Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
#ifndef _LINUX_CGROUP_H
|
|
|
|
#define _LINUX_CGROUP_H
|
|
|
|
/*
|
|
|
|
* cgroup interface
|
|
|
|
*
|
|
|
|
* Copyright (C) 2003 BULL SA
|
|
|
|
* Copyright (C) 2004-2006 Silicon Graphics, Inc.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/sched.h>
|
|
|
|
#include <linux/cpumask.h>
|
|
|
|
#include <linux/nodemask.h>
|
|
|
|
#include <linux/rcupdate.h>
|
2012-11-10 01:12:29 +08:00
|
|
|
#include <linux/rculist.h>
|
Add cgroupstats
This patch is inspired by the discussion at
http://lkml.org/lkml/2007/4/11/187 and implements per cgroup statistics
as suggested by Andrew Morton in http://lkml.org/lkml/2007/4/11/263. The
patch is on top of 2.6.21-mm1 with Paul's cgroups v9 patches (forward
ported)
This patch implements per cgroup statistics infrastructure and re-uses
code from the taskstats interface. A new set of cgroup operations are
registered with commands and attributes. It should be very easy to
*extend* per cgroup statistics, by adding members to the cgroupstats
structure.
The current model for cgroupstats is a pull, a push model (to post
statistics on interesting events), should be very easy to add. Currently
user space requests for statistics by passing the cgroup file
descriptor. Statistics about the state of all the tasks in the cgroup
is returned to user space.
TODO's/NOTE:
This patch provides an infrastructure for implementing cgroup statistics.
Based on the needs of each controller, we can incrementally add more statistics,
event based support for notification of statistics, accumulation of taskstats
into cgroup statistics in the future.
Sample output
# ./cgroupstats -C /cgroup/a
sleeping 2, blocked 0, running 1, stopped 0, uninterruptible 0
# ./cgroupstats -C /cgroup/
sleeping 154, blocked 0, running 0, stopped 0, uninterruptible 0
If the approach looks good, I'll enhance and post the user space utility for
the same
Feedback, comments, test results are always welcome!
[akpm@linux-foundation.org: build fix]
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Paul Menage <menage@google.com>
Cc: Jay Lan <jlan@engr.sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:44 +08:00
|
|
|
#include <linux/cgroupstats.h>
|
2008-02-07 16:14:42 +08:00
|
|
|
#include <linux/prio_heap.h>
|
2008-10-19 11:28:04 +08:00
|
|
|
#include <linux/rwsem.h>
|
cgroup: CSS ID support
Patch for Per-CSS(Cgroup Subsys State) ID and private hierarchy code.
This patch attaches unique ID to each css and provides following.
- css_lookup(subsys, id)
returns pointer to struct cgroup_subysys_state of id.
- css_get_next(subsys, id, rootid, depth, foundid)
returns the next css under "root" by scanning
When cgroup_subsys->use_id is set, an id for css is maintained.
The cgroup framework only parepares
- css_id of root css for subsys
- id is automatically attached at creation of css.
- id is *not* freed automatically. Because the cgroup framework
don't know lifetime of cgroup_subsys_state.
free_css_id() function is provided. This must be called by subsys.
There are several reasons to develop this.
- Saving space .... For example, memcg's swap_cgroup is array of
pointers to cgroup. But it is not necessary to be very fast.
By replacing pointers(8bytes per ent) to ID (2byes per ent), we can
reduce much amount of memory usage.
- Scanning without lock.
CSS_ID provides "scan id under this ROOT" function. By this, scanning
css under root can be written without locks.
ex)
do {
rcu_read_lock();
next = cgroup_get_next(subsys, id, root, &found);
/* check sanity of next here */
css_tryget();
rcu_read_unlock();
id = found + 1
} while(...)
Characteristics:
- Each css has unique ID under subsys.
- Lifetime of ID is controlled by subsys.
- css ID contains "ID" and "Depth in hierarchy" and stack of hierarchy
- Allowed ID is 1-65535, ID 0 is UNUSED ID.
Design Choices:
- scan-by-ID v.s. scan-by-tree-walk.
As /proc's pid scan does, scan-by-ID is robust when scanning is done
by following kind of routine.
scan -> rest a while(release a lock) -> conitunue from interrupted
memcg's hierarchical reclaim does this.
- When subsys->use_id is set, # of css in the system is limited to
65535.
[bharata@linux.vnet.ibm.com: remove rcu_read_lock() from css_get_next()]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Paul Menage <menage@google.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-03 07:57:25 +08:00
|
|
|
#include <linux/idr.h>
|
cgroup: make css->refcnt clearing on cgroup removal optional
Currently, cgroup removal tries to drain all css references. If there
are active css references, the removal logic waits and retries
->pre_detroy() until either all refs drop to zero or removal is
cancelled.
This semantics is unusual and adds non-trivial complexity to cgroup
core and IMHO is fundamentally misguided in that it couples internal
implementation details (references to internal data structure) with
externally visible operation (rmdir). To userland, this is a behavior
peculiarity which is unnecessary and difficult to expect (css refs is
otherwise invisible from userland), and, to policy implementations,
this is an unnecessary restriction (e.g. blkcg wants to hold css refs
for caching purposes but can't as that becomes visible as rmdir hang).
Unfortunately, memcg currently depends on ->pre_destroy() retrials and
cgroup removal vetoing and can't be immmediately switched to the new
behavior. This patch introduces the new behavior of not waiting for
css refs to drain and maintains the old behavior for subsystems which
have __DEPRECATED_clear_css_refs set.
Once, memcg is updated, we can drop the code paths for the old
behavior as proposed in the following patch. Note that the following
patch is incorrect in that dput work item is in cgroup and may lose
some of dputs when multiples css's are released back-to-back, and
__css_put() triggers check_for_release() when refcnt reaches 0 instead
of 1; however, it shows what part can be removed.
http://thread.gmane.org/gmane.linux.kernel.containers/22559/focus=75251
Note that, in not-too-distant future, cgroup core will start emitting
warning messages for subsys which require the old behavior, so please
get moving.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
2012-04-02 03:09:56 +08:00
|
|
|
#include <linux/workqueue.h>
|
cgroup: add xattr support
This is one of the items in the plumber's wish list.
For use cases:
>> What would the use case be for this?
>
> Attaching meta information to services, in an easily discoverable
> way. For example, in systemd we create one cgroup for each service, and
> could then store data like the main pid of the specific service as an
> xattr on the cgroup itself. That way we'd have almost all service state
> in the cgroupfs, which would make it possible to terminate systemd and
> later restart it without losing any state information. But there's more:
> for example, some very peculiar services cannot be terminated on
> shutdown (i.e. fakeraid DM stuff) and it would be really nice if the
> services in question could just mark that on their cgroup, by setting an
> xattr. On the more desktopy side of things there are other
> possibilities: for example there are plans defining what an application
> is along the lines of a cgroup (i.e. an app being a collection of
> processes). With xattrs one could then attach an icon or human readable
> program name on the cgroup.
>
> The key idea is that this would allow attaching runtime meta information
> to cgroups and everything they model (services, apps, vms), that doesn't
> need any complex userspace infrastructure, has good access control
> (i.e. because the file system enforces that anyway, and there's the
> "trusted." xattr namespace), notifications (inotify), and can easily be
> shared among applications.
>
> Lennart
v7:
- no changes
v6:
- remove user xattr namespace, only allow trusted and security
v5:
- check for capabilities before setting/removing xattrs
v4:
- no changes
v3:
- instead of config option, use mount option to enable xattr support
Original-patch-by: Li Zefan <lizefan@huawei.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Lennart Poettering <lpoetter@redhat.com>
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Aristeu Rozanski <aris@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2012-08-24 04:53:30 +08:00
|
|
|
#include <linux/xattr.h>
|
2013-04-15 11:15:25 +08:00
|
|
|
#include <linux/fs.h>
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
|
|
|
|
#ifdef CONFIG_CGROUPS
|
|
|
|
|
|
|
|
struct cgroupfs_root;
|
|
|
|
struct cgroup_subsys;
|
|
|
|
struct inode;
|
2008-07-25 16:47:00 +08:00
|
|
|
struct cgroup;
|
cgroup: CSS ID support
Patch for Per-CSS(Cgroup Subsys State) ID and private hierarchy code.
This patch attaches unique ID to each css and provides following.
- css_lookup(subsys, id)
returns pointer to struct cgroup_subysys_state of id.
- css_get_next(subsys, id, rootid, depth, foundid)
returns the next css under "root" by scanning
When cgroup_subsys->use_id is set, an id for css is maintained.
The cgroup framework only parepares
- css_id of root css for subsys
- id is automatically attached at creation of css.
- id is *not* freed automatically. Because the cgroup framework
don't know lifetime of cgroup_subsys_state.
free_css_id() function is provided. This must be called by subsys.
There are several reasons to develop this.
- Saving space .... For example, memcg's swap_cgroup is array of
pointers to cgroup. But it is not necessary to be very fast.
By replacing pointers(8bytes per ent) to ID (2byes per ent), we can
reduce much amount of memory usage.
- Scanning without lock.
CSS_ID provides "scan id under this ROOT" function. By this, scanning
css under root can be written without locks.
ex)
do {
rcu_read_lock();
next = cgroup_get_next(subsys, id, root, &found);
/* check sanity of next here */
css_tryget();
rcu_read_unlock();
id = found + 1
} while(...)
Characteristics:
- Each css has unique ID under subsys.
- Lifetime of ID is controlled by subsys.
- css ID contains "ID" and "Depth in hierarchy" and stack of hierarchy
- Allowed ID is 1-65535, ID 0 is UNUSED ID.
Design Choices:
- scan-by-ID v.s. scan-by-tree-walk.
As /proc's pid scan does, scan-by-ID is robust when scanning is done
by following kind of routine.
scan -> rest a while(release a lock) -> conitunue from interrupted
memcg's hierarchical reclaim does this.
- When subsys->use_id is set, # of css in the system is limited to
65535.
[bharata@linux.vnet.ibm.com: remove rcu_read_lock() from css_get_next()]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Paul Menage <menage@google.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-03 07:57:25 +08:00
|
|
|
struct css_id;
|
2013-05-08 07:19:08 +08:00
|
|
|
struct eventfd_ctx;
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
|
|
|
|
extern int cgroup_init_early(void);
|
|
|
|
extern int cgroup_init(void);
|
2007-10-19 14:39:33 +08:00
|
|
|
extern void cgroup_fork(struct task_struct *p);
|
2007-10-19 14:39:36 +08:00
|
|
|
extern void cgroup_post_fork(struct task_struct *p);
|
2007-10-19 14:39:33 +08:00
|
|
|
extern void cgroup_exit(struct task_struct *p, int run_callbacks);
|
Add cgroupstats
This patch is inspired by the discussion at
http://lkml.org/lkml/2007/4/11/187 and implements per cgroup statistics
as suggested by Andrew Morton in http://lkml.org/lkml/2007/4/11/263. The
patch is on top of 2.6.21-mm1 with Paul's cgroups v9 patches (forward
ported)
This patch implements per cgroup statistics infrastructure and re-uses
code from the taskstats interface. A new set of cgroup operations are
registered with commands and attributes. It should be very easy to
*extend* per cgroup statistics, by adding members to the cgroupstats
structure.
The current model for cgroupstats is a pull, a push model (to post
statistics on interesting events), should be very easy to add. Currently
user space requests for statistics by passing the cgroup file
descriptor. Statistics about the state of all the tasks in the cgroup
is returned to user space.
TODO's/NOTE:
This patch provides an infrastructure for implementing cgroup statistics.
Based on the needs of each controller, we can incrementally add more statistics,
event based support for notification of statistics, accumulation of taskstats
into cgroup statistics in the future.
Sample output
# ./cgroupstats -C /cgroup/a
sleeping 2, blocked 0, running 1, stopped 0, uninterruptible 0
# ./cgroupstats -C /cgroup/
sleeping 154, blocked 0, running 0, stopped 0, uninterruptible 0
If the approach looks good, I'll enhance and post the user space utility for
the same
Feedback, comments, test results are always welcome!
[akpm@linux-foundation.org: build fix]
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Paul Menage <menage@google.com>
Cc: Jay Lan <jlan@engr.sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:44 +08:00
|
|
|
extern int cgroupstats_build(struct cgroupstats *stats,
|
|
|
|
struct dentry *dentry);
|
2010-03-11 07:22:09 +08:00
|
|
|
extern int cgroup_load_subsys(struct cgroup_subsys *ss);
|
2010-03-11 07:22:09 +08:00
|
|
|
extern void cgroup_unload_subsys(struct cgroup_subsys *ss);
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
|
2013-04-20 11:11:24 +08:00
|
|
|
extern int proc_cgroup_show(struct seq_file *, void *);
|
2007-10-19 14:39:35 +08:00
|
|
|
|
2013-03-05 10:57:03 +08:00
|
|
|
/*
|
|
|
|
* Define the enumeration of all cgroup subsystems.
|
|
|
|
*
|
|
|
|
* We define ids for builtin subsystems and then modular ones.
|
|
|
|
*/
|
2007-10-19 14:39:36 +08:00
|
|
|
#define SUBSYS(_x) _x ## _subsys_id,
|
|
|
|
enum cgroup_subsys_id {
|
2013-03-05 10:57:03 +08:00
|
|
|
#define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
|
2007-10-19 14:39:36 +08:00
|
|
|
#include <linux/cgroup_subsys.h>
|
2013-03-05 10:57:03 +08:00
|
|
|
#undef IS_SUBSYS_ENABLED
|
|
|
|
CGROUP_BUILTIN_SUBSYS_COUNT,
|
|
|
|
|
|
|
|
__CGROUP_SUBSYS_TEMP_PLACEHOLDER = CGROUP_BUILTIN_SUBSYS_COUNT - 1,
|
|
|
|
|
|
|
|
#define IS_SUBSYS_ENABLED(option) IS_MODULE(option)
|
2007-10-19 14:39:36 +08:00
|
|
|
#include <linux/cgroup_subsys.h>
|
2013-03-05 10:57:03 +08:00
|
|
|
#undef IS_SUBSYS_ENABLED
|
2012-09-12 22:12:08 +08:00
|
|
|
CGROUP_SUBSYS_COUNT,
|
2007-10-19 14:39:36 +08:00
|
|
|
};
|
|
|
|
#undef SUBSYS
|
|
|
|
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
/* Per-subsystem/per-cgroup state maintained by the system. */
|
|
|
|
struct cgroup_subsys_state {
|
2009-04-03 07:57:22 +08:00
|
|
|
/*
|
|
|
|
* The cgroup that this subsystem is attached to. Useful
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
* for subsystems that want to know about the cgroup
|
2009-04-03 07:57:22 +08:00
|
|
|
* hierarchy structure
|
|
|
|
*/
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
struct cgroup *cgroup;
|
|
|
|
|
2009-04-03 07:57:22 +08:00
|
|
|
/*
|
|
|
|
* State maintained by the cgroup system to allow subsystems
|
2009-01-08 10:08:38 +08:00
|
|
|
* to be "busy". Should be accessed via css_get(),
|
2012-11-20 22:06:18 +08:00
|
|
|
* css_tryget() and css_put().
|
2009-04-03 07:57:22 +08:00
|
|
|
*/
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
|
|
|
|
atomic_t refcnt;
|
|
|
|
|
|
|
|
unsigned long flags;
|
cgroup: CSS ID support
Patch for Per-CSS(Cgroup Subsys State) ID and private hierarchy code.
This patch attaches unique ID to each css and provides following.
- css_lookup(subsys, id)
returns pointer to struct cgroup_subysys_state of id.
- css_get_next(subsys, id, rootid, depth, foundid)
returns the next css under "root" by scanning
When cgroup_subsys->use_id is set, an id for css is maintained.
The cgroup framework only parepares
- css_id of root css for subsys
- id is automatically attached at creation of css.
- id is *not* freed automatically. Because the cgroup framework
don't know lifetime of cgroup_subsys_state.
free_css_id() function is provided. This must be called by subsys.
There are several reasons to develop this.
- Saving space .... For example, memcg's swap_cgroup is array of
pointers to cgroup. But it is not necessary to be very fast.
By replacing pointers(8bytes per ent) to ID (2byes per ent), we can
reduce much amount of memory usage.
- Scanning without lock.
CSS_ID provides "scan id under this ROOT" function. By this, scanning
css under root can be written without locks.
ex)
do {
rcu_read_lock();
next = cgroup_get_next(subsys, id, root, &found);
/* check sanity of next here */
css_tryget();
rcu_read_unlock();
id = found + 1
} while(...)
Characteristics:
- Each css has unique ID under subsys.
- Lifetime of ID is controlled by subsys.
- css ID contains "ID" and "Depth in hierarchy" and stack of hierarchy
- Allowed ID is 1-65535, ID 0 is UNUSED ID.
Design Choices:
- scan-by-ID v.s. scan-by-tree-walk.
As /proc's pid scan does, scan-by-ID is robust when scanning is done
by following kind of routine.
scan -> rest a while(release a lock) -> conitunue from interrupted
memcg's hierarchical reclaim does this.
- When subsys->use_id is set, # of css in the system is limited to
65535.
[bharata@linux.vnet.ibm.com: remove rcu_read_lock() from css_get_next()]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Paul Menage <menage@google.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-03 07:57:25 +08:00
|
|
|
/* ID for this css, if possible */
|
2010-02-25 02:41:39 +08:00
|
|
|
struct css_id __rcu *id;
|
cgroup: make css->refcnt clearing on cgroup removal optional
Currently, cgroup removal tries to drain all css references. If there
are active css references, the removal logic waits and retries
->pre_detroy() until either all refs drop to zero or removal is
cancelled.
This semantics is unusual and adds non-trivial complexity to cgroup
core and IMHO is fundamentally misguided in that it couples internal
implementation details (references to internal data structure) with
externally visible operation (rmdir). To userland, this is a behavior
peculiarity which is unnecessary and difficult to expect (css refs is
otherwise invisible from userland), and, to policy implementations,
this is an unnecessary restriction (e.g. blkcg wants to hold css refs
for caching purposes but can't as that becomes visible as rmdir hang).
Unfortunately, memcg currently depends on ->pre_destroy() retrials and
cgroup removal vetoing and can't be immmediately switched to the new
behavior. This patch introduces the new behavior of not waiting for
css refs to drain and maintains the old behavior for subsystems which
have __DEPRECATED_clear_css_refs set.
Once, memcg is updated, we can drop the code paths for the old
behavior as proposed in the following patch. Note that the following
patch is incorrect in that dput work item is in cgroup and may lose
some of dputs when multiples css's are released back-to-back, and
__css_put() triggers check_for_release() when refcnt reaches 0 instead
of 1; however, it shows what part can be removed.
http://thread.gmane.org/gmane.linux.kernel.containers/22559/focus=75251
Note that, in not-too-distant future, cgroup core will start emitting
warning messages for subsys which require the old behavior, so please
get moving.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
2012-04-02 03:09:56 +08:00
|
|
|
|
|
|
|
/* Used to put @cgroup->dentry on the last css_put() */
|
|
|
|
struct work_struct dput_work;
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
/* bits in struct cgroup_subsys_state flags field */
|
|
|
|
enum {
|
2012-11-20 00:13:36 +08:00
|
|
|
CSS_ROOT = (1 << 0), /* this CSS is the root of the subsystem */
|
2012-11-20 00:13:38 +08:00
|
|
|
CSS_ONLINE = (1 << 1), /* between ->css_online() and ->css_offline() */
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
};
|
|
|
|
|
2013-06-13 12:04:52 +08:00
|
|
|
/**
|
|
|
|
* css_get - obtain a reference on the specified css
|
|
|
|
* @css: target css
|
|
|
|
*
|
|
|
|
* The caller must already have a reference.
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
*/
|
|
|
|
static inline void css_get(struct cgroup_subsys_state *css)
|
|
|
|
{
|
|
|
|
/* We don't need to reference count the root state */
|
2012-11-20 00:13:36 +08:00
|
|
|
if (!(css->flags & CSS_ROOT))
|
2013-06-13 12:04:52 +08:00
|
|
|
atomic_inc(&css->refcnt);
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
}
|
2009-01-08 10:08:38 +08:00
|
|
|
|
cgroup: use negative bias on css->refcnt to block css_tryget()
When a cgroup is about to be removed, cgroup_clear_css_refs() is
called to check and ensure that there are no active css references.
This is currently achieved by dropping the refcnt to zero iff it has
only the base ref. If all css refs could be dropped to zero, ref
clearing is successful and CSS_REMOVED is set on all css. If not, the
base ref is restored. While css ref is zero w/o CSS_REMOVED set, any
css_tryget() attempt on it busy loops so that they are atomic
w.r.t. the whole css ref clearing.
This does work but dropping and re-instating the base ref is somewhat
hairy and makes it difficult to add more logic to the put path as
there are two of them - the regular css_put() and the reversible base
ref clearing.
This patch updates css ref clearing such that blocking new
css_tryget() and putting the base ref are separate operations.
CSS_DEACT_BIAS, defined as INT_MIN, is added to css->refcnt and
css_tryget() busy loops while refcnt is negative. After all css refs
are deactivated, if they were all one, ref clearing succeeded and
CSS_REMOVED is set and the base ref is put using the regular
css_put(); otherwise, CSS_DEACT_BIAS is subtracted from the refcnts
and the original postive values are restored.
css_refcnt() accessor which always returns the unbiased positive
reference counts is added and used to simplify refcnt usages. While
at it, relocate and reformat comments in cgroup_has_css_refs().
This separates css->refcnt deactivation and putting the base ref,
which enables the next patch to make ref clearing optional.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizf@cn.fujitsu.com>
2012-04-02 03:09:56 +08:00
|
|
|
extern bool __css_tryget(struct cgroup_subsys_state *css);
|
2013-06-13 12:04:52 +08:00
|
|
|
|
|
|
|
/**
|
|
|
|
* css_tryget - try to obtain a reference on the specified css
|
|
|
|
* @css: target css
|
|
|
|
*
|
|
|
|
* Obtain a reference on @css if it's alive. The caller naturally needs to
|
|
|
|
* ensure that @css is accessible but doesn't have to be holding a
|
|
|
|
* reference on it - IOW, RCU protected access is good enough for this
|
|
|
|
* function. Returns %true if a reference count was successfully obtained;
|
|
|
|
* %false otherwise.
|
|
|
|
*/
|
2009-01-08 10:08:38 +08:00
|
|
|
static inline bool css_tryget(struct cgroup_subsys_state *css)
|
|
|
|
{
|
2012-11-20 00:13:36 +08:00
|
|
|
if (css->flags & CSS_ROOT)
|
2009-01-08 10:08:38 +08:00
|
|
|
return true;
|
cgroup: use negative bias on css->refcnt to block css_tryget()
When a cgroup is about to be removed, cgroup_clear_css_refs() is
called to check and ensure that there are no active css references.
This is currently achieved by dropping the refcnt to zero iff it has
only the base ref. If all css refs could be dropped to zero, ref
clearing is successful and CSS_REMOVED is set on all css. If not, the
base ref is restored. While css ref is zero w/o CSS_REMOVED set, any
css_tryget() attempt on it busy loops so that they are atomic
w.r.t. the whole css ref clearing.
This does work but dropping and re-instating the base ref is somewhat
hairy and makes it difficult to add more logic to the put path as
there are two of them - the regular css_put() and the reversible base
ref clearing.
This patch updates css ref clearing such that blocking new
css_tryget() and putting the base ref are separate operations.
CSS_DEACT_BIAS, defined as INT_MIN, is added to css->refcnt and
css_tryget() busy loops while refcnt is negative. After all css refs
are deactivated, if they were all one, ref clearing succeeded and
CSS_REMOVED is set and the base ref is put using the regular
css_put(); otherwise, CSS_DEACT_BIAS is subtracted from the refcnts
and the original postive values are restored.
css_refcnt() accessor which always returns the unbiased positive
reference counts is added and used to simplify refcnt usages. While
at it, relocate and reformat comments in cgroup_has_css_refs().
This separates css->refcnt deactivation and putting the base ref,
which enables the next patch to make ref clearing optional.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizf@cn.fujitsu.com>
2012-04-02 03:09:56 +08:00
|
|
|
return __css_tryget(css);
|
2009-01-08 10:08:38 +08:00
|
|
|
}
|
|
|
|
|
cgroup: use negative bias on css->refcnt to block css_tryget()
When a cgroup is about to be removed, cgroup_clear_css_refs() is
called to check and ensure that there are no active css references.
This is currently achieved by dropping the refcnt to zero iff it has
only the base ref. If all css refs could be dropped to zero, ref
clearing is successful and CSS_REMOVED is set on all css. If not, the
base ref is restored. While css ref is zero w/o CSS_REMOVED set, any
css_tryget() attempt on it busy loops so that they are atomic
w.r.t. the whole css ref clearing.
This does work but dropping and re-instating the base ref is somewhat
hairy and makes it difficult to add more logic to the put path as
there are two of them - the regular css_put() and the reversible base
ref clearing.
This patch updates css ref clearing such that blocking new
css_tryget() and putting the base ref are separate operations.
CSS_DEACT_BIAS, defined as INT_MIN, is added to css->refcnt and
css_tryget() busy loops while refcnt is negative. After all css refs
are deactivated, if they were all one, ref clearing succeeded and
CSS_REMOVED is set and the base ref is put using the regular
css_put(); otherwise, CSS_DEACT_BIAS is subtracted from the refcnts
and the original postive values are restored.
css_refcnt() accessor which always returns the unbiased positive
reference counts is added and used to simplify refcnt usages. While
at it, relocate and reformat comments in cgroup_has_css_refs().
This separates css->refcnt deactivation and putting the base ref,
which enables the next patch to make ref clearing optional.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizf@cn.fujitsu.com>
2012-04-02 03:09:56 +08:00
|
|
|
extern void __css_put(struct cgroup_subsys_state *css);
|
2013-06-13 12:04:52 +08:00
|
|
|
|
|
|
|
/**
|
|
|
|
* css_put - put a css reference
|
|
|
|
* @css: target css
|
|
|
|
*
|
|
|
|
* Put a reference obtained via css_get() and css_tryget().
|
|
|
|
*/
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
static inline void css_put(struct cgroup_subsys_state *css)
|
|
|
|
{
|
2012-11-20 00:13:36 +08:00
|
|
|
if (!(css->flags & CSS_ROOT))
|
cgroup: use negative bias on css->refcnt to block css_tryget()
When a cgroup is about to be removed, cgroup_clear_css_refs() is
called to check and ensure that there are no active css references.
This is currently achieved by dropping the refcnt to zero iff it has
only the base ref. If all css refs could be dropped to zero, ref
clearing is successful and CSS_REMOVED is set on all css. If not, the
base ref is restored. While css ref is zero w/o CSS_REMOVED set, any
css_tryget() attempt on it busy loops so that they are atomic
w.r.t. the whole css ref clearing.
This does work but dropping and re-instating the base ref is somewhat
hairy and makes it difficult to add more logic to the put path as
there are two of them - the regular css_put() and the reversible base
ref clearing.
This patch updates css ref clearing such that blocking new
css_tryget() and putting the base ref are separate operations.
CSS_DEACT_BIAS, defined as INT_MIN, is added to css->refcnt and
css_tryget() busy loops while refcnt is negative. After all css refs
are deactivated, if they were all one, ref clearing succeeded and
CSS_REMOVED is set and the base ref is put using the regular
css_put(); otherwise, CSS_DEACT_BIAS is subtracted from the refcnts
and the original postive values are restored.
css_refcnt() accessor which always returns the unbiased positive
reference counts is added and used to simplify refcnt usages. While
at it, relocate and reformat comments in cgroup_has_css_refs().
This separates css->refcnt deactivation and putting the base ref,
which enables the next patch to make ref clearing optional.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizf@cn.fujitsu.com>
2012-04-02 03:09:56 +08:00
|
|
|
__css_put(css);
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
}
|
|
|
|
|
2008-04-29 16:00:04 +08:00
|
|
|
/* bits in struct cgroup flags field */
|
|
|
|
enum {
|
|
|
|
/* Control Group is dead */
|
2013-06-13 12:04:53 +08:00
|
|
|
CGRP_DEAD,
|
2009-04-03 07:57:22 +08:00
|
|
|
/*
|
|
|
|
* Control Group has previously had a child cgroup or a task,
|
|
|
|
* but no longer (only if CGRP_NOTIFY_ON_RELEASE is set)
|
|
|
|
*/
|
2008-04-29 16:00:04 +08:00
|
|
|
CGRP_RELEASABLE,
|
|
|
|
/* Control Group requires release notifications to userspace */
|
|
|
|
CGRP_NOTIFY_ON_RELEASE,
|
2010-10-28 06:33:35 +08:00
|
|
|
/*
|
2012-11-20 00:13:38 +08:00
|
|
|
* Clone the parent's configuration when creating a new child
|
|
|
|
* cpuset cgroup. For historical reasons, this option can be
|
|
|
|
* specified at mount time and thus is implemented here.
|
2010-10-28 06:33:35 +08:00
|
|
|
*/
|
2012-11-20 00:13:38 +08:00
|
|
|
CGRP_CPUSET_CLONE_CHILDREN,
|
cgroup: introduce sane_behavior mount option
It's a sad fact that at this point various cgroup controllers are
carrying so many idiosyncrasies and pure insanities that it simply
isn't possible to reach any sort of sane consistent behavior while
maintaining staying fully compatible with what already has been
exposed to userland.
As we can't break exposed userland interface, transitioning to sane
behaviors can only be done in steps while maintaining backwards
compatibility. This patch introduces a new mount option -
__DEVEL__sane_behavior - which disables crazy features and enforces
consistent behaviors in cgroup core proper and various controllers.
As exactly which behaviors it changes are still being determined, the
mount option, at this point, is useful only for development of the new
behaviors. As such, the mount option is prefixed with __DEVEL__ and
generates a warning message when used.
Eventually, once we get to the point where all controller's behaviors
are consistent enough to implement unified hierarchy, the __DEVEL__
prefix will be dropped, and more importantly, unified-hierarchy will
enforce sane_behavior by default. Maybe we'll able to completely drop
the crazy stuff after a while, maybe not, but we at least have a
strategy to move on to saner behaviors.
This patch introduces the mount option and changes the following
behaviors in cgroup core.
* Mount options "noprefix" and "clone_children" are disallowed. Also,
cgroupfs file cgroup.clone_children is not created.
* When mounting an existing superblock, mount options should match.
This is currently pretty crazy. If one mounts a cgroup, creates a
subdirectory, unmounts it and then mount it again with different
option, it looks like the new options are applied but they aren't.
* Remount is disallowed.
The behaviors changes are documented in the comment above
CGRP_ROOT_SANE_BEHAVIOR enum and will be expanded as different
controllers are converted and planned improvements progress.
v2: Dropped unnecessary explicit file permission setting sane_behavior
cftype entry as suggested by Li Zefan.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vivek Goyal <vgoyal@redhat.com>
2013-04-15 11:15:26 +08:00
|
|
|
/* see the comment above CGRP_ROOT_SANE_BEHAVIOR for details */
|
|
|
|
CGRP_SANE_BEHAVIOR,
|
2008-04-29 16:00:04 +08:00
|
|
|
};
|
|
|
|
|
2013-03-01 15:01:56 +08:00
|
|
|
struct cgroup_name {
|
|
|
|
struct rcu_head rcu_head;
|
|
|
|
char name[];
|
2008-04-29 16:00:04 +08:00
|
|
|
};
|
|
|
|
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
struct cgroup {
|
|
|
|
unsigned long flags; /* "unsigned long" so bitops work */
|
|
|
|
|
2012-11-20 01:02:12 +08:00
|
|
|
int id; /* ida allocated in-hierarchy ID */
|
|
|
|
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
/*
|
|
|
|
* We link our 'sibling' struct into our parent's 'children'.
|
|
|
|
* Our children link their 'sibling' into our 'children'.
|
|
|
|
*/
|
|
|
|
struct list_head sibling; /* my parent's children */
|
|
|
|
struct list_head children; /* my children */
|
2012-04-02 03:09:56 +08:00
|
|
|
struct list_head files; /* my files */
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
|
2009-04-03 07:57:22 +08:00
|
|
|
struct cgroup *parent; /* my parent */
|
2012-11-20 00:13:36 +08:00
|
|
|
struct dentry *dentry; /* cgroup fs entry, RCU protected */
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
|
cgroup: add cgroup->serial_nr and implement cgroup_next_sibling()
Currently, there's no easy way to find out the next sibling cgroup
unless it's known that the current cgroup is accessed from the
parent's children list in a single RCU critical section. This in turn
forces all iterators to require whole iteration to be enclosed in a
single RCU critical section, which sometimes is too restrictive. This
patch implements cgroup_next_sibling() which can reliably determine
the next sibling regardless of the state of the current cgroup as long
as it's accessible.
It currently is impossible to determine the next sibling after
dropping RCU read lock because the cgroup being iterated could be
removed anytime and if RCU read lock is dropped, nothing guarantess
its ->sibling.next pointer is accessible. A removed cgroup would
continue to point to its next sibling for RCU accesses but stop
receiving updates from the sibling. IOW, the next sibling could be
removed and then complete its grace period while RCU read lock is
dropped, making it unsafe to dereference ->sibling.next after dropping
and re-acquiring RCU read lock.
This can be solved by adding a way to traverse to the next sibling
without dereferencing ->sibling.next. This patch adds a monotonically
increasing cgroup serial number, cgroup->serial_nr, which guarantees
that all cgroup->children lists are kept in increasing serial_nr
order. A new function, cgroup_next_sibling(), is implemented, which,
if CGRP_REMOVED is not set on the current cgroup, follows
->sibling.next; otherwise, traverses the parent's ->children list
until it sees a sibling with higher ->serial_nr.
This allows the function to always return the next sibling regardless
of the state of the current cgroup without adding overhead in the fast
path.
Further patches will update the iterators to use cgroup_next_sibling()
so that they allow dropping RCU read lock and blocking while iteration
is in progress which in turn will be used to simplify controllers.
v2: Typo fix as per Serge.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com>
2013-05-24 09:55:38 +08:00
|
|
|
/*
|
|
|
|
* Monotonically increasing unique serial number which defines a
|
|
|
|
* uniform order among all cgroups. It's guaranteed that all
|
|
|
|
* ->children lists are in the ascending order of ->serial_nr.
|
|
|
|
* It's used to allow interrupting and resuming iterations.
|
|
|
|
*/
|
|
|
|
u64 serial_nr;
|
|
|
|
|
2013-03-01 15:01:56 +08:00
|
|
|
/*
|
|
|
|
* This is a copy of dentry->d_name, and it's needed because
|
|
|
|
* we can't use dentry->d_name in cgroup_path().
|
|
|
|
*
|
|
|
|
* You must acquire rcu_read_lock() to access cgrp->name, and
|
|
|
|
* the only place that can change it is rename(), which is
|
|
|
|
* protected by parent dir's i_mutex.
|
|
|
|
*
|
|
|
|
* Normally you should use cgroup_name() wrapper rather than
|
|
|
|
* access it directly.
|
|
|
|
*/
|
|
|
|
struct cgroup_name __rcu *name;
|
|
|
|
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
/* Private pointers for each registered subsystem */
|
|
|
|
struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT];
|
|
|
|
|
|
|
|
struct cgroupfs_root *root;
|
2007-10-19 14:39:36 +08:00
|
|
|
|
|
|
|
/*
|
2013-06-13 12:04:50 +08:00
|
|
|
* List of cgrp_cset_links pointing at css_sets with tasks in this
|
|
|
|
* cgroup. Protected by css_set_lock.
|
2007-10-19 14:39:36 +08:00
|
|
|
*/
|
2013-06-13 12:04:50 +08:00
|
|
|
struct list_head cset_links;
|
2007-10-19 14:39:38 +08:00
|
|
|
|
2012-04-02 03:09:54 +08:00
|
|
|
struct list_head allcg_node; /* cgroupfs_root->allcg_list */
|
2012-04-02 03:09:55 +08:00
|
|
|
struct list_head cft_q_node; /* used during cftype add/rm */
|
2012-04-02 03:09:54 +08:00
|
|
|
|
2007-10-19 14:39:38 +08:00
|
|
|
/*
|
|
|
|
* Linked list running through all cgroups that can
|
|
|
|
* potentially be reaped by the release agent. Protected by
|
|
|
|
* release_list_lock
|
|
|
|
*/
|
|
|
|
struct list_head release_list;
|
2008-10-19 11:28:04 +08:00
|
|
|
|
2009-09-24 06:56:27 +08:00
|
|
|
/*
|
|
|
|
* list of pidlists, up to two for each namespace (one for procs, one
|
|
|
|
* for tasks); created on demand.
|
|
|
|
*/
|
|
|
|
struct list_head pidlists;
|
|
|
|
struct mutex pidlist_mutex;
|
2009-01-08 10:07:44 +08:00
|
|
|
|
|
|
|
/* For RCU-protected deletion */
|
|
|
|
struct rcu_head rcu_head;
|
2013-01-24 14:31:42 +08:00
|
|
|
struct work_struct free_work;
|
2010-03-11 07:22:20 +08:00
|
|
|
|
2011-03-31 09:57:33 +08:00
|
|
|
/* List of events which userspace want to receive */
|
2010-03-11 07:22:20 +08:00
|
|
|
struct list_head event_list;
|
|
|
|
spinlock_t event_list_lock;
|
cgroup: add xattr support
This is one of the items in the plumber's wish list.
For use cases:
>> What would the use case be for this?
>
> Attaching meta information to services, in an easily discoverable
> way. For example, in systemd we create one cgroup for each service, and
> could then store data like the main pid of the specific service as an
> xattr on the cgroup itself. That way we'd have almost all service state
> in the cgroupfs, which would make it possible to terminate systemd and
> later restart it without losing any state information. But there's more:
> for example, some very peculiar services cannot be terminated on
> shutdown (i.e. fakeraid DM stuff) and it would be really nice if the
> services in question could just mark that on their cgroup, by setting an
> xattr. On the more desktopy side of things there are other
> possibilities: for example there are plans defining what an application
> is along the lines of a cgroup (i.e. an app being a collection of
> processes). With xattrs one could then attach an icon or human readable
> program name on the cgroup.
>
> The key idea is that this would allow attaching runtime meta information
> to cgroups and everything they model (services, apps, vms), that doesn't
> need any complex userspace infrastructure, has good access control
> (i.e. because the file system enforces that anyway, and there's the
> "trusted." xattr namespace), notifications (inotify), and can easily be
> shared among applications.
>
> Lennart
v7:
- no changes
v6:
- remove user xattr namespace, only allow trusted and security
v5:
- check for capabilities before setting/removing xattrs
v4:
- no changes
v3:
- instead of config option, use mount option to enable xattr support
Original-patch-by: Li Zefan <lizefan@huawei.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Lennart Poettering <lpoetter@redhat.com>
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Aristeu Rozanski <aris@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2012-08-24 04:53:30 +08:00
|
|
|
|
|
|
|
/* directory xattrs */
|
|
|
|
struct simple_xattrs xattrs;
|
2007-10-19 14:39:36 +08:00
|
|
|
};
|
|
|
|
|
2013-04-15 11:15:25 +08:00
|
|
|
#define MAX_CGROUP_ROOT_NAMELEN 64
|
|
|
|
|
|
|
|
/* cgroupfs_root->flags */
|
|
|
|
enum {
|
cgroup: introduce sane_behavior mount option
It's a sad fact that at this point various cgroup controllers are
carrying so many idiosyncrasies and pure insanities that it simply
isn't possible to reach any sort of sane consistent behavior while
maintaining staying fully compatible with what already has been
exposed to userland.
As we can't break exposed userland interface, transitioning to sane
behaviors can only be done in steps while maintaining backwards
compatibility. This patch introduces a new mount option -
__DEVEL__sane_behavior - which disables crazy features and enforces
consistent behaviors in cgroup core proper and various controllers.
As exactly which behaviors it changes are still being determined, the
mount option, at this point, is useful only for development of the new
behaviors. As such, the mount option is prefixed with __DEVEL__ and
generates a warning message when used.
Eventually, once we get to the point where all controller's behaviors
are consistent enough to implement unified hierarchy, the __DEVEL__
prefix will be dropped, and more importantly, unified-hierarchy will
enforce sane_behavior by default. Maybe we'll able to completely drop
the crazy stuff after a while, maybe not, but we at least have a
strategy to move on to saner behaviors.
This patch introduces the mount option and changes the following
behaviors in cgroup core.
* Mount options "noprefix" and "clone_children" are disallowed. Also,
cgroupfs file cgroup.clone_children is not created.
* When mounting an existing superblock, mount options should match.
This is currently pretty crazy. If one mounts a cgroup, creates a
subdirectory, unmounts it and then mount it again with different
option, it looks like the new options are applied but they aren't.
* Remount is disallowed.
The behaviors changes are documented in the comment above
CGRP_ROOT_SANE_BEHAVIOR enum and will be expanded as different
controllers are converted and planned improvements progress.
v2: Dropped unnecessary explicit file permission setting sane_behavior
cftype entry as suggested by Li Zefan.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vivek Goyal <vgoyal@redhat.com>
2013-04-15 11:15:26 +08:00
|
|
|
/*
|
|
|
|
* Unfortunately, cgroup core and various controllers are riddled
|
|
|
|
* with idiosyncrasies and pointless options. The following flag,
|
|
|
|
* when set, will force sane behavior - some options are forced on,
|
|
|
|
* others are disallowed, and some controllers will change their
|
|
|
|
* hierarchical or other behaviors.
|
|
|
|
*
|
|
|
|
* The set of behaviors affected by this flag are still being
|
|
|
|
* determined and developed and the mount option for this flag is
|
|
|
|
* prefixed with __DEVEL__. The prefix will be dropped once we
|
|
|
|
* reach the point where all behaviors are compatible with the
|
|
|
|
* planned unified hierarchy, which will automatically turn on this
|
|
|
|
* flag.
|
|
|
|
*
|
|
|
|
* The followings are the behaviors currently affected this flag.
|
|
|
|
*
|
|
|
|
* - Mount options "noprefix" and "clone_children" are disallowed.
|
|
|
|
* Also, cgroupfs file cgroup.clone_children is not created.
|
|
|
|
*
|
|
|
|
* - When mounting an existing superblock, mount options should
|
|
|
|
* match.
|
|
|
|
*
|
|
|
|
* - Remount is disallowed.
|
|
|
|
*
|
2013-04-16 04:41:15 +08:00
|
|
|
* - memcg: use_hierarchy is on by default and the cgroup file for
|
|
|
|
* the flag is not created.
|
|
|
|
*
|
cgroup: introduce sane_behavior mount option
It's a sad fact that at this point various cgroup controllers are
carrying so many idiosyncrasies and pure insanities that it simply
isn't possible to reach any sort of sane consistent behavior while
maintaining staying fully compatible with what already has been
exposed to userland.
As we can't break exposed userland interface, transitioning to sane
behaviors can only be done in steps while maintaining backwards
compatibility. This patch introduces a new mount option -
__DEVEL__sane_behavior - which disables crazy features and enforces
consistent behaviors in cgroup core proper and various controllers.
As exactly which behaviors it changes are still being determined, the
mount option, at this point, is useful only for development of the new
behaviors. As such, the mount option is prefixed with __DEVEL__ and
generates a warning message when used.
Eventually, once we get to the point where all controller's behaviors
are consistent enough to implement unified hierarchy, the __DEVEL__
prefix will be dropped, and more importantly, unified-hierarchy will
enforce sane_behavior by default. Maybe we'll able to completely drop
the crazy stuff after a while, maybe not, but we at least have a
strategy to move on to saner behaviors.
This patch introduces the mount option and changes the following
behaviors in cgroup core.
* Mount options "noprefix" and "clone_children" are disallowed. Also,
cgroupfs file cgroup.clone_children is not created.
* When mounting an existing superblock, mount options should match.
This is currently pretty crazy. If one mounts a cgroup, creates a
subdirectory, unmounts it and then mount it again with different
option, it looks like the new options are applied but they aren't.
* Remount is disallowed.
The behaviors changes are documented in the comment above
CGRP_ROOT_SANE_BEHAVIOR enum and will be expanded as different
controllers are converted and planned improvements progress.
v2: Dropped unnecessary explicit file permission setting sane_behavior
cftype entry as suggested by Li Zefan.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vivek Goyal <vgoyal@redhat.com>
2013-04-15 11:15:26 +08:00
|
|
|
* The followings are planned changes.
|
|
|
|
*
|
|
|
|
* - release_agent will be disallowed once replacement notification
|
|
|
|
* mechanism is implemented.
|
|
|
|
*/
|
|
|
|
CGRP_ROOT_SANE_BEHAVIOR = (1 << 0),
|
|
|
|
|
2013-04-15 11:15:25 +08:00
|
|
|
CGRP_ROOT_NOPREFIX = (1 << 1), /* mounted subsystems have no named prefix */
|
|
|
|
CGRP_ROOT_XATTR = (1 << 2), /* supports extended attributes */
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A cgroupfs_root represents the root of a cgroup hierarchy, and may be
|
|
|
|
* associated with a superblock to form an active hierarchy. This is
|
|
|
|
* internal to cgroup core. Don't access directly from controllers.
|
|
|
|
*/
|
|
|
|
struct cgroupfs_root {
|
|
|
|
struct super_block *sb;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The bitmask of subsystems intended to be attached to this
|
|
|
|
* hierarchy
|
|
|
|
*/
|
|
|
|
unsigned long subsys_mask;
|
|
|
|
|
|
|
|
/* Unique id for this hierarchy. */
|
|
|
|
int hierarchy_id;
|
|
|
|
|
|
|
|
/* The bitmask of subsystems currently attached to this hierarchy */
|
|
|
|
unsigned long actual_subsys_mask;
|
|
|
|
|
|
|
|
/* A list running through the attached subsystems */
|
|
|
|
struct list_head subsys_list;
|
|
|
|
|
|
|
|
/* The root cgroup for this hierarchy */
|
|
|
|
struct cgroup top_cgroup;
|
|
|
|
|
|
|
|
/* Tracks how many cgroups are currently defined in hierarchy.*/
|
|
|
|
int number_of_cgroups;
|
|
|
|
|
|
|
|
/* A list running through the active hierarchies */
|
|
|
|
struct list_head root_list;
|
|
|
|
|
|
|
|
/* All cgroups on this root, cgroup_mutex protected */
|
|
|
|
struct list_head allcg_list;
|
|
|
|
|
|
|
|
/* Hierarchy-specific flags */
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
/* IDs for cgroups in this hierarchy */
|
|
|
|
struct ida cgroup_ida;
|
|
|
|
|
|
|
|
/* The path to use for release notifications. */
|
|
|
|
char release_agent_path[PATH_MAX];
|
|
|
|
|
|
|
|
/* The name for this hierarchy - may be empty */
|
|
|
|
char name[MAX_CGROUP_ROOT_NAMELEN];
|
|
|
|
};
|
|
|
|
|
2009-04-03 07:57:22 +08:00
|
|
|
/*
|
|
|
|
* A css_set is a structure holding pointers to a set of
|
2007-10-19 14:39:36 +08:00
|
|
|
* cgroup_subsys_state objects. This saves space in the task struct
|
|
|
|
* object and speeds up fork()/exit(), since a single inc/dec and a
|
2009-04-03 07:57:22 +08:00
|
|
|
* list_add()/del() can bump the reference count on the entire cgroup
|
|
|
|
* set for a task.
|
2007-10-19 14:39:36 +08:00
|
|
|
*/
|
|
|
|
|
|
|
|
struct css_set {
|
|
|
|
|
|
|
|
/* Reference count */
|
2008-10-19 11:28:03 +08:00
|
|
|
atomic_t refcount;
|
2007-10-19 14:39:36 +08:00
|
|
|
|
2008-04-29 16:00:11 +08:00
|
|
|
/*
|
|
|
|
* List running through all cgroup groups in the same hash
|
|
|
|
* slot. Protected by css_set_lock
|
|
|
|
*/
|
|
|
|
struct hlist_node hlist;
|
|
|
|
|
2007-10-19 14:39:36 +08:00
|
|
|
/*
|
|
|
|
* List running through all tasks using this cgroup
|
|
|
|
* group. Protected by css_set_lock
|
|
|
|
*/
|
|
|
|
struct list_head tasks;
|
|
|
|
|
|
|
|
/*
|
2013-06-13 12:04:50 +08:00
|
|
|
* List of cgrp_cset_links pointing at cgroups referenced from this
|
|
|
|
* css_set. Protected by css_set_lock.
|
2007-10-19 14:39:36 +08:00
|
|
|
*/
|
2013-06-13 12:04:50 +08:00
|
|
|
struct list_head cgrp_links;
|
2007-10-19 14:39:36 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Set of subsystem states, one for each subsystem. This array
|
|
|
|
* is immutable after creation apart from the init_css_set
|
2010-03-11 07:22:09 +08:00
|
|
|
* during subsystem registration (at boot time) and modular subsystem
|
|
|
|
* loading/unloading.
|
2007-10-19 14:39:36 +08:00
|
|
|
*/
|
|
|
|
struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT];
|
2009-09-24 06:56:29 +08:00
|
|
|
|
|
|
|
/* For RCU-protected deletion */
|
|
|
|
struct rcu_head rcu_head;
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
};
|
|
|
|
|
2008-04-29 16:00:01 +08:00
|
|
|
/*
|
|
|
|
* cgroup_map_cb is an abstract callback API for reporting map-valued
|
|
|
|
* control files
|
|
|
|
*/
|
|
|
|
|
|
|
|
struct cgroup_map_cb {
|
|
|
|
int (*fill)(struct cgroup_map_cb *cb, const char *key, u64 value);
|
|
|
|
void *state;
|
|
|
|
};
|
|
|
|
|
2009-04-03 07:57:22 +08:00
|
|
|
/*
|
|
|
|
* struct cftype: handler definitions for cgroup control files
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
*
|
|
|
|
* When reading/writing to a file:
|
2008-02-24 07:24:09 +08:00
|
|
|
* - the cgroup to use is file->f_dentry->d_parent->d_fsdata
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
* - the 'cftype' of the file is file->f_dentry->d_fsdata
|
|
|
|
*/
|
|
|
|
|
2012-04-02 03:09:55 +08:00
|
|
|
/* cftype->flags */
|
|
|
|
#define CFTYPE_ONLY_ON_ROOT (1U << 0) /* only create on root cg */
|
2012-11-20 22:06:18 +08:00
|
|
|
#define CFTYPE_NOT_ON_ROOT (1U << 1) /* don't create on root cg */
|
cgroup: introduce sane_behavior mount option
It's a sad fact that at this point various cgroup controllers are
carrying so many idiosyncrasies and pure insanities that it simply
isn't possible to reach any sort of sane consistent behavior while
maintaining staying fully compatible with what already has been
exposed to userland.
As we can't break exposed userland interface, transitioning to sane
behaviors can only be done in steps while maintaining backwards
compatibility. This patch introduces a new mount option -
__DEVEL__sane_behavior - which disables crazy features and enforces
consistent behaviors in cgroup core proper and various controllers.
As exactly which behaviors it changes are still being determined, the
mount option, at this point, is useful only for development of the new
behaviors. As such, the mount option is prefixed with __DEVEL__ and
generates a warning message when used.
Eventually, once we get to the point where all controller's behaviors
are consistent enough to implement unified hierarchy, the __DEVEL__
prefix will be dropped, and more importantly, unified-hierarchy will
enforce sane_behavior by default. Maybe we'll able to completely drop
the crazy stuff after a while, maybe not, but we at least have a
strategy to move on to saner behaviors.
This patch introduces the mount option and changes the following
behaviors in cgroup core.
* Mount options "noprefix" and "clone_children" are disallowed. Also,
cgroupfs file cgroup.clone_children is not created.
* When mounting an existing superblock, mount options should match.
This is currently pretty crazy. If one mounts a cgroup, creates a
subdirectory, unmounts it and then mount it again with different
option, it looks like the new options are applied but they aren't.
* Remount is disallowed.
The behaviors changes are documented in the comment above
CGRP_ROOT_SANE_BEHAVIOR enum and will be expanded as different
controllers are converted and planned improvements progress.
v2: Dropped unnecessary explicit file permission setting sane_behavior
cftype entry as suggested by Li Zefan.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vivek Goyal <vgoyal@redhat.com>
2013-04-15 11:15:26 +08:00
|
|
|
#define CFTYPE_INSANE (1U << 2) /* don't create if sane_behavior */
|
2012-04-02 03:09:55 +08:00
|
|
|
|
|
|
|
#define MAX_CFTYPE_NAME 64
|
|
|
|
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
struct cftype {
|
2009-04-03 07:57:22 +08:00
|
|
|
/*
|
|
|
|
* By convention, the name should begin with the name of the
|
2012-04-02 03:09:55 +08:00
|
|
|
* subsystem, followed by a period. Zero length string indicates
|
|
|
|
* end of cftype array.
|
2009-04-03 07:57:22 +08:00
|
|
|
*/
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
char name[MAX_CFTYPE_NAME];
|
|
|
|
int private;
|
2009-04-03 07:57:29 +08:00
|
|
|
/*
|
|
|
|
* If not 0, file mode is set to this value, otherwise it will
|
|
|
|
* be figured out automatically
|
|
|
|
*/
|
2011-07-26 13:55:55 +08:00
|
|
|
umode_t mode;
|
2008-07-25 16:46:58 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* If non-zero, defines the maximum length of string that can
|
|
|
|
* be passed to write_string; defaults to 64
|
|
|
|
*/
|
|
|
|
size_t max_write_len;
|
|
|
|
|
2012-04-02 03:09:55 +08:00
|
|
|
/* CFTYPE_* flags */
|
|
|
|
unsigned int flags;
|
|
|
|
|
2008-07-25 16:46:57 +08:00
|
|
|
int (*open)(struct inode *inode, struct file *file);
|
|
|
|
ssize_t (*read)(struct cgroup *cgrp, struct cftype *cft,
|
|
|
|
struct file *file,
|
|
|
|
char __user *buf, size_t nbytes, loff_t *ppos);
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
/*
|
2008-04-29 15:59:56 +08:00
|
|
|
* read_u64() is a shortcut for the common case of returning a
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
* single integer. Use it in place of read()
|
|
|
|
*/
|
2008-07-25 16:46:57 +08:00
|
|
|
u64 (*read_u64)(struct cgroup *cgrp, struct cftype *cft);
|
2008-04-29 16:00:06 +08:00
|
|
|
/*
|
|
|
|
* read_s64() is a signed version of read_u64()
|
|
|
|
*/
|
2008-07-25 16:46:57 +08:00
|
|
|
s64 (*read_s64)(struct cgroup *cgrp, struct cftype *cft);
|
2008-04-29 16:00:01 +08:00
|
|
|
/*
|
|
|
|
* read_map() is used for defining a map of key/value
|
|
|
|
* pairs. It should call cb->fill(cb, key, value) for each
|
|
|
|
* entry. The key/value pairs (and their ordering) should not
|
|
|
|
* change between reboots.
|
|
|
|
*/
|
2008-07-25 16:46:57 +08:00
|
|
|
int (*read_map)(struct cgroup *cont, struct cftype *cft,
|
|
|
|
struct cgroup_map_cb *cb);
|
2008-04-29 16:00:14 +08:00
|
|
|
/*
|
|
|
|
* read_seq_string() is used for outputting a simple sequence
|
|
|
|
* using seqfile.
|
|
|
|
*/
|
2008-07-25 16:46:57 +08:00
|
|
|
int (*read_seq_string)(struct cgroup *cont, struct cftype *cft,
|
|
|
|
struct seq_file *m);
|
2008-04-29 16:00:01 +08:00
|
|
|
|
2008-07-25 16:46:57 +08:00
|
|
|
ssize_t (*write)(struct cgroup *cgrp, struct cftype *cft,
|
|
|
|
struct file *file,
|
|
|
|
const char __user *buf, size_t nbytes, loff_t *ppos);
|
2007-10-19 14:39:33 +08:00
|
|
|
|
|
|
|
/*
|
2008-04-29 15:59:56 +08:00
|
|
|
* write_u64() is a shortcut for the common case of accepting
|
2007-10-19 14:39:33 +08:00
|
|
|
* a single integer (as parsed by simple_strtoull) from
|
|
|
|
* userspace. Use in place of write(); return 0 or error.
|
|
|
|
*/
|
2008-07-25 16:46:57 +08:00
|
|
|
int (*write_u64)(struct cgroup *cgrp, struct cftype *cft, u64 val);
|
2008-04-29 16:00:06 +08:00
|
|
|
/*
|
|
|
|
* write_s64() is a signed version of write_u64()
|
|
|
|
*/
|
2008-07-25 16:46:57 +08:00
|
|
|
int (*write_s64)(struct cgroup *cgrp, struct cftype *cft, s64 val);
|
2007-10-19 14:39:33 +08:00
|
|
|
|
2008-07-25 16:46:58 +08:00
|
|
|
/*
|
|
|
|
* write_string() is passed a nul-terminated kernelspace
|
|
|
|
* buffer of maximum length determined by max_write_len.
|
|
|
|
* Returns 0 or -ve error code.
|
|
|
|
*/
|
|
|
|
int (*write_string)(struct cgroup *cgrp, struct cftype *cft,
|
|
|
|
const char *buffer);
|
2008-04-29 16:00:08 +08:00
|
|
|
/*
|
|
|
|
* trigger() callback can be used to get some kick from the
|
|
|
|
* userspace, when the actual string written is not important
|
|
|
|
* at all. The private field can be used to determine the
|
|
|
|
* kick type for multiplexing.
|
|
|
|
*/
|
|
|
|
int (*trigger)(struct cgroup *cgrp, unsigned int event);
|
|
|
|
|
2008-07-25 16:46:57 +08:00
|
|
|
int (*release)(struct inode *inode, struct file *file);
|
2010-03-11 07:22:20 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* register_event() callback will be used to add new userspace
|
|
|
|
* waiter for changes related to the cftype. Implement it if
|
|
|
|
* you want to provide this functionality. Use eventfd_signal()
|
|
|
|
* on eventfd to send notification to userspace.
|
|
|
|
*/
|
|
|
|
int (*register_event)(struct cgroup *cgrp, struct cftype *cft,
|
|
|
|
struct eventfd_ctx *eventfd, const char *args);
|
|
|
|
/*
|
|
|
|
* unregister_event() callback will be called when userspace
|
|
|
|
* closes the eventfd or on cgroup removing.
|
|
|
|
* This callback must be implemented, if you want provide
|
|
|
|
* notification functionality.
|
|
|
|
*/
|
2010-05-27 05:42:46 +08:00
|
|
|
void (*unregister_event)(struct cgroup *cgrp, struct cftype *cft,
|
2010-03-11 07:22:20 +08:00
|
|
|
struct eventfd_ctx *eventfd);
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
};
|
|
|
|
|
2012-04-02 03:09:55 +08:00
|
|
|
/*
|
|
|
|
* cftype_sets describe cftypes belonging to a subsystem and are chained at
|
|
|
|
* cgroup_subsys->cftsets. Each cftset points to an array of cftypes
|
|
|
|
* terminated by zero length name.
|
|
|
|
*/
|
|
|
|
struct cftype_set {
|
|
|
|
struct list_head node; /* chained at subsys->cftsets */
|
cgroup: add xattr support
This is one of the items in the plumber's wish list.
For use cases:
>> What would the use case be for this?
>
> Attaching meta information to services, in an easily discoverable
> way. For example, in systemd we create one cgroup for each service, and
> could then store data like the main pid of the specific service as an
> xattr on the cgroup itself. That way we'd have almost all service state
> in the cgroupfs, which would make it possible to terminate systemd and
> later restart it without losing any state information. But there's more:
> for example, some very peculiar services cannot be terminated on
> shutdown (i.e. fakeraid DM stuff) and it would be really nice if the
> services in question could just mark that on their cgroup, by setting an
> xattr. On the more desktopy side of things there are other
> possibilities: for example there are plans defining what an application
> is along the lines of a cgroup (i.e. an app being a collection of
> processes). With xattrs one could then attach an icon or human readable
> program name on the cgroup.
>
> The key idea is that this would allow attaching runtime meta information
> to cgroups and everything they model (services, apps, vms), that doesn't
> need any complex userspace infrastructure, has good access control
> (i.e. because the file system enforces that anyway, and there's the
> "trusted." xattr namespace), notifications (inotify), and can easily be
> shared among applications.
>
> Lennart
v7:
- no changes
v6:
- remove user xattr namespace, only allow trusted and security
v5:
- check for capabilities before setting/removing xattrs
v4:
- no changes
v3:
- instead of config option, use mount option to enable xattr support
Original-patch-by: Li Zefan <lizefan@huawei.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Lennart Poettering <lpoetter@redhat.com>
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Aristeu Rozanski <aris@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2012-08-24 04:53:30 +08:00
|
|
|
struct cftype *cfts;
|
2012-04-02 03:09:55 +08:00
|
|
|
};
|
|
|
|
|
2008-02-07 16:14:42 +08:00
|
|
|
struct cgroup_scanner {
|
|
|
|
struct cgroup *cg;
|
|
|
|
int (*test_task)(struct task_struct *p, struct cgroup_scanner *scan);
|
|
|
|
void (*process_task)(struct task_struct *p,
|
|
|
|
struct cgroup_scanner *scan);
|
|
|
|
struct ptr_heap *heap;
|
2009-04-03 07:57:50 +08:00
|
|
|
void *data;
|
2008-02-07 16:14:42 +08:00
|
|
|
};
|
|
|
|
|
cgroup: introduce sane_behavior mount option
It's a sad fact that at this point various cgroup controllers are
carrying so many idiosyncrasies and pure insanities that it simply
isn't possible to reach any sort of sane consistent behavior while
maintaining staying fully compatible with what already has been
exposed to userland.
As we can't break exposed userland interface, transitioning to sane
behaviors can only be done in steps while maintaining backwards
compatibility. This patch introduces a new mount option -
__DEVEL__sane_behavior - which disables crazy features and enforces
consistent behaviors in cgroup core proper and various controllers.
As exactly which behaviors it changes are still being determined, the
mount option, at this point, is useful only for development of the new
behaviors. As such, the mount option is prefixed with __DEVEL__ and
generates a warning message when used.
Eventually, once we get to the point where all controller's behaviors
are consistent enough to implement unified hierarchy, the __DEVEL__
prefix will be dropped, and more importantly, unified-hierarchy will
enforce sane_behavior by default. Maybe we'll able to completely drop
the crazy stuff after a while, maybe not, but we at least have a
strategy to move on to saner behaviors.
This patch introduces the mount option and changes the following
behaviors in cgroup core.
* Mount options "noprefix" and "clone_children" are disallowed. Also,
cgroupfs file cgroup.clone_children is not created.
* When mounting an existing superblock, mount options should match.
This is currently pretty crazy. If one mounts a cgroup, creates a
subdirectory, unmounts it and then mount it again with different
option, it looks like the new options are applied but they aren't.
* Remount is disallowed.
The behaviors changes are documented in the comment above
CGRP_ROOT_SANE_BEHAVIOR enum and will be expanded as different
controllers are converted and planned improvements progress.
v2: Dropped unnecessary explicit file permission setting sane_behavior
cftype entry as suggested by Li Zefan.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vivek Goyal <vgoyal@redhat.com>
2013-04-15 11:15:26 +08:00
|
|
|
/*
|
|
|
|
* See the comment above CGRP_ROOT_SANE_BEHAVIOR for details. This
|
|
|
|
* function can be called as long as @cgrp is accessible.
|
|
|
|
*/
|
|
|
|
static inline bool cgroup_sane_behavior(const struct cgroup *cgrp)
|
|
|
|
{
|
|
|
|
return cgrp->root->flags & CGRP_ROOT_SANE_BEHAVIOR;
|
|
|
|
}
|
|
|
|
|
2013-03-01 15:01:56 +08:00
|
|
|
/* Caller should hold rcu_read_lock() */
|
|
|
|
static inline const char *cgroup_name(const struct cgroup *cgrp)
|
|
|
|
{
|
|
|
|
return rcu_dereference(cgrp->name)->name;
|
|
|
|
}
|
|
|
|
|
cgroup: add xattr support
This is one of the items in the plumber's wish list.
For use cases:
>> What would the use case be for this?
>
> Attaching meta information to services, in an easily discoverable
> way. For example, in systemd we create one cgroup for each service, and
> could then store data like the main pid of the specific service as an
> xattr on the cgroup itself. That way we'd have almost all service state
> in the cgroupfs, which would make it possible to terminate systemd and
> later restart it without losing any state information. But there's more:
> for example, some very peculiar services cannot be terminated on
> shutdown (i.e. fakeraid DM stuff) and it would be really nice if the
> services in question could just mark that on their cgroup, by setting an
> xattr. On the more desktopy side of things there are other
> possibilities: for example there are plans defining what an application
> is along the lines of a cgroup (i.e. an app being a collection of
> processes). With xattrs one could then attach an icon or human readable
> program name on the cgroup.
>
> The key idea is that this would allow attaching runtime meta information
> to cgroups and everything they model (services, apps, vms), that doesn't
> need any complex userspace infrastructure, has good access control
> (i.e. because the file system enforces that anyway, and there's the
> "trusted." xattr namespace), notifications (inotify), and can easily be
> shared among applications.
>
> Lennart
v7:
- no changes
v6:
- remove user xattr namespace, only allow trusted and security
v5:
- check for capabilities before setting/removing xattrs
v4:
- no changes
v3:
- instead of config option, use mount option to enable xattr support
Original-patch-by: Li Zefan <lizefan@huawei.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Lennart Poettering <lpoetter@redhat.com>
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Aristeu Rozanski <aris@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2012-08-24 04:53:30 +08:00
|
|
|
int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts);
|
|
|
|
int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts);
|
2012-04-02 03:09:55 +08:00
|
|
|
|
2013-04-09 10:00:38 +08:00
|
|
|
bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor);
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
|
2008-02-24 07:24:09 +08:00
|
|
|
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen);
|
2013-04-15 11:50:08 +08:00
|
|
|
int task_cgroup_path_from_hierarchy(struct task_struct *task, int hierarchy_id,
|
|
|
|
char *buf, size_t buflen);
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
|
2008-02-24 07:24:09 +08:00
|
|
|
int cgroup_task_count(const struct cgroup *cgrp);
|
2007-10-19 14:39:32 +08:00
|
|
|
|
2011-12-13 10:12:21 +08:00
|
|
|
/*
|
|
|
|
* Control Group taskset, used to pass around set of tasks to cgroup_subsys
|
|
|
|
* methods.
|
|
|
|
*/
|
|
|
|
struct cgroup_taskset;
|
|
|
|
struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset);
|
|
|
|
struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset);
|
|
|
|
struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset);
|
|
|
|
int cgroup_taskset_size(struct cgroup_taskset *tset);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cgroup_taskset_for_each - iterate cgroup_taskset
|
|
|
|
* @task: the loop cursor
|
|
|
|
* @skip_cgrp: skip if task's cgroup matches this, %NULL to iterate through all
|
|
|
|
* @tset: taskset to iterate
|
|
|
|
*/
|
|
|
|
#define cgroup_taskset_for_each(task, skip_cgrp, tset) \
|
|
|
|
for ((task) = cgroup_taskset_first((tset)); (task); \
|
|
|
|
(task) = cgroup_taskset_next((tset))) \
|
|
|
|
if (!(skip_cgrp) || \
|
|
|
|
cgroup_taskset_cur_cgroup((tset)) != (skip_cgrp))
|
|
|
|
|
2009-02-04 17:12:08 +08:00
|
|
|
/*
|
|
|
|
* Control Group subsystem type.
|
|
|
|
* See Documentation/cgroups/cgroups.txt for details
|
|
|
|
*/
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
|
|
|
|
struct cgroup_subsys {
|
2012-11-20 00:13:38 +08:00
|
|
|
struct cgroup_subsys_state *(*css_alloc)(struct cgroup *cgrp);
|
|
|
|
int (*css_online)(struct cgroup *cgrp);
|
|
|
|
void (*css_offline)(struct cgroup *cgrp);
|
|
|
|
void (*css_free)(struct cgroup *cgrp);
|
|
|
|
|
2012-01-31 13:47:36 +08:00
|
|
|
int (*can_attach)(struct cgroup *cgrp, struct cgroup_taskset *tset);
|
|
|
|
void (*cancel_attach)(struct cgroup *cgrp, struct cgroup_taskset *tset);
|
|
|
|
void (*attach)(struct cgroup *cgrp, struct cgroup_taskset *tset);
|
|
|
|
void (*fork)(struct task_struct *task);
|
|
|
|
void (*exit)(struct cgroup *cgrp, struct cgroup *old_cgrp,
|
|
|
|
struct task_struct *task);
|
|
|
|
void (*bind)(struct cgroup *root);
|
2009-01-07 06:39:22 +08:00
|
|
|
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
int subsys_id;
|
2008-04-05 05:29:57 +08:00
|
|
|
int disabled;
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
int early_init;
|
cgroup: CSS ID support
Patch for Per-CSS(Cgroup Subsys State) ID and private hierarchy code.
This patch attaches unique ID to each css and provides following.
- css_lookup(subsys, id)
returns pointer to struct cgroup_subysys_state of id.
- css_get_next(subsys, id, rootid, depth, foundid)
returns the next css under "root" by scanning
When cgroup_subsys->use_id is set, an id for css is maintained.
The cgroup framework only parepares
- css_id of root css for subsys
- id is automatically attached at creation of css.
- id is *not* freed automatically. Because the cgroup framework
don't know lifetime of cgroup_subsys_state.
free_css_id() function is provided. This must be called by subsys.
There are several reasons to develop this.
- Saving space .... For example, memcg's swap_cgroup is array of
pointers to cgroup. But it is not necessary to be very fast.
By replacing pointers(8bytes per ent) to ID (2byes per ent), we can
reduce much amount of memory usage.
- Scanning without lock.
CSS_ID provides "scan id under this ROOT" function. By this, scanning
css under root can be written without locks.
ex)
do {
rcu_read_lock();
next = cgroup_get_next(subsys, id, root, &found);
/* check sanity of next here */
css_tryget();
rcu_read_unlock();
id = found + 1
} while(...)
Characteristics:
- Each css has unique ID under subsys.
- Lifetime of ID is controlled by subsys.
- css ID contains "ID" and "Depth in hierarchy" and stack of hierarchy
- Allowed ID is 1-65535, ID 0 is UNUSED ID.
Design Choices:
- scan-by-ID v.s. scan-by-tree-walk.
As /proc's pid scan does, scan-by-ID is robust when scanning is done
by following kind of routine.
scan -> rest a while(release a lock) -> conitunue from interrupted
memcg's hierarchical reclaim does this.
- When subsys->use_id is set, # of css in the system is limited to
65535.
[bharata@linux.vnet.ibm.com: remove rcu_read_lock() from css_get_next()]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Paul Menage <menage@google.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-03 07:57:25 +08:00
|
|
|
/*
|
|
|
|
* True if this subsys uses ID. ID is not available before cgroup_init()
|
|
|
|
* (not available in early_init time.)
|
|
|
|
*/
|
|
|
|
bool use_id;
|
cgroup: make css->refcnt clearing on cgroup removal optional
Currently, cgroup removal tries to drain all css references. If there
are active css references, the removal logic waits and retries
->pre_detroy() until either all refs drop to zero or removal is
cancelled.
This semantics is unusual and adds non-trivial complexity to cgroup
core and IMHO is fundamentally misguided in that it couples internal
implementation details (references to internal data structure) with
externally visible operation (rmdir). To userland, this is a behavior
peculiarity which is unnecessary and difficult to expect (css refs is
otherwise invisible from userland), and, to policy implementations,
this is an unnecessary restriction (e.g. blkcg wants to hold css refs
for caching purposes but can't as that becomes visible as rmdir hang).
Unfortunately, memcg currently depends on ->pre_destroy() retrials and
cgroup removal vetoing and can't be immmediately switched to the new
behavior. This patch introduces the new behavior of not waiting for
css refs to drain and maintains the old behavior for subsystems which
have __DEPRECATED_clear_css_refs set.
Once, memcg is updated, we can drop the code paths for the old
behavior as proposed in the following patch. Note that the following
patch is incorrect in that dput work item is in cgroup and may lose
some of dputs when multiples css's are released back-to-back, and
__css_put() triggers check_for_release() when refcnt reaches 0 instead
of 1; however, it shows what part can be removed.
http://thread.gmane.org/gmane.linux.kernel.containers/22559/focus=75251
Note that, in not-too-distant future, cgroup core will start emitting
warning messages for subsys which require the old behavior, so please
get moving.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
2012-04-02 03:09:56 +08:00
|
|
|
|
2012-09-14 03:20:58 +08:00
|
|
|
/*
|
|
|
|
* If %false, this subsystem is properly hierarchical -
|
|
|
|
* configuration, resource accounting and restriction on a parent
|
|
|
|
* cgroup cover those of its children. If %true, hierarchy support
|
|
|
|
* is broken in some ways - some subsystems ignore hierarchy
|
|
|
|
* completely while others are only implemented half-way.
|
|
|
|
*
|
|
|
|
* It's now disallowed to create nested cgroups if the subsystem is
|
|
|
|
* broken and cgroup core will emit a warning message on such
|
|
|
|
* cases. Eventually, all subsystems will be made properly
|
|
|
|
* hierarchical and this will go away.
|
|
|
|
*/
|
|
|
|
bool broken_hierarchy;
|
|
|
|
bool warned_broken_hierarchy;
|
|
|
|
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
#define MAX_CGROUP_TYPE_NAMELEN 32
|
|
|
|
const char *name;
|
|
|
|
|
2009-01-08 10:08:36 +08:00
|
|
|
/*
|
|
|
|
* Link to parent, and list entry in parent's children.
|
2012-06-07 10:12:30 +08:00
|
|
|
* Protected by cgroup_lock()
|
2009-01-08 10:08:36 +08:00
|
|
|
*/
|
|
|
|
struct cgroupfs_root *root;
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
struct list_head sibling;
|
cgroup: CSS ID support
Patch for Per-CSS(Cgroup Subsys State) ID and private hierarchy code.
This patch attaches unique ID to each css and provides following.
- css_lookup(subsys, id)
returns pointer to struct cgroup_subysys_state of id.
- css_get_next(subsys, id, rootid, depth, foundid)
returns the next css under "root" by scanning
When cgroup_subsys->use_id is set, an id for css is maintained.
The cgroup framework only parepares
- css_id of root css for subsys
- id is automatically attached at creation of css.
- id is *not* freed automatically. Because the cgroup framework
don't know lifetime of cgroup_subsys_state.
free_css_id() function is provided. This must be called by subsys.
There are several reasons to develop this.
- Saving space .... For example, memcg's swap_cgroup is array of
pointers to cgroup. But it is not necessary to be very fast.
By replacing pointers(8bytes per ent) to ID (2byes per ent), we can
reduce much amount of memory usage.
- Scanning without lock.
CSS_ID provides "scan id under this ROOT" function. By this, scanning
css under root can be written without locks.
ex)
do {
rcu_read_lock();
next = cgroup_get_next(subsys, id, root, &found);
/* check sanity of next here */
css_tryget();
rcu_read_unlock();
id = found + 1
} while(...)
Characteristics:
- Each css has unique ID under subsys.
- Lifetime of ID is controlled by subsys.
- css ID contains "ID" and "Depth in hierarchy" and stack of hierarchy
- Allowed ID is 1-65535, ID 0 is UNUSED ID.
Design Choices:
- scan-by-ID v.s. scan-by-tree-walk.
As /proc's pid scan does, scan-by-ID is robust when scanning is done
by following kind of routine.
scan -> rest a while(release a lock) -> conitunue from interrupted
memcg's hierarchical reclaim does this.
- When subsys->use_id is set, # of css in the system is limited to
65535.
[bharata@linux.vnet.ibm.com: remove rcu_read_lock() from css_get_next()]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Paul Menage <menage@google.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-03 07:57:25 +08:00
|
|
|
/* used when use_id == true */
|
|
|
|
struct idr idr;
|
2012-03-22 07:34:21 +08:00
|
|
|
spinlock_t id_lock;
|
2010-03-11 07:22:09 +08:00
|
|
|
|
2012-04-02 03:09:55 +08:00
|
|
|
/* list of cftype_sets */
|
|
|
|
struct list_head cftsets;
|
|
|
|
|
|
|
|
/* base cftypes, automatically [de]registered with subsys itself */
|
|
|
|
struct cftype *base_cftypes;
|
|
|
|
struct cftype_set base_cftset;
|
|
|
|
|
2010-03-11 07:22:09 +08:00
|
|
|
/* should be defined only by modular subsystems */
|
|
|
|
struct module *module;
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
#define SUBSYS(_x) extern struct cgroup_subsys _x ## _subsys;
|
2012-09-12 22:12:05 +08:00
|
|
|
#define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
#include <linux/cgroup_subsys.h>
|
2012-09-12 22:12:05 +08:00
|
|
|
#undef IS_SUBSYS_ENABLED
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
#undef SUBSYS
|
|
|
|
|
|
|
|
static inline struct cgroup_subsys_state *cgroup_subsys_state(
|
2008-02-24 07:24:09 +08:00
|
|
|
struct cgroup *cgrp, int subsys_id)
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
{
|
2008-02-24 07:24:09 +08:00
|
|
|
return cgrp->subsys[subsys_id];
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
}
|
|
|
|
|
2010-06-08 17:40:42 +08:00
|
|
|
/*
|
|
|
|
* function to get the cgroup_subsys_state which allows for extra
|
|
|
|
* rcu_dereference_check() conditions, such as locks used during the
|
|
|
|
* cgroup_subsys::attach() methods.
|
|
|
|
*/
|
2013-04-08 00:29:51 +08:00
|
|
|
#ifdef CONFIG_PROVE_RCU
|
|
|
|
extern struct mutex cgroup_mutex;
|
2010-06-08 17:40:42 +08:00
|
|
|
#define task_subsys_state_check(task, subsys_id, __c) \
|
2013-04-08 00:29:51 +08:00
|
|
|
rcu_dereference_check((task)->cgroups->subsys[(subsys_id)], \
|
|
|
|
lockdep_is_held(&(task)->alloc_lock) || \
|
|
|
|
lockdep_is_held(&cgroup_mutex) || (__c))
|
|
|
|
#else
|
2010-06-08 17:40:42 +08:00
|
|
|
#define task_subsys_state_check(task, subsys_id, __c) \
|
2013-04-08 00:29:51 +08:00
|
|
|
rcu_dereference((task)->cgroups->subsys[(subsys_id)])
|
|
|
|
#endif
|
2010-06-08 17:40:42 +08:00
|
|
|
|
|
|
|
static inline struct cgroup_subsys_state *
|
|
|
|
task_subsys_state(struct task_struct *task, int subsys_id)
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
{
|
2010-06-08 17:40:42 +08:00
|
|
|
return task_subsys_state_check(task, subsys_id, false);
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline struct cgroup* task_cgroup(struct task_struct *task,
|
|
|
|
int subsys_id)
|
|
|
|
{
|
|
|
|
return task_subsys_state(task, subsys_id)->cgroup;
|
|
|
|
}
|
|
|
|
|
cgroup: add cgroup->serial_nr and implement cgroup_next_sibling()
Currently, there's no easy way to find out the next sibling cgroup
unless it's known that the current cgroup is accessed from the
parent's children list in a single RCU critical section. This in turn
forces all iterators to require whole iteration to be enclosed in a
single RCU critical section, which sometimes is too restrictive. This
patch implements cgroup_next_sibling() which can reliably determine
the next sibling regardless of the state of the current cgroup as long
as it's accessible.
It currently is impossible to determine the next sibling after
dropping RCU read lock because the cgroup being iterated could be
removed anytime and if RCU read lock is dropped, nothing guarantess
its ->sibling.next pointer is accessible. A removed cgroup would
continue to point to its next sibling for RCU accesses but stop
receiving updates from the sibling. IOW, the next sibling could be
removed and then complete its grace period while RCU read lock is
dropped, making it unsafe to dereference ->sibling.next after dropping
and re-acquiring RCU read lock.
This can be solved by adding a way to traverse to the next sibling
without dereferencing ->sibling.next. This patch adds a monotonically
increasing cgroup serial number, cgroup->serial_nr, which guarantees
that all cgroup->children lists are kept in increasing serial_nr
order. A new function, cgroup_next_sibling(), is implemented, which,
if CGRP_REMOVED is not set on the current cgroup, follows
->sibling.next; otherwise, traverses the parent's ->children list
until it sees a sibling with higher ->serial_nr.
This allows the function to always return the next sibling regardless
of the state of the current cgroup without adding overhead in the fast
path.
Further patches will update the iterators to use cgroup_next_sibling()
so that they allow dropping RCU read lock and blocking while iteration
is in progress which in turn will be used to simplify controllers.
v2: Typo fix as per Serge.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com>
2013-05-24 09:55:38 +08:00
|
|
|
struct cgroup *cgroup_next_sibling(struct cgroup *pos);
|
|
|
|
|
2012-11-10 01:12:29 +08:00
|
|
|
/**
|
|
|
|
* cgroup_for_each_child - iterate through children of a cgroup
|
|
|
|
* @pos: the cgroup * to use as the loop cursor
|
2013-05-24 09:55:38 +08:00
|
|
|
* @cgrp: cgroup whose children to walk
|
2012-11-10 01:12:29 +08:00
|
|
|
*
|
2013-05-24 09:55:38 +08:00
|
|
|
* Walk @cgrp's children. Must be called under rcu_read_lock(). A child
|
2012-11-20 00:13:38 +08:00
|
|
|
* cgroup which hasn't finished ->css_online() or already has finished
|
|
|
|
* ->css_offline() may show up during traversal and it's each subsystem's
|
2012-11-10 01:12:29 +08:00
|
|
|
* responsibility to verify that each @pos is alive.
|
|
|
|
*
|
2012-11-20 00:13:38 +08:00
|
|
|
* If a subsystem synchronizes against the parent in its ->css_online() and
|
|
|
|
* before starting iterating, a cgroup which finished ->css_online() is
|
|
|
|
* guaranteed to be visible in the future iterations.
|
2013-05-24 09:55:38 +08:00
|
|
|
*
|
|
|
|
* It is allowed to temporarily drop RCU read lock during iteration. The
|
|
|
|
* caller is responsible for ensuring that @pos remains accessible until
|
|
|
|
* the start of the next iteration by, for example, bumping the css refcnt.
|
2012-11-10 01:12:29 +08:00
|
|
|
*/
|
2013-05-24 09:55:38 +08:00
|
|
|
#define cgroup_for_each_child(pos, cgrp) \
|
|
|
|
for ((pos) = list_first_or_null_rcu(&(cgrp)->children, \
|
|
|
|
struct cgroup, sibling); \
|
|
|
|
(pos); (pos) = cgroup_next_sibling((pos)))
|
2012-11-10 01:12:29 +08:00
|
|
|
|
|
|
|
struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos,
|
|
|
|
struct cgroup *cgroup);
|
2013-01-08 00:49:33 +08:00
|
|
|
struct cgroup *cgroup_rightmost_descendant(struct cgroup *pos);
|
2012-11-10 01:12:29 +08:00
|
|
|
|
|
|
|
/**
|
|
|
|
* cgroup_for_each_descendant_pre - pre-order walk of a cgroup's descendants
|
|
|
|
* @pos: the cgroup * to use as the loop cursor
|
|
|
|
* @cgroup: cgroup whose descendants to walk
|
|
|
|
*
|
|
|
|
* Walk @cgroup's descendants. Must be called under rcu_read_lock(). A
|
2012-11-20 00:13:38 +08:00
|
|
|
* descendant cgroup which hasn't finished ->css_online() or already has
|
|
|
|
* finished ->css_offline() may show up during traversal and it's each
|
2012-11-10 01:12:29 +08:00
|
|
|
* subsystem's responsibility to verify that each @pos is alive.
|
|
|
|
*
|
2012-11-20 00:13:38 +08:00
|
|
|
* If a subsystem synchronizes against the parent in its ->css_online() and
|
|
|
|
* before starting iterating, and synchronizes against @pos on each
|
2013-05-24 09:50:24 +08:00
|
|
|
* iteration, any descendant cgroup which finished ->css_online() is
|
2012-11-10 01:12:29 +08:00
|
|
|
* guaranteed to be visible in the future iterations.
|
|
|
|
*
|
|
|
|
* In other words, the following guarantees that a descendant can't escape
|
|
|
|
* state updates of its ancestors.
|
|
|
|
*
|
2012-11-20 00:13:38 +08:00
|
|
|
* my_online(@cgrp)
|
2012-11-10 01:12:29 +08:00
|
|
|
* {
|
|
|
|
* Lock @cgrp->parent and @cgrp;
|
|
|
|
* Inherit state from @cgrp->parent;
|
|
|
|
* Unlock both.
|
|
|
|
* }
|
|
|
|
*
|
|
|
|
* my_update_state(@cgrp)
|
|
|
|
* {
|
|
|
|
* Lock @cgrp;
|
|
|
|
* Update @cgrp's state;
|
|
|
|
* Unlock @cgrp;
|
|
|
|
*
|
|
|
|
* cgroup_for_each_descendant_pre(@pos, @cgrp) {
|
|
|
|
* Lock @pos;
|
|
|
|
* Verify @pos is alive and inherit state from @pos->parent;
|
|
|
|
* Unlock @pos;
|
|
|
|
* }
|
|
|
|
* }
|
|
|
|
*
|
|
|
|
* As long as the inheriting step, including checking the parent state, is
|
|
|
|
* enclosed inside @pos locking, double-locking the parent isn't necessary
|
|
|
|
* while inheriting. The state update to the parent is guaranteed to be
|
|
|
|
* visible by walking order and, as long as inheriting operations to the
|
|
|
|
* same @pos are atomic to each other, multiple updates racing each other
|
|
|
|
* still result in the correct state. It's guaranateed that at least one
|
|
|
|
* inheritance happens for any cgroup after the latest update to its
|
|
|
|
* parent.
|
|
|
|
*
|
|
|
|
* If checking parent's state requires locking the parent, each inheriting
|
|
|
|
* iteration should lock and unlock both @pos->parent and @pos.
|
|
|
|
*
|
|
|
|
* Alternatively, a subsystem may choose to use a single global lock to
|
2012-11-20 00:13:38 +08:00
|
|
|
* synchronize ->css_online() and ->css_offline() against tree-walking
|
2012-11-10 01:12:29 +08:00
|
|
|
* operations.
|
2013-05-24 09:55:38 +08:00
|
|
|
*
|
|
|
|
* It is allowed to temporarily drop RCU read lock during iteration. The
|
|
|
|
* caller is responsible for ensuring that @pos remains accessible until
|
|
|
|
* the start of the next iteration by, for example, bumping the css refcnt.
|
2012-11-10 01:12:29 +08:00
|
|
|
*/
|
|
|
|
#define cgroup_for_each_descendant_pre(pos, cgroup) \
|
|
|
|
for (pos = cgroup_next_descendant_pre(NULL, (cgroup)); (pos); \
|
|
|
|
pos = cgroup_next_descendant_pre((pos), (cgroup)))
|
|
|
|
|
|
|
|
struct cgroup *cgroup_next_descendant_post(struct cgroup *pos,
|
|
|
|
struct cgroup *cgroup);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cgroup_for_each_descendant_post - post-order walk of a cgroup's descendants
|
|
|
|
* @pos: the cgroup * to use as the loop cursor
|
|
|
|
* @cgroup: cgroup whose descendants to walk
|
|
|
|
*
|
|
|
|
* Similar to cgroup_for_each_descendant_pre() but performs post-order
|
|
|
|
* traversal instead. Note that the walk visibility guarantee described in
|
|
|
|
* pre-order walk doesn't apply the same to post-order walks.
|
|
|
|
*/
|
|
|
|
#define cgroup_for_each_descendant_post(pos, cgroup) \
|
|
|
|
for (pos = cgroup_next_descendant_post(NULL, (cgroup)); (pos); \
|
|
|
|
pos = cgroup_next_descendant_post((pos), (cgroup)))
|
|
|
|
|
2007-10-19 14:39:36 +08:00
|
|
|
/* A cgroup_iter should be treated as an opaque object */
|
|
|
|
struct cgroup_iter {
|
2013-06-13 12:04:50 +08:00
|
|
|
struct list_head *cset_link;
|
2007-10-19 14:39:36 +08:00
|
|
|
struct list_head *task;
|
|
|
|
};
|
|
|
|
|
2009-04-03 07:57:22 +08:00
|
|
|
/*
|
|
|
|
* To iterate across the tasks in a cgroup:
|
2007-10-19 14:39:36 +08:00
|
|
|
*
|
tree-wide: fix comment/printk typos
"gadget", "through", "command", "maintain", "maintain", "controller", "address",
"between", "initiali[zs]e", "instead", "function", "select", "already",
"equal", "access", "management", "hierarchy", "registration", "interest",
"relative", "memory", "offset", "already",
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2010-11-02 03:38:34 +08:00
|
|
|
* 1) call cgroup_iter_start to initialize an iterator
|
2007-10-19 14:39:36 +08:00
|
|
|
*
|
|
|
|
* 2) call cgroup_iter_next() to retrieve member tasks until it
|
|
|
|
* returns NULL or until you want to end the iteration
|
|
|
|
*
|
|
|
|
* 3) call cgroup_iter_end() to destroy the iterator.
|
2008-02-07 16:14:42 +08:00
|
|
|
*
|
2009-04-03 07:57:22 +08:00
|
|
|
* Or, call cgroup_scan_tasks() to iterate through every task in a
|
|
|
|
* cgroup - cgroup_scan_tasks() holds the css_set_lock when calling
|
|
|
|
* the test_task() callback, but not while calling the process_task()
|
|
|
|
* callback.
|
2007-10-19 14:39:36 +08:00
|
|
|
*/
|
2008-02-24 07:24:09 +08:00
|
|
|
void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it);
|
|
|
|
struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
|
2007-10-19 14:39:36 +08:00
|
|
|
struct cgroup_iter *it);
|
2008-02-24 07:24:09 +08:00
|
|
|
void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it);
|
2008-02-07 16:14:42 +08:00
|
|
|
int cgroup_scan_tasks(struct cgroup_scanner *scan);
|
2010-09-10 07:37:37 +08:00
|
|
|
int cgroup_attach_task_all(struct task_struct *from, struct task_struct *);
|
2013-04-08 00:29:50 +08:00
|
|
|
int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from);
|
2010-09-10 07:37:37 +08:00
|
|
|
|
cgroup: CSS ID support
Patch for Per-CSS(Cgroup Subsys State) ID and private hierarchy code.
This patch attaches unique ID to each css and provides following.
- css_lookup(subsys, id)
returns pointer to struct cgroup_subysys_state of id.
- css_get_next(subsys, id, rootid, depth, foundid)
returns the next css under "root" by scanning
When cgroup_subsys->use_id is set, an id for css is maintained.
The cgroup framework only parepares
- css_id of root css for subsys
- id is automatically attached at creation of css.
- id is *not* freed automatically. Because the cgroup framework
don't know lifetime of cgroup_subsys_state.
free_css_id() function is provided. This must be called by subsys.
There are several reasons to develop this.
- Saving space .... For example, memcg's swap_cgroup is array of
pointers to cgroup. But it is not necessary to be very fast.
By replacing pointers(8bytes per ent) to ID (2byes per ent), we can
reduce much amount of memory usage.
- Scanning without lock.
CSS_ID provides "scan id under this ROOT" function. By this, scanning
css under root can be written without locks.
ex)
do {
rcu_read_lock();
next = cgroup_get_next(subsys, id, root, &found);
/* check sanity of next here */
css_tryget();
rcu_read_unlock();
id = found + 1
} while(...)
Characteristics:
- Each css has unique ID under subsys.
- Lifetime of ID is controlled by subsys.
- css ID contains "ID" and "Depth in hierarchy" and stack of hierarchy
- Allowed ID is 1-65535, ID 0 is UNUSED ID.
Design Choices:
- scan-by-ID v.s. scan-by-tree-walk.
As /proc's pid scan does, scan-by-ID is robust when scanning is done
by following kind of routine.
scan -> rest a while(release a lock) -> conitunue from interrupted
memcg's hierarchical reclaim does this.
- When subsys->use_id is set, # of css in the system is limited to
65535.
[bharata@linux.vnet.ibm.com: remove rcu_read_lock() from css_get_next()]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Paul Menage <menage@google.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-03 07:57:25 +08:00
|
|
|
/*
|
|
|
|
* CSS ID is ID for cgroup_subsys_state structs under subsys. This only works
|
|
|
|
* if cgroup_subsys.use_id == true. It can be used for looking up and scanning.
|
|
|
|
* CSS ID is assigned at cgroup allocation (create) automatically
|
|
|
|
* and removed when subsys calls free_css_id() function. This is because
|
|
|
|
* the lifetime of cgroup_subsys_state is subsys's matter.
|
|
|
|
*
|
|
|
|
* Looking up and scanning function should be called under rcu_read_lock().
|
2012-06-07 10:12:30 +08:00
|
|
|
* Taking cgroup_mutex is not necessary for following calls.
|
cgroup: CSS ID support
Patch for Per-CSS(Cgroup Subsys State) ID and private hierarchy code.
This patch attaches unique ID to each css and provides following.
- css_lookup(subsys, id)
returns pointer to struct cgroup_subysys_state of id.
- css_get_next(subsys, id, rootid, depth, foundid)
returns the next css under "root" by scanning
When cgroup_subsys->use_id is set, an id for css is maintained.
The cgroup framework only parepares
- css_id of root css for subsys
- id is automatically attached at creation of css.
- id is *not* freed automatically. Because the cgroup framework
don't know lifetime of cgroup_subsys_state.
free_css_id() function is provided. This must be called by subsys.
There are several reasons to develop this.
- Saving space .... For example, memcg's swap_cgroup is array of
pointers to cgroup. But it is not necessary to be very fast.
By replacing pointers(8bytes per ent) to ID (2byes per ent), we can
reduce much amount of memory usage.
- Scanning without lock.
CSS_ID provides "scan id under this ROOT" function. By this, scanning
css under root can be written without locks.
ex)
do {
rcu_read_lock();
next = cgroup_get_next(subsys, id, root, &found);
/* check sanity of next here */
css_tryget();
rcu_read_unlock();
id = found + 1
} while(...)
Characteristics:
- Each css has unique ID under subsys.
- Lifetime of ID is controlled by subsys.
- css ID contains "ID" and "Depth in hierarchy" and stack of hierarchy
- Allowed ID is 1-65535, ID 0 is UNUSED ID.
Design Choices:
- scan-by-ID v.s. scan-by-tree-walk.
As /proc's pid scan does, scan-by-ID is robust when scanning is done
by following kind of routine.
scan -> rest a while(release a lock) -> conitunue from interrupted
memcg's hierarchical reclaim does this.
- When subsys->use_id is set, # of css in the system is limited to
65535.
[bharata@linux.vnet.ibm.com: remove rcu_read_lock() from css_get_next()]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Paul Menage <menage@google.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-03 07:57:25 +08:00
|
|
|
* But the css returned by this routine can be "not populated yet" or "being
|
|
|
|
* destroyed". The caller should check css and cgroup's status.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Typically Called at ->destroy(), or somewhere the subsys frees
|
|
|
|
* cgroup_subsys_state.
|
|
|
|
*/
|
|
|
|
void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css);
|
|
|
|
|
|
|
|
/* Find a cgroup_subsys_state which has given ID */
|
|
|
|
|
|
|
|
struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id);
|
|
|
|
|
|
|
|
/* Returns true if root is ancestor of cg */
|
|
|
|
bool css_is_ancestor(struct cgroup_subsys_state *cg,
|
memcg: fix OOM killer under memcg
This patch tries to fix OOM Killer problems caused by hierarchy.
Now, memcg itself has OOM KILL function (in oom_kill.c) and tries to
kill a task in memcg.
But, when hierarchy is used, it's broken and correct task cannot
be killed. For example, in following cgroup
/groupA/ hierarchy=1, limit=1G,
01 nolimit
02 nolimit
All tasks' memory usage under /groupA, /groupA/01, groupA/02 is limited to
groupA's 1Gbytes but OOM Killer just kills tasks in groupA.
This patch provides makes the bad process be selected from all tasks
under hierarchy. BTW, currently, oom_jiffies is updated against groupA
in above case. oom_jiffies of tree should be updated.
To see how oom_jiffies is used, please check mem_cgroup_oom_called()
callers.
[akpm@linux-foundation.org: build fix]
[akpm@linux-foundation.org: const fix]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-03 07:57:38 +08:00
|
|
|
const struct cgroup_subsys_state *root);
|
cgroup: CSS ID support
Patch for Per-CSS(Cgroup Subsys State) ID and private hierarchy code.
This patch attaches unique ID to each css and provides following.
- css_lookup(subsys, id)
returns pointer to struct cgroup_subysys_state of id.
- css_get_next(subsys, id, rootid, depth, foundid)
returns the next css under "root" by scanning
When cgroup_subsys->use_id is set, an id for css is maintained.
The cgroup framework only parepares
- css_id of root css for subsys
- id is automatically attached at creation of css.
- id is *not* freed automatically. Because the cgroup framework
don't know lifetime of cgroup_subsys_state.
free_css_id() function is provided. This must be called by subsys.
There are several reasons to develop this.
- Saving space .... For example, memcg's swap_cgroup is array of
pointers to cgroup. But it is not necessary to be very fast.
By replacing pointers(8bytes per ent) to ID (2byes per ent), we can
reduce much amount of memory usage.
- Scanning without lock.
CSS_ID provides "scan id under this ROOT" function. By this, scanning
css under root can be written without locks.
ex)
do {
rcu_read_lock();
next = cgroup_get_next(subsys, id, root, &found);
/* check sanity of next here */
css_tryget();
rcu_read_unlock();
id = found + 1
} while(...)
Characteristics:
- Each css has unique ID under subsys.
- Lifetime of ID is controlled by subsys.
- css ID contains "ID" and "Depth in hierarchy" and stack of hierarchy
- Allowed ID is 1-65535, ID 0 is UNUSED ID.
Design Choices:
- scan-by-ID v.s. scan-by-tree-walk.
As /proc's pid scan does, scan-by-ID is robust when scanning is done
by following kind of routine.
scan -> rest a while(release a lock) -> conitunue from interrupted
memcg's hierarchical reclaim does this.
- When subsys->use_id is set, # of css in the system is limited to
65535.
[bharata@linux.vnet.ibm.com: remove rcu_read_lock() from css_get_next()]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Paul Menage <menage@google.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-03 07:57:25 +08:00
|
|
|
|
|
|
|
/* Get id and depth of css */
|
|
|
|
unsigned short css_id(struct cgroup_subsys_state *css);
|
2011-02-14 17:20:01 +08:00
|
|
|
struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id);
|
cgroup: CSS ID support
Patch for Per-CSS(Cgroup Subsys State) ID and private hierarchy code.
This patch attaches unique ID to each css and provides following.
- css_lookup(subsys, id)
returns pointer to struct cgroup_subysys_state of id.
- css_get_next(subsys, id, rootid, depth, foundid)
returns the next css under "root" by scanning
When cgroup_subsys->use_id is set, an id for css is maintained.
The cgroup framework only parepares
- css_id of root css for subsys
- id is automatically attached at creation of css.
- id is *not* freed automatically. Because the cgroup framework
don't know lifetime of cgroup_subsys_state.
free_css_id() function is provided. This must be called by subsys.
There are several reasons to develop this.
- Saving space .... For example, memcg's swap_cgroup is array of
pointers to cgroup. But it is not necessary to be very fast.
By replacing pointers(8bytes per ent) to ID (2byes per ent), we can
reduce much amount of memory usage.
- Scanning without lock.
CSS_ID provides "scan id under this ROOT" function. By this, scanning
css under root can be written without locks.
ex)
do {
rcu_read_lock();
next = cgroup_get_next(subsys, id, root, &found);
/* check sanity of next here */
css_tryget();
rcu_read_unlock();
id = found + 1
} while(...)
Characteristics:
- Each css has unique ID under subsys.
- Lifetime of ID is controlled by subsys.
- css ID contains "ID" and "Depth in hierarchy" and stack of hierarchy
- Allowed ID is 1-65535, ID 0 is UNUSED ID.
Design Choices:
- scan-by-ID v.s. scan-by-tree-walk.
As /proc's pid scan does, scan-by-ID is robust when scanning is done
by following kind of routine.
scan -> rest a while(release a lock) -> conitunue from interrupted
memcg's hierarchical reclaim does this.
- When subsys->use_id is set, # of css in the system is limited to
65535.
[bharata@linux.vnet.ibm.com: remove rcu_read_lock() from css_get_next()]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Paul Menage <menage@google.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-03 07:57:25 +08:00
|
|
|
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
#else /* !CONFIG_CGROUPS */
|
|
|
|
|
|
|
|
static inline int cgroup_init_early(void) { return 0; }
|
|
|
|
static inline int cgroup_init(void) { return 0; }
|
2007-10-19 14:39:33 +08:00
|
|
|
static inline void cgroup_fork(struct task_struct *p) {}
|
2007-10-19 14:39:36 +08:00
|
|
|
static inline void cgroup_post_fork(struct task_struct *p) {}
|
2007-10-19 14:39:33 +08:00
|
|
|
static inline void cgroup_exit(struct task_struct *p, int callbacks) {}
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
|
Add cgroupstats
This patch is inspired by the discussion at
http://lkml.org/lkml/2007/4/11/187 and implements per cgroup statistics
as suggested by Andrew Morton in http://lkml.org/lkml/2007/4/11/263. The
patch is on top of 2.6.21-mm1 with Paul's cgroups v9 patches (forward
ported)
This patch implements per cgroup statistics infrastructure and re-uses
code from the taskstats interface. A new set of cgroup operations are
registered with commands and attributes. It should be very easy to
*extend* per cgroup statistics, by adding members to the cgroupstats
structure.
The current model for cgroupstats is a pull, a push model (to post
statistics on interesting events), should be very easy to add. Currently
user space requests for statistics by passing the cgroup file
descriptor. Statistics about the state of all the tasks in the cgroup
is returned to user space.
TODO's/NOTE:
This patch provides an infrastructure for implementing cgroup statistics.
Based on the needs of each controller, we can incrementally add more statistics,
event based support for notification of statistics, accumulation of taskstats
into cgroup statistics in the future.
Sample output
# ./cgroupstats -C /cgroup/a
sleeping 2, blocked 0, running 1, stopped 0, uninterruptible 0
# ./cgroupstats -C /cgroup/
sleeping 154, blocked 0, running 0, stopped 0, uninterruptible 0
If the approach looks good, I'll enhance and post the user space utility for
the same
Feedback, comments, test results are always welcome!
[akpm@linux-foundation.org: build fix]
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Paul Menage <menage@google.com>
Cc: Jay Lan <jlan@engr.sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:44 +08:00
|
|
|
static inline int cgroupstats_build(struct cgroupstats *stats,
|
|
|
|
struct dentry *dentry)
|
|
|
|
{
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
|
2010-05-31 04:24:39 +08:00
|
|
|
/* No cgroups - nothing to do */
|
2010-09-10 07:37:37 +08:00
|
|
|
static inline int cgroup_attach_task_all(struct task_struct *from,
|
|
|
|
struct task_struct *t)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
2010-05-31 04:24:39 +08:00
|
|
|
|
Task Control Groups: basic task cgroup framework
Generic Process Control Groups
--------------------------
There have recently been various proposals floating around for
resource management/accounting and other task grouping subsystems in
the kernel, including ResGroups, User BeanCounters, NSProxy
cgroups, and others. These all need the basic abstraction of being
able to group together multiple processes in an aggregate, in order to
track/limit the resources permitted to those processes, or control
other behaviour of the processes, and all implement this grouping in
different ways.
This patchset provides a framework for tracking and grouping processes
into arbitrary "cgroups" and assigning arbitrary state to those
groupings, in order to control the behaviour of the cgroup as an
aggregate.
The intention is that the various resource management and
virtualization/cgroup efforts can also become task cgroup
clients, with the result that:
- the userspace APIs are (somewhat) normalised
- it's easier to test e.g. the ResGroups CPU controller in
conjunction with the BeanCounters memory controller, or use either of
them as the resource-control portion of a virtual server system.
- the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it doesn't need
to provide process grouping/containment, hence improving their
chances of getting into the kernel
This patch:
Add the main task cgroups framework - the cgroup filesystem, and the
basic structures for tracking membership and associating subsystem state
objects to tasks.
Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:30 +08:00
|
|
|
#endif /* !CONFIG_CGROUPS */
|
|
|
|
|
|
|
|
#endif /* _LINUX_CGROUP_H */
|