OpenCloudOS-Kernel/fs/fuse/Kconfig

41 lines
1.2 KiB
Plaintext
Raw Normal View History

# SPDX-License-Identifier: GPL-2.0-only
config FUSE_FS
tristate "FUSE (Filesystem in Userspace) support"
select FS_POSIX_ACL
help
With FUSE it is possible to implement a fully functional filesystem
in a userspace program.
There's also a companion library: libfuse2. This library is available
from the FUSE homepage:
<http://fuse.sourceforge.net/>
although chances are your distribution already has that library
installed if you've installed the "fuse" package itself.
See <file:Documentation/filesystems/fuse.rst> for more information.
See <file:Documentation/Changes> for needed library/utility version.
If you want to develop a userspace FS, or if you want to use
a filesystem based on FUSE, answer Y or M.
config CUSE
tristate "Character device in Userspace support"
depends on FUSE_FS
help
This FUSE extension allows character devices to be
implemented in userspace.
If you want to develop or use a userspace character device
based on CUSE, answer Y or M.
virtio-fs: add virtiofs filesystem Add a basic file system module for virtio-fs. This does not yet contain shared data support between host and guest or metadata coherency speedups. However it is already significantly faster than virtio-9p. Design Overview =============== With the goal of designing something with better performance and local file system semantics, a bunch of ideas were proposed. - Use fuse protocol (instead of 9p) for communication between guest and host. Guest kernel will be fuse client and a fuse server will run on host to serve the requests. - For data access inside guest, mmap portion of file in QEMU address space and guest accesses this memory using dax. That way guest page cache is bypassed and there is only one copy of data (on host). This will also enable mmap(MAP_SHARED) between guests. - For metadata coherency, there is a shared memory region which contains version number associated with metadata and any guest changing metadata updates version number and other guests refresh metadata on next access. This is yet to be implemented. How virtio-fs differs from existing approaches ============================================== The unique idea behind virtio-fs is to take advantage of the co-location of the virtual machine and hypervisor to avoid communication (vmexits). DAX allows file contents to be accessed without communication with the hypervisor. The shared memory region for metadata avoids communication in the common case where metadata is unchanged. By replacing expensive communication with cheaper shared memory accesses, we expect to achieve better performance than approaches based on network file system protocols. In addition, this also makes it easier to achieve local file system semantics (coherency). These techniques are not applicable to network file system protocols since the communications channel is bypassed by taking advantage of shared memory on a local machine. This is why we decided to build virtio-fs rather than focus on 9P or NFS. Caching Modes ============= Like virtio-9p, different caching modes are supported which determine the coherency level as well. The “cache=FOO” and “writeback” options control the level of coherence between the guest and host filesystems. - cache=none metadata, data and pathname lookup are not cached in guest. They are always fetched from host and any changes are immediately pushed to host. - cache=always metadata, data and pathname lookup are cached in guest and never expire. - cache=auto metadata and pathname lookup cache expires after a configured amount of time (default is 1 second). Data is cached while the file is open (close to open consistency). - writeback/no_writeback These options control the writeback strategy. If writeback is disabled, then normal writes will immediately be synchronized with the host fs. If writeback is enabled, then writes may be cached in the guest until the file is closed or an fsync(2) performed. This option has no effect on mmap-ed writes or writes going through the DAX mechanism. Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Acked-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 16:41:17 +08:00
config VIRTIO_FS
tristate "Virtio Filesystem"
depends on FUSE_FS
select VIRTIO
help
The Virtio Filesystem allows guests to mount file systems from the
host.
virtio-fs: add virtiofs filesystem Add a basic file system module for virtio-fs. This does not yet contain shared data support between host and guest or metadata coherency speedups. However it is already significantly faster than virtio-9p. Design Overview =============== With the goal of designing something with better performance and local file system semantics, a bunch of ideas were proposed. - Use fuse protocol (instead of 9p) for communication between guest and host. Guest kernel will be fuse client and a fuse server will run on host to serve the requests. - For data access inside guest, mmap portion of file in QEMU address space and guest accesses this memory using dax. That way guest page cache is bypassed and there is only one copy of data (on host). This will also enable mmap(MAP_SHARED) between guests. - For metadata coherency, there is a shared memory region which contains version number associated with metadata and any guest changing metadata updates version number and other guests refresh metadata on next access. This is yet to be implemented. How virtio-fs differs from existing approaches ============================================== The unique idea behind virtio-fs is to take advantage of the co-location of the virtual machine and hypervisor to avoid communication (vmexits). DAX allows file contents to be accessed without communication with the hypervisor. The shared memory region for metadata avoids communication in the common case where metadata is unchanged. By replacing expensive communication with cheaper shared memory accesses, we expect to achieve better performance than approaches based on network file system protocols. In addition, this also makes it easier to achieve local file system semantics (coherency). These techniques are not applicable to network file system protocols since the communications channel is bypassed by taking advantage of shared memory on a local machine. This is why we decided to build virtio-fs rather than focus on 9P or NFS. Caching Modes ============= Like virtio-9p, different caching modes are supported which determine the coherency level as well. The “cache=FOO” and “writeback” options control the level of coherence between the guest and host filesystems. - cache=none metadata, data and pathname lookup are not cached in guest. They are always fetched from host and any changes are immediately pushed to host. - cache=always metadata, data and pathname lookup are cached in guest and never expire. - cache=auto metadata and pathname lookup cache expires after a configured amount of time (default is 1 second). Data is cached while the file is open (close to open consistency). - writeback/no_writeback These options control the writeback strategy. If writeback is disabled, then normal writes will immediately be synchronized with the host fs. If writeback is enabled, then writes may be cached in the guest until the file is closed or an fsync(2) performed. This option has no effect on mmap-ed writes or writes going through the DAX mechanism. Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Acked-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 16:41:17 +08:00
If you want to share files between guests or with the host, answer Y
or M.