OpenCloudOS-Kernel/drivers/pci/pci-driver.c

1296 lines
31 KiB
C
Raw Normal View History

/*
* drivers/pci/pci-driver.c
*
* (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com>
* (C) Copyright 2007 Novell Inc.
*
* Released under the GPL v2 only.
*
*/
#include <linux/pci.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/mempolicy.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/cpu.h>
#include <linux/pm_runtime.h>
#include <linux/suspend.h>
#include "pci.h"
struct pci_dynid {
struct list_head node;
struct pci_device_id id;
};
/**
* pci_add_dynid - add a new PCI device ID to this driver and re-probe devices
* @drv: target pci driver
* @vendor: PCI vendor ID
* @device: PCI device ID
* @subvendor: PCI subvendor ID
* @subdevice: PCI subdevice ID
* @class: PCI class
* @class_mask: PCI class mask
* @driver_data: private driver data
*
* Adds a new dynamic pci device ID to this driver and causes the
* driver to probe for all devices again. @drv must have been
* registered prior to calling this function.
*
* CONTEXT:
* Does GFP_KERNEL allocation.
*
* RETURNS:
* 0 on success, -errno on failure.
*/
int pci_add_dynid(struct pci_driver *drv,
unsigned int vendor, unsigned int device,
unsigned int subvendor, unsigned int subdevice,
unsigned int class, unsigned int class_mask,
unsigned long driver_data)
{
struct pci_dynid *dynid;
int retval;
dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
if (!dynid)
return -ENOMEM;
dynid->id.vendor = vendor;
dynid->id.device = device;
dynid->id.subvendor = subvendor;
dynid->id.subdevice = subdevice;
dynid->id.class = class;
dynid->id.class_mask = class_mask;
dynid->id.driver_data = driver_data;
spin_lock(&drv->dynids.lock);
list_add_tail(&dynid->node, &drv->dynids.list);
spin_unlock(&drv->dynids.lock);
retval = driver_attach(&drv->driver);
return retval;
}
static void pci_free_dynids(struct pci_driver *drv)
{
struct pci_dynid *dynid, *n;
spin_lock(&drv->dynids.lock);
list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
list_del(&dynid->node);
kfree(dynid);
}
spin_unlock(&drv->dynids.lock);
}
/*
* Dynamic device ID manipulation via sysfs is disabled for !CONFIG_HOTPLUG
*/
#ifdef CONFIG_HOTPLUG
/**
* store_new_id - sysfs frontend to pci_add_dynid()
* @driver: target device driver
* @buf: buffer for scanning device ID data
* @count: input size
*
* Allow PCI IDs to be added to an existing driver via sysfs.
*/
static ssize_t
store_new_id(struct device_driver *driver, const char *buf, size_t count)
{
struct pci_driver *pdrv = to_pci_driver(driver);
const struct pci_device_id *ids = pdrv->id_table;
__u32 vendor, device, subvendor=PCI_ANY_ID,
subdevice=PCI_ANY_ID, class=0, class_mask=0;
unsigned long driver_data=0;
int fields=0;
int retval;
fields = sscanf(buf, "%x %x %x %x %x %x %lx",
&vendor, &device, &subvendor, &subdevice,
&class, &class_mask, &driver_data);
if (fields < 2)
return -EINVAL;
/* Only accept driver_data values that match an existing id_table
entry */
if (ids) {
retval = -EINVAL;
while (ids->vendor || ids->subvendor || ids->class_mask) {
if (driver_data == ids->driver_data) {
retval = 0;
break;
}
ids++;
}
if (retval) /* No match */
return retval;
}
retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice,
class, class_mask, driver_data);
if (retval)
return retval;
return count;
}
static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id);
/**
* store_remove_id - remove a PCI device ID from this driver
* @driver: target device driver
* @buf: buffer for scanning device ID data
* @count: input size
*
* Removes a dynamic pci device ID to this driver.
*/
static ssize_t
store_remove_id(struct device_driver *driver, const char *buf, size_t count)
{
struct pci_dynid *dynid, *n;
struct pci_driver *pdrv = to_pci_driver(driver);
__u32 vendor, device, subvendor = PCI_ANY_ID,
subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
int fields = 0;
int retval = -ENODEV;
fields = sscanf(buf, "%x %x %x %x %x %x",
&vendor, &device, &subvendor, &subdevice,
&class, &class_mask);
if (fields < 2)
return -EINVAL;
spin_lock(&pdrv->dynids.lock);
list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) {
struct pci_device_id *id = &dynid->id;
if ((id->vendor == vendor) &&
(id->device == device) &&
(subvendor == PCI_ANY_ID || id->subvendor == subvendor) &&
(subdevice == PCI_ANY_ID || id->subdevice == subdevice) &&
!((id->class ^ class) & class_mask)) {
list_del(&dynid->node);
kfree(dynid);
retval = 0;
break;
}
}
spin_unlock(&pdrv->dynids.lock);
if (retval)
return retval;
return count;
}
static DRIVER_ATTR(remove_id, S_IWUSR, NULL, store_remove_id);
static int
pci_create_newid_files(struct pci_driver *drv)
{
int error = 0;
if (drv->probe != NULL) {
error = driver_create_file(&drv->driver, &driver_attr_new_id);
if (error == 0) {
error = driver_create_file(&drv->driver,
&driver_attr_remove_id);
if (error)
driver_remove_file(&drv->driver,
&driver_attr_new_id);
}
}
return error;
}
static void pci_remove_newid_files(struct pci_driver *drv)
{
driver_remove_file(&drv->driver, &driver_attr_remove_id);
driver_remove_file(&drv->driver, &driver_attr_new_id);
}
#else /* !CONFIG_HOTPLUG */
static inline int pci_create_newid_files(struct pci_driver *drv)
{
return 0;
}
static inline void pci_remove_newid_files(struct pci_driver *drv) {}
#endif
/**
* pci_match_id - See if a pci device matches a given pci_id table
* @ids: array of PCI device id structures to search in
* @dev: the PCI device structure to match against.
*
* Used by a driver to check whether a PCI device present in the
* system is in its list of supported devices. Returns the matching
* pci_device_id structure or %NULL if there is no match.
*
* Deprecated, don't use this as it will not catch any dynamic ids
* that a driver might want to check for.
*/
const struct pci_device_id *pci_match_id(const struct pci_device_id *ids,
struct pci_dev *dev)
{
if (ids) {
while (ids->vendor || ids->subvendor || ids->class_mask) {
if (pci_match_one_device(ids, dev))
return ids;
ids++;
}
}
return NULL;
}
/**
* pci_match_device - Tell if a PCI device structure has a matching PCI device id structure
* @drv: the PCI driver to match against
* @dev: the PCI device structure to match against
*
* Used by a driver to check whether a PCI device present in the
* system is in its list of supported devices. Returns the matching
* pci_device_id structure or %NULL if there is no match.
*/
static const struct pci_device_id *pci_match_device(struct pci_driver *drv,
struct pci_dev *dev)
{
struct pci_dynid *dynid;
PCI: use /sys/bus/pci/drivers/<driver>/new_id first Unfortunately, the .../new_id feature does not work with the 8250_pci driver. The reason for this comes down to the way .../new_id is implemented. When PCI tries to match a driver to a device, it checks the modules static device ID tables _before_ checking the dynamic new_id tables. When a driver is capable of matching by ID, and falls back to matching by class (as 8250_pci does), this makes it absolutely impossible to specify a board by ID, and as such the correct driver_data value to use with it. Let's say you have a serial board with vendor 0x1234 and device 0x5678. It's class is set to PCI_CLASS_COMMUNICATION_SERIAL. On boot, this card is matched to the 8250_pci driver, which tries to probe it because it matched using the class entry. The driver finds that it is unable to automatically detect the correct settings to use, so it returns -ENODEV. You know that the information the driver needs is to match this card using a device_data value of '7'. So you echo 1234 5678 0 0 0 0 7 into new_id. The kernel attempts to re-bind 8250_pci to this device. However, because it scans the PCI driver tables, it _again_ matches the class entry which has the wrong device_data. It fails. End of story. You can't support the card without rebuilding the kernel (or writing a specific PCI probe module to support it.) So, can we make new_id override the driver-internal PCI ID tables? IOW, like this: From: Russell King <rmk@arm.linux.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2006-11-30 05:18:04 +08:00
/* Look at the dynamic ids first, before the static ones */
spin_lock(&drv->dynids.lock);
list_for_each_entry(dynid, &drv->dynids.list, node) {
if (pci_match_one_device(&dynid->id, dev)) {
spin_unlock(&drv->dynids.lock);
return &dynid->id;
}
}
spin_unlock(&drv->dynids.lock);
PCI: use /sys/bus/pci/drivers/<driver>/new_id first Unfortunately, the .../new_id feature does not work with the 8250_pci driver. The reason for this comes down to the way .../new_id is implemented. When PCI tries to match a driver to a device, it checks the modules static device ID tables _before_ checking the dynamic new_id tables. When a driver is capable of matching by ID, and falls back to matching by class (as 8250_pci does), this makes it absolutely impossible to specify a board by ID, and as such the correct driver_data value to use with it. Let's say you have a serial board with vendor 0x1234 and device 0x5678. It's class is set to PCI_CLASS_COMMUNICATION_SERIAL. On boot, this card is matched to the 8250_pci driver, which tries to probe it because it matched using the class entry. The driver finds that it is unable to automatically detect the correct settings to use, so it returns -ENODEV. You know that the information the driver needs is to match this card using a device_data value of '7'. So you echo 1234 5678 0 0 0 0 7 into new_id. The kernel attempts to re-bind 8250_pci to this device. However, because it scans the PCI driver tables, it _again_ matches the class entry which has the wrong device_data. It fails. End of story. You can't support the card without rebuilding the kernel (or writing a specific PCI probe module to support it.) So, can we make new_id override the driver-internal PCI ID tables? IOW, like this: From: Russell King <rmk@arm.linux.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2006-11-30 05:18:04 +08:00
return pci_match_id(drv->id_table, dev);
}
struct drv_dev_and_id {
struct pci_driver *drv;
struct pci_dev *dev;
const struct pci_device_id *id;
};
static long local_pci_probe(void *_ddi)
{
struct drv_dev_and_id *ddi = _ddi;
struct device *dev = &ddi->dev->dev;
int rc;
/* Unbound PCI devices are always set to disabled and suspended.
* During probe, the device is set to enabled and active and the
* usage count is incremented. If the driver supports runtime PM,
* it should call pm_runtime_put_noidle() in its probe routine and
* pm_runtime_get_noresume() in its remove routine.
*/
pm_runtime_get_noresume(dev);
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
rc = ddi->drv->probe(ddi->dev, ddi->id);
if (rc) {
pm_runtime_disable(dev);
pm_runtime_set_suspended(dev);
pm_runtime_put_noidle(dev);
}
return rc;
}
static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev,
const struct pci_device_id *id)
{
int error, node;
struct drv_dev_and_id ddi = { drv, dev, id };
/* Execute driver initialization on node where the device's
bus is attached to. This way the driver likely allocates
its local memory on the right node without any need to
change it. */
node = dev_to_node(&dev->dev);
if (node >= 0) {
int cpu;
get_online_cpus();
cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
if (cpu < nr_cpu_ids)
error = work_on_cpu(cpu, local_pci_probe, &ddi);
else
error = local_pci_probe(&ddi);
put_online_cpus();
} else
error = local_pci_probe(&ddi);
return error;
}
/**
* __pci_device_probe - check if a driver wants to claim a specific PCI device
* @drv: driver to call to check if it wants the PCI device
* @pci_dev: PCI device being probed
*
* returns 0 on success, else error.
* side-effect: pci_dev->driver is set to drv when drv claims pci_dev.
*/
static int
__pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev)
{
const struct pci_device_id *id;
int error = 0;
if (!pci_dev->driver && drv->probe) {
error = -ENODEV;
id = pci_match_device(drv, pci_dev);
if (id)
error = pci_call_probe(drv, pci_dev, id);
if (error >= 0) {
pci_dev->driver = drv;
error = 0;
}
}
return error;
}
static int pci_device_probe(struct device * dev)
{
int error = 0;
struct pci_driver *drv;
struct pci_dev *pci_dev;
drv = to_pci_driver(dev->driver);
pci_dev = to_pci_dev(dev);
pci_dev_get(pci_dev);
error = __pci_device_probe(drv, pci_dev);
if (error)
pci_dev_put(pci_dev);
return error;
}
static int pci_device_remove(struct device * dev)
{
struct pci_dev * pci_dev = to_pci_dev(dev);
struct pci_driver * drv = pci_dev->driver;
if (drv) {
if (drv->remove) {
pm_runtime_get_sync(dev);
drv->remove(pci_dev);
pm_runtime_put_noidle(dev);
}
pci_dev->driver = NULL;
}
/* Undo the runtime PM settings in local_pci_probe() */
pm_runtime_disable(dev);
pm_runtime_set_suspended(dev);
pm_runtime_put_noidle(dev);
/*
* If the device is still on, set the power state as "unknown",
* since it might change by the next time we load the driver.
*/
if (pci_dev->current_state == PCI_D0)
pci_dev->current_state = PCI_UNKNOWN;
/*
* We would love to complain here if pci_dev->is_enabled is set, that
* the driver should have called pci_disable_device(), but the
* unfortunate fact is there are too many odd BIOS and bridge setups
* that don't like drivers doing that all of the time.
* Oh well, we can dream of sane hardware when we sleep, no matter how
* horrible the crap we have to deal with is when we are awake...
*/
pci_dev_put(pci_dev);
return 0;
}
static void pci_device_shutdown(struct device *dev)
{
struct pci_dev *pci_dev = to_pci_dev(dev);
struct pci_driver *drv = pci_dev->driver;
if (drv && drv->shutdown)
drv->shutdown(pci_dev);
pci_msi_shutdown(pci_dev);
pci_msix_shutdown(pci_dev);
/*
* Turn off Bus Master bit on the device to tell it to not
* continue to do DMA
*/
pci_disable_device(pci_dev);
/*
* Devices may be enabled to wake up by runtime PM, but they need not
* be supposed to wake up the system from its "power off" state (e.g.
* ACPI S5). Therefore disable wakeup for all devices that aren't
* supposed to wake up the system at this point. The state argument
* will be ignored by pci_enable_wake().
*/
if (!device_may_wakeup(dev))
pci_enable_wake(pci_dev, PCI_UNKNOWN, false);
}
#ifdef CONFIG_PM
/* Auxiliary functions used for system resume and run-time resume. */
/**
* pci_restore_standard_config - restore standard config registers of PCI device
* @pci_dev: PCI device to handle
*/
static int pci_restore_standard_config(struct pci_dev *pci_dev)
{
pci_update_current_state(pci_dev, PCI_UNKNOWN);
if (pci_dev->current_state != PCI_D0) {
int error = pci_set_power_state(pci_dev, PCI_D0);
if (error)
return error;
}
pci_restore_state(pci_dev);
return 0;
}
static void pci_pm_default_resume_early(struct pci_dev *pci_dev)
{
pci_restore_standard_config(pci_dev);
pci_fixup_device(pci_fixup_resume_early, pci_dev);
}
#endif
#ifdef CONFIG_PM_SLEEP
/*
* Default "suspend" method for devices that have no driver provided suspend,
* or not even a driver at all (second part).
*/
static void pci_pm_set_unknown_state(struct pci_dev *pci_dev)
{
/*
* mark its power state as "unknown", since we don't know if
* e.g. the BIOS will change its device state when we suspend.
*/
if (pci_dev->current_state == PCI_D0)
pci_dev->current_state = PCI_UNKNOWN;
}
/*
* Default "resume" method for devices that have no driver provided resume,
* or not even a driver at all (second part).
*/
static int pci_pm_reenable_device(struct pci_dev *pci_dev)
{
int retval;
/* if the device was enabled before suspend, reenable */
retval = pci_reenable_device(pci_dev);
/*
* if the device was busmaster before the suspend, make it busmaster
* again
*/
if (pci_dev->is_busmaster)
pci_set_master(pci_dev);
return retval;
}
static int pci_legacy_suspend(struct device *dev, pm_message_t state)
{
struct pci_dev * pci_dev = to_pci_dev(dev);
struct pci_driver * drv = pci_dev->driver;
if (drv && drv->suspend) {
pci_power_t prev = pci_dev->current_state;
int error;
error = drv->suspend(pci_dev, state);
suspend_report_result(drv->suspend, error);
if (error)
return error;
if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
&& pci_dev->current_state != PCI_UNKNOWN) {
WARN_ONCE(pci_dev->current_state != prev,
"PCI PM: Device state not saved by %pF\n",
drv->suspend);
}
}
pci_fixup_device(pci_fixup_suspend, pci_dev);
return 0;
}
static int pci_legacy_suspend_late(struct device *dev, pm_message_t state)
{
struct pci_dev * pci_dev = to_pci_dev(dev);
struct pci_driver * drv = pci_dev->driver;
if (drv && drv->suspend_late) {
pci_power_t prev = pci_dev->current_state;
int error;
error = drv->suspend_late(pci_dev, state);
suspend_report_result(drv->suspend_late, error);
if (error)
return error;
if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
&& pci_dev->current_state != PCI_UNKNOWN) {
WARN_ONCE(pci_dev->current_state != prev,
"PCI PM: Device state not saved by %pF\n",
drv->suspend_late);
return 0;
}
}
if (!pci_dev->state_saved)
pci_save_state(pci_dev);
pci_pm_set_unknown_state(pci_dev);
return 0;
}
static int pci_legacy_resume_early(struct device *dev)
{
struct pci_dev * pci_dev = to_pci_dev(dev);
struct pci_driver * drv = pci_dev->driver;
return drv && drv->resume_early ?
drv->resume_early(pci_dev) : 0;
}
static int pci_legacy_resume(struct device *dev)
{
struct pci_dev * pci_dev = to_pci_dev(dev);
struct pci_driver * drv = pci_dev->driver;
pci_fixup_device(pci_fixup_resume, pci_dev);
return drv && drv->resume ?
drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev);
}
/* Auxiliary functions used by the new power management framework */
PCI PM: make the PM core more careful with drivers using the new PM framework Currently, the PM core always attempts to manage devices with drivers that use the new PM framework. In particular, it attempts to disable the devices (which is unnecessary), to save their state (which may be undesirable if the driver has done that already) and to put them into low power states (again, this may be undesirable if the driver has already put the device into a low power state). That need not be the right thing to do, so make the core be more careful in this respect. Generally, there are the following categories of devices to consider: * bridge devices without drivers * non-bridge devices without drivers * bridge devices with drivers * non-bridge devices with drivers and each of them should be handled differently. For bridge devices without drivers the PCI PM core will save their state on suspend and restore it (early) during resume, after putting them into D0 if necessary. It will not attempt to do anything else to these devices. For non-bridge devices without drivers the PCI PM core will disable them and save their state on suspend. During resume, it will put them into D0, if necessary, restore their state (early) and reenable them. For bridge devices with drivers the PCI PM core will only save their state on suspend if the driver hasn't done that already. Still, the core will restore their state (early) during resume, after putting them into D0, if necessary. For non-bridge devices with drivers the PCI PM core will only save their state on suspend if the driver hasn't done that already. Also, if the state of the device hasn't been saved by the driver, the core will attempt to put the device into a low power state. During resume the core will restore the state of the device (early), after putting it into D0, if necessary. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2009-02-04 09:09:07 +08:00
static void pci_pm_default_resume(struct pci_dev *pci_dev)
{
pci_fixup_device(pci_fixup_resume, pci_dev);
PCI PM: make the PM core more careful with drivers using the new PM framework Currently, the PM core always attempts to manage devices with drivers that use the new PM framework. In particular, it attempts to disable the devices (which is unnecessary), to save their state (which may be undesirable if the driver has done that already) and to put them into low power states (again, this may be undesirable if the driver has already put the device into a low power state). That need not be the right thing to do, so make the core be more careful in this respect. Generally, there are the following categories of devices to consider: * bridge devices without drivers * non-bridge devices without drivers * bridge devices with drivers * non-bridge devices with drivers and each of them should be handled differently. For bridge devices without drivers the PCI PM core will save their state on suspend and restore it (early) during resume, after putting them into D0 if necessary. It will not attempt to do anything else to these devices. For non-bridge devices without drivers the PCI PM core will disable them and save their state on suspend. During resume, it will put them into D0, if necessary, restore their state (early) and reenable them. For bridge devices with drivers the PCI PM core will only save their state on suspend if the driver hasn't done that already. Still, the core will restore their state (early) during resume, after putting them into D0, if necessary. For non-bridge devices with drivers the PCI PM core will only save their state on suspend if the driver hasn't done that already. Also, if the state of the device hasn't been saved by the driver, the core will attempt to put the device into a low power state. During resume the core will restore the state of the device (early), after putting it into D0, if necessary. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2009-02-04 09:09:07 +08:00
if (!pci_is_bridge(pci_dev))
pci_enable_wake(pci_dev, PCI_D0, false);
}
PCI PM: make the PM core more careful with drivers using the new PM framework Currently, the PM core always attempts to manage devices with drivers that use the new PM framework. In particular, it attempts to disable the devices (which is unnecessary), to save their state (which may be undesirable if the driver has done that already) and to put them into low power states (again, this may be undesirable if the driver has already put the device into a low power state). That need not be the right thing to do, so make the core be more careful in this respect. Generally, there are the following categories of devices to consider: * bridge devices without drivers * non-bridge devices without drivers * bridge devices with drivers * non-bridge devices with drivers and each of them should be handled differently. For bridge devices without drivers the PCI PM core will save their state on suspend and restore it (early) during resume, after putting them into D0 if necessary. It will not attempt to do anything else to these devices. For non-bridge devices without drivers the PCI PM core will disable them and save their state on suspend. During resume, it will put them into D0, if necessary, restore their state (early) and reenable them. For bridge devices with drivers the PCI PM core will only save their state on suspend if the driver hasn't done that already. Still, the core will restore their state (early) during resume, after putting them into D0, if necessary. For non-bridge devices with drivers the PCI PM core will only save their state on suspend if the driver hasn't done that already. Also, if the state of the device hasn't been saved by the driver, the core will attempt to put the device into a low power state. During resume the core will restore the state of the device (early), after putting it into D0, if necessary. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2009-02-04 09:09:07 +08:00
static void pci_pm_default_suspend(struct pci_dev *pci_dev)
{
PCI PM: make the PM core more careful with drivers using the new PM framework Currently, the PM core always attempts to manage devices with drivers that use the new PM framework. In particular, it attempts to disable the devices (which is unnecessary), to save their state (which may be undesirable if the driver has done that already) and to put them into low power states (again, this may be undesirable if the driver has already put the device into a low power state). That need not be the right thing to do, so make the core be more careful in this respect. Generally, there are the following categories of devices to consider: * bridge devices without drivers * non-bridge devices without drivers * bridge devices with drivers * non-bridge devices with drivers and each of them should be handled differently. For bridge devices without drivers the PCI PM core will save their state on suspend and restore it (early) during resume, after putting them into D0 if necessary. It will not attempt to do anything else to these devices. For non-bridge devices without drivers the PCI PM core will disable them and save their state on suspend. During resume, it will put them into D0, if necessary, restore their state (early) and reenable them. For bridge devices with drivers the PCI PM core will only save their state on suspend if the driver hasn't done that already. Still, the core will restore their state (early) during resume, after putting them into D0, if necessary. For non-bridge devices with drivers the PCI PM core will only save their state on suspend if the driver hasn't done that already. Also, if the state of the device hasn't been saved by the driver, the core will attempt to put the device into a low power state. During resume the core will restore the state of the device (early), after putting it into D0, if necessary. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2009-02-04 09:09:07 +08:00
/* Disable non-bridge devices without PM support */
if (!pci_is_bridge(pci_dev))
pci_disable_enabled_device(pci_dev);
}
static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev)
{
struct pci_driver *drv = pci_dev->driver;
bool ret = drv && (drv->suspend || drv->suspend_late || drv->resume
|| drv->resume_early);
/*
* Legacy PM support is used by default, so warn if the new framework is
* supported as well. Drivers are supposed to support either the
* former, or the latter, but not both at the same time.
*/
WARN(ret && drv->driver.pm, "driver %s device %04x:%04x\n",
drv->name, pci_dev->vendor, pci_dev->device);
return ret;
}
/* New power management framework */
static int pci_pm_prepare(struct device *dev)
{
struct device_driver *drv = dev->driver;
int error = 0;
/*
* If a PCI device configured to wake up the system from sleep states
* has been suspended at run time and there's a resume request pending
* for it, this is equivalent to the device signaling wakeup, so the
* system suspend operation should be aborted.
*/
pm_runtime_get_noresume(dev);
if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
pm_wakeup_event(dev, 0);
if (pm_wakeup_pending()) {
pm_runtime_put_sync(dev);
return -EBUSY;
}
/*
* PCI devices suspended at run time need to be resumed at this
* point, because in general it is necessary to reconfigure them for
* system suspend. Namely, if the device is supposed to wake up the
* system from the sleep state, we may need to reconfigure it for this
* purpose. In turn, if the device is not supposed to wake up the
* system from the sleep state, we'll have to prevent it from signaling
* wake-up.
*/
pm_runtime_resume(dev);
if (drv && drv->pm && drv->pm->prepare)
error = drv->pm->prepare(dev);
return error;
}
static void pci_pm_complete(struct device *dev)
{
struct device_driver *drv = dev->driver;
if (drv && drv->pm && drv->pm->complete)
drv->pm->complete(dev);
pm_runtime_put_sync(dev);
}
#else /* !CONFIG_PM_SLEEP */
#define pci_pm_prepare NULL
#define pci_pm_complete NULL
#endif /* !CONFIG_PM_SLEEP */
#ifdef CONFIG_SUSPEND
static int pci_pm_suspend(struct device *dev)
{
struct pci_dev *pci_dev = to_pci_dev(dev);
const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
if (pci_has_legacy_pm_support(pci_dev))
return pci_legacy_suspend(dev, PMSG_SUSPEND);
PCI PM: make the PM core more careful with drivers using the new PM framework Currently, the PM core always attempts to manage devices with drivers that use the new PM framework. In particular, it attempts to disable the devices (which is unnecessary), to save their state (which may be undesirable if the driver has done that already) and to put them into low power states (again, this may be undesirable if the driver has already put the device into a low power state). That need not be the right thing to do, so make the core be more careful in this respect. Generally, there are the following categories of devices to consider: * bridge devices without drivers * non-bridge devices without drivers * bridge devices with drivers * non-bridge devices with drivers and each of them should be handled differently. For bridge devices without drivers the PCI PM core will save their state on suspend and restore it (early) during resume, after putting them into D0 if necessary. It will not attempt to do anything else to these devices. For non-bridge devices without drivers the PCI PM core will disable them and save their state on suspend. During resume, it will put them into D0, if necessary, restore their state (early) and reenable them. For bridge devices with drivers the PCI PM core will only save their state on suspend if the driver hasn't done that already. Still, the core will restore their state (early) during resume, after putting them into D0, if necessary. For non-bridge devices with drivers the PCI PM core will only save their state on suspend if the driver hasn't done that already. Also, if the state of the device hasn't been saved by the driver, the core will attempt to put the device into a low power state. During resume the core will restore the state of the device (early), after putting it into D0, if necessary. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2009-02-04 09:09:07 +08:00
if (!pm) {
pci_pm_default_suspend(pci_dev);
goto Fixup;
}
if (pm->suspend) {
pci_power_t prev = pci_dev->current_state;
int error;
error = pm->suspend(dev);
suspend_report_result(pm->suspend, error);
PCI PM: make the PM core more careful with drivers using the new PM framework Currently, the PM core always attempts to manage devices with drivers that use the new PM framework. In particular, it attempts to disable the devices (which is unnecessary), to save their state (which may be undesirable if the driver has done that already) and to put them into low power states (again, this may be undesirable if the driver has already put the device into a low power state). That need not be the right thing to do, so make the core be more careful in this respect. Generally, there are the following categories of devices to consider: * bridge devices without drivers * non-bridge devices without drivers * bridge devices with drivers * non-bridge devices with drivers and each of them should be handled differently. For bridge devices without drivers the PCI PM core will save their state on suspend and restore it (early) during resume, after putting them into D0 if necessary. It will not attempt to do anything else to these devices. For non-bridge devices without drivers the PCI PM core will disable them and save their state on suspend. During resume, it will put them into D0, if necessary, restore their state (early) and reenable them. For bridge devices with drivers the PCI PM core will only save their state on suspend if the driver hasn't done that already. Still, the core will restore their state (early) during resume, after putting them into D0, if necessary. For non-bridge devices with drivers the PCI PM core will only save their state on suspend if the driver hasn't done that already. Also, if the state of the device hasn't been saved by the driver, the core will attempt to put the device into a low power state. During resume the core will restore the state of the device (early), after putting it into D0, if necessary. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2009-02-04 09:09:07 +08:00
if (error)
return error;
if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
PCI PM: make the PM core more careful with drivers using the new PM framework Currently, the PM core always attempts to manage devices with drivers that use the new PM framework. In particular, it attempts to disable the devices (which is unnecessary), to save their state (which may be undesirable if the driver has done that already) and to put them into low power states (again, this may be undesirable if the driver has already put the device into a low power state). That need not be the right thing to do, so make the core be more careful in this respect. Generally, there are the following categories of devices to consider: * bridge devices without drivers * non-bridge devices without drivers * bridge devices with drivers * non-bridge devices with drivers and each of them should be handled differently. For bridge devices without drivers the PCI PM core will save their state on suspend and restore it (early) during resume, after putting them into D0 if necessary. It will not attempt to do anything else to these devices. For non-bridge devices without drivers the PCI PM core will disable them and save their state on suspend. During resume, it will put them into D0, if necessary, restore their state (early) and reenable them. For bridge devices with drivers the PCI PM core will only save their state on suspend if the driver hasn't done that already. Still, the core will restore their state (early) during resume, after putting them into D0, if necessary. For non-bridge devices with drivers the PCI PM core will only save their state on suspend if the driver hasn't done that already. Also, if the state of the device hasn't been saved by the driver, the core will attempt to put the device into a low power state. During resume the core will restore the state of the device (early), after putting it into D0, if necessary. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2009-02-04 09:09:07 +08:00
&& pci_dev->current_state != PCI_UNKNOWN) {
WARN_ONCE(pci_dev->current_state != prev,
"PCI PM: State of device not saved by %pF\n",
pm->suspend);
}
}
PCI PM: make the PM core more careful with drivers using the new PM framework Currently, the PM core always attempts to manage devices with drivers that use the new PM framework. In particular, it attempts to disable the devices (which is unnecessary), to save their state (which may be undesirable if the driver has done that already) and to put them into low power states (again, this may be undesirable if the driver has already put the device into a low power state). That need not be the right thing to do, so make the core be more careful in this respect. Generally, there are the following categories of devices to consider: * bridge devices without drivers * non-bridge devices without drivers * bridge devices with drivers * non-bridge devices with drivers and each of them should be handled differently. For bridge devices without drivers the PCI PM core will save their state on suspend and restore it (early) during resume, after putting them into D0 if necessary. It will not attempt to do anything else to these devices. For non-bridge devices without drivers the PCI PM core will disable them and save their state on suspend. During resume, it will put them into D0, if necessary, restore their state (early) and reenable them. For bridge devices with drivers the PCI PM core will only save their state on suspend if the driver hasn't done that already. Still, the core will restore their state (early) during resume, after putting them into D0, if necessary. For non-bridge devices with drivers the PCI PM core will only save their state on suspend if the driver hasn't done that already. Also, if the state of the device hasn't been saved by the driver, the core will attempt to put the device into a low power state. During resume the core will restore the state of the device (early), after putting it into D0, if necessary. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2009-02-04 09:09:07 +08:00
Fixup:
pci_fixup_device(pci_fixup_suspend, pci_dev);
return 0;
}
static int pci_pm_suspend_noirq(struct device *dev)
{
struct pci_dev *pci_dev = to_pci_dev(dev);
const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
if (pci_has_legacy_pm_support(pci_dev))
return pci_legacy_suspend_late(dev, PMSG_SUSPEND);
if (!pm) {
pci_save_state(pci_dev);
return 0;
}
if (pm->suspend_noirq) {
pci_power_t prev = pci_dev->current_state;
int error;
error = pm->suspend_noirq(dev);
suspend_report_result(pm->suspend_noirq, error);
if (error)
return error;
if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
&& pci_dev->current_state != PCI_UNKNOWN) {
WARN_ONCE(pci_dev->current_state != prev,
"PCI PM: State of device not saved by %pF\n",
pm->suspend_noirq);
return 0;
}
}
if (!pci_dev->state_saved) {
pci_save_state(pci_dev);
if (!pci_is_bridge(pci_dev))
pci_prepare_to_sleep(pci_dev);
}
pci_pm_set_unknown_state(pci_dev);
return 0;
}
static int pci_pm_resume_noirq(struct device *dev)
{
struct pci_dev *pci_dev = to_pci_dev(dev);
struct device_driver *drv = dev->driver;
int error = 0;
pci_pm_default_resume_early(pci_dev);
if (pci_has_legacy_pm_support(pci_dev))
return pci_legacy_resume_early(dev);
if (drv && drv->pm && drv->pm->resume_noirq)
error = drv->pm->resume_noirq(dev);
return error;
}
static int pci_pm_resume(struct device *dev)
{
struct pci_dev *pci_dev = to_pci_dev(dev);
const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
int error = 0;
/*
* This is necessary for the suspend error path in which resume is
* called without restoring the standard config registers of the device.
*/
if (pci_dev->state_saved)
pci_restore_standard_config(pci_dev);
if (pci_has_legacy_pm_support(pci_dev))
return pci_legacy_resume(dev);
PCI PM: make the PM core more careful with drivers using the new PM framework Currently, the PM core always attempts to manage devices with drivers that use the new PM framework. In particular, it attempts to disable the devices (which is unnecessary), to save their state (which may be undesirable if the driver has done that already) and to put them into low power states (again, this may be undesirable if the driver has already put the device into a low power state). That need not be the right thing to do, so make the core be more careful in this respect. Generally, there are the following categories of devices to consider: * bridge devices without drivers * non-bridge devices without drivers * bridge devices with drivers * non-bridge devices with drivers and each of them should be handled differently. For bridge devices without drivers the PCI PM core will save their state on suspend and restore it (early) during resume, after putting them into D0 if necessary. It will not attempt to do anything else to these devices. For non-bridge devices without drivers the PCI PM core will disable them and save their state on suspend. During resume, it will put them into D0, if necessary, restore their state (early) and reenable them. For bridge devices with drivers the PCI PM core will only save their state on suspend if the driver hasn't done that already. Still, the core will restore their state (early) during resume, after putting them into D0, if necessary. For non-bridge devices with drivers the PCI PM core will only save their state on suspend if the driver hasn't done that already. Also, if the state of the device hasn't been saved by the driver, the core will attempt to put the device into a low power state. During resume the core will restore the state of the device (early), after putting it into D0, if necessary. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2009-02-04 09:09:07 +08:00
pci_pm_default_resume(pci_dev);
PCI PM: make the PM core more careful with drivers using the new PM framework Currently, the PM core always attempts to manage devices with drivers that use the new PM framework. In particular, it attempts to disable the devices (which is unnecessary), to save their state (which may be undesirable if the driver has done that already) and to put them into low power states (again, this may be undesirable if the driver has already put the device into a low power state). That need not be the right thing to do, so make the core be more careful in this respect. Generally, there are the following categories of devices to consider: * bridge devices without drivers * non-bridge devices without drivers * bridge devices with drivers * non-bridge devices with drivers and each of them should be handled differently. For bridge devices without drivers the PCI PM core will save their state on suspend and restore it (early) during resume, after putting them into D0 if necessary. It will not attempt to do anything else to these devices. For non-bridge devices without drivers the PCI PM core will disable them and save their state on suspend. During resume, it will put them into D0, if necessary, restore their state (early) and reenable them. For bridge devices with drivers the PCI PM core will only save their state on suspend if the driver hasn't done that already. Still, the core will restore their state (early) during resume, after putting them into D0, if necessary. For non-bridge devices with drivers the PCI PM core will only save their state on suspend if the driver hasn't done that already. Also, if the state of the device hasn't been saved by the driver, the core will attempt to put the device into a low power state. During resume the core will restore the state of the device (early), after putting it into D0, if necessary. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2009-02-04 09:09:07 +08:00
if (pm) {
if (pm->resume)
error = pm->resume(dev);
} else {
pci_pm_reenable_device(pci_dev);
}
return error;
}
#else /* !CONFIG_SUSPEND */
#define pci_pm_suspend NULL
#define pci_pm_suspend_noirq NULL
#define pci_pm_resume NULL
#define pci_pm_resume_noirq NULL
#endif /* !CONFIG_SUSPEND */
#ifdef CONFIG_HIBERNATE_CALLBACKS
static int pci_pm_freeze(struct device *dev)
{
struct pci_dev *pci_dev = to_pci_dev(dev);
const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
if (pci_has_legacy_pm_support(pci_dev))
return pci_legacy_suspend(dev, PMSG_FREEZE);
PCI PM: make the PM core more careful with drivers using the new PM framework Currently, the PM core always attempts to manage devices with drivers that use the new PM framework. In particular, it attempts to disable the devices (which is unnecessary), to save their state (which may be undesirable if the driver has done that already) and to put them into low power states (again, this may be undesirable if the driver has already put the device into a low power state). That need not be the right thing to do, so make the core be more careful in this respect. Generally, there are the following categories of devices to consider: * bridge devices without drivers * non-bridge devices without drivers * bridge devices with drivers * non-bridge devices with drivers and each of them should be handled differently. For bridge devices without drivers the PCI PM core will save their state on suspend and restore it (early) during resume, after putting them into D0 if necessary. It will not attempt to do anything else to these devices. For non-bridge devices without drivers the PCI PM core will disable them and save their state on suspend. During resume, it will put them into D0, if necessary, restore their state (early) and reenable them. For bridge devices with drivers the PCI PM core will only save their state on suspend if the driver hasn't done that already. Still, the core will restore their state (early) during resume, after putting them into D0, if necessary. For non-bridge devices with drivers the PCI PM core will only save their state on suspend if the driver hasn't done that already. Also, if the state of the device hasn't been saved by the driver, the core will attempt to put the device into a low power state. During resume the core will restore the state of the device (early), after putting it into D0, if necessary. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2009-02-04 09:09:07 +08:00
if (!pm) {
pci_pm_default_suspend(pci_dev);
return 0;
}
PCI PM: make the PM core more careful with drivers using the new PM framework Currently, the PM core always attempts to manage devices with drivers that use the new PM framework. In particular, it attempts to disable the devices (which is unnecessary), to save their state (which may be undesirable if the driver has done that already) and to put them into low power states (again, this may be undesirable if the driver has already put the device into a low power state). That need not be the right thing to do, so make the core be more careful in this respect. Generally, there are the following categories of devices to consider: * bridge devices without drivers * non-bridge devices without drivers * bridge devices with drivers * non-bridge devices with drivers and each of them should be handled differently. For bridge devices without drivers the PCI PM core will save their state on suspend and restore it (early) during resume, after putting them into D0 if necessary. It will not attempt to do anything else to these devices. For non-bridge devices without drivers the PCI PM core will disable them and save their state on suspend. During resume, it will put them into D0, if necessary, restore their state (early) and reenable them. For bridge devices with drivers the PCI PM core will only save their state on suspend if the driver hasn't done that already. Still, the core will restore their state (early) during resume, after putting them into D0, if necessary. For non-bridge devices with drivers the PCI PM core will only save their state on suspend if the driver hasn't done that already. Also, if the state of the device hasn't been saved by the driver, the core will attempt to put the device into a low power state. During resume the core will restore the state of the device (early), after putting it into D0, if necessary. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2009-02-04 09:09:07 +08:00
if (pm->freeze) {
int error;
error = pm->freeze(dev);
suspend_report_result(pm->freeze, error);
if (error)
return error;
}
return 0;
}
static int pci_pm_freeze_noirq(struct device *dev)
{
struct pci_dev *pci_dev = to_pci_dev(dev);
struct device_driver *drv = dev->driver;
if (pci_has_legacy_pm_support(pci_dev))
return pci_legacy_suspend_late(dev, PMSG_FREEZE);
if (drv && drv->pm && drv->pm->freeze_noirq) {
int error;
error = drv->pm->freeze_noirq(dev);
suspend_report_result(drv->pm->freeze_noirq, error);
if (error)
return error;
}
if (!pci_dev->state_saved)
pci_save_state(pci_dev);
pci_pm_set_unknown_state(pci_dev);
return 0;
}
static int pci_pm_thaw_noirq(struct device *dev)
{
struct pci_dev *pci_dev = to_pci_dev(dev);
struct device_driver *drv = dev->driver;
int error = 0;
if (pci_has_legacy_pm_support(pci_dev))
return pci_legacy_resume_early(dev);
pci_update_current_state(pci_dev, PCI_D0);
if (drv && drv->pm && drv->pm->thaw_noirq)
error = drv->pm->thaw_noirq(dev);
return error;
}
static int pci_pm_thaw(struct device *dev)
{
struct pci_dev *pci_dev = to_pci_dev(dev);
const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
int error = 0;
if (pci_has_legacy_pm_support(pci_dev))
return pci_legacy_resume(dev);
PCI PM: make the PM core more careful with drivers using the new PM framework Currently, the PM core always attempts to manage devices with drivers that use the new PM framework. In particular, it attempts to disable the devices (which is unnecessary), to save their state (which may be undesirable if the driver has done that already) and to put them into low power states (again, this may be undesirable if the driver has already put the device into a low power state). That need not be the right thing to do, so make the core be more careful in this respect. Generally, there are the following categories of devices to consider: * bridge devices without drivers * non-bridge devices without drivers * bridge devices with drivers * non-bridge devices with drivers and each of them should be handled differently. For bridge devices without drivers the PCI PM core will save their state on suspend and restore it (early) during resume, after putting them into D0 if necessary. It will not attempt to do anything else to these devices. For non-bridge devices without drivers the PCI PM core will disable them and save their state on suspend. During resume, it will put them into D0, if necessary, restore their state (early) and reenable them. For bridge devices with drivers the PCI PM core will only save their state on suspend if the driver hasn't done that already. Still, the core will restore their state (early) during resume, after putting them into D0, if necessary. For non-bridge devices with drivers the PCI PM core will only save their state on suspend if the driver hasn't done that already. Also, if the state of the device hasn't been saved by the driver, the core will attempt to put the device into a low power state. During resume the core will restore the state of the device (early), after putting it into D0, if necessary. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2009-02-04 09:09:07 +08:00
if (pm) {
if (pm->thaw)
error = pm->thaw(dev);
} else {
pci_pm_reenable_device(pci_dev);
}
pci_dev->state_saved = false;
return error;
}
static int pci_pm_poweroff(struct device *dev)
{
struct pci_dev *pci_dev = to_pci_dev(dev);
const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
if (pci_has_legacy_pm_support(pci_dev))
return pci_legacy_suspend(dev, PMSG_HIBERNATE);
PCI PM: make the PM core more careful with drivers using the new PM framework Currently, the PM core always attempts to manage devices with drivers that use the new PM framework. In particular, it attempts to disable the devices (which is unnecessary), to save their state (which may be undesirable if the driver has done that already) and to put them into low power states (again, this may be undesirable if the driver has already put the device into a low power state). That need not be the right thing to do, so make the core be more careful in this respect. Generally, there are the following categories of devices to consider: * bridge devices without drivers * non-bridge devices without drivers * bridge devices with drivers * non-bridge devices with drivers and each of them should be handled differently. For bridge devices without drivers the PCI PM core will save their state on suspend and restore it (early) during resume, after putting them into D0 if necessary. It will not attempt to do anything else to these devices. For non-bridge devices without drivers the PCI PM core will disable them and save their state on suspend. During resume, it will put them into D0, if necessary, restore their state (early) and reenable them. For bridge devices with drivers the PCI PM core will only save their state on suspend if the driver hasn't done that already. Still, the core will restore their state (early) during resume, after putting them into D0, if necessary. For non-bridge devices with drivers the PCI PM core will only save their state on suspend if the driver hasn't done that already. Also, if the state of the device hasn't been saved by the driver, the core will attempt to put the device into a low power state. During resume the core will restore the state of the device (early), after putting it into D0, if necessary. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2009-02-04 09:09:07 +08:00
if (!pm) {
pci_pm_default_suspend(pci_dev);
goto Fixup;
}
if (pm->poweroff) {
int error;
error = pm->poweroff(dev);
suspend_report_result(pm->poweroff, error);
if (error)
return error;
}
PCI PM: make the PM core more careful with drivers using the new PM framework Currently, the PM core always attempts to manage devices with drivers that use the new PM framework. In particular, it attempts to disable the devices (which is unnecessary), to save their state (which may be undesirable if the driver has done that already) and to put them into low power states (again, this may be undesirable if the driver has already put the device into a low power state). That need not be the right thing to do, so make the core be more careful in this respect. Generally, there are the following categories of devices to consider: * bridge devices without drivers * non-bridge devices without drivers * bridge devices with drivers * non-bridge devices with drivers and each of them should be handled differently. For bridge devices without drivers the PCI PM core will save their state on suspend and restore it (early) during resume, after putting them into D0 if necessary. It will not attempt to do anything else to these devices. For non-bridge devices without drivers the PCI PM core will disable them and save their state on suspend. During resume, it will put them into D0, if necessary, restore their state (early) and reenable them. For bridge devices with drivers the PCI PM core will only save their state on suspend if the driver hasn't done that already. Still, the core will restore their state (early) during resume, after putting them into D0, if necessary. For non-bridge devices with drivers the PCI PM core will only save their state on suspend if the driver hasn't done that already. Also, if the state of the device hasn't been saved by the driver, the core will attempt to put the device into a low power state. During resume the core will restore the state of the device (early), after putting it into D0, if necessary. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2009-02-04 09:09:07 +08:00
Fixup:
pci_fixup_device(pci_fixup_suspend, pci_dev);
return 0;
}
static int pci_pm_poweroff_noirq(struct device *dev)
{
struct pci_dev *pci_dev = to_pci_dev(dev);
struct device_driver *drv = dev->driver;
if (pci_has_legacy_pm_support(to_pci_dev(dev)))
return pci_legacy_suspend_late(dev, PMSG_HIBERNATE);
if (!drv || !drv->pm)
return 0;
if (drv->pm->poweroff_noirq) {
int error;
error = drv->pm->poweroff_noirq(dev);
suspend_report_result(drv->pm->poweroff_noirq, error);
if (error)
return error;
}
if (!pci_dev->state_saved && !pci_is_bridge(pci_dev))
pci_prepare_to_sleep(pci_dev);
return 0;
}
static int pci_pm_restore_noirq(struct device *dev)
{
struct pci_dev *pci_dev = to_pci_dev(dev);
struct device_driver *drv = dev->driver;
int error = 0;
pci_pm_default_resume_early(pci_dev);
if (pci_has_legacy_pm_support(pci_dev))
return pci_legacy_resume_early(dev);
if (drv && drv->pm && drv->pm->restore_noirq)
error = drv->pm->restore_noirq(dev);
return error;
}
static int pci_pm_restore(struct device *dev)
{
struct pci_dev *pci_dev = to_pci_dev(dev);
const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
int error = 0;
/*
* This is necessary for the hibernation error path in which restore is
* called without restoring the standard config registers of the device.
*/
if (pci_dev->state_saved)
pci_restore_standard_config(pci_dev);
if (pci_has_legacy_pm_support(pci_dev))
return pci_legacy_resume(dev);
PCI PM: make the PM core more careful with drivers using the new PM framework Currently, the PM core always attempts to manage devices with drivers that use the new PM framework. In particular, it attempts to disable the devices (which is unnecessary), to save their state (which may be undesirable if the driver has done that already) and to put them into low power states (again, this may be undesirable if the driver has already put the device into a low power state). That need not be the right thing to do, so make the core be more careful in this respect. Generally, there are the following categories of devices to consider: * bridge devices without drivers * non-bridge devices without drivers * bridge devices with drivers * non-bridge devices with drivers and each of them should be handled differently. For bridge devices without drivers the PCI PM core will save their state on suspend and restore it (early) during resume, after putting them into D0 if necessary. It will not attempt to do anything else to these devices. For non-bridge devices without drivers the PCI PM core will disable them and save their state on suspend. During resume, it will put them into D0, if necessary, restore their state (early) and reenable them. For bridge devices with drivers the PCI PM core will only save their state on suspend if the driver hasn't done that already. Still, the core will restore their state (early) during resume, after putting them into D0, if necessary. For non-bridge devices with drivers the PCI PM core will only save their state on suspend if the driver hasn't done that already. Also, if the state of the device hasn't been saved by the driver, the core will attempt to put the device into a low power state. During resume the core will restore the state of the device (early), after putting it into D0, if necessary. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2009-02-04 09:09:07 +08:00
pci_pm_default_resume(pci_dev);
PCI PM: make the PM core more careful with drivers using the new PM framework Currently, the PM core always attempts to manage devices with drivers that use the new PM framework. In particular, it attempts to disable the devices (which is unnecessary), to save their state (which may be undesirable if the driver has done that already) and to put them into low power states (again, this may be undesirable if the driver has already put the device into a low power state). That need not be the right thing to do, so make the core be more careful in this respect. Generally, there are the following categories of devices to consider: * bridge devices without drivers * non-bridge devices without drivers * bridge devices with drivers * non-bridge devices with drivers and each of them should be handled differently. For bridge devices without drivers the PCI PM core will save their state on suspend and restore it (early) during resume, after putting them into D0 if necessary. It will not attempt to do anything else to these devices. For non-bridge devices without drivers the PCI PM core will disable them and save their state on suspend. During resume, it will put them into D0, if necessary, restore their state (early) and reenable them. For bridge devices with drivers the PCI PM core will only save their state on suspend if the driver hasn't done that already. Still, the core will restore their state (early) during resume, after putting them into D0, if necessary. For non-bridge devices with drivers the PCI PM core will only save their state on suspend if the driver hasn't done that already. Also, if the state of the device hasn't been saved by the driver, the core will attempt to put the device into a low power state. During resume the core will restore the state of the device (early), after putting it into D0, if necessary. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2009-02-04 09:09:07 +08:00
if (pm) {
if (pm->restore)
error = pm->restore(dev);
} else {
pci_pm_reenable_device(pci_dev);
}
return error;
}
#else /* !CONFIG_HIBERNATE_CALLBACKS */
#define pci_pm_freeze NULL
#define pci_pm_freeze_noirq NULL
#define pci_pm_thaw NULL
#define pci_pm_thaw_noirq NULL
#define pci_pm_poweroff NULL
#define pci_pm_poweroff_noirq NULL
#define pci_pm_restore NULL
#define pci_pm_restore_noirq NULL
#endif /* !CONFIG_HIBERNATE_CALLBACKS */
#ifdef CONFIG_PM_RUNTIME
static int pci_pm_runtime_suspend(struct device *dev)
{
struct pci_dev *pci_dev = to_pci_dev(dev);
const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
pci_power_t prev = pci_dev->current_state;
int error;
if (!pm || !pm->runtime_suspend)
return -ENOSYS;
PCI/PM: add PCIe runtime D3cold support This patch adds runtime D3cold support and corresponding ACPI platform support. This patch only enables runtime D3cold support; it does not enable D3cold support during system suspend/hibernate. D3cold is the deepest power saving state for a PCIe device, where its main power is removed. While it is in D3cold, you can't access the device at all, not even its configuration space (which is still accessible in D3hot). Therefore the PCI PM registers can not be used to transition into/out of the D3cold state; that must be done by platform logic such as ACPI _PR3. To support wakeup from D3cold, a system may provide auxiliary power, which allows a device to request wakeup using a Beacon or the sideband WAKE# signal. WAKE# is usually connected to platform logic such as ACPI GPE. This is quite different from other power saving states, where devices request wakeup via a PME message on the PCIe link. Some devices, such as those in plug-in slots, have no direct platform logic. For example, there is usually no ACPI _PR3 for them. D3cold support for these devices can be done via the PCIe Downstream Port leading to the device. When the PCIe port is powered on/off, the device is powered on/off too. Wakeup events from the device will be notified to the corresponding PCIe port. For more information about PCIe D3cold and corresponding ACPI support, please refer to: - PCI Express Base Specification Revision 2.0 - Advanced Configuration and Power Interface Specification Revision 5.0 [bhelgaas: changelog] Reviewed-by: Rafael J. Wysocki <rjw@sisk.pl> Originally-by: Zheng Yan <zheng.z.yan@intel.com> Signed-off-by: Huang Ying <ying.huang@intel.com> Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
2012-06-23 10:23:51 +08:00
pci_dev->no_d3cold = false;
error = pm->runtime_suspend(dev);
suspend_report_result(pm->runtime_suspend, error);
if (error)
return error;
PCI/PM: add PCIe runtime D3cold support This patch adds runtime D3cold support and corresponding ACPI platform support. This patch only enables runtime D3cold support; it does not enable D3cold support during system suspend/hibernate. D3cold is the deepest power saving state for a PCIe device, where its main power is removed. While it is in D3cold, you can't access the device at all, not even its configuration space (which is still accessible in D3hot). Therefore the PCI PM registers can not be used to transition into/out of the D3cold state; that must be done by platform logic such as ACPI _PR3. To support wakeup from D3cold, a system may provide auxiliary power, which allows a device to request wakeup using a Beacon or the sideband WAKE# signal. WAKE# is usually connected to platform logic such as ACPI GPE. This is quite different from other power saving states, where devices request wakeup via a PME message on the PCIe link. Some devices, such as those in plug-in slots, have no direct platform logic. For example, there is usually no ACPI _PR3 for them. D3cold support for these devices can be done via the PCIe Downstream Port leading to the device. When the PCIe port is powered on/off, the device is powered on/off too. Wakeup events from the device will be notified to the corresponding PCIe port. For more information about PCIe D3cold and corresponding ACPI support, please refer to: - PCI Express Base Specification Revision 2.0 - Advanced Configuration and Power Interface Specification Revision 5.0 [bhelgaas: changelog] Reviewed-by: Rafael J. Wysocki <rjw@sisk.pl> Originally-by: Zheng Yan <zheng.z.yan@intel.com> Signed-off-by: Huang Ying <ying.huang@intel.com> Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
2012-06-23 10:23:51 +08:00
if (!pci_dev->d3cold_allowed)
pci_dev->no_d3cold = true;
pci_fixup_device(pci_fixup_suspend, pci_dev);
if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
&& pci_dev->current_state != PCI_UNKNOWN) {
WARN_ONCE(pci_dev->current_state != prev,
"PCI PM: State of device not saved by %pF\n",
pm->runtime_suspend);
return 0;
}
if (!pci_dev->state_saved)
pci_save_state(pci_dev);
pci_finish_runtime_suspend(pci_dev);
return 0;
}
static int pci_pm_runtime_resume(struct device *dev)
{
PCI/PM: add PCIe runtime D3cold support This patch adds runtime D3cold support and corresponding ACPI platform support. This patch only enables runtime D3cold support; it does not enable D3cold support during system suspend/hibernate. D3cold is the deepest power saving state for a PCIe device, where its main power is removed. While it is in D3cold, you can't access the device at all, not even its configuration space (which is still accessible in D3hot). Therefore the PCI PM registers can not be used to transition into/out of the D3cold state; that must be done by platform logic such as ACPI _PR3. To support wakeup from D3cold, a system may provide auxiliary power, which allows a device to request wakeup using a Beacon or the sideband WAKE# signal. WAKE# is usually connected to platform logic such as ACPI GPE. This is quite different from other power saving states, where devices request wakeup via a PME message on the PCIe link. Some devices, such as those in plug-in slots, have no direct platform logic. For example, there is usually no ACPI _PR3 for them. D3cold support for these devices can be done via the PCIe Downstream Port leading to the device. When the PCIe port is powered on/off, the device is powered on/off too. Wakeup events from the device will be notified to the corresponding PCIe port. For more information about PCIe D3cold and corresponding ACPI support, please refer to: - PCI Express Base Specification Revision 2.0 - Advanced Configuration and Power Interface Specification Revision 5.0 [bhelgaas: changelog] Reviewed-by: Rafael J. Wysocki <rjw@sisk.pl> Originally-by: Zheng Yan <zheng.z.yan@intel.com> Signed-off-by: Huang Ying <ying.huang@intel.com> Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
2012-06-23 10:23:51 +08:00
int rc;
struct pci_dev *pci_dev = to_pci_dev(dev);
const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
if (!pm || !pm->runtime_resume)
return -ENOSYS;
pci_pm_default_resume_early(pci_dev);
__pci_enable_wake(pci_dev, PCI_D0, true, false);
pci_fixup_device(pci_fixup_resume, pci_dev);
PCI/PM: add PCIe runtime D3cold support This patch adds runtime D3cold support and corresponding ACPI platform support. This patch only enables runtime D3cold support; it does not enable D3cold support during system suspend/hibernate. D3cold is the deepest power saving state for a PCIe device, where its main power is removed. While it is in D3cold, you can't access the device at all, not even its configuration space (which is still accessible in D3hot). Therefore the PCI PM registers can not be used to transition into/out of the D3cold state; that must be done by platform logic such as ACPI _PR3. To support wakeup from D3cold, a system may provide auxiliary power, which allows a device to request wakeup using a Beacon or the sideband WAKE# signal. WAKE# is usually connected to platform logic such as ACPI GPE. This is quite different from other power saving states, where devices request wakeup via a PME message on the PCIe link. Some devices, such as those in plug-in slots, have no direct platform logic. For example, there is usually no ACPI _PR3 for them. D3cold support for these devices can be done via the PCIe Downstream Port leading to the device. When the PCIe port is powered on/off, the device is powered on/off too. Wakeup events from the device will be notified to the corresponding PCIe port. For more information about PCIe D3cold and corresponding ACPI support, please refer to: - PCI Express Base Specification Revision 2.0 - Advanced Configuration and Power Interface Specification Revision 5.0 [bhelgaas: changelog] Reviewed-by: Rafael J. Wysocki <rjw@sisk.pl> Originally-by: Zheng Yan <zheng.z.yan@intel.com> Signed-off-by: Huang Ying <ying.huang@intel.com> Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
2012-06-23 10:23:51 +08:00
rc = pm->runtime_resume(dev);
pci_dev->runtime_d3cold = false;
return rc;
}
static int pci_pm_runtime_idle(struct device *dev)
{
const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
if (!pm)
return -ENOSYS;
if (pm->runtime_idle) {
int ret = pm->runtime_idle(dev);
if (ret)
return ret;
}
pm_runtime_suspend(dev);
return 0;
}
#else /* !CONFIG_PM_RUNTIME */
#define pci_pm_runtime_suspend NULL
#define pci_pm_runtime_resume NULL
#define pci_pm_runtime_idle NULL
#endif /* !CONFIG_PM_RUNTIME */
#ifdef CONFIG_PM
const struct dev_pm_ops pci_dev_pm_ops = {
.prepare = pci_pm_prepare,
.complete = pci_pm_complete,
.suspend = pci_pm_suspend,
.resume = pci_pm_resume,
.freeze = pci_pm_freeze,
.thaw = pci_pm_thaw,
.poweroff = pci_pm_poweroff,
.restore = pci_pm_restore,
.suspend_noirq = pci_pm_suspend_noirq,
.resume_noirq = pci_pm_resume_noirq,
.freeze_noirq = pci_pm_freeze_noirq,
.thaw_noirq = pci_pm_thaw_noirq,
.poweroff_noirq = pci_pm_poweroff_noirq,
.restore_noirq = pci_pm_restore_noirq,
.runtime_suspend = pci_pm_runtime_suspend,
.runtime_resume = pci_pm_runtime_resume,
.runtime_idle = pci_pm_runtime_idle,
};
#define PCI_PM_OPS_PTR (&pci_dev_pm_ops)
#else /* !COMFIG_PM_OPS */
#define PCI_PM_OPS_PTR NULL
#endif /* !COMFIG_PM_OPS */
/**
* __pci_register_driver - register a new pci driver
* @drv: the driver structure to register
* @owner: owner module of drv
* @mod_name: module name string
*
* Adds the driver structure to the list of registered drivers.
* Returns a negative value on error, otherwise 0.
* If no error occurred, the driver remains registered even if
* no device was claimed during registration.
*/
int __pci_register_driver(struct pci_driver *drv, struct module *owner,
const char *mod_name)
{
int error;
/* initialize common driver fields */
drv->driver.name = drv->name;
drv->driver.bus = &pci_bus_type;
drv->driver.owner = owner;
drv->driver.mod_name = mod_name;
spin_lock_init(&drv->dynids.lock);
INIT_LIST_HEAD(&drv->dynids.list);
/* register with core */
error = driver_register(&drv->driver);
if (error)
goto out;
error = pci_create_newid_files(drv);
if (error)
goto out_newid;
out:
return error;
out_newid:
driver_unregister(&drv->driver);
goto out;
}
/**
* pci_unregister_driver - unregister a pci driver
* @drv: the driver structure to unregister
*
* Deletes the driver structure from the list of registered PCI drivers,
* gives it a chance to clean up by calling its remove() function for
* each device it was responsible for, and marks those devices as
* driverless.
*/
void
pci_unregister_driver(struct pci_driver *drv)
{
pci_remove_newid_files(drv);
driver_unregister(&drv->driver);
pci_free_dynids(drv);
}
static struct pci_driver pci_compat_driver = {
.name = "compat"
};
/**
* pci_dev_driver - get the pci_driver of a device
* @dev: the device to query
*
* Returns the appropriate pci_driver structure or %NULL if there is no
* registered driver for the device.
*/
struct pci_driver *
pci_dev_driver(const struct pci_dev *dev)
{
if (dev->driver)
return dev->driver;
else {
int i;
for(i=0; i<=PCI_ROM_RESOURCE; i++)
if (dev->resource[i].flags & IORESOURCE_BUSY)
return &pci_compat_driver;
}
return NULL;
}
/**
* pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure
* @dev: the PCI device structure to match against
* @drv: the device driver to search for matching PCI device id structures
*
* Used by a driver to check whether a PCI device present in the
* system is in its list of supported devices. Returns the matching
* pci_device_id structure or %NULL if there is no match.
*/
static int pci_bus_match(struct device *dev, struct device_driver *drv)
{
struct pci_dev *pci_dev = to_pci_dev(dev);
struct pci_driver *pci_drv = to_pci_driver(drv);
const struct pci_device_id *found_id;
found_id = pci_match_device(pci_drv, pci_dev);
if (found_id)
return 1;
return 0;
}
/**
* pci_dev_get - increments the reference count of the pci device structure
* @dev: the device being referenced
*
* Each live reference to a device should be refcounted.
*
* Drivers for PCI devices should normally record such references in
* their probe() methods, when they bind to a device, and release
* them by calling pci_dev_put(), in their disconnect() methods.
*
* A pointer to the device with the incremented reference counter is returned.
*/
struct pci_dev *pci_dev_get(struct pci_dev *dev)
{
if (dev)
get_device(&dev->dev);
return dev;
}
/**
* pci_dev_put - release a use of the pci device structure
* @dev: device that's been disconnected
*
* Must be called when a user of a device is finished with it. When the last
* user of the device calls this function, the memory of the device is freed.
*/
void pci_dev_put(struct pci_dev *dev)
{
if (dev)
put_device(&dev->dev);
}
#ifndef CONFIG_HOTPLUG
int pci_uevent(struct device *dev, struct kobj_uevent_env *env)
{
return -ENODEV;
}
#endif
struct bus_type pci_bus_type = {
.name = "pci",
.match = pci_bus_match,
.uevent = pci_uevent,
.probe = pci_device_probe,
.remove = pci_device_remove,
.shutdown = pci_device_shutdown,
.dev_attrs = pci_dev_attrs,
.bus_attrs = pci_bus_attrs,
.pm = PCI_PM_OPS_PTR,
};
static int __init pci_driver_init(void)
{
return bus_register(&pci_bus_type);
}
postcore_initcall(pci_driver_init);
EXPORT_SYMBOL_GPL(pci_add_dynid);
EXPORT_SYMBOL(pci_match_id);
EXPORT_SYMBOL(__pci_register_driver);
EXPORT_SYMBOL(pci_unregister_driver);
EXPORT_SYMBOL(pci_dev_driver);
EXPORT_SYMBOL(pci_bus_type);
EXPORT_SYMBOL(pci_dev_get);
EXPORT_SYMBOL(pci_dev_put);