OpenCloudOS-Kernel/sound/soc/codecs/tas5720.c

737 lines
21 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* tas5720.c - ALSA SoC Texas Instruments TAS5720 Mono Audio Amplifier
*
* Copyright (C)2015-2016 Texas Instruments Incorporated - http://www.ti.com
*
* Author: Andreas Dannenberg <dannenberg@ti.com>
*/
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/device.h>
#include <linux/i2c.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/regulator/consumer.h>
#include <linux/delay.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include <sound/tlv.h>
#include "tas5720.h"
/* Define how often to check (and clear) the fault status register (in ms) */
#define TAS5720_FAULT_CHECK_INTERVAL 200
enum tas572x_type {
TAS5720,
TAS5722,
};
static const char * const tas5720_supply_names[] = {
"dvdd", /* Digital power supply. Connect to 3.3-V supply. */
"pvdd", /* Class-D amp and analog power supply (connected). */
};
#define TAS5720_NUM_SUPPLIES ARRAY_SIZE(tas5720_supply_names)
struct tas5720_data {
struct snd_soc_component *component;
struct regmap *regmap;
struct i2c_client *tas5720_client;
enum tas572x_type devtype;
struct regulator_bulk_data supplies[TAS5720_NUM_SUPPLIES];
struct delayed_work fault_check_work;
unsigned int last_fault;
};
static int tas5720_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
unsigned int rate = params_rate(params);
bool ssz_ds;
int ret;
switch (rate) {
case 44100:
case 48000:
ssz_ds = false;
break;
case 88200:
case 96000:
ssz_ds = true;
break;
default:
dev_err(component->dev, "unsupported sample rate: %u\n", rate);
return -EINVAL;
}
ret = snd_soc_component_update_bits(component, TAS5720_DIGITAL_CTRL1_REG,
TAS5720_SSZ_DS, ssz_ds);
if (ret < 0) {
dev_err(component->dev, "error setting sample rate: %d\n", ret);
return ret;
}
return 0;
}
static int tas5720_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
struct snd_soc_component *component = dai->component;
u8 serial_format;
int ret;
if ((fmt & SND_SOC_DAIFMT_MASTER_MASK) != SND_SOC_DAIFMT_CBS_CFS) {
dev_vdbg(component->dev, "DAI Format master is not found\n");
return -EINVAL;
}
switch (fmt & (SND_SOC_DAIFMT_FORMAT_MASK |
SND_SOC_DAIFMT_INV_MASK)) {
case (SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF):
/* 1st data bit occur one BCLK cycle after the frame sync */
serial_format = TAS5720_SAIF_I2S;
break;
case (SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_NB_NF):
/*
* Note that although the TAS5720 does not have a dedicated DSP
* mode it doesn't care about the LRCLK duty cycle during TDM
* operation. Therefore we can use the device's I2S mode with
* its delaying of the 1st data bit to receive DSP_A formatted
* data. See device datasheet for additional details.
*/
serial_format = TAS5720_SAIF_I2S;
break;
case (SND_SOC_DAIFMT_DSP_B | SND_SOC_DAIFMT_NB_NF):
/*
* Similar to DSP_A, we can use the fact that the TAS5720 does
* not care about the LRCLK duty cycle during TDM to receive
* DSP_B formatted data in LEFTJ mode (no delaying of the 1st
* data bit).
*/
serial_format = TAS5720_SAIF_LEFTJ;
break;
case (SND_SOC_DAIFMT_LEFT_J | SND_SOC_DAIFMT_NB_NF):
/* No delay after the frame sync */
serial_format = TAS5720_SAIF_LEFTJ;
break;
default:
dev_vdbg(component->dev, "DAI Format is not found\n");
return -EINVAL;
}
ret = snd_soc_component_update_bits(component, TAS5720_DIGITAL_CTRL1_REG,
TAS5720_SAIF_FORMAT_MASK,
serial_format);
if (ret < 0) {
dev_err(component->dev, "error setting SAIF format: %d\n", ret);
return ret;
}
return 0;
}
static int tas5720_set_dai_tdm_slot(struct snd_soc_dai *dai,
unsigned int tx_mask, unsigned int rx_mask,
int slots, int slot_width)
{
struct snd_soc_component *component = dai->component;
struct tas5720_data *tas5720 = snd_soc_component_get_drvdata(component);
unsigned int first_slot;
int ret;
if (!tx_mask) {
dev_err(component->dev, "tx masks must not be 0\n");
return -EINVAL;
}
/*
* Determine the first slot that is being requested. We will only
* use the first slot that is found since the TAS5720 is a mono
* amplifier.
*/
first_slot = __ffs(tx_mask);
if (first_slot > 7) {
dev_err(component->dev, "slot selection out of bounds (%u)\n",
first_slot);
return -EINVAL;
}
/* Enable manual TDM slot selection (instead of I2C ID based) */
ret = snd_soc_component_update_bits(component, TAS5720_DIGITAL_CTRL1_REG,
TAS5720_TDM_CFG_SRC, TAS5720_TDM_CFG_SRC);
if (ret < 0)
goto error_snd_soc_component_update_bits;
/* Configure the TDM slot to process audio from */
ret = snd_soc_component_update_bits(component, TAS5720_DIGITAL_CTRL2_REG,
TAS5720_TDM_SLOT_SEL_MASK, first_slot);
if (ret < 0)
goto error_snd_soc_component_update_bits;
/* Configure TDM slot width. This is only applicable to TAS5722. */
switch (tas5720->devtype) {
case TAS5722:
ret = snd_soc_component_update_bits(component, TAS5722_DIGITAL_CTRL2_REG,
TAS5722_TDM_SLOT_16B,
slot_width == 16 ?
TAS5722_TDM_SLOT_16B : 0);
if (ret < 0)
goto error_snd_soc_component_update_bits;
break;
default:
break;
}
return 0;
error_snd_soc_component_update_bits:
dev_err(component->dev, "error configuring TDM mode: %d\n", ret);
return ret;
}
static int tas5720_mute(struct snd_soc_dai *dai, int mute, int direction)
{
struct snd_soc_component *component = dai->component;
int ret;
ret = snd_soc_component_update_bits(component, TAS5720_DIGITAL_CTRL2_REG,
TAS5720_MUTE, mute ? TAS5720_MUTE : 0);
if (ret < 0) {
dev_err(component->dev, "error (un-)muting device: %d\n", ret);
return ret;
}
return 0;
}
static void tas5720_fault_check_work(struct work_struct *work)
{
struct tas5720_data *tas5720 = container_of(work, struct tas5720_data,
fault_check_work.work);
struct device *dev = tas5720->component->dev;
unsigned int curr_fault;
int ret;
ret = regmap_read(tas5720->regmap, TAS5720_FAULT_REG, &curr_fault);
if (ret < 0) {
dev_err(dev, "failed to read FAULT register: %d\n", ret);
goto out;
}
/* Check/handle all errors except SAIF clock errors */
curr_fault &= TAS5720_OCE | TAS5720_DCE | TAS5720_OTE;
/*
* Only flag errors once for a given occurrence. This is needed as
* the TAS5720 will take time clearing the fault condition internally
* during which we don't want to bombard the system with the same
* error message over and over.
*/
if ((curr_fault & TAS5720_OCE) && !(tas5720->last_fault & TAS5720_OCE))
dev_crit(dev, "experienced an over current hardware fault\n");
if ((curr_fault & TAS5720_DCE) && !(tas5720->last_fault & TAS5720_DCE))
dev_crit(dev, "experienced a DC detection fault\n");
if ((curr_fault & TAS5720_OTE) && !(tas5720->last_fault & TAS5720_OTE))
dev_crit(dev, "experienced an over temperature fault\n");
/* Store current fault value so we can detect any changes next time */
tas5720->last_fault = curr_fault;
if (!curr_fault)
goto out;
/*
* Periodically toggle SDZ (shutdown bit) H->L->H to clear any latching
* faults as long as a fault condition persists. Always going through
* the full sequence no matter the first return value to minimizes
* chances for the device to end up in shutdown mode.
*/
ret = regmap_write_bits(tas5720->regmap, TAS5720_POWER_CTRL_REG,
TAS5720_SDZ, 0);
if (ret < 0)
dev_err(dev, "failed to write POWER_CTRL register: %d\n", ret);
ret = regmap_write_bits(tas5720->regmap, TAS5720_POWER_CTRL_REG,
TAS5720_SDZ, TAS5720_SDZ);
if (ret < 0)
dev_err(dev, "failed to write POWER_CTRL register: %d\n", ret);
out:
/* Schedule the next fault check at the specified interval */
schedule_delayed_work(&tas5720->fault_check_work,
msecs_to_jiffies(TAS5720_FAULT_CHECK_INTERVAL));
}
static int tas5720_codec_probe(struct snd_soc_component *component)
{
struct tas5720_data *tas5720 = snd_soc_component_get_drvdata(component);
unsigned int device_id, expected_device_id;
int ret;
tas5720->component = component;
ret = regulator_bulk_enable(ARRAY_SIZE(tas5720->supplies),
tas5720->supplies);
if (ret != 0) {
dev_err(component->dev, "failed to enable supplies: %d\n", ret);
return ret;
}
/*
* Take a liberal approach to checking the device ID to allow the
* driver to be used even if the device ID does not match, however
* issue a warning if there is a mismatch.
*/
ret = regmap_read(tas5720->regmap, TAS5720_DEVICE_ID_REG, &device_id);
if (ret < 0) {
dev_err(component->dev, "failed to read device ID register: %d\n",
ret);
goto probe_fail;
}
switch (tas5720->devtype) {
case TAS5720:
expected_device_id = TAS5720_DEVICE_ID;
break;
case TAS5722:
expected_device_id = TAS5722_DEVICE_ID;
break;
default:
dev_err(component->dev, "unexpected private driver data\n");
return -EINVAL;
}
if (device_id != expected_device_id)
dev_warn(component->dev, "wrong device ID. expected: %u read: %u\n",
expected_device_id, device_id);
/* Set device to mute */
ret = snd_soc_component_update_bits(component, TAS5720_DIGITAL_CTRL2_REG,
TAS5720_MUTE, TAS5720_MUTE);
if (ret < 0)
goto error_snd_soc_component_update_bits;
/*
* Enter shutdown mode - our default when not playing audio - to
* minimize current consumption. On the TAS5720 there is no real down
* side doing so as all device registers are preserved and the wakeup
* of the codec is rather quick which we do using a dapm widget.
*/
ret = snd_soc_component_update_bits(component, TAS5720_POWER_CTRL_REG,
TAS5720_SDZ, 0);
if (ret < 0)
goto error_snd_soc_component_update_bits;
INIT_DELAYED_WORK(&tas5720->fault_check_work, tas5720_fault_check_work);
return 0;
error_snd_soc_component_update_bits:
dev_err(component->dev, "error configuring device registers: %d\n", ret);
probe_fail:
regulator_bulk_disable(ARRAY_SIZE(tas5720->supplies),
tas5720->supplies);
return ret;
}
static void tas5720_codec_remove(struct snd_soc_component *component)
{
struct tas5720_data *tas5720 = snd_soc_component_get_drvdata(component);
int ret;
cancel_delayed_work_sync(&tas5720->fault_check_work);
ret = regulator_bulk_disable(ARRAY_SIZE(tas5720->supplies),
tas5720->supplies);
if (ret < 0)
dev_err(component->dev, "failed to disable supplies: %d\n", ret);
};
static int tas5720_dac_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
struct tas5720_data *tas5720 = snd_soc_component_get_drvdata(component);
int ret;
if (event & SND_SOC_DAPM_POST_PMU) {
/* Take TAS5720 out of shutdown mode */
ret = snd_soc_component_update_bits(component, TAS5720_POWER_CTRL_REG,
TAS5720_SDZ, TAS5720_SDZ);
if (ret < 0) {
dev_err(component->dev, "error waking component: %d\n", ret);
return ret;
}
/*
* Observe codec shutdown-to-active time. The datasheet only
* lists a nominal value however just use-it as-is without
* additional padding to minimize the delay introduced in
* starting to play audio (actually there is other setup done
* by the ASoC framework that will provide additional delays,
* so we should always be safe).
*/
msleep(25);
/* Turn on TAS5720 periodic fault checking/handling */
tas5720->last_fault = 0;
schedule_delayed_work(&tas5720->fault_check_work,
msecs_to_jiffies(TAS5720_FAULT_CHECK_INTERVAL));
} else if (event & SND_SOC_DAPM_PRE_PMD) {
/* Disable TAS5720 periodic fault checking/handling */
cancel_delayed_work_sync(&tas5720->fault_check_work);
/* Place TAS5720 in shutdown mode to minimize current draw */
ret = snd_soc_component_update_bits(component, TAS5720_POWER_CTRL_REG,
TAS5720_SDZ, 0);
if (ret < 0) {
dev_err(component->dev, "error shutting down component: %d\n",
ret);
return ret;
}
}
return 0;
}
#ifdef CONFIG_PM
static int tas5720_suspend(struct snd_soc_component *component)
{
struct tas5720_data *tas5720 = snd_soc_component_get_drvdata(component);
int ret;
regcache_cache_only(tas5720->regmap, true);
regcache_mark_dirty(tas5720->regmap);
ret = regulator_bulk_disable(ARRAY_SIZE(tas5720->supplies),
tas5720->supplies);
if (ret < 0)
dev_err(component->dev, "failed to disable supplies: %d\n", ret);
return ret;
}
static int tas5720_resume(struct snd_soc_component *component)
{
struct tas5720_data *tas5720 = snd_soc_component_get_drvdata(component);
int ret;
ret = regulator_bulk_enable(ARRAY_SIZE(tas5720->supplies),
tas5720->supplies);
if (ret < 0) {
dev_err(component->dev, "failed to enable supplies: %d\n", ret);
return ret;
}
regcache_cache_only(tas5720->regmap, false);
ret = regcache_sync(tas5720->regmap);
if (ret < 0) {
dev_err(component->dev, "failed to sync regcache: %d\n", ret);
return ret;
}
return 0;
}
#else
#define tas5720_suspend NULL
#define tas5720_resume NULL
#endif
static bool tas5720_is_volatile_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case TAS5720_DEVICE_ID_REG:
case TAS5720_FAULT_REG:
return true;
default:
return false;
}
}
static const struct regmap_config tas5720_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = TAS5720_MAX_REG,
.cache_type = REGCACHE_RBTREE,
.volatile_reg = tas5720_is_volatile_reg,
};
static const struct regmap_config tas5722_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = TAS5722_MAX_REG,
.cache_type = REGCACHE_RBTREE,
.volatile_reg = tas5720_is_volatile_reg,
};
/*
* DAC analog gain. There are four discrete values to select from, ranging
* from 19.2 dB to 26.3dB.
*/
static const DECLARE_TLV_DB_RANGE(dac_analog_tlv,
0x0, 0x0, TLV_DB_SCALE_ITEM(1920, 0, 0),
0x1, 0x1, TLV_DB_SCALE_ITEM(2070, 0, 0),
0x2, 0x2, TLV_DB_SCALE_ITEM(2350, 0, 0),
0x3, 0x3, TLV_DB_SCALE_ITEM(2630, 0, 0),
);
/*
* DAC digital volumes. From -103.5 to 24 dB in 0.5 dB or 0.25 dB steps
* depending on the device. Note that setting the gain below -100 dB
* (register value <0x7) is effectively a MUTE as per device datasheet.
*
* Note that for the TAS5722 the digital volume controls are actually split
* over two registers, so we need custom getters/setters for access.
*/
static DECLARE_TLV_DB_SCALE(tas5720_dac_tlv, -10350, 50, 0);
static DECLARE_TLV_DB_SCALE(tas5722_dac_tlv, -10350, 25, 0);
static int tas5722_volume_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
unsigned int val;
ASoC: soc-component: merge snd_soc_component_read() and snd_soc_component_read32() We had read/write function for Codec, Platform, etc, but these has been merged into snd_soc_component_read/write(). Internally, it is using regmap or driver function. In read case, each styles are like below regmap ret = regmap_read(..., reg, &val); driver function val = xxx->read(..., reg); Because of this kind of different style, to keep same read style, when we merged each read function into snd_soc_component_read(), we created snd_soc_component_read32(), like below. commit 738b49efe6c6 ("ASoC: add snd_soc_component_read32") (1) val = snd_soc_component_read32(component, reg); (2) ret = snd_soc_component_read(component, reg, &val); Many drivers are using snd_soc_component_read32(), and some drivers are using snd_soc_component_read() today. In generally, we don't check read function successes, because, we will have many other issues at initial timing if read function didn't work. Now we can use soc_component_err() when error case. This means, it is easy to notice if error occurred. This patch aggressively merge snd_soc_component_read() and _read32(), and makes snd_soc_component_read/write() as generally style. This patch do 1) merge snd_soc_component_read() and snd_soc_component_read32() 2) it uses soc_component_err() when error case (easy to notice) 3) keeps read32 for now by #define 4) update snd_soc_component_read() for all drivers Because _read() user drivers are not too many, this patch changes all user drivers. Signed-off-by: Kuninori Morimoto <kuninori.morimoto.gx@renesas.com> Reviewed-by: Kai Vehmanen <kai.vehmanen@linux.intel.com> Link: https://lore.kernel.org/r/87sgev4mfl.wl-kuninori.morimoto.gx@renesas.com Signed-off-by: Mark Brown <broonie@kernel.org>
2020-06-16 13:19:41 +08:00
val = snd_soc_component_read(component, TAS5720_VOLUME_CTRL_REG);
ucontrol->value.integer.value[0] = val << 1;
ASoC: soc-component: merge snd_soc_component_read() and snd_soc_component_read32() We had read/write function for Codec, Platform, etc, but these has been merged into snd_soc_component_read/write(). Internally, it is using regmap or driver function. In read case, each styles are like below regmap ret = regmap_read(..., reg, &val); driver function val = xxx->read(..., reg); Because of this kind of different style, to keep same read style, when we merged each read function into snd_soc_component_read(), we created snd_soc_component_read32(), like below. commit 738b49efe6c6 ("ASoC: add snd_soc_component_read32") (1) val = snd_soc_component_read32(component, reg); (2) ret = snd_soc_component_read(component, reg, &val); Many drivers are using snd_soc_component_read32(), and some drivers are using snd_soc_component_read() today. In generally, we don't check read function successes, because, we will have many other issues at initial timing if read function didn't work. Now we can use soc_component_err() when error case. This means, it is easy to notice if error occurred. This patch aggressively merge snd_soc_component_read() and _read32(), and makes snd_soc_component_read/write() as generally style. This patch do 1) merge snd_soc_component_read() and snd_soc_component_read32() 2) it uses soc_component_err() when error case (easy to notice) 3) keeps read32 for now by #define 4) update snd_soc_component_read() for all drivers Because _read() user drivers are not too many, this patch changes all user drivers. Signed-off-by: Kuninori Morimoto <kuninori.morimoto.gx@renesas.com> Reviewed-by: Kai Vehmanen <kai.vehmanen@linux.intel.com> Link: https://lore.kernel.org/r/87sgev4mfl.wl-kuninori.morimoto.gx@renesas.com Signed-off-by: Mark Brown <broonie@kernel.org>
2020-06-16 13:19:41 +08:00
val = snd_soc_component_read(component, TAS5722_DIGITAL_CTRL2_REG);
ucontrol->value.integer.value[0] |= val & TAS5722_VOL_CONTROL_LSB;
return 0;
}
static int tas5722_volume_set(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
unsigned int sel = ucontrol->value.integer.value[0];
snd_soc_component_write(component, TAS5720_VOLUME_CTRL_REG, sel >> 1);
snd_soc_component_update_bits(component, TAS5722_DIGITAL_CTRL2_REG,
TAS5722_VOL_CONTROL_LSB, sel);
return 0;
}
static const struct snd_kcontrol_new tas5720_snd_controls[] = {
SOC_SINGLE_TLV("Speaker Driver Playback Volume",
TAS5720_VOLUME_CTRL_REG, 0, 0xff, 0, tas5720_dac_tlv),
SOC_SINGLE_TLV("Speaker Driver Analog Gain", TAS5720_ANALOG_CTRL_REG,
TAS5720_ANALOG_GAIN_SHIFT, 3, 0, dac_analog_tlv),
};
static const struct snd_kcontrol_new tas5722_snd_controls[] = {
SOC_SINGLE_EXT_TLV("Speaker Driver Playback Volume",
0, 0, 511, 0,
tas5722_volume_get, tas5722_volume_set,
tas5722_dac_tlv),
SOC_SINGLE_TLV("Speaker Driver Analog Gain", TAS5720_ANALOG_CTRL_REG,
TAS5720_ANALOG_GAIN_SHIFT, 3, 0, dac_analog_tlv),
};
static const struct snd_soc_dapm_widget tas5720_dapm_widgets[] = {
SND_SOC_DAPM_AIF_IN("DAC IN", "Playback", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_DAC_E("DAC", NULL, SND_SOC_NOPM, 0, 0, tas5720_dac_event,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_OUTPUT("OUT")
};
static const struct snd_soc_dapm_route tas5720_audio_map[] = {
{ "DAC", NULL, "DAC IN" },
{ "OUT", NULL, "DAC" },
};
static const struct snd_soc_component_driver soc_component_dev_tas5720 = {
.probe = tas5720_codec_probe,
.remove = tas5720_codec_remove,
.suspend = tas5720_suspend,
.resume = tas5720_resume,
.controls = tas5720_snd_controls,
.num_controls = ARRAY_SIZE(tas5720_snd_controls),
.dapm_widgets = tas5720_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(tas5720_dapm_widgets),
.dapm_routes = tas5720_audio_map,
.num_dapm_routes = ARRAY_SIZE(tas5720_audio_map),
.idle_bias_on = 1,
.use_pmdown_time = 1,
.endianness = 1,
.non_legacy_dai_naming = 1,
};
static const struct snd_soc_component_driver soc_component_dev_tas5722 = {
.probe = tas5720_codec_probe,
.remove = tas5720_codec_remove,
.suspend = tas5720_suspend,
.resume = tas5720_resume,
.controls = tas5722_snd_controls,
.num_controls = ARRAY_SIZE(tas5722_snd_controls),
.dapm_widgets = tas5720_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(tas5720_dapm_widgets),
.dapm_routes = tas5720_audio_map,
.num_dapm_routes = ARRAY_SIZE(tas5720_audio_map),
.idle_bias_on = 1,
.use_pmdown_time = 1,
.endianness = 1,
.non_legacy_dai_naming = 1,
};
/* PCM rates supported by the TAS5720 driver */
#define TAS5720_RATES (SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000 |\
SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000)
/* Formats supported by TAS5720 driver */
#define TAS5720_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S18_3LE |\
SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S24_LE)
static const struct snd_soc_dai_ops tas5720_speaker_dai_ops = {
.hw_params = tas5720_hw_params,
.set_fmt = tas5720_set_dai_fmt,
.set_tdm_slot = tas5720_set_dai_tdm_slot,
.mute_stream = tas5720_mute,
.no_capture_mute = 1,
};
/*
* TAS5720 DAI structure
*
* Note that were are advertising .playback.channels_max = 2 despite this being
* a mono amplifier. The reason for that is that some serial ports such as TI's
* McASP module have a minimum number of channels (2) that they can output.
* Advertising more channels than we have will allow us to interface with such
* a serial port without really any negative side effects as the TAS5720 will
* simply ignore any extra channel(s) asides from the one channel that is
* configured to be played back.
*/
static struct snd_soc_dai_driver tas5720_dai[] = {
{
.name = "tas5720-amplifier",
.playback = {
.stream_name = "Playback",
.channels_min = 1,
.channels_max = 2,
.rates = TAS5720_RATES,
.formats = TAS5720_FORMATS,
},
.ops = &tas5720_speaker_dai_ops,
},
};
static int tas5720_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct device *dev = &client->dev;
struct tas5720_data *data;
const struct regmap_config *regmap_config;
int ret;
int i;
data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->tas5720_client = client;
data->devtype = id->driver_data;
switch (id->driver_data) {
case TAS5720:
regmap_config = &tas5720_regmap_config;
break;
case TAS5722:
regmap_config = &tas5722_regmap_config;
break;
default:
dev_err(dev, "unexpected private driver data\n");
return -EINVAL;
}
data->regmap = devm_regmap_init_i2c(client, regmap_config);
if (IS_ERR(data->regmap)) {
ret = PTR_ERR(data->regmap);
dev_err(dev, "failed to allocate register map: %d\n", ret);
return ret;
}
for (i = 0; i < ARRAY_SIZE(data->supplies); i++)
data->supplies[i].supply = tas5720_supply_names[i];
ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(data->supplies),
data->supplies);
if (ret != 0) {
dev_err(dev, "failed to request supplies: %d\n", ret);
return ret;
}
dev_set_drvdata(dev, data);
switch (id->driver_data) {
case TAS5720:
ret = devm_snd_soc_register_component(&client->dev,
&soc_component_dev_tas5720,
tas5720_dai,
ARRAY_SIZE(tas5720_dai));
break;
case TAS5722:
ret = devm_snd_soc_register_component(&client->dev,
&soc_component_dev_tas5722,
tas5720_dai,
ARRAY_SIZE(tas5720_dai));
break;
default:
dev_err(dev, "unexpected private driver data\n");
return -EINVAL;
}
if (ret < 0) {
dev_err(dev, "failed to register component: %d\n", ret);
return ret;
}
return 0;
}
static const struct i2c_device_id tas5720_id[] = {
{ "tas5720", TAS5720 },
{ "tas5722", TAS5722 },
{ }
};
MODULE_DEVICE_TABLE(i2c, tas5720_id);
#if IS_ENABLED(CONFIG_OF)
static const struct of_device_id tas5720_of_match[] = {
{ .compatible = "ti,tas5720", },
{ .compatible = "ti,tas5722", },
{ },
};
MODULE_DEVICE_TABLE(of, tas5720_of_match);
#endif
static struct i2c_driver tas5720_i2c_driver = {
.driver = {
.name = "tas5720",
.of_match_table = of_match_ptr(tas5720_of_match),
},
.probe = tas5720_probe,
.id_table = tas5720_id,
};
module_i2c_driver(tas5720_i2c_driver);
MODULE_AUTHOR("Andreas Dannenberg <dannenberg@ti.com>");
MODULE_DESCRIPTION("TAS5720 Audio amplifier driver");
MODULE_LICENSE("GPL");