OpenCloudOS-Kernel/fs/xfs/xfs_sysfs.c

703 lines
14 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2014 Red Hat, Inc.
* All Rights Reserved.
*/
#include "xfs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_sysfs.h"
#include "xfs_log_priv.h"
#include "xfs_mount.h"
struct xfs_sysfs_attr {
struct attribute attr;
ssize_t (*show)(struct kobject *kobject, char *buf);
ssize_t (*store)(struct kobject *kobject, const char *buf,
size_t count);
};
static inline struct xfs_sysfs_attr *
to_attr(struct attribute *attr)
{
return container_of(attr, struct xfs_sysfs_attr, attr);
}
#define XFS_SYSFS_ATTR_RW(name) \
static struct xfs_sysfs_attr xfs_sysfs_attr_##name = __ATTR_RW(name)
#define XFS_SYSFS_ATTR_RO(name) \
static struct xfs_sysfs_attr xfs_sysfs_attr_##name = __ATTR_RO(name)
#define XFS_SYSFS_ATTR_WO(name) \
static struct xfs_sysfs_attr xfs_sysfs_attr_##name = __ATTR_WO(name)
#define ATTR_LIST(name) &xfs_sysfs_attr_##name.attr
STATIC ssize_t
xfs_sysfs_object_show(
struct kobject *kobject,
struct attribute *attr,
char *buf)
{
struct xfs_sysfs_attr *xfs_attr = to_attr(attr);
return xfs_attr->show ? xfs_attr->show(kobject, buf) : 0;
}
STATIC ssize_t
xfs_sysfs_object_store(
struct kobject *kobject,
struct attribute *attr,
const char *buf,
size_t count)
{
struct xfs_sysfs_attr *xfs_attr = to_attr(attr);
return xfs_attr->store ? xfs_attr->store(kobject, buf, count) : 0;
}
static const struct sysfs_ops xfs_sysfs_ops = {
.show = xfs_sysfs_object_show,
.store = xfs_sysfs_object_store,
};
static struct attribute *xfs_mp_attrs[] = {
NULL,
};
struct kobj_type xfs_mp_ktype = {
.release = xfs_sysfs_release,
.sysfs_ops = &xfs_sysfs_ops,
.default_attrs = xfs_mp_attrs,
};
#ifdef DEBUG
/* debug */
STATIC ssize_t
bug_on_assert_store(
struct kobject *kobject,
const char *buf,
size_t count)
{
int ret;
int val;
ret = kstrtoint(buf, 0, &val);
if (ret)
return ret;
if (val == 1)
xfs_globals.bug_on_assert = true;
else if (val == 0)
xfs_globals.bug_on_assert = false;
else
return -EINVAL;
return count;
}
STATIC ssize_t
bug_on_assert_show(
struct kobject *kobject,
char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", xfs_globals.bug_on_assert ? 1 : 0);
}
XFS_SYSFS_ATTR_RW(bug_on_assert);
xfs: export log_recovery_delay to delay mount time log recovery XFS log recovery has been discovered to have race conditions with buffers when I/O errors occur. External tools are available to simulate I/O errors to XFS, but this alone is not sufficient for testing log recovery. XFS unconditionally resets the inactive region of the log prior to log recovery to avoid confusion over processing any partially written log records that might have been written before an unclean shutdown. Therefore, unconditional write I/O failures at mount time are caught by the reset sequence rather than log recovery and hinder the ability to test the latter. The device-mapper dm-flakey module uses an up/down timer to define a cycle for when to fail I/Os. Create a pre log recovery delay tunable that can be used to coordinate XFS log recovery with I/O errors simulated by dm-flakey. This facilitates coordination in userspace that allows the reset of stale log blocks to succeed and writes due to log recovery to fail. For example, define a dm-flakey instance with an uptime long enough to allow log reset to succeed and a log recovery delay long enough to allow the dm-flakey uptime to expire. The 'log_recovery_delay' sysfs tunable is exported under /sys/fs/xfs/debug and is only enabled for kernels compiled in XFS debug mode. The value is exported in units of seconds and allows for a delay of up to 60 seconds. Note that this is for XFS debug and test instrumentation purposes only and should not be used by applications. No delay is enabled by default. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-09-09 09:56:13 +08:00
STATIC ssize_t
log_recovery_delay_store(
struct kobject *kobject,
xfs: export log_recovery_delay to delay mount time log recovery XFS log recovery has been discovered to have race conditions with buffers when I/O errors occur. External tools are available to simulate I/O errors to XFS, but this alone is not sufficient for testing log recovery. XFS unconditionally resets the inactive region of the log prior to log recovery to avoid confusion over processing any partially written log records that might have been written before an unclean shutdown. Therefore, unconditional write I/O failures at mount time are caught by the reset sequence rather than log recovery and hinder the ability to test the latter. The device-mapper dm-flakey module uses an up/down timer to define a cycle for when to fail I/Os. Create a pre log recovery delay tunable that can be used to coordinate XFS log recovery with I/O errors simulated by dm-flakey. This facilitates coordination in userspace that allows the reset of stale log blocks to succeed and writes due to log recovery to fail. For example, define a dm-flakey instance with an uptime long enough to allow log reset to succeed and a log recovery delay long enough to allow the dm-flakey uptime to expire. The 'log_recovery_delay' sysfs tunable is exported under /sys/fs/xfs/debug and is only enabled for kernels compiled in XFS debug mode. The value is exported in units of seconds and allows for a delay of up to 60 seconds. Note that this is for XFS debug and test instrumentation purposes only and should not be used by applications. No delay is enabled by default. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-09-09 09:56:13 +08:00
const char *buf,
size_t count)
xfs: export log_recovery_delay to delay mount time log recovery XFS log recovery has been discovered to have race conditions with buffers when I/O errors occur. External tools are available to simulate I/O errors to XFS, but this alone is not sufficient for testing log recovery. XFS unconditionally resets the inactive region of the log prior to log recovery to avoid confusion over processing any partially written log records that might have been written before an unclean shutdown. Therefore, unconditional write I/O failures at mount time are caught by the reset sequence rather than log recovery and hinder the ability to test the latter. The device-mapper dm-flakey module uses an up/down timer to define a cycle for when to fail I/Os. Create a pre log recovery delay tunable that can be used to coordinate XFS log recovery with I/O errors simulated by dm-flakey. This facilitates coordination in userspace that allows the reset of stale log blocks to succeed and writes due to log recovery to fail. For example, define a dm-flakey instance with an uptime long enough to allow log reset to succeed and a log recovery delay long enough to allow the dm-flakey uptime to expire. The 'log_recovery_delay' sysfs tunable is exported under /sys/fs/xfs/debug and is only enabled for kernels compiled in XFS debug mode. The value is exported in units of seconds and allows for a delay of up to 60 seconds. Note that this is for XFS debug and test instrumentation purposes only and should not be used by applications. No delay is enabled by default. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-09-09 09:56:13 +08:00
{
int ret;
int val;
ret = kstrtoint(buf, 0, &val);
if (ret)
return ret;
if (val < 0 || val > 60)
return -EINVAL;
xfs_globals.log_recovery_delay = val;
return count;
}
STATIC ssize_t
log_recovery_delay_show(
struct kobject *kobject,
char *buf)
xfs: export log_recovery_delay to delay mount time log recovery XFS log recovery has been discovered to have race conditions with buffers when I/O errors occur. External tools are available to simulate I/O errors to XFS, but this alone is not sufficient for testing log recovery. XFS unconditionally resets the inactive region of the log prior to log recovery to avoid confusion over processing any partially written log records that might have been written before an unclean shutdown. Therefore, unconditional write I/O failures at mount time are caught by the reset sequence rather than log recovery and hinder the ability to test the latter. The device-mapper dm-flakey module uses an up/down timer to define a cycle for when to fail I/Os. Create a pre log recovery delay tunable that can be used to coordinate XFS log recovery with I/O errors simulated by dm-flakey. This facilitates coordination in userspace that allows the reset of stale log blocks to succeed and writes due to log recovery to fail. For example, define a dm-flakey instance with an uptime long enough to allow log reset to succeed and a log recovery delay long enough to allow the dm-flakey uptime to expire. The 'log_recovery_delay' sysfs tunable is exported under /sys/fs/xfs/debug and is only enabled for kernels compiled in XFS debug mode. The value is exported in units of seconds and allows for a delay of up to 60 seconds. Note that this is for XFS debug and test instrumentation purposes only and should not be used by applications. No delay is enabled by default. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-09-09 09:56:13 +08:00
{
return snprintf(buf, PAGE_SIZE, "%d\n", xfs_globals.log_recovery_delay);
}
XFS_SYSFS_ATTR_RW(log_recovery_delay);
xfs: add mount delay debug option Similar to log_recovery_delay, this delay occurs between the VFS superblock being initialised and the xfs_mount being fully initialised. It also poisons the per-ag radix tree node so that it can be used for triggering shrinker races during mount such as the following: <run memory pressure workload in background> $ cat dirty-mount.sh #! /bin/bash umount -f /dev/pmem0 mkfs.xfs -f /dev/pmem0 mount /dev/pmem0 /mnt/test rm -f /mnt/test/foo xfs_io -fxc "pwrite 0 4k" -c fsync -c "shutdown" /mnt/test/foo umount /dev/pmem0 # let's crash it now! echo 30 > /sys/fs/xfs/debug/mount_delay mount /dev/pmem0 /mnt/test echo 0 > /sys/fs/xfs/debug/mount_delay umount /dev/pmem0 $ sudo ./dirty-mount.sh ..... [ 60.378118] CPU: 3 PID: 3577 Comm: fs_mark Tainted: G D W 4.16.0-rc5-dgc #440 [ 60.378120] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014 [ 60.378124] RIP: 0010:radix_tree_next_chunk+0x76/0x320 [ 60.378127] RSP: 0018:ffffc9000276f4f8 EFLAGS: 00010282 [ 60.383670] RAX: a5a5a5a5a5a5a5a4 RBX: 0000000000000010 RCX: 000000000000001a [ 60.385277] RDX: 0000000000000000 RSI: ffffc9000276f540 RDI: 0000000000000000 [ 60.386554] RBP: 0000000000000000 R08: 0000000000000000 R09: a5a5a5a5a5a5a5a5 [ 60.388194] R10: 0000000000000006 R11: 0000000000000001 R12: ffffc9000276f598 [ 60.389288] R13: 0000000000000040 R14: 0000000000000228 R15: ffff880816cd6458 [ 60.390827] FS: 00007f5c124b9740(0000) GS:ffff88083fc00000(0000) knlGS:0000000000000000 [ 60.392253] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 60.393423] CR2: 00007f5c11bba0b8 CR3: 000000035580e001 CR4: 00000000000606e0 [ 60.394519] Call Trace: [ 60.395252] radix_tree_gang_lookup_tag+0xc4/0x130 [ 60.395948] xfs_perag_get_tag+0x37/0xf0 [ 60.396522] xfs_reclaim_inodes_count+0x32/0x40 [ 60.397178] xfs_fs_nr_cached_objects+0x11/0x20 [ 60.397837] super_cache_count+0x35/0xc0 [ 60.399159] shrink_slab.part.66+0xb1/0x370 [ 60.400194] shrink_node+0x7e/0x1a0 [ 60.401058] try_to_free_pages+0x199/0x470 [ 60.402081] __alloc_pages_slowpath+0x3a1/0xd20 [ 60.403729] __alloc_pages_nodemask+0x1c3/0x200 [ 60.404941] cache_grow_begin+0x20b/0x2e0 [ 60.406164] fallback_alloc+0x160/0x200 [ 60.407088] kmem_cache_alloc+0x111/0x4e0 [ 60.408038] ? xfs_buf_rele+0x61/0x430 [ 60.408925] kmem_zone_alloc+0x61/0xe0 [ 60.409965] xfs_inode_alloc+0x24/0x1d0 ..... Signed-Off-By: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2018-05-11 12:50:23 +08:00
STATIC ssize_t
mount_delay_store(
struct kobject *kobject,
const char *buf,
size_t count)
{
int ret;
int val;
ret = kstrtoint(buf, 0, &val);
if (ret)
return ret;
if (val < 0 || val > 60)
return -EINVAL;
xfs_globals.mount_delay = val;
return count;
}
STATIC ssize_t
mount_delay_show(
struct kobject *kobject,
char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", xfs_globals.mount_delay);
}
XFS_SYSFS_ATTR_RW(mount_delay);
xfs: introduce an always_cow mode Add a mode where XFS never overwrites existing blocks in place. This is to aid debugging our COW code, and also put infatructure in place for things like possible future support for zoned block devices, which can't support overwrites. This mode is enabled globally by doing a: echo 1 > /sys/fs/xfs/debug/always_cow Note that the parameter is global to allow running all tests in xfstests easily in this mode, which would not easily be possible with a per-fs sysfs file. In always_cow mode persistent preallocations are disabled, and fallocate will fail when called with a 0 mode (with our without FALLOC_FL_KEEP_SIZE), and not create unwritten extent for zeroed space when called with FALLOC_FL_ZERO_RANGE or FALLOC_FL_UNSHARE_RANGE. There are a few interesting xfstests failures when run in always_cow mode: - generic/392 fails because the bytes used in the file used to test hole punch recovery are less after the log replay. This is because the blocks written and then punched out are only freed with a delay due to the logging mechanism. - xfs/170 will fail as the already fragile file streams mechanism doesn't seem to interact well with the COW allocator - xfs/180 xfs/182 xfs/192 xfs/198 xfs/204 and xfs/208 will claim the file system is badly fragmented, but there is not much we can do to avoid that when always writing out of place - xfs/205 fails because overwriting a file in always_cow mode will require new space allocation and the assumption in the test thus don't work anymore. - xfs/326 fails to modify the file at all in always_cow mode after injecting the refcount error, leading to an unexpected md5sum after the remount, but that again is expected Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2019-02-19 01:38:49 +08:00
static ssize_t
always_cow_store(
struct kobject *kobject,
const char *buf,
size_t count)
{
ssize_t ret;
ret = kstrtobool(buf, &xfs_globals.always_cow);
if (ret < 0)
return ret;
return count;
}
static ssize_t
always_cow_show(
struct kobject *kobject,
char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", xfs_globals.always_cow);
}
XFS_SYSFS_ATTR_RW(always_cow);
#ifdef DEBUG
/*
* Override how many threads the parallel work queue is allowed to create.
* This has to be a debug-only global (instead of an errortag) because one of
* the main users of parallel workqueues is mount time quotacheck.
*/
STATIC ssize_t
pwork_threads_store(
struct kobject *kobject,
const char *buf,
size_t count)
{
int ret;
int val;
ret = kstrtoint(buf, 0, &val);
if (ret)
return ret;
if (val < -1 || val > num_possible_cpus())
return -EINVAL;
xfs_globals.pwork_threads = val;
return count;
}
STATIC ssize_t
pwork_threads_show(
struct kobject *kobject,
char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", xfs_globals.pwork_threads);
}
XFS_SYSFS_ATTR_RW(pwork_threads);
#endif /* DEBUG */
static struct attribute *xfs_dbg_attrs[] = {
ATTR_LIST(bug_on_assert),
xfs: export log_recovery_delay to delay mount time log recovery XFS log recovery has been discovered to have race conditions with buffers when I/O errors occur. External tools are available to simulate I/O errors to XFS, but this alone is not sufficient for testing log recovery. XFS unconditionally resets the inactive region of the log prior to log recovery to avoid confusion over processing any partially written log records that might have been written before an unclean shutdown. Therefore, unconditional write I/O failures at mount time are caught by the reset sequence rather than log recovery and hinder the ability to test the latter. The device-mapper dm-flakey module uses an up/down timer to define a cycle for when to fail I/Os. Create a pre log recovery delay tunable that can be used to coordinate XFS log recovery with I/O errors simulated by dm-flakey. This facilitates coordination in userspace that allows the reset of stale log blocks to succeed and writes due to log recovery to fail. For example, define a dm-flakey instance with an uptime long enough to allow log reset to succeed and a log recovery delay long enough to allow the dm-flakey uptime to expire. The 'log_recovery_delay' sysfs tunable is exported under /sys/fs/xfs/debug and is only enabled for kernels compiled in XFS debug mode. The value is exported in units of seconds and allows for a delay of up to 60 seconds. Note that this is for XFS debug and test instrumentation purposes only and should not be used by applications. No delay is enabled by default. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-09-09 09:56:13 +08:00
ATTR_LIST(log_recovery_delay),
xfs: add mount delay debug option Similar to log_recovery_delay, this delay occurs between the VFS superblock being initialised and the xfs_mount being fully initialised. It also poisons the per-ag radix tree node so that it can be used for triggering shrinker races during mount such as the following: <run memory pressure workload in background> $ cat dirty-mount.sh #! /bin/bash umount -f /dev/pmem0 mkfs.xfs -f /dev/pmem0 mount /dev/pmem0 /mnt/test rm -f /mnt/test/foo xfs_io -fxc "pwrite 0 4k" -c fsync -c "shutdown" /mnt/test/foo umount /dev/pmem0 # let's crash it now! echo 30 > /sys/fs/xfs/debug/mount_delay mount /dev/pmem0 /mnt/test echo 0 > /sys/fs/xfs/debug/mount_delay umount /dev/pmem0 $ sudo ./dirty-mount.sh ..... [ 60.378118] CPU: 3 PID: 3577 Comm: fs_mark Tainted: G D W 4.16.0-rc5-dgc #440 [ 60.378120] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014 [ 60.378124] RIP: 0010:radix_tree_next_chunk+0x76/0x320 [ 60.378127] RSP: 0018:ffffc9000276f4f8 EFLAGS: 00010282 [ 60.383670] RAX: a5a5a5a5a5a5a5a4 RBX: 0000000000000010 RCX: 000000000000001a [ 60.385277] RDX: 0000000000000000 RSI: ffffc9000276f540 RDI: 0000000000000000 [ 60.386554] RBP: 0000000000000000 R08: 0000000000000000 R09: a5a5a5a5a5a5a5a5 [ 60.388194] R10: 0000000000000006 R11: 0000000000000001 R12: ffffc9000276f598 [ 60.389288] R13: 0000000000000040 R14: 0000000000000228 R15: ffff880816cd6458 [ 60.390827] FS: 00007f5c124b9740(0000) GS:ffff88083fc00000(0000) knlGS:0000000000000000 [ 60.392253] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 60.393423] CR2: 00007f5c11bba0b8 CR3: 000000035580e001 CR4: 00000000000606e0 [ 60.394519] Call Trace: [ 60.395252] radix_tree_gang_lookup_tag+0xc4/0x130 [ 60.395948] xfs_perag_get_tag+0x37/0xf0 [ 60.396522] xfs_reclaim_inodes_count+0x32/0x40 [ 60.397178] xfs_fs_nr_cached_objects+0x11/0x20 [ 60.397837] super_cache_count+0x35/0xc0 [ 60.399159] shrink_slab.part.66+0xb1/0x370 [ 60.400194] shrink_node+0x7e/0x1a0 [ 60.401058] try_to_free_pages+0x199/0x470 [ 60.402081] __alloc_pages_slowpath+0x3a1/0xd20 [ 60.403729] __alloc_pages_nodemask+0x1c3/0x200 [ 60.404941] cache_grow_begin+0x20b/0x2e0 [ 60.406164] fallback_alloc+0x160/0x200 [ 60.407088] kmem_cache_alloc+0x111/0x4e0 [ 60.408038] ? xfs_buf_rele+0x61/0x430 [ 60.408925] kmem_zone_alloc+0x61/0xe0 [ 60.409965] xfs_inode_alloc+0x24/0x1d0 ..... Signed-Off-By: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2018-05-11 12:50:23 +08:00
ATTR_LIST(mount_delay),
xfs: introduce an always_cow mode Add a mode where XFS never overwrites existing blocks in place. This is to aid debugging our COW code, and also put infatructure in place for things like possible future support for zoned block devices, which can't support overwrites. This mode is enabled globally by doing a: echo 1 > /sys/fs/xfs/debug/always_cow Note that the parameter is global to allow running all tests in xfstests easily in this mode, which would not easily be possible with a per-fs sysfs file. In always_cow mode persistent preallocations are disabled, and fallocate will fail when called with a 0 mode (with our without FALLOC_FL_KEEP_SIZE), and not create unwritten extent for zeroed space when called with FALLOC_FL_ZERO_RANGE or FALLOC_FL_UNSHARE_RANGE. There are a few interesting xfstests failures when run in always_cow mode: - generic/392 fails because the bytes used in the file used to test hole punch recovery are less after the log replay. This is because the blocks written and then punched out are only freed with a delay due to the logging mechanism. - xfs/170 will fail as the already fragile file streams mechanism doesn't seem to interact well with the COW allocator - xfs/180 xfs/182 xfs/192 xfs/198 xfs/204 and xfs/208 will claim the file system is badly fragmented, but there is not much we can do to avoid that when always writing out of place - xfs/205 fails because overwriting a file in always_cow mode will require new space allocation and the assumption in the test thus don't work anymore. - xfs/326 fails to modify the file at all in always_cow mode after injecting the refcount error, leading to an unexpected md5sum after the remount, but that again is expected Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2019-02-19 01:38:49 +08:00
ATTR_LIST(always_cow),
#ifdef DEBUG
ATTR_LIST(pwork_threads),
#endif
NULL,
};
struct kobj_type xfs_dbg_ktype = {
.release = xfs_sysfs_release,
.sysfs_ops = &xfs_sysfs_ops,
.default_attrs = xfs_dbg_attrs,
};
#endif /* DEBUG */
/* stats */
static inline struct xstats *
to_xstats(struct kobject *kobject)
{
struct xfs_kobj *kobj = to_kobj(kobject);
return container_of(kobj, struct xstats, xs_kobj);
}
STATIC ssize_t
stats_show(
struct kobject *kobject,
char *buf)
{
struct xstats *stats = to_xstats(kobject);
return xfs_stats_format(stats->xs_stats, buf);
}
XFS_SYSFS_ATTR_RO(stats);
STATIC ssize_t
stats_clear_store(
struct kobject *kobject,
const char *buf,
size_t count)
{
int ret;
int val;
struct xstats *stats = to_xstats(kobject);
ret = kstrtoint(buf, 0, &val);
if (ret)
return ret;
if (val != 1)
return -EINVAL;
xfs_stats_clearall(stats->xs_stats);
return count;
}
XFS_SYSFS_ATTR_WO(stats_clear);
static struct attribute *xfs_stats_attrs[] = {
ATTR_LIST(stats),
ATTR_LIST(stats_clear),
NULL,
};
struct kobj_type xfs_stats_ktype = {
.release = xfs_sysfs_release,
.sysfs_ops = &xfs_sysfs_ops,
.default_attrs = xfs_stats_attrs,
};
/* xlog */
static inline struct xlog *
to_xlog(struct kobject *kobject)
{
struct xfs_kobj *kobj = to_kobj(kobject);
return container_of(kobj, struct xlog, l_kobj);
}
STATIC ssize_t
log_head_lsn_show(
struct kobject *kobject,
char *buf)
{
int cycle;
int block;
struct xlog *log = to_xlog(kobject);
spin_lock(&log->l_icloglock);
cycle = log->l_curr_cycle;
block = log->l_curr_block;
spin_unlock(&log->l_icloglock);
return snprintf(buf, PAGE_SIZE, "%d:%d\n", cycle, block);
}
XFS_SYSFS_ATTR_RO(log_head_lsn);
STATIC ssize_t
log_tail_lsn_show(
struct kobject *kobject,
char *buf)
{
int cycle;
int block;
struct xlog *log = to_xlog(kobject);
xlog_crack_atomic_lsn(&log->l_tail_lsn, &cycle, &block);
return snprintf(buf, PAGE_SIZE, "%d:%d\n", cycle, block);
}
XFS_SYSFS_ATTR_RO(log_tail_lsn);
STATIC ssize_t
reserve_grant_head_show(
struct kobject *kobject,
char *buf)
{
int cycle;
int bytes;
struct xlog *log = to_xlog(kobject);
xlog_crack_grant_head(&log->l_reserve_head.grant, &cycle, &bytes);
return snprintf(buf, PAGE_SIZE, "%d:%d\n", cycle, bytes);
}
XFS_SYSFS_ATTR_RO(reserve_grant_head);
STATIC ssize_t
write_grant_head_show(
struct kobject *kobject,
char *buf)
{
int cycle;
int bytes;
struct xlog *log = to_xlog(kobject);
xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &bytes);
return snprintf(buf, PAGE_SIZE, "%d:%d\n", cycle, bytes);
}
XFS_SYSFS_ATTR_RO(write_grant_head);
static struct attribute *xfs_log_attrs[] = {
ATTR_LIST(log_head_lsn),
ATTR_LIST(log_tail_lsn),
ATTR_LIST(reserve_grant_head),
ATTR_LIST(write_grant_head),
NULL,
};
struct kobj_type xfs_log_ktype = {
.release = xfs_sysfs_release,
.sysfs_ops = &xfs_sysfs_ops,
.default_attrs = xfs_log_attrs,
};
/*
* Metadata IO error configuration
*
* The sysfs structure here is:
* ...xfs/<dev>/error/<class>/<errno>/<error_attrs>
*
* where <class> allows us to discriminate between data IO and metadata IO,
* and any other future type of IO (e.g. special inode or directory error
* handling) we care to support.
*/
static inline struct xfs_error_cfg *
to_error_cfg(struct kobject *kobject)
{
struct xfs_kobj *kobj = to_kobj(kobject);
return container_of(kobj, struct xfs_error_cfg, kobj);
}
static inline struct xfs_mount *
err_to_mp(struct kobject *kobject)
{
struct xfs_kobj *kobj = to_kobj(kobject);
return container_of(kobj, struct xfs_mount, m_error_kobj);
}
static ssize_t
max_retries_show(
struct kobject *kobject,
char *buf)
{
int retries;
struct xfs_error_cfg *cfg = to_error_cfg(kobject);
if (cfg->max_retries == XFS_ERR_RETRY_FOREVER)
retries = -1;
else
retries = cfg->max_retries;
return snprintf(buf, PAGE_SIZE, "%d\n", retries);
}
static ssize_t
max_retries_store(
struct kobject *kobject,
const char *buf,
size_t count)
{
struct xfs_error_cfg *cfg = to_error_cfg(kobject);
int ret;
int val;
ret = kstrtoint(buf, 0, &val);
if (ret)
return ret;
if (val < -1)
return -EINVAL;
if (val == -1)
cfg->max_retries = XFS_ERR_RETRY_FOREVER;
else
cfg->max_retries = val;
return count;
}
XFS_SYSFS_ATTR_RW(max_retries);
static ssize_t
retry_timeout_seconds_show(
struct kobject *kobject,
char *buf)
{
int timeout;
struct xfs_error_cfg *cfg = to_error_cfg(kobject);
if (cfg->retry_timeout == XFS_ERR_RETRY_FOREVER)
timeout = -1;
else
timeout = jiffies_to_msecs(cfg->retry_timeout) / MSEC_PER_SEC;
return snprintf(buf, PAGE_SIZE, "%d\n", timeout);
}
static ssize_t
retry_timeout_seconds_store(
struct kobject *kobject,
const char *buf,
size_t count)
{
struct xfs_error_cfg *cfg = to_error_cfg(kobject);
int ret;
int val;
ret = kstrtoint(buf, 0, &val);
if (ret)
return ret;
/* 1 day timeout maximum, -1 means infinite */
if (val < -1 || val > 86400)
return -EINVAL;
if (val == -1)
cfg->retry_timeout = XFS_ERR_RETRY_FOREVER;
else {
cfg->retry_timeout = msecs_to_jiffies(val * MSEC_PER_SEC);
ASSERT(msecs_to_jiffies(val * MSEC_PER_SEC) < LONG_MAX);
}
return count;
}
XFS_SYSFS_ATTR_RW(retry_timeout_seconds);
static ssize_t
fail_at_unmount_show(
struct kobject *kobject,
char *buf)
{
struct xfs_mount *mp = err_to_mp(kobject);
return snprintf(buf, PAGE_SIZE, "%d\n", mp->m_fail_unmount);
}
static ssize_t
fail_at_unmount_store(
struct kobject *kobject,
const char *buf,
size_t count)
{
struct xfs_mount *mp = err_to_mp(kobject);
int ret;
int val;
ret = kstrtoint(buf, 0, &val);
if (ret)
return ret;
if (val < 0 || val > 1)
return -EINVAL;
mp->m_fail_unmount = val;
return count;
}
XFS_SYSFS_ATTR_RW(fail_at_unmount);
static struct attribute *xfs_error_attrs[] = {
ATTR_LIST(max_retries),
ATTR_LIST(retry_timeout_seconds),
NULL,
};
static struct kobj_type xfs_error_cfg_ktype = {
.release = xfs_sysfs_release,
.sysfs_ops = &xfs_sysfs_ops,
.default_attrs = xfs_error_attrs,
};
static struct kobj_type xfs_error_ktype = {
.release = xfs_sysfs_release,
.sysfs_ops = &xfs_sysfs_ops,
};
/*
* Error initialization tables. These need to be ordered in the same
* order as the enums used to index the array. All class init tables need to
* define a "default" behaviour as the first entry, all other entries can be
* empty.
*/
struct xfs_error_init {
char *name;
int max_retries;
int retry_timeout; /* in seconds */
};
static const struct xfs_error_init xfs_error_meta_init[XFS_ERR_ERRNO_MAX] = {
{ .name = "default",
.max_retries = XFS_ERR_RETRY_FOREVER,
.retry_timeout = XFS_ERR_RETRY_FOREVER,
},
{ .name = "EIO",
.max_retries = XFS_ERR_RETRY_FOREVER,
.retry_timeout = XFS_ERR_RETRY_FOREVER,
},
{ .name = "ENOSPC",
.max_retries = XFS_ERR_RETRY_FOREVER,
.retry_timeout = XFS_ERR_RETRY_FOREVER,
},
{ .name = "ENODEV",
.max_retries = 0, /* We can't recover from devices disappearing */
.retry_timeout = 0,
},
};
static int
xfs_error_sysfs_init_class(
struct xfs_mount *mp,
int class,
const char *parent_name,
struct xfs_kobj *parent_kobj,
const struct xfs_error_init init[])
{
struct xfs_error_cfg *cfg;
int error;
int i;
ASSERT(class < XFS_ERR_CLASS_MAX);
error = xfs_sysfs_init(parent_kobj, &xfs_error_ktype,
&mp->m_error_kobj, parent_name);
if (error)
return error;
for (i = 0; i < XFS_ERR_ERRNO_MAX; i++) {
cfg = &mp->m_error_cfg[class][i];
error = xfs_sysfs_init(&cfg->kobj, &xfs_error_cfg_ktype,
parent_kobj, init[i].name);
if (error)
goto out_error;
cfg->max_retries = init[i].max_retries;
if (init[i].retry_timeout == XFS_ERR_RETRY_FOREVER)
cfg->retry_timeout = XFS_ERR_RETRY_FOREVER;
else
cfg->retry_timeout = msecs_to_jiffies(
init[i].retry_timeout * MSEC_PER_SEC);
}
return 0;
out_error:
/* unwind the entries that succeeded */
for (i--; i >= 0; i--) {
cfg = &mp->m_error_cfg[class][i];
xfs_sysfs_del(&cfg->kobj);
}
xfs_sysfs_del(parent_kobj);
return error;
}
int
xfs_error_sysfs_init(
struct xfs_mount *mp)
{
int error;
/* .../xfs/<dev>/error/ */
error = xfs_sysfs_init(&mp->m_error_kobj, &xfs_error_ktype,
&mp->m_kobj, "error");
if (error)
return error;
error = sysfs_create_file(&mp->m_error_kobj.kobject,
ATTR_LIST(fail_at_unmount));
if (error)
goto out_error;
/* .../xfs/<dev>/error/metadata/ */
error = xfs_error_sysfs_init_class(mp, XFS_ERR_METADATA,
"metadata", &mp->m_error_meta_kobj,
xfs_error_meta_init);
if (error)
goto out_error;
return 0;
out_error:
xfs_sysfs_del(&mp->m_error_kobj);
return error;
}
void
xfs_error_sysfs_del(
struct xfs_mount *mp)
{
struct xfs_error_cfg *cfg;
int i, j;
for (i = 0; i < XFS_ERR_CLASS_MAX; i++) {
for (j = 0; j < XFS_ERR_ERRNO_MAX; j++) {
cfg = &mp->m_error_cfg[i][j];
xfs_sysfs_del(&cfg->kobj);
}
}
xfs_sysfs_del(&mp->m_error_meta_kobj);
xfs_sysfs_del(&mp->m_error_kobj);
}
struct xfs_error_cfg *
xfs_error_get_cfg(
struct xfs_mount *mp,
int error_class,
int error)
{
struct xfs_error_cfg *cfg;
if (error < 0)
error = -error;
switch (error) {
case EIO:
cfg = &mp->m_error_cfg[error_class][XFS_ERR_EIO];
break;
case ENOSPC:
cfg = &mp->m_error_cfg[error_class][XFS_ERR_ENOSPC];
break;
case ENODEV:
cfg = &mp->m_error_cfg[error_class][XFS_ERR_ENODEV];
break;
default:
cfg = &mp->m_error_cfg[error_class][XFS_ERR_DEFAULT];
break;
}
return cfg;
}