net: WireGuard secure network tunnel
WireGuard is a layer 3 secure networking tunnel made specifically for
the kernel, that aims to be much simpler and easier to audit than IPsec.
Extensive documentation and description of the protocol and
considerations, along with formal proofs of the cryptography, are
available at:
* https://www.wireguard.com/
* https://www.wireguard.com/papers/wireguard.pdf
This commit implements WireGuard as a simple network device driver,
accessible in the usual RTNL way used by virtual network drivers. It
makes use of the udp_tunnel APIs, GRO, GSO, NAPI, and the usual set of
networking subsystem APIs. It has a somewhat novel multicore queueing
system designed for maximum throughput and minimal latency of encryption
operations, but it is implemented modestly using workqueues and NAPI.
Configuration is done via generic Netlink, and following a review from
the Netlink maintainer a year ago, several high profile userspace tools
have already implemented the API.
This commit also comes with several different tests, both in-kernel
tests and out-of-kernel tests based on network namespaces, taking profit
of the fact that sockets used by WireGuard intentionally stay in the
namespace the WireGuard interface was originally created, exactly like
the semantics of userspace tun devices. See wireguard.com/netns/ for
pictures and examples.
The source code is fairly short, but rather than combining everything
into a single file, WireGuard is developed as cleanly separable files,
making auditing and comprehension easier. Things are laid out as
follows:
* noise.[ch], cookie.[ch], messages.h: These implement the bulk of the
cryptographic aspects of the protocol, and are mostly data-only in
nature, taking in buffers of bytes and spitting out buffers of
bytes. They also handle reference counting for their various shared
pieces of data, like keys and key lists.
* ratelimiter.[ch]: Used as an integral part of cookie.[ch] for
ratelimiting certain types of cryptographic operations in accordance
with particular WireGuard semantics.
* allowedips.[ch], peerlookup.[ch]: The main lookup structures of
WireGuard, the former being trie-like with particular semantics, an
integral part of the design of the protocol, and the latter just
being nice helper functions around the various hashtables we use.
* device.[ch]: Implementation of functions for the netdevice and for
rtnl, responsible for maintaining the life of a given interface and
wiring it up to the rest of WireGuard.
* peer.[ch]: Each interface has a list of peers, with helper functions
available here for creation, destruction, and reference counting.
* socket.[ch]: Implementation of functions related to udp_socket and
the general set of kernel socket APIs, for sending and receiving
ciphertext UDP packets, and taking care of WireGuard-specific sticky
socket routing semantics for the automatic roaming.
* netlink.[ch]: Userspace API entry point for configuring WireGuard
peers and devices. The API has been implemented by several userspace
tools and network management utility, and the WireGuard project
distributes the basic wg(8) tool.
* queueing.[ch]: Shared function on the rx and tx path for handling
the various queues used in the multicore algorithms.
* send.c: Handles encrypting outgoing packets in parallel on
multiple cores, before sending them in order on a single core, via
workqueues and ring buffers. Also handles sending handshake and cookie
messages as part of the protocol, in parallel.
* receive.c: Handles decrypting incoming packets in parallel on
multiple cores, before passing them off in order to be ingested via
the rest of the networking subsystem with GRO via the typical NAPI
poll function. Also handles receiving handshake and cookie messages
as part of the protocol, in parallel.
* timers.[ch]: Uses the timer wheel to implement protocol particular
event timeouts, and gives a set of very simple event-driven entry
point functions for callers.
* main.c, version.h: Initialization and deinitialization of the module.
* selftest/*.h: Runtime unit tests for some of the most security
sensitive functions.
* tools/testing/selftests/wireguard/netns.sh: Aforementioned testing
script using network namespaces.
This commit aims to be as self-contained as possible, implementing
WireGuard as a standalone module not needing much special handling or
coordination from the network subsystem. I expect for future
optimizations to the network stack to positively improve WireGuard, and
vice-versa, but for the time being, this exists as intentionally
standalone.
We introduce a menu option for CONFIG_WIREGUARD, as well as providing a
verbose debug log and self-tests via CONFIG_WIREGUARD_DEBUG.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: David Miller <davem@davemloft.net>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: linux-crypto@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: netdev@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-09 07:27:34 +08:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
/*
|
|
|
|
* Copyright (C) 2015-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "peer.h"
|
|
|
|
#include "device.h"
|
|
|
|
#include "queueing.h"
|
|
|
|
#include "timers.h"
|
|
|
|
#include "peerlookup.h"
|
|
|
|
#include "noise.h"
|
|
|
|
|
|
|
|
#include <linux/kref.h>
|
|
|
|
#include <linux/lockdep.h>
|
|
|
|
#include <linux/rcupdate.h>
|
|
|
|
#include <linux/list.h>
|
|
|
|
|
2021-06-04 23:17:34 +08:00
|
|
|
static struct kmem_cache *peer_cache;
|
net: WireGuard secure network tunnel
WireGuard is a layer 3 secure networking tunnel made specifically for
the kernel, that aims to be much simpler and easier to audit than IPsec.
Extensive documentation and description of the protocol and
considerations, along with formal proofs of the cryptography, are
available at:
* https://www.wireguard.com/
* https://www.wireguard.com/papers/wireguard.pdf
This commit implements WireGuard as a simple network device driver,
accessible in the usual RTNL way used by virtual network drivers. It
makes use of the udp_tunnel APIs, GRO, GSO, NAPI, and the usual set of
networking subsystem APIs. It has a somewhat novel multicore queueing
system designed for maximum throughput and minimal latency of encryption
operations, but it is implemented modestly using workqueues and NAPI.
Configuration is done via generic Netlink, and following a review from
the Netlink maintainer a year ago, several high profile userspace tools
have already implemented the API.
This commit also comes with several different tests, both in-kernel
tests and out-of-kernel tests based on network namespaces, taking profit
of the fact that sockets used by WireGuard intentionally stay in the
namespace the WireGuard interface was originally created, exactly like
the semantics of userspace tun devices. See wireguard.com/netns/ for
pictures and examples.
The source code is fairly short, but rather than combining everything
into a single file, WireGuard is developed as cleanly separable files,
making auditing and comprehension easier. Things are laid out as
follows:
* noise.[ch], cookie.[ch], messages.h: These implement the bulk of the
cryptographic aspects of the protocol, and are mostly data-only in
nature, taking in buffers of bytes and spitting out buffers of
bytes. They also handle reference counting for their various shared
pieces of data, like keys and key lists.
* ratelimiter.[ch]: Used as an integral part of cookie.[ch] for
ratelimiting certain types of cryptographic operations in accordance
with particular WireGuard semantics.
* allowedips.[ch], peerlookup.[ch]: The main lookup structures of
WireGuard, the former being trie-like with particular semantics, an
integral part of the design of the protocol, and the latter just
being nice helper functions around the various hashtables we use.
* device.[ch]: Implementation of functions for the netdevice and for
rtnl, responsible for maintaining the life of a given interface and
wiring it up to the rest of WireGuard.
* peer.[ch]: Each interface has a list of peers, with helper functions
available here for creation, destruction, and reference counting.
* socket.[ch]: Implementation of functions related to udp_socket and
the general set of kernel socket APIs, for sending and receiving
ciphertext UDP packets, and taking care of WireGuard-specific sticky
socket routing semantics for the automatic roaming.
* netlink.[ch]: Userspace API entry point for configuring WireGuard
peers and devices. The API has been implemented by several userspace
tools and network management utility, and the WireGuard project
distributes the basic wg(8) tool.
* queueing.[ch]: Shared function on the rx and tx path for handling
the various queues used in the multicore algorithms.
* send.c: Handles encrypting outgoing packets in parallel on
multiple cores, before sending them in order on a single core, via
workqueues and ring buffers. Also handles sending handshake and cookie
messages as part of the protocol, in parallel.
* receive.c: Handles decrypting incoming packets in parallel on
multiple cores, before passing them off in order to be ingested via
the rest of the networking subsystem with GRO via the typical NAPI
poll function. Also handles receiving handshake and cookie messages
as part of the protocol, in parallel.
* timers.[ch]: Uses the timer wheel to implement protocol particular
event timeouts, and gives a set of very simple event-driven entry
point functions for callers.
* main.c, version.h: Initialization and deinitialization of the module.
* selftest/*.h: Runtime unit tests for some of the most security
sensitive functions.
* tools/testing/selftests/wireguard/netns.sh: Aforementioned testing
script using network namespaces.
This commit aims to be as self-contained as possible, implementing
WireGuard as a standalone module not needing much special handling or
coordination from the network subsystem. I expect for future
optimizations to the network stack to positively improve WireGuard, and
vice-versa, but for the time being, this exists as intentionally
standalone.
We introduce a menu option for CONFIG_WIREGUARD, as well as providing a
verbose debug log and self-tests via CONFIG_WIREGUARD_DEBUG.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: David Miller <davem@davemloft.net>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: linux-crypto@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: netdev@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-09 07:27:34 +08:00
|
|
|
static atomic64_t peer_counter = ATOMIC64_INIT(0);
|
|
|
|
|
|
|
|
struct wg_peer *wg_peer_create(struct wg_device *wg,
|
|
|
|
const u8 public_key[NOISE_PUBLIC_KEY_LEN],
|
|
|
|
const u8 preshared_key[NOISE_SYMMETRIC_KEY_LEN])
|
|
|
|
{
|
|
|
|
struct wg_peer *peer;
|
|
|
|
int ret = -ENOMEM;
|
|
|
|
|
|
|
|
lockdep_assert_held(&wg->device_update_lock);
|
|
|
|
|
|
|
|
if (wg->num_peers >= MAX_PEERS_PER_DEVICE)
|
|
|
|
return ERR_PTR(ret);
|
|
|
|
|
2021-06-04 23:17:34 +08:00
|
|
|
peer = kmem_cache_zalloc(peer_cache, GFP_KERNEL);
|
net: WireGuard secure network tunnel
WireGuard is a layer 3 secure networking tunnel made specifically for
the kernel, that aims to be much simpler and easier to audit than IPsec.
Extensive documentation and description of the protocol and
considerations, along with formal proofs of the cryptography, are
available at:
* https://www.wireguard.com/
* https://www.wireguard.com/papers/wireguard.pdf
This commit implements WireGuard as a simple network device driver,
accessible in the usual RTNL way used by virtual network drivers. It
makes use of the udp_tunnel APIs, GRO, GSO, NAPI, and the usual set of
networking subsystem APIs. It has a somewhat novel multicore queueing
system designed for maximum throughput and minimal latency of encryption
operations, but it is implemented modestly using workqueues and NAPI.
Configuration is done via generic Netlink, and following a review from
the Netlink maintainer a year ago, several high profile userspace tools
have already implemented the API.
This commit also comes with several different tests, both in-kernel
tests and out-of-kernel tests based on network namespaces, taking profit
of the fact that sockets used by WireGuard intentionally stay in the
namespace the WireGuard interface was originally created, exactly like
the semantics of userspace tun devices. See wireguard.com/netns/ for
pictures and examples.
The source code is fairly short, but rather than combining everything
into a single file, WireGuard is developed as cleanly separable files,
making auditing and comprehension easier. Things are laid out as
follows:
* noise.[ch], cookie.[ch], messages.h: These implement the bulk of the
cryptographic aspects of the protocol, and are mostly data-only in
nature, taking in buffers of bytes and spitting out buffers of
bytes. They also handle reference counting for their various shared
pieces of data, like keys and key lists.
* ratelimiter.[ch]: Used as an integral part of cookie.[ch] for
ratelimiting certain types of cryptographic operations in accordance
with particular WireGuard semantics.
* allowedips.[ch], peerlookup.[ch]: The main lookup structures of
WireGuard, the former being trie-like with particular semantics, an
integral part of the design of the protocol, and the latter just
being nice helper functions around the various hashtables we use.
* device.[ch]: Implementation of functions for the netdevice and for
rtnl, responsible for maintaining the life of a given interface and
wiring it up to the rest of WireGuard.
* peer.[ch]: Each interface has a list of peers, with helper functions
available here for creation, destruction, and reference counting.
* socket.[ch]: Implementation of functions related to udp_socket and
the general set of kernel socket APIs, for sending and receiving
ciphertext UDP packets, and taking care of WireGuard-specific sticky
socket routing semantics for the automatic roaming.
* netlink.[ch]: Userspace API entry point for configuring WireGuard
peers and devices. The API has been implemented by several userspace
tools and network management utility, and the WireGuard project
distributes the basic wg(8) tool.
* queueing.[ch]: Shared function on the rx and tx path for handling
the various queues used in the multicore algorithms.
* send.c: Handles encrypting outgoing packets in parallel on
multiple cores, before sending them in order on a single core, via
workqueues and ring buffers. Also handles sending handshake and cookie
messages as part of the protocol, in parallel.
* receive.c: Handles decrypting incoming packets in parallel on
multiple cores, before passing them off in order to be ingested via
the rest of the networking subsystem with GRO via the typical NAPI
poll function. Also handles receiving handshake and cookie messages
as part of the protocol, in parallel.
* timers.[ch]: Uses the timer wheel to implement protocol particular
event timeouts, and gives a set of very simple event-driven entry
point functions for callers.
* main.c, version.h: Initialization and deinitialization of the module.
* selftest/*.h: Runtime unit tests for some of the most security
sensitive functions.
* tools/testing/selftests/wireguard/netns.sh: Aforementioned testing
script using network namespaces.
This commit aims to be as self-contained as possible, implementing
WireGuard as a standalone module not needing much special handling or
coordination from the network subsystem. I expect for future
optimizations to the network stack to positively improve WireGuard, and
vice-versa, but for the time being, this exists as intentionally
standalone.
We introduce a menu option for CONFIG_WIREGUARD, as well as providing a
verbose debug log and self-tests via CONFIG_WIREGUARD_DEBUG.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: David Miller <davem@davemloft.net>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: linux-crypto@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: netdev@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-09 07:27:34 +08:00
|
|
|
if (unlikely(!peer))
|
|
|
|
return ERR_PTR(ret);
|
2021-06-04 23:17:34 +08:00
|
|
|
if (unlikely(dst_cache_init(&peer->endpoint_cache, GFP_KERNEL)))
|
wireguard: queueing: get rid of per-peer ring buffers
Having two ring buffers per-peer means that every peer results in two
massive ring allocations. On an 8-core x86_64 machine, this commit
reduces the per-peer allocation from 18,688 bytes to 1,856 bytes, which
is an 90% reduction. Ninety percent! With some single-machine
deployments approaching 500,000 peers, we're talking about a reduction
from 7 gigs of memory down to 700 megs of memory.
In order to get rid of these per-peer allocations, this commit switches
to using a list-based queueing approach. Currently GSO fragments are
chained together using the skb->next pointer (the skb_list_* singly
linked list approach), so we form the per-peer queue around the unused
skb->prev pointer (which sort of makes sense because the links are
pointing backwards). Use of skb_queue_* is not possible here, because
that is based on doubly linked lists and spinlocks. Multiple cores can
write into the queue at any given time, because its writes occur in the
start_xmit path or in the udp_recv path. But reads happen in a single
workqueue item per-peer, amounting to a multi-producer, single-consumer
paradigm.
The MPSC queue is implemented locklessly and never blocks. However, it
is not linearizable (though it is serializable), with a very tight and
unlikely race on writes, which, when hit (some tiny fraction of the
0.15% of partial adds on a fully loaded 16-core x86_64 system), causes
the queue reader to terminate early. However, because every packet sent
queues up the same workqueue item after it is fully added, the worker
resumes again, and stopping early isn't actually a problem, since at
that point the packet wouldn't have yet been added to the encryption
queue. These properties allow us to avoid disabling interrupts or
spinning. The design is based on Dmitry Vyukov's algorithm [1].
Performance-wise, ordinarily list-based queues aren't preferable to
ringbuffers, because of cache misses when following pointers around.
However, we *already* have to follow the adjacent pointers when working
through fragments, so there shouldn't actually be any change there. A
potential downside is that dequeueing is a bit more complicated, but the
ptr_ring structure used prior had a spinlock when dequeueing, so all and
all the difference appears to be a wash.
Actually, from profiling, the biggest performance hit, by far, of this
commit winds up being atomic_add_unless(count, 1, max) and atomic_
dec(count), which account for the majority of CPU time, according to
perf. In that sense, the previous ring buffer was superior in that it
could check if it was full by head==tail, which the list-based approach
cannot do.
But all and all, this enables us to get massive memory savings, allowing
WireGuard to scale for real world deployments, without taking much of a
performance hit.
[1] http://www.1024cores.net/home/lock-free-algorithms/queues/intrusive-mpsc-node-based-queue
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Toke Høiland-Jørgensen <toke@redhat.com>
Fixes: e7096c131e51 ("net: WireGuard secure network tunnel")
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-02-23 00:25:48 +08:00
|
|
|
goto err;
|
net: WireGuard secure network tunnel
WireGuard is a layer 3 secure networking tunnel made specifically for
the kernel, that aims to be much simpler and easier to audit than IPsec.
Extensive documentation and description of the protocol and
considerations, along with formal proofs of the cryptography, are
available at:
* https://www.wireguard.com/
* https://www.wireguard.com/papers/wireguard.pdf
This commit implements WireGuard as a simple network device driver,
accessible in the usual RTNL way used by virtual network drivers. It
makes use of the udp_tunnel APIs, GRO, GSO, NAPI, and the usual set of
networking subsystem APIs. It has a somewhat novel multicore queueing
system designed for maximum throughput and minimal latency of encryption
operations, but it is implemented modestly using workqueues and NAPI.
Configuration is done via generic Netlink, and following a review from
the Netlink maintainer a year ago, several high profile userspace tools
have already implemented the API.
This commit also comes with several different tests, both in-kernel
tests and out-of-kernel tests based on network namespaces, taking profit
of the fact that sockets used by WireGuard intentionally stay in the
namespace the WireGuard interface was originally created, exactly like
the semantics of userspace tun devices. See wireguard.com/netns/ for
pictures and examples.
The source code is fairly short, but rather than combining everything
into a single file, WireGuard is developed as cleanly separable files,
making auditing and comprehension easier. Things are laid out as
follows:
* noise.[ch], cookie.[ch], messages.h: These implement the bulk of the
cryptographic aspects of the protocol, and are mostly data-only in
nature, taking in buffers of bytes and spitting out buffers of
bytes. They also handle reference counting for their various shared
pieces of data, like keys and key lists.
* ratelimiter.[ch]: Used as an integral part of cookie.[ch] for
ratelimiting certain types of cryptographic operations in accordance
with particular WireGuard semantics.
* allowedips.[ch], peerlookup.[ch]: The main lookup structures of
WireGuard, the former being trie-like with particular semantics, an
integral part of the design of the protocol, and the latter just
being nice helper functions around the various hashtables we use.
* device.[ch]: Implementation of functions for the netdevice and for
rtnl, responsible for maintaining the life of a given interface and
wiring it up to the rest of WireGuard.
* peer.[ch]: Each interface has a list of peers, with helper functions
available here for creation, destruction, and reference counting.
* socket.[ch]: Implementation of functions related to udp_socket and
the general set of kernel socket APIs, for sending and receiving
ciphertext UDP packets, and taking care of WireGuard-specific sticky
socket routing semantics for the automatic roaming.
* netlink.[ch]: Userspace API entry point for configuring WireGuard
peers and devices. The API has been implemented by several userspace
tools and network management utility, and the WireGuard project
distributes the basic wg(8) tool.
* queueing.[ch]: Shared function on the rx and tx path for handling
the various queues used in the multicore algorithms.
* send.c: Handles encrypting outgoing packets in parallel on
multiple cores, before sending them in order on a single core, via
workqueues and ring buffers. Also handles sending handshake and cookie
messages as part of the protocol, in parallel.
* receive.c: Handles decrypting incoming packets in parallel on
multiple cores, before passing them off in order to be ingested via
the rest of the networking subsystem with GRO via the typical NAPI
poll function. Also handles receiving handshake and cookie messages
as part of the protocol, in parallel.
* timers.[ch]: Uses the timer wheel to implement protocol particular
event timeouts, and gives a set of very simple event-driven entry
point functions for callers.
* main.c, version.h: Initialization and deinitialization of the module.
* selftest/*.h: Runtime unit tests for some of the most security
sensitive functions.
* tools/testing/selftests/wireguard/netns.sh: Aforementioned testing
script using network namespaces.
This commit aims to be as self-contained as possible, implementing
WireGuard as a standalone module not needing much special handling or
coordination from the network subsystem. I expect for future
optimizations to the network stack to positively improve WireGuard, and
vice-versa, but for the time being, this exists as intentionally
standalone.
We introduce a menu option for CONFIG_WIREGUARD, as well as providing a
verbose debug log and self-tests via CONFIG_WIREGUARD_DEBUG.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: David Miller <davem@davemloft.net>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: linux-crypto@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: netdev@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-09 07:27:34 +08:00
|
|
|
|
wireguard: queueing: get rid of per-peer ring buffers
Having two ring buffers per-peer means that every peer results in two
massive ring allocations. On an 8-core x86_64 machine, this commit
reduces the per-peer allocation from 18,688 bytes to 1,856 bytes, which
is an 90% reduction. Ninety percent! With some single-machine
deployments approaching 500,000 peers, we're talking about a reduction
from 7 gigs of memory down to 700 megs of memory.
In order to get rid of these per-peer allocations, this commit switches
to using a list-based queueing approach. Currently GSO fragments are
chained together using the skb->next pointer (the skb_list_* singly
linked list approach), so we form the per-peer queue around the unused
skb->prev pointer (which sort of makes sense because the links are
pointing backwards). Use of skb_queue_* is not possible here, because
that is based on doubly linked lists and spinlocks. Multiple cores can
write into the queue at any given time, because its writes occur in the
start_xmit path or in the udp_recv path. But reads happen in a single
workqueue item per-peer, amounting to a multi-producer, single-consumer
paradigm.
The MPSC queue is implemented locklessly and never blocks. However, it
is not linearizable (though it is serializable), with a very tight and
unlikely race on writes, which, when hit (some tiny fraction of the
0.15% of partial adds on a fully loaded 16-core x86_64 system), causes
the queue reader to terminate early. However, because every packet sent
queues up the same workqueue item after it is fully added, the worker
resumes again, and stopping early isn't actually a problem, since at
that point the packet wouldn't have yet been added to the encryption
queue. These properties allow us to avoid disabling interrupts or
spinning. The design is based on Dmitry Vyukov's algorithm [1].
Performance-wise, ordinarily list-based queues aren't preferable to
ringbuffers, because of cache misses when following pointers around.
However, we *already* have to follow the adjacent pointers when working
through fragments, so there shouldn't actually be any change there. A
potential downside is that dequeueing is a bit more complicated, but the
ptr_ring structure used prior had a spinlock when dequeueing, so all and
all the difference appears to be a wash.
Actually, from profiling, the biggest performance hit, by far, of this
commit winds up being atomic_add_unless(count, 1, max) and atomic_
dec(count), which account for the majority of CPU time, according to
perf. In that sense, the previous ring buffer was superior in that it
could check if it was full by head==tail, which the list-based approach
cannot do.
But all and all, this enables us to get massive memory savings, allowing
WireGuard to scale for real world deployments, without taking much of a
performance hit.
[1] http://www.1024cores.net/home/lock-free-algorithms/queues/intrusive-mpsc-node-based-queue
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Toke Høiland-Jørgensen <toke@redhat.com>
Fixes: e7096c131e51 ("net: WireGuard secure network tunnel")
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-02-23 00:25:48 +08:00
|
|
|
peer->device = wg;
|
wireguard: noise: error out precomputed DH during handshake rather than config
We precompute the static-static ECDH during configuration time, in order
to save an expensive computation later when receiving network packets.
However, not all ECDH computations yield a contributory result. Prior,
we were just not letting those peers be added to the interface. However,
this creates a strange inconsistency, since it was still possible to add
other weird points, like a valid public key plus a low-order point, and,
like points that result in zeros, a handshake would not complete. In
order to make the behavior more uniform and less surprising, simply
allow all peers to be added. Then, we'll error out later when doing the
crypto if there's an issue. This also adds more separation between the
crypto layer and the configuration layer.
Discussed-with: Mathias Hall-Andersen <mathias@hall-andersen.dk>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-19 08:30:47 +08:00
|
|
|
wg_noise_handshake_init(&peer->handshake, &wg->static_identity,
|
|
|
|
public_key, preshared_key, peer);
|
net: WireGuard secure network tunnel
WireGuard is a layer 3 secure networking tunnel made specifically for
the kernel, that aims to be much simpler and easier to audit than IPsec.
Extensive documentation and description of the protocol and
considerations, along with formal proofs of the cryptography, are
available at:
* https://www.wireguard.com/
* https://www.wireguard.com/papers/wireguard.pdf
This commit implements WireGuard as a simple network device driver,
accessible in the usual RTNL way used by virtual network drivers. It
makes use of the udp_tunnel APIs, GRO, GSO, NAPI, and the usual set of
networking subsystem APIs. It has a somewhat novel multicore queueing
system designed for maximum throughput and minimal latency of encryption
operations, but it is implemented modestly using workqueues and NAPI.
Configuration is done via generic Netlink, and following a review from
the Netlink maintainer a year ago, several high profile userspace tools
have already implemented the API.
This commit also comes with several different tests, both in-kernel
tests and out-of-kernel tests based on network namespaces, taking profit
of the fact that sockets used by WireGuard intentionally stay in the
namespace the WireGuard interface was originally created, exactly like
the semantics of userspace tun devices. See wireguard.com/netns/ for
pictures and examples.
The source code is fairly short, but rather than combining everything
into a single file, WireGuard is developed as cleanly separable files,
making auditing and comprehension easier. Things are laid out as
follows:
* noise.[ch], cookie.[ch], messages.h: These implement the bulk of the
cryptographic aspects of the protocol, and are mostly data-only in
nature, taking in buffers of bytes and spitting out buffers of
bytes. They also handle reference counting for their various shared
pieces of data, like keys and key lists.
* ratelimiter.[ch]: Used as an integral part of cookie.[ch] for
ratelimiting certain types of cryptographic operations in accordance
with particular WireGuard semantics.
* allowedips.[ch], peerlookup.[ch]: The main lookup structures of
WireGuard, the former being trie-like with particular semantics, an
integral part of the design of the protocol, and the latter just
being nice helper functions around the various hashtables we use.
* device.[ch]: Implementation of functions for the netdevice and for
rtnl, responsible for maintaining the life of a given interface and
wiring it up to the rest of WireGuard.
* peer.[ch]: Each interface has a list of peers, with helper functions
available here for creation, destruction, and reference counting.
* socket.[ch]: Implementation of functions related to udp_socket and
the general set of kernel socket APIs, for sending and receiving
ciphertext UDP packets, and taking care of WireGuard-specific sticky
socket routing semantics for the automatic roaming.
* netlink.[ch]: Userspace API entry point for configuring WireGuard
peers and devices. The API has been implemented by several userspace
tools and network management utility, and the WireGuard project
distributes the basic wg(8) tool.
* queueing.[ch]: Shared function on the rx and tx path for handling
the various queues used in the multicore algorithms.
* send.c: Handles encrypting outgoing packets in parallel on
multiple cores, before sending them in order on a single core, via
workqueues and ring buffers. Also handles sending handshake and cookie
messages as part of the protocol, in parallel.
* receive.c: Handles decrypting incoming packets in parallel on
multiple cores, before passing them off in order to be ingested via
the rest of the networking subsystem with GRO via the typical NAPI
poll function. Also handles receiving handshake and cookie messages
as part of the protocol, in parallel.
* timers.[ch]: Uses the timer wheel to implement protocol particular
event timeouts, and gives a set of very simple event-driven entry
point functions for callers.
* main.c, version.h: Initialization and deinitialization of the module.
* selftest/*.h: Runtime unit tests for some of the most security
sensitive functions.
* tools/testing/selftests/wireguard/netns.sh: Aforementioned testing
script using network namespaces.
This commit aims to be as self-contained as possible, implementing
WireGuard as a standalone module not needing much special handling or
coordination from the network subsystem. I expect for future
optimizations to the network stack to positively improve WireGuard, and
vice-versa, but for the time being, this exists as intentionally
standalone.
We introduce a menu option for CONFIG_WIREGUARD, as well as providing a
verbose debug log and self-tests via CONFIG_WIREGUARD_DEBUG.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: David Miller <davem@davemloft.net>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: linux-crypto@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: netdev@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-09 07:27:34 +08:00
|
|
|
peer->internal_id = atomic64_inc_return(&peer_counter);
|
|
|
|
peer->serial_work_cpu = nr_cpumask_bits;
|
|
|
|
wg_cookie_init(&peer->latest_cookie);
|
|
|
|
wg_timers_init(peer);
|
|
|
|
wg_cookie_checker_precompute_peer_keys(peer);
|
|
|
|
spin_lock_init(&peer->keypairs.keypair_update_lock);
|
wireguard: queueing: get rid of per-peer ring buffers
Having two ring buffers per-peer means that every peer results in two
massive ring allocations. On an 8-core x86_64 machine, this commit
reduces the per-peer allocation from 18,688 bytes to 1,856 bytes, which
is an 90% reduction. Ninety percent! With some single-machine
deployments approaching 500,000 peers, we're talking about a reduction
from 7 gigs of memory down to 700 megs of memory.
In order to get rid of these per-peer allocations, this commit switches
to using a list-based queueing approach. Currently GSO fragments are
chained together using the skb->next pointer (the skb_list_* singly
linked list approach), so we form the per-peer queue around the unused
skb->prev pointer (which sort of makes sense because the links are
pointing backwards). Use of skb_queue_* is not possible here, because
that is based on doubly linked lists and spinlocks. Multiple cores can
write into the queue at any given time, because its writes occur in the
start_xmit path or in the udp_recv path. But reads happen in a single
workqueue item per-peer, amounting to a multi-producer, single-consumer
paradigm.
The MPSC queue is implemented locklessly and never blocks. However, it
is not linearizable (though it is serializable), with a very tight and
unlikely race on writes, which, when hit (some tiny fraction of the
0.15% of partial adds on a fully loaded 16-core x86_64 system), causes
the queue reader to terminate early. However, because every packet sent
queues up the same workqueue item after it is fully added, the worker
resumes again, and stopping early isn't actually a problem, since at
that point the packet wouldn't have yet been added to the encryption
queue. These properties allow us to avoid disabling interrupts or
spinning. The design is based on Dmitry Vyukov's algorithm [1].
Performance-wise, ordinarily list-based queues aren't preferable to
ringbuffers, because of cache misses when following pointers around.
However, we *already* have to follow the adjacent pointers when working
through fragments, so there shouldn't actually be any change there. A
potential downside is that dequeueing is a bit more complicated, but the
ptr_ring structure used prior had a spinlock when dequeueing, so all and
all the difference appears to be a wash.
Actually, from profiling, the biggest performance hit, by far, of this
commit winds up being atomic_add_unless(count, 1, max) and atomic_
dec(count), which account for the majority of CPU time, according to
perf. In that sense, the previous ring buffer was superior in that it
could check if it was full by head==tail, which the list-based approach
cannot do.
But all and all, this enables us to get massive memory savings, allowing
WireGuard to scale for real world deployments, without taking much of a
performance hit.
[1] http://www.1024cores.net/home/lock-free-algorithms/queues/intrusive-mpsc-node-based-queue
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Toke Høiland-Jørgensen <toke@redhat.com>
Fixes: e7096c131e51 ("net: WireGuard secure network tunnel")
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-02-23 00:25:48 +08:00
|
|
|
INIT_WORK(&peer->transmit_handshake_work, wg_packet_handshake_send_worker);
|
|
|
|
INIT_WORK(&peer->transmit_packet_work, wg_packet_tx_worker);
|
|
|
|
wg_prev_queue_init(&peer->tx_queue);
|
|
|
|
wg_prev_queue_init(&peer->rx_queue);
|
net: WireGuard secure network tunnel
WireGuard is a layer 3 secure networking tunnel made specifically for
the kernel, that aims to be much simpler and easier to audit than IPsec.
Extensive documentation and description of the protocol and
considerations, along with formal proofs of the cryptography, are
available at:
* https://www.wireguard.com/
* https://www.wireguard.com/papers/wireguard.pdf
This commit implements WireGuard as a simple network device driver,
accessible in the usual RTNL way used by virtual network drivers. It
makes use of the udp_tunnel APIs, GRO, GSO, NAPI, and the usual set of
networking subsystem APIs. It has a somewhat novel multicore queueing
system designed for maximum throughput and minimal latency of encryption
operations, but it is implemented modestly using workqueues and NAPI.
Configuration is done via generic Netlink, and following a review from
the Netlink maintainer a year ago, several high profile userspace tools
have already implemented the API.
This commit also comes with several different tests, both in-kernel
tests and out-of-kernel tests based on network namespaces, taking profit
of the fact that sockets used by WireGuard intentionally stay in the
namespace the WireGuard interface was originally created, exactly like
the semantics of userspace tun devices. See wireguard.com/netns/ for
pictures and examples.
The source code is fairly short, but rather than combining everything
into a single file, WireGuard is developed as cleanly separable files,
making auditing and comprehension easier. Things are laid out as
follows:
* noise.[ch], cookie.[ch], messages.h: These implement the bulk of the
cryptographic aspects of the protocol, and are mostly data-only in
nature, taking in buffers of bytes and spitting out buffers of
bytes. They also handle reference counting for their various shared
pieces of data, like keys and key lists.
* ratelimiter.[ch]: Used as an integral part of cookie.[ch] for
ratelimiting certain types of cryptographic operations in accordance
with particular WireGuard semantics.
* allowedips.[ch], peerlookup.[ch]: The main lookup structures of
WireGuard, the former being trie-like with particular semantics, an
integral part of the design of the protocol, and the latter just
being nice helper functions around the various hashtables we use.
* device.[ch]: Implementation of functions for the netdevice and for
rtnl, responsible for maintaining the life of a given interface and
wiring it up to the rest of WireGuard.
* peer.[ch]: Each interface has a list of peers, with helper functions
available here for creation, destruction, and reference counting.
* socket.[ch]: Implementation of functions related to udp_socket and
the general set of kernel socket APIs, for sending and receiving
ciphertext UDP packets, and taking care of WireGuard-specific sticky
socket routing semantics for the automatic roaming.
* netlink.[ch]: Userspace API entry point for configuring WireGuard
peers and devices. The API has been implemented by several userspace
tools and network management utility, and the WireGuard project
distributes the basic wg(8) tool.
* queueing.[ch]: Shared function on the rx and tx path for handling
the various queues used in the multicore algorithms.
* send.c: Handles encrypting outgoing packets in parallel on
multiple cores, before sending them in order on a single core, via
workqueues and ring buffers. Also handles sending handshake and cookie
messages as part of the protocol, in parallel.
* receive.c: Handles decrypting incoming packets in parallel on
multiple cores, before passing them off in order to be ingested via
the rest of the networking subsystem with GRO via the typical NAPI
poll function. Also handles receiving handshake and cookie messages
as part of the protocol, in parallel.
* timers.[ch]: Uses the timer wheel to implement protocol particular
event timeouts, and gives a set of very simple event-driven entry
point functions for callers.
* main.c, version.h: Initialization and deinitialization of the module.
* selftest/*.h: Runtime unit tests for some of the most security
sensitive functions.
* tools/testing/selftests/wireguard/netns.sh: Aforementioned testing
script using network namespaces.
This commit aims to be as self-contained as possible, implementing
WireGuard as a standalone module not needing much special handling or
coordination from the network subsystem. I expect for future
optimizations to the network stack to positively improve WireGuard, and
vice-versa, but for the time being, this exists as intentionally
standalone.
We introduce a menu option for CONFIG_WIREGUARD, as well as providing a
verbose debug log and self-tests via CONFIG_WIREGUARD_DEBUG.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: David Miller <davem@davemloft.net>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: linux-crypto@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: netdev@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-09 07:27:34 +08:00
|
|
|
rwlock_init(&peer->endpoint_lock);
|
|
|
|
kref_init(&peer->refcount);
|
|
|
|
skb_queue_head_init(&peer->staged_packet_queue);
|
|
|
|
wg_noise_reset_last_sent_handshake(&peer->last_sent_handshake);
|
|
|
|
set_bit(NAPI_STATE_NO_BUSY_POLL, &peer->napi.state);
|
|
|
|
netif_napi_add(wg->dev, &peer->napi, wg_packet_rx_poll,
|
|
|
|
NAPI_POLL_WEIGHT);
|
|
|
|
napi_enable(&peer->napi);
|
|
|
|
list_add_tail(&peer->peer_list, &wg->peer_list);
|
|
|
|
INIT_LIST_HEAD(&peer->allowedips_list);
|
|
|
|
wg_pubkey_hashtable_add(wg->peer_hashtable, peer);
|
|
|
|
++wg->num_peers;
|
|
|
|
pr_debug("%s: Peer %llu created\n", wg->dev->name, peer->internal_id);
|
|
|
|
return peer;
|
|
|
|
|
wireguard: queueing: get rid of per-peer ring buffers
Having two ring buffers per-peer means that every peer results in two
massive ring allocations. On an 8-core x86_64 machine, this commit
reduces the per-peer allocation from 18,688 bytes to 1,856 bytes, which
is an 90% reduction. Ninety percent! With some single-machine
deployments approaching 500,000 peers, we're talking about a reduction
from 7 gigs of memory down to 700 megs of memory.
In order to get rid of these per-peer allocations, this commit switches
to using a list-based queueing approach. Currently GSO fragments are
chained together using the skb->next pointer (the skb_list_* singly
linked list approach), so we form the per-peer queue around the unused
skb->prev pointer (which sort of makes sense because the links are
pointing backwards). Use of skb_queue_* is not possible here, because
that is based on doubly linked lists and spinlocks. Multiple cores can
write into the queue at any given time, because its writes occur in the
start_xmit path or in the udp_recv path. But reads happen in a single
workqueue item per-peer, amounting to a multi-producer, single-consumer
paradigm.
The MPSC queue is implemented locklessly and never blocks. However, it
is not linearizable (though it is serializable), with a very tight and
unlikely race on writes, which, when hit (some tiny fraction of the
0.15% of partial adds on a fully loaded 16-core x86_64 system), causes
the queue reader to terminate early. However, because every packet sent
queues up the same workqueue item after it is fully added, the worker
resumes again, and stopping early isn't actually a problem, since at
that point the packet wouldn't have yet been added to the encryption
queue. These properties allow us to avoid disabling interrupts or
spinning. The design is based on Dmitry Vyukov's algorithm [1].
Performance-wise, ordinarily list-based queues aren't preferable to
ringbuffers, because of cache misses when following pointers around.
However, we *already* have to follow the adjacent pointers when working
through fragments, so there shouldn't actually be any change there. A
potential downside is that dequeueing is a bit more complicated, but the
ptr_ring structure used prior had a spinlock when dequeueing, so all and
all the difference appears to be a wash.
Actually, from profiling, the biggest performance hit, by far, of this
commit winds up being atomic_add_unless(count, 1, max) and atomic_
dec(count), which account for the majority of CPU time, according to
perf. In that sense, the previous ring buffer was superior in that it
could check if it was full by head==tail, which the list-based approach
cannot do.
But all and all, this enables us to get massive memory savings, allowing
WireGuard to scale for real world deployments, without taking much of a
performance hit.
[1] http://www.1024cores.net/home/lock-free-algorithms/queues/intrusive-mpsc-node-based-queue
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Toke Høiland-Jørgensen <toke@redhat.com>
Fixes: e7096c131e51 ("net: WireGuard secure network tunnel")
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-02-23 00:25:48 +08:00
|
|
|
err:
|
2021-06-04 23:17:34 +08:00
|
|
|
kmem_cache_free(peer_cache, peer);
|
net: WireGuard secure network tunnel
WireGuard is a layer 3 secure networking tunnel made specifically for
the kernel, that aims to be much simpler and easier to audit than IPsec.
Extensive documentation and description of the protocol and
considerations, along with formal proofs of the cryptography, are
available at:
* https://www.wireguard.com/
* https://www.wireguard.com/papers/wireguard.pdf
This commit implements WireGuard as a simple network device driver,
accessible in the usual RTNL way used by virtual network drivers. It
makes use of the udp_tunnel APIs, GRO, GSO, NAPI, and the usual set of
networking subsystem APIs. It has a somewhat novel multicore queueing
system designed for maximum throughput and minimal latency of encryption
operations, but it is implemented modestly using workqueues and NAPI.
Configuration is done via generic Netlink, and following a review from
the Netlink maintainer a year ago, several high profile userspace tools
have already implemented the API.
This commit also comes with several different tests, both in-kernel
tests and out-of-kernel tests based on network namespaces, taking profit
of the fact that sockets used by WireGuard intentionally stay in the
namespace the WireGuard interface was originally created, exactly like
the semantics of userspace tun devices. See wireguard.com/netns/ for
pictures and examples.
The source code is fairly short, but rather than combining everything
into a single file, WireGuard is developed as cleanly separable files,
making auditing and comprehension easier. Things are laid out as
follows:
* noise.[ch], cookie.[ch], messages.h: These implement the bulk of the
cryptographic aspects of the protocol, and are mostly data-only in
nature, taking in buffers of bytes and spitting out buffers of
bytes. They also handle reference counting for their various shared
pieces of data, like keys and key lists.
* ratelimiter.[ch]: Used as an integral part of cookie.[ch] for
ratelimiting certain types of cryptographic operations in accordance
with particular WireGuard semantics.
* allowedips.[ch], peerlookup.[ch]: The main lookup structures of
WireGuard, the former being trie-like with particular semantics, an
integral part of the design of the protocol, and the latter just
being nice helper functions around the various hashtables we use.
* device.[ch]: Implementation of functions for the netdevice and for
rtnl, responsible for maintaining the life of a given interface and
wiring it up to the rest of WireGuard.
* peer.[ch]: Each interface has a list of peers, with helper functions
available here for creation, destruction, and reference counting.
* socket.[ch]: Implementation of functions related to udp_socket and
the general set of kernel socket APIs, for sending and receiving
ciphertext UDP packets, and taking care of WireGuard-specific sticky
socket routing semantics for the automatic roaming.
* netlink.[ch]: Userspace API entry point for configuring WireGuard
peers and devices. The API has been implemented by several userspace
tools and network management utility, and the WireGuard project
distributes the basic wg(8) tool.
* queueing.[ch]: Shared function on the rx and tx path for handling
the various queues used in the multicore algorithms.
* send.c: Handles encrypting outgoing packets in parallel on
multiple cores, before sending them in order on a single core, via
workqueues and ring buffers. Also handles sending handshake and cookie
messages as part of the protocol, in parallel.
* receive.c: Handles decrypting incoming packets in parallel on
multiple cores, before passing them off in order to be ingested via
the rest of the networking subsystem with GRO via the typical NAPI
poll function. Also handles receiving handshake and cookie messages
as part of the protocol, in parallel.
* timers.[ch]: Uses the timer wheel to implement protocol particular
event timeouts, and gives a set of very simple event-driven entry
point functions for callers.
* main.c, version.h: Initialization and deinitialization of the module.
* selftest/*.h: Runtime unit tests for some of the most security
sensitive functions.
* tools/testing/selftests/wireguard/netns.sh: Aforementioned testing
script using network namespaces.
This commit aims to be as self-contained as possible, implementing
WireGuard as a standalone module not needing much special handling or
coordination from the network subsystem. I expect for future
optimizations to the network stack to positively improve WireGuard, and
vice-versa, but for the time being, this exists as intentionally
standalone.
We introduce a menu option for CONFIG_WIREGUARD, as well as providing a
verbose debug log and self-tests via CONFIG_WIREGUARD_DEBUG.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: David Miller <davem@davemloft.net>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: linux-crypto@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: netdev@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-09 07:27:34 +08:00
|
|
|
return ERR_PTR(ret);
|
|
|
|
}
|
|
|
|
|
|
|
|
struct wg_peer *wg_peer_get_maybe_zero(struct wg_peer *peer)
|
|
|
|
{
|
|
|
|
RCU_LOCKDEP_WARN(!rcu_read_lock_bh_held(),
|
|
|
|
"Taking peer reference without holding the RCU read lock");
|
|
|
|
if (unlikely(!peer || !kref_get_unless_zero(&peer->refcount)))
|
|
|
|
return NULL;
|
|
|
|
return peer;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void peer_make_dead(struct wg_peer *peer)
|
|
|
|
{
|
|
|
|
/* Remove from configuration-time lookup structures. */
|
|
|
|
list_del_init(&peer->peer_list);
|
|
|
|
wg_allowedips_remove_by_peer(&peer->device->peer_allowedips, peer,
|
|
|
|
&peer->device->device_update_lock);
|
|
|
|
wg_pubkey_hashtable_remove(peer->device->peer_hashtable, peer);
|
|
|
|
|
|
|
|
/* Mark as dead, so that we don't allow jumping contexts after. */
|
|
|
|
WRITE_ONCE(peer->is_dead, true);
|
|
|
|
|
2021-06-04 23:17:33 +08:00
|
|
|
/* The caller must now synchronize_net() for this to take effect. */
|
net: WireGuard secure network tunnel
WireGuard is a layer 3 secure networking tunnel made specifically for
the kernel, that aims to be much simpler and easier to audit than IPsec.
Extensive documentation and description of the protocol and
considerations, along with formal proofs of the cryptography, are
available at:
* https://www.wireguard.com/
* https://www.wireguard.com/papers/wireguard.pdf
This commit implements WireGuard as a simple network device driver,
accessible in the usual RTNL way used by virtual network drivers. It
makes use of the udp_tunnel APIs, GRO, GSO, NAPI, and the usual set of
networking subsystem APIs. It has a somewhat novel multicore queueing
system designed for maximum throughput and minimal latency of encryption
operations, but it is implemented modestly using workqueues and NAPI.
Configuration is done via generic Netlink, and following a review from
the Netlink maintainer a year ago, several high profile userspace tools
have already implemented the API.
This commit also comes with several different tests, both in-kernel
tests and out-of-kernel tests based on network namespaces, taking profit
of the fact that sockets used by WireGuard intentionally stay in the
namespace the WireGuard interface was originally created, exactly like
the semantics of userspace tun devices. See wireguard.com/netns/ for
pictures and examples.
The source code is fairly short, but rather than combining everything
into a single file, WireGuard is developed as cleanly separable files,
making auditing and comprehension easier. Things are laid out as
follows:
* noise.[ch], cookie.[ch], messages.h: These implement the bulk of the
cryptographic aspects of the protocol, and are mostly data-only in
nature, taking in buffers of bytes and spitting out buffers of
bytes. They also handle reference counting for their various shared
pieces of data, like keys and key lists.
* ratelimiter.[ch]: Used as an integral part of cookie.[ch] for
ratelimiting certain types of cryptographic operations in accordance
with particular WireGuard semantics.
* allowedips.[ch], peerlookup.[ch]: The main lookup structures of
WireGuard, the former being trie-like with particular semantics, an
integral part of the design of the protocol, and the latter just
being nice helper functions around the various hashtables we use.
* device.[ch]: Implementation of functions for the netdevice and for
rtnl, responsible for maintaining the life of a given interface and
wiring it up to the rest of WireGuard.
* peer.[ch]: Each interface has a list of peers, with helper functions
available here for creation, destruction, and reference counting.
* socket.[ch]: Implementation of functions related to udp_socket and
the general set of kernel socket APIs, for sending and receiving
ciphertext UDP packets, and taking care of WireGuard-specific sticky
socket routing semantics for the automatic roaming.
* netlink.[ch]: Userspace API entry point for configuring WireGuard
peers and devices. The API has been implemented by several userspace
tools and network management utility, and the WireGuard project
distributes the basic wg(8) tool.
* queueing.[ch]: Shared function on the rx and tx path for handling
the various queues used in the multicore algorithms.
* send.c: Handles encrypting outgoing packets in parallel on
multiple cores, before sending them in order on a single core, via
workqueues and ring buffers. Also handles sending handshake and cookie
messages as part of the protocol, in parallel.
* receive.c: Handles decrypting incoming packets in parallel on
multiple cores, before passing them off in order to be ingested via
the rest of the networking subsystem with GRO via the typical NAPI
poll function. Also handles receiving handshake and cookie messages
as part of the protocol, in parallel.
* timers.[ch]: Uses the timer wheel to implement protocol particular
event timeouts, and gives a set of very simple event-driven entry
point functions for callers.
* main.c, version.h: Initialization and deinitialization of the module.
* selftest/*.h: Runtime unit tests for some of the most security
sensitive functions.
* tools/testing/selftests/wireguard/netns.sh: Aforementioned testing
script using network namespaces.
This commit aims to be as self-contained as possible, implementing
WireGuard as a standalone module not needing much special handling or
coordination from the network subsystem. I expect for future
optimizations to the network stack to positively improve WireGuard, and
vice-versa, but for the time being, this exists as intentionally
standalone.
We introduce a menu option for CONFIG_WIREGUARD, as well as providing a
verbose debug log and self-tests via CONFIG_WIREGUARD_DEBUG.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: David Miller <davem@davemloft.net>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: linux-crypto@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: netdev@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-09 07:27:34 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void peer_remove_after_dead(struct wg_peer *peer)
|
|
|
|
{
|
|
|
|
WARN_ON(!peer->is_dead);
|
|
|
|
|
|
|
|
/* No more keypairs can be created for this peer, since is_dead protects
|
|
|
|
* add_new_keypair, so we can now destroy existing ones.
|
|
|
|
*/
|
|
|
|
wg_noise_keypairs_clear(&peer->keypairs);
|
|
|
|
|
|
|
|
/* Destroy all ongoing timers that were in-flight at the beginning of
|
|
|
|
* this function.
|
|
|
|
*/
|
|
|
|
wg_timers_stop(peer);
|
|
|
|
|
|
|
|
/* The transition between packet encryption/decryption queues isn't
|
|
|
|
* guarded by is_dead, but each reference's life is strictly bounded by
|
|
|
|
* two generations: once for parallel crypto and once for serial
|
|
|
|
* ingestion, so we can simply flush twice, and be sure that we no
|
|
|
|
* longer have references inside these queues.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* a) For encrypt/decrypt. */
|
|
|
|
flush_workqueue(peer->device->packet_crypt_wq);
|
|
|
|
/* b.1) For send (but not receive, since that's napi). */
|
|
|
|
flush_workqueue(peer->device->packet_crypt_wq);
|
|
|
|
/* b.2.1) For receive (but not send, since that's wq). */
|
|
|
|
napi_disable(&peer->napi);
|
|
|
|
/* b.2.1) It's now safe to remove the napi struct, which must be done
|
|
|
|
* here from process context.
|
|
|
|
*/
|
|
|
|
netif_napi_del(&peer->napi);
|
|
|
|
|
|
|
|
/* Ensure any workstructs we own (like transmit_handshake_work or
|
|
|
|
* clear_peer_work) no longer are in use.
|
|
|
|
*/
|
|
|
|
flush_workqueue(peer->device->handshake_send_wq);
|
|
|
|
|
|
|
|
/* After the above flushes, a peer might still be active in a few
|
|
|
|
* different contexts: 1) from xmit(), before hitting is_dead and
|
|
|
|
* returning, 2) from wg_packet_consume_data(), before hitting is_dead
|
|
|
|
* and returning, 3) from wg_receive_handshake_packet() after a point
|
|
|
|
* where it has processed an incoming handshake packet, but where
|
|
|
|
* all calls to pass it off to timers fails because of is_dead. We won't
|
|
|
|
* have new references in (1) eventually, because we're removed from
|
|
|
|
* allowedips; we won't have new references in (2) eventually, because
|
|
|
|
* wg_index_hashtable_lookup will always return NULL, since we removed
|
|
|
|
* all existing keypairs and no more can be created; we won't have new
|
|
|
|
* references in (3) eventually, because we're removed from the pubkey
|
|
|
|
* hash table, which allows for a maximum of one handshake response,
|
|
|
|
* via the still-uncleared index hashtable entry, but not more than one,
|
|
|
|
* and in wg_cookie_message_consume, the lookup eventually gets a peer
|
|
|
|
* with a refcount of zero, so no new reference is taken.
|
|
|
|
*/
|
|
|
|
|
|
|
|
--peer->device->num_peers;
|
|
|
|
wg_peer_put(peer);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* We have a separate "remove" function make sure that all active places where
|
|
|
|
* a peer is currently operating will eventually come to an end and not pass
|
|
|
|
* their reference onto another context.
|
|
|
|
*/
|
|
|
|
void wg_peer_remove(struct wg_peer *peer)
|
|
|
|
{
|
|
|
|
if (unlikely(!peer))
|
|
|
|
return;
|
|
|
|
lockdep_assert_held(&peer->device->device_update_lock);
|
|
|
|
|
|
|
|
peer_make_dead(peer);
|
2021-06-04 23:17:33 +08:00
|
|
|
synchronize_net();
|
net: WireGuard secure network tunnel
WireGuard is a layer 3 secure networking tunnel made specifically for
the kernel, that aims to be much simpler and easier to audit than IPsec.
Extensive documentation and description of the protocol and
considerations, along with formal proofs of the cryptography, are
available at:
* https://www.wireguard.com/
* https://www.wireguard.com/papers/wireguard.pdf
This commit implements WireGuard as a simple network device driver,
accessible in the usual RTNL way used by virtual network drivers. It
makes use of the udp_tunnel APIs, GRO, GSO, NAPI, and the usual set of
networking subsystem APIs. It has a somewhat novel multicore queueing
system designed for maximum throughput and minimal latency of encryption
operations, but it is implemented modestly using workqueues and NAPI.
Configuration is done via generic Netlink, and following a review from
the Netlink maintainer a year ago, several high profile userspace tools
have already implemented the API.
This commit also comes with several different tests, both in-kernel
tests and out-of-kernel tests based on network namespaces, taking profit
of the fact that sockets used by WireGuard intentionally stay in the
namespace the WireGuard interface was originally created, exactly like
the semantics of userspace tun devices. See wireguard.com/netns/ for
pictures and examples.
The source code is fairly short, but rather than combining everything
into a single file, WireGuard is developed as cleanly separable files,
making auditing and comprehension easier. Things are laid out as
follows:
* noise.[ch], cookie.[ch], messages.h: These implement the bulk of the
cryptographic aspects of the protocol, and are mostly data-only in
nature, taking in buffers of bytes and spitting out buffers of
bytes. They also handle reference counting for their various shared
pieces of data, like keys and key lists.
* ratelimiter.[ch]: Used as an integral part of cookie.[ch] for
ratelimiting certain types of cryptographic operations in accordance
with particular WireGuard semantics.
* allowedips.[ch], peerlookup.[ch]: The main lookup structures of
WireGuard, the former being trie-like with particular semantics, an
integral part of the design of the protocol, and the latter just
being nice helper functions around the various hashtables we use.
* device.[ch]: Implementation of functions for the netdevice and for
rtnl, responsible for maintaining the life of a given interface and
wiring it up to the rest of WireGuard.
* peer.[ch]: Each interface has a list of peers, with helper functions
available here for creation, destruction, and reference counting.
* socket.[ch]: Implementation of functions related to udp_socket and
the general set of kernel socket APIs, for sending and receiving
ciphertext UDP packets, and taking care of WireGuard-specific sticky
socket routing semantics for the automatic roaming.
* netlink.[ch]: Userspace API entry point for configuring WireGuard
peers and devices. The API has been implemented by several userspace
tools and network management utility, and the WireGuard project
distributes the basic wg(8) tool.
* queueing.[ch]: Shared function on the rx and tx path for handling
the various queues used in the multicore algorithms.
* send.c: Handles encrypting outgoing packets in parallel on
multiple cores, before sending them in order on a single core, via
workqueues and ring buffers. Also handles sending handshake and cookie
messages as part of the protocol, in parallel.
* receive.c: Handles decrypting incoming packets in parallel on
multiple cores, before passing them off in order to be ingested via
the rest of the networking subsystem with GRO via the typical NAPI
poll function. Also handles receiving handshake and cookie messages
as part of the protocol, in parallel.
* timers.[ch]: Uses the timer wheel to implement protocol particular
event timeouts, and gives a set of very simple event-driven entry
point functions for callers.
* main.c, version.h: Initialization and deinitialization of the module.
* selftest/*.h: Runtime unit tests for some of the most security
sensitive functions.
* tools/testing/selftests/wireguard/netns.sh: Aforementioned testing
script using network namespaces.
This commit aims to be as self-contained as possible, implementing
WireGuard as a standalone module not needing much special handling or
coordination from the network subsystem. I expect for future
optimizations to the network stack to positively improve WireGuard, and
vice-versa, but for the time being, this exists as intentionally
standalone.
We introduce a menu option for CONFIG_WIREGUARD, as well as providing a
verbose debug log and self-tests via CONFIG_WIREGUARD_DEBUG.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: David Miller <davem@davemloft.net>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: linux-crypto@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: netdev@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-09 07:27:34 +08:00
|
|
|
peer_remove_after_dead(peer);
|
|
|
|
}
|
|
|
|
|
|
|
|
void wg_peer_remove_all(struct wg_device *wg)
|
|
|
|
{
|
|
|
|
struct wg_peer *peer, *temp;
|
|
|
|
LIST_HEAD(dead_peers);
|
|
|
|
|
|
|
|
lockdep_assert_held(&wg->device_update_lock);
|
|
|
|
|
|
|
|
/* Avoid having to traverse individually for each one. */
|
|
|
|
wg_allowedips_free(&wg->peer_allowedips, &wg->device_update_lock);
|
|
|
|
|
|
|
|
list_for_each_entry_safe(peer, temp, &wg->peer_list, peer_list) {
|
|
|
|
peer_make_dead(peer);
|
|
|
|
list_add_tail(&peer->peer_list, &dead_peers);
|
|
|
|
}
|
2021-06-04 23:17:33 +08:00
|
|
|
synchronize_net();
|
net: WireGuard secure network tunnel
WireGuard is a layer 3 secure networking tunnel made specifically for
the kernel, that aims to be much simpler and easier to audit than IPsec.
Extensive documentation and description of the protocol and
considerations, along with formal proofs of the cryptography, are
available at:
* https://www.wireguard.com/
* https://www.wireguard.com/papers/wireguard.pdf
This commit implements WireGuard as a simple network device driver,
accessible in the usual RTNL way used by virtual network drivers. It
makes use of the udp_tunnel APIs, GRO, GSO, NAPI, and the usual set of
networking subsystem APIs. It has a somewhat novel multicore queueing
system designed for maximum throughput and minimal latency of encryption
operations, but it is implemented modestly using workqueues and NAPI.
Configuration is done via generic Netlink, and following a review from
the Netlink maintainer a year ago, several high profile userspace tools
have already implemented the API.
This commit also comes with several different tests, both in-kernel
tests and out-of-kernel tests based on network namespaces, taking profit
of the fact that sockets used by WireGuard intentionally stay in the
namespace the WireGuard interface was originally created, exactly like
the semantics of userspace tun devices. See wireguard.com/netns/ for
pictures and examples.
The source code is fairly short, but rather than combining everything
into a single file, WireGuard is developed as cleanly separable files,
making auditing and comprehension easier. Things are laid out as
follows:
* noise.[ch], cookie.[ch], messages.h: These implement the bulk of the
cryptographic aspects of the protocol, and are mostly data-only in
nature, taking in buffers of bytes and spitting out buffers of
bytes. They also handle reference counting for their various shared
pieces of data, like keys and key lists.
* ratelimiter.[ch]: Used as an integral part of cookie.[ch] for
ratelimiting certain types of cryptographic operations in accordance
with particular WireGuard semantics.
* allowedips.[ch], peerlookup.[ch]: The main lookup structures of
WireGuard, the former being trie-like with particular semantics, an
integral part of the design of the protocol, and the latter just
being nice helper functions around the various hashtables we use.
* device.[ch]: Implementation of functions for the netdevice and for
rtnl, responsible for maintaining the life of a given interface and
wiring it up to the rest of WireGuard.
* peer.[ch]: Each interface has a list of peers, with helper functions
available here for creation, destruction, and reference counting.
* socket.[ch]: Implementation of functions related to udp_socket and
the general set of kernel socket APIs, for sending and receiving
ciphertext UDP packets, and taking care of WireGuard-specific sticky
socket routing semantics for the automatic roaming.
* netlink.[ch]: Userspace API entry point for configuring WireGuard
peers and devices. The API has been implemented by several userspace
tools and network management utility, and the WireGuard project
distributes the basic wg(8) tool.
* queueing.[ch]: Shared function on the rx and tx path for handling
the various queues used in the multicore algorithms.
* send.c: Handles encrypting outgoing packets in parallel on
multiple cores, before sending them in order on a single core, via
workqueues and ring buffers. Also handles sending handshake and cookie
messages as part of the protocol, in parallel.
* receive.c: Handles decrypting incoming packets in parallel on
multiple cores, before passing them off in order to be ingested via
the rest of the networking subsystem with GRO via the typical NAPI
poll function. Also handles receiving handshake and cookie messages
as part of the protocol, in parallel.
* timers.[ch]: Uses the timer wheel to implement protocol particular
event timeouts, and gives a set of very simple event-driven entry
point functions for callers.
* main.c, version.h: Initialization and deinitialization of the module.
* selftest/*.h: Runtime unit tests for some of the most security
sensitive functions.
* tools/testing/selftests/wireguard/netns.sh: Aforementioned testing
script using network namespaces.
This commit aims to be as self-contained as possible, implementing
WireGuard as a standalone module not needing much special handling or
coordination from the network subsystem. I expect for future
optimizations to the network stack to positively improve WireGuard, and
vice-versa, but for the time being, this exists as intentionally
standalone.
We introduce a menu option for CONFIG_WIREGUARD, as well as providing a
verbose debug log and self-tests via CONFIG_WIREGUARD_DEBUG.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: David Miller <davem@davemloft.net>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: linux-crypto@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: netdev@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-09 07:27:34 +08:00
|
|
|
list_for_each_entry_safe(peer, temp, &dead_peers, peer_list)
|
|
|
|
peer_remove_after_dead(peer);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void rcu_release(struct rcu_head *rcu)
|
|
|
|
{
|
|
|
|
struct wg_peer *peer = container_of(rcu, struct wg_peer, rcu);
|
|
|
|
|
|
|
|
dst_cache_destroy(&peer->endpoint_cache);
|
wireguard: queueing: get rid of per-peer ring buffers
Having two ring buffers per-peer means that every peer results in two
massive ring allocations. On an 8-core x86_64 machine, this commit
reduces the per-peer allocation from 18,688 bytes to 1,856 bytes, which
is an 90% reduction. Ninety percent! With some single-machine
deployments approaching 500,000 peers, we're talking about a reduction
from 7 gigs of memory down to 700 megs of memory.
In order to get rid of these per-peer allocations, this commit switches
to using a list-based queueing approach. Currently GSO fragments are
chained together using the skb->next pointer (the skb_list_* singly
linked list approach), so we form the per-peer queue around the unused
skb->prev pointer (which sort of makes sense because the links are
pointing backwards). Use of skb_queue_* is not possible here, because
that is based on doubly linked lists and spinlocks. Multiple cores can
write into the queue at any given time, because its writes occur in the
start_xmit path or in the udp_recv path. But reads happen in a single
workqueue item per-peer, amounting to a multi-producer, single-consumer
paradigm.
The MPSC queue is implemented locklessly and never blocks. However, it
is not linearizable (though it is serializable), with a very tight and
unlikely race on writes, which, when hit (some tiny fraction of the
0.15% of partial adds on a fully loaded 16-core x86_64 system), causes
the queue reader to terminate early. However, because every packet sent
queues up the same workqueue item after it is fully added, the worker
resumes again, and stopping early isn't actually a problem, since at
that point the packet wouldn't have yet been added to the encryption
queue. These properties allow us to avoid disabling interrupts or
spinning. The design is based on Dmitry Vyukov's algorithm [1].
Performance-wise, ordinarily list-based queues aren't preferable to
ringbuffers, because of cache misses when following pointers around.
However, we *already* have to follow the adjacent pointers when working
through fragments, so there shouldn't actually be any change there. A
potential downside is that dequeueing is a bit more complicated, but the
ptr_ring structure used prior had a spinlock when dequeueing, so all and
all the difference appears to be a wash.
Actually, from profiling, the biggest performance hit, by far, of this
commit winds up being atomic_add_unless(count, 1, max) and atomic_
dec(count), which account for the majority of CPU time, according to
perf. In that sense, the previous ring buffer was superior in that it
could check if it was full by head==tail, which the list-based approach
cannot do.
But all and all, this enables us to get massive memory savings, allowing
WireGuard to scale for real world deployments, without taking much of a
performance hit.
[1] http://www.1024cores.net/home/lock-free-algorithms/queues/intrusive-mpsc-node-based-queue
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Toke Høiland-Jørgensen <toke@redhat.com>
Fixes: e7096c131e51 ("net: WireGuard secure network tunnel")
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-02-23 00:25:48 +08:00
|
|
|
WARN_ON(wg_prev_queue_peek(&peer->tx_queue) || wg_prev_queue_peek(&peer->rx_queue));
|
net: WireGuard secure network tunnel
WireGuard is a layer 3 secure networking tunnel made specifically for
the kernel, that aims to be much simpler and easier to audit than IPsec.
Extensive documentation and description of the protocol and
considerations, along with formal proofs of the cryptography, are
available at:
* https://www.wireguard.com/
* https://www.wireguard.com/papers/wireguard.pdf
This commit implements WireGuard as a simple network device driver,
accessible in the usual RTNL way used by virtual network drivers. It
makes use of the udp_tunnel APIs, GRO, GSO, NAPI, and the usual set of
networking subsystem APIs. It has a somewhat novel multicore queueing
system designed for maximum throughput and minimal latency of encryption
operations, but it is implemented modestly using workqueues and NAPI.
Configuration is done via generic Netlink, and following a review from
the Netlink maintainer a year ago, several high profile userspace tools
have already implemented the API.
This commit also comes with several different tests, both in-kernel
tests and out-of-kernel tests based on network namespaces, taking profit
of the fact that sockets used by WireGuard intentionally stay in the
namespace the WireGuard interface was originally created, exactly like
the semantics of userspace tun devices. See wireguard.com/netns/ for
pictures and examples.
The source code is fairly short, but rather than combining everything
into a single file, WireGuard is developed as cleanly separable files,
making auditing and comprehension easier. Things are laid out as
follows:
* noise.[ch], cookie.[ch], messages.h: These implement the bulk of the
cryptographic aspects of the protocol, and are mostly data-only in
nature, taking in buffers of bytes and spitting out buffers of
bytes. They also handle reference counting for their various shared
pieces of data, like keys and key lists.
* ratelimiter.[ch]: Used as an integral part of cookie.[ch] for
ratelimiting certain types of cryptographic operations in accordance
with particular WireGuard semantics.
* allowedips.[ch], peerlookup.[ch]: The main lookup structures of
WireGuard, the former being trie-like with particular semantics, an
integral part of the design of the protocol, and the latter just
being nice helper functions around the various hashtables we use.
* device.[ch]: Implementation of functions for the netdevice and for
rtnl, responsible for maintaining the life of a given interface and
wiring it up to the rest of WireGuard.
* peer.[ch]: Each interface has a list of peers, with helper functions
available here for creation, destruction, and reference counting.
* socket.[ch]: Implementation of functions related to udp_socket and
the general set of kernel socket APIs, for sending and receiving
ciphertext UDP packets, and taking care of WireGuard-specific sticky
socket routing semantics for the automatic roaming.
* netlink.[ch]: Userspace API entry point for configuring WireGuard
peers and devices. The API has been implemented by several userspace
tools and network management utility, and the WireGuard project
distributes the basic wg(8) tool.
* queueing.[ch]: Shared function on the rx and tx path for handling
the various queues used in the multicore algorithms.
* send.c: Handles encrypting outgoing packets in parallel on
multiple cores, before sending them in order on a single core, via
workqueues and ring buffers. Also handles sending handshake and cookie
messages as part of the protocol, in parallel.
* receive.c: Handles decrypting incoming packets in parallel on
multiple cores, before passing them off in order to be ingested via
the rest of the networking subsystem with GRO via the typical NAPI
poll function. Also handles receiving handshake and cookie messages
as part of the protocol, in parallel.
* timers.[ch]: Uses the timer wheel to implement protocol particular
event timeouts, and gives a set of very simple event-driven entry
point functions for callers.
* main.c, version.h: Initialization and deinitialization of the module.
* selftest/*.h: Runtime unit tests for some of the most security
sensitive functions.
* tools/testing/selftests/wireguard/netns.sh: Aforementioned testing
script using network namespaces.
This commit aims to be as self-contained as possible, implementing
WireGuard as a standalone module not needing much special handling or
coordination from the network subsystem. I expect for future
optimizations to the network stack to positively improve WireGuard, and
vice-versa, but for the time being, this exists as intentionally
standalone.
We introduce a menu option for CONFIG_WIREGUARD, as well as providing a
verbose debug log and self-tests via CONFIG_WIREGUARD_DEBUG.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: David Miller <davem@davemloft.net>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: linux-crypto@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: netdev@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-09 07:27:34 +08:00
|
|
|
|
|
|
|
/* The final zeroing takes care of clearing any remaining handshake key
|
|
|
|
* material and other potentially sensitive information.
|
|
|
|
*/
|
2021-06-04 23:17:34 +08:00
|
|
|
memzero_explicit(peer, sizeof(*peer));
|
|
|
|
kmem_cache_free(peer_cache, peer);
|
net: WireGuard secure network tunnel
WireGuard is a layer 3 secure networking tunnel made specifically for
the kernel, that aims to be much simpler and easier to audit than IPsec.
Extensive documentation and description of the protocol and
considerations, along with formal proofs of the cryptography, are
available at:
* https://www.wireguard.com/
* https://www.wireguard.com/papers/wireguard.pdf
This commit implements WireGuard as a simple network device driver,
accessible in the usual RTNL way used by virtual network drivers. It
makes use of the udp_tunnel APIs, GRO, GSO, NAPI, and the usual set of
networking subsystem APIs. It has a somewhat novel multicore queueing
system designed for maximum throughput and minimal latency of encryption
operations, but it is implemented modestly using workqueues and NAPI.
Configuration is done via generic Netlink, and following a review from
the Netlink maintainer a year ago, several high profile userspace tools
have already implemented the API.
This commit also comes with several different tests, both in-kernel
tests and out-of-kernel tests based on network namespaces, taking profit
of the fact that sockets used by WireGuard intentionally stay in the
namespace the WireGuard interface was originally created, exactly like
the semantics of userspace tun devices. See wireguard.com/netns/ for
pictures and examples.
The source code is fairly short, but rather than combining everything
into a single file, WireGuard is developed as cleanly separable files,
making auditing and comprehension easier. Things are laid out as
follows:
* noise.[ch], cookie.[ch], messages.h: These implement the bulk of the
cryptographic aspects of the protocol, and are mostly data-only in
nature, taking in buffers of bytes and spitting out buffers of
bytes. They also handle reference counting for their various shared
pieces of data, like keys and key lists.
* ratelimiter.[ch]: Used as an integral part of cookie.[ch] for
ratelimiting certain types of cryptographic operations in accordance
with particular WireGuard semantics.
* allowedips.[ch], peerlookup.[ch]: The main lookup structures of
WireGuard, the former being trie-like with particular semantics, an
integral part of the design of the protocol, and the latter just
being nice helper functions around the various hashtables we use.
* device.[ch]: Implementation of functions for the netdevice and for
rtnl, responsible for maintaining the life of a given interface and
wiring it up to the rest of WireGuard.
* peer.[ch]: Each interface has a list of peers, with helper functions
available here for creation, destruction, and reference counting.
* socket.[ch]: Implementation of functions related to udp_socket and
the general set of kernel socket APIs, for sending and receiving
ciphertext UDP packets, and taking care of WireGuard-specific sticky
socket routing semantics for the automatic roaming.
* netlink.[ch]: Userspace API entry point for configuring WireGuard
peers and devices. The API has been implemented by several userspace
tools and network management utility, and the WireGuard project
distributes the basic wg(8) tool.
* queueing.[ch]: Shared function on the rx and tx path for handling
the various queues used in the multicore algorithms.
* send.c: Handles encrypting outgoing packets in parallel on
multiple cores, before sending them in order on a single core, via
workqueues and ring buffers. Also handles sending handshake and cookie
messages as part of the protocol, in parallel.
* receive.c: Handles decrypting incoming packets in parallel on
multiple cores, before passing them off in order to be ingested via
the rest of the networking subsystem with GRO via the typical NAPI
poll function. Also handles receiving handshake and cookie messages
as part of the protocol, in parallel.
* timers.[ch]: Uses the timer wheel to implement protocol particular
event timeouts, and gives a set of very simple event-driven entry
point functions for callers.
* main.c, version.h: Initialization and deinitialization of the module.
* selftest/*.h: Runtime unit tests for some of the most security
sensitive functions.
* tools/testing/selftests/wireguard/netns.sh: Aforementioned testing
script using network namespaces.
This commit aims to be as self-contained as possible, implementing
WireGuard as a standalone module not needing much special handling or
coordination from the network subsystem. I expect for future
optimizations to the network stack to positively improve WireGuard, and
vice-versa, but for the time being, this exists as intentionally
standalone.
We introduce a menu option for CONFIG_WIREGUARD, as well as providing a
verbose debug log and self-tests via CONFIG_WIREGUARD_DEBUG.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: David Miller <davem@davemloft.net>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: linux-crypto@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: netdev@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-09 07:27:34 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void kref_release(struct kref *refcount)
|
|
|
|
{
|
|
|
|
struct wg_peer *peer = container_of(refcount, struct wg_peer, refcount);
|
|
|
|
|
|
|
|
pr_debug("%s: Peer %llu (%pISpfsc) destroyed\n",
|
|
|
|
peer->device->dev->name, peer->internal_id,
|
|
|
|
&peer->endpoint.addr);
|
|
|
|
|
|
|
|
/* Remove ourself from dynamic runtime lookup structures, now that the
|
|
|
|
* last reference is gone.
|
|
|
|
*/
|
|
|
|
wg_index_hashtable_remove(peer->device->index_hashtable,
|
|
|
|
&peer->handshake.entry);
|
|
|
|
|
|
|
|
/* Remove any lingering packets that didn't have a chance to be
|
|
|
|
* transmitted.
|
|
|
|
*/
|
|
|
|
wg_packet_purge_staged_packets(peer);
|
|
|
|
|
|
|
|
/* Free the memory used. */
|
|
|
|
call_rcu(&peer->rcu, rcu_release);
|
|
|
|
}
|
|
|
|
|
|
|
|
void wg_peer_put(struct wg_peer *peer)
|
|
|
|
{
|
|
|
|
if (unlikely(!peer))
|
|
|
|
return;
|
|
|
|
kref_put(&peer->refcount, kref_release);
|
|
|
|
}
|
2021-06-04 23:17:34 +08:00
|
|
|
|
|
|
|
int __init wg_peer_init(void)
|
|
|
|
{
|
|
|
|
peer_cache = KMEM_CACHE(wg_peer, 0);
|
|
|
|
return peer_cache ? 0 : -ENOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
void wg_peer_uninit(void)
|
|
|
|
{
|
|
|
|
kmem_cache_destroy(peer_cache);
|
|
|
|
}
|