;
}
static int fld0(struct sh_fpu_soft_struct *fregs, int n)
{
FRn = 0;
return 0;
}
static int fld1(struct sh_fpu_soft_struct *fregs, int n)
{
FRn = (_FP_EXPBIAS_S << (_FP_FRACBITS_S - 1));
return 0;
}
static int fnop_n(struct sh_fpu_soft_struct *fregs, int n)
{
return -EINVAL;
}
/// Instruction decoders.
static int id_fxfd(struct sh_fpu_soft_struct *, int);
static int id_fnxd(struct sh_fpu_soft_struct *, struct pt_regs *, int, int);
static int (*fnxd[])(struct sh_fpu_soft_struct *, int) = {
fsts, flds, ffloat, ftrc, fneg, fabs, fsqrt, fsrra,
fld0, fld1, fcnvsd, fcnvds, fnop_n, fnop_n, fipr, id_fxfd
};
static int (*fnmx[])(struct sh_fpu_soft_struct *, struct pt_regs *, int, int) = {
fadd, fsub, fmul, fdiv, fcmp_eq, fcmp_gt, fmov_idx_reg, fmov_reg_idx,
fmov_mem_reg, fmov_inc_reg, fmov_reg_mem, fmov_reg_dec,
fmov_reg_reg, id_fnxd, fmac, fnop_mn};
static int id_fxfd(struct sh_fpu_soft_struct *fregs, int x)
{
const int flag[] = { FPSCR_SZ, FPSCR_PR, FPSCR_FR, 0 };
switch (x & 3) {
case 3:
fxchg(fregs, flag[x >> 2]);
break;
case 1:
ftrv(fregs, x - 1);
break;
default:
fsca(fregs, x);
}
return 0;
}
static int
id_fnxd(struct sh_fpu_soft_struct *fregs, struct pt_regs *regs, int x, int n)
{
return (fnxd[x])(fregs, n);
}
static int
id_fnmx(struct sh_fpu_soft_struct *fregs, struct pt_regs *regs, u16 code)
{
int n = (code >> 8) & 0xf, m = (code >> 4) & 0xf, x = code & 0xf;
return (fnmx[x])(fregs, regs, m, n);
}
static int
id_sys(struct sh_fpu_soft_struct *fregs, struct pt_regs *regs, u16 code)
{
int n = ((code >> 8) & 0xf);
unsigned long *reg = (code & 0x0010) ? &FPUL : &FPSCR;
switch (code & 0xf0ff) {
case 0x005a:
case 0x006a:
Rn = *reg;
break;
case 0x405a:
case 0x406a:
*reg = Rn;
break;
case 0x4052:
case 0x4062:
Rn -= 4;
MWRITE(*reg, Rn);
break;
case 0x4056:
case 0x4066:
MREAD(*reg, Rn);
Rn += 4;
break;
default:
return -EINVAL;
}
return 0;
}
static int fpu_emulate(u16 code, struct sh_fpu_soft_struct *fregs, struct pt_regs *regs)
{
if ((code & 0xf000) == 0xf000)
return id_fnmx(fregs, regs, code);
else
return id_sys(fregs, regs, code);
}
/**
* fpu_init - Initialize FPU registers
* @fpu: Pointer to software emulated FPU registers.
*/
static void fpu_init(struct sh_fpu_soft_struct *fpu)
{
int i;
fpu->fpscr = FPSCR_INIT;
fpu->fpul = 0;
for (i = 0; i < 16; i++) {
fpu->fp_regs[i] = 0;
fpu->xfp_regs[i]= 0;
}
}
/**
* do_fpu_inst - Handle reserved instructions for FPU emulation
* @inst: instruction code.
* @regs: registers on stack.
*/
int do_fpu_inst(unsigned short inst, struct pt_regs *regs)
{
struct task_struct *tsk = current;
struct sh_fpu_soft_struct *fpu = &(tsk->thread.xstate->softfpu);
perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
if (!(task_thread_info(tsk)->status & TS_USEDFPU)) {
/* initialize once. */
fpu_init(fpu);
task_thread_info(tsk)->status |= TS_USEDFPU;
}
return fpu_emulate(inst, fpu, regs);
}