OpenCloudOS-Kernel/sound/isa/wavefront/wavefront_synth.c

2200 lines
52 KiB
C
Raw Normal View History

/* Copyright (C) by Paul Barton-Davis 1998-1999
*
* Some portions of this file are taken from work that is
* copyright (C) by Hannu Savolainen 1993-1996
*
* This program is distributed under the GNU GENERAL PUBLIC LICENSE (GPL)
* Version 2 (June 1991). See the "COPYING" file distributed with this software
* for more info.
*/
/*
* An ALSA lowlevel driver for Turtle Beach ICS2115 wavetable synth
* (Maui, Tropez, Tropez Plus)
*
* This driver supports the onboard wavetable synthesizer (an ICS2115),
* including patch, sample and program loading and unloading, conversion
* of GUS patches during loading, and full user-level access to all
* WaveFront commands. It tries to provide semi-intelligent patch and
* sample management as well.
*
*/
#include <asm/io.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/time.h>
#include <linux/wait.h>
#include <linux/firmware.h>
#include <linux/moduleparam.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/module.h>
#include <sound/core.h>
#include <sound/snd_wavefront.h>
#include <sound/initval.h>
static int wf_raw = 0; /* we normally check for "raw state" to firmware
loading. if non-zero, then during driver loading, the
state of the board is ignored, and we reset the
board and load the firmware anyway.
*/
static int fx_raw = 1; /* if this is zero, we'll leave the FX processor in
whatever state it is when the driver is loaded.
The default is to download the microprogram and
associated coefficients to set it up for "default"
operation, whatever that means.
*/
static int debug_default = 0; /* you can set this to control debugging
during driver loading. it takes any combination
of the WF_DEBUG_* flags defined in
wavefront.h
*/
/* XXX this needs to be made firmware and hardware version dependent */
#define DEFAULT_OSPATH "wavefront.os"
static char *ospath = DEFAULT_OSPATH; /* the firmware file name */
static int wait_usecs = 150; /* This magic number seems to give pretty optimal
throughput based on my limited experimentation.
If you want to play around with it and find a better
value, be my guest. Remember, the idea is to
get a number that causes us to just busy wait
for as many WaveFront commands as possible, without
coming up with a number so large that we hog the
whole CPU.
Specifically, with this number, out of about 134,000
status waits, only about 250 result in a sleep.
*/
static int sleep_interval = 100; /* HZ/sleep_interval seconds per sleep */
static int sleep_tries = 50; /* number of times we'll try to sleep */
static int reset_time = 2; /* hundreths of a second we wait after a HW
reset for the expected interrupt.
*/
static int ramcheck_time = 20; /* time in seconds to wait while ROM code
checks on-board RAM.
*/
static int osrun_time = 10; /* time in seconds we wait for the OS to
start running.
*/
module_param(wf_raw, int, 0444);
MODULE_PARM_DESC(wf_raw, "if non-zero, assume that we need to boot the OS");
module_param(fx_raw, int, 0444);
MODULE_PARM_DESC(fx_raw, "if non-zero, assume that the FX process needs help");
module_param(debug_default, int, 0444);
MODULE_PARM_DESC(debug_default, "debug parameters for card initialization");
module_param(wait_usecs, int, 0444);
MODULE_PARM_DESC(wait_usecs, "how long to wait without sleeping, usecs");
module_param(sleep_interval, int, 0444);
MODULE_PARM_DESC(sleep_interval, "how long to sleep when waiting for reply");
module_param(sleep_tries, int, 0444);
MODULE_PARM_DESC(sleep_tries, "how many times to try sleeping during a wait");
module_param(ospath, charp, 0444);
MODULE_PARM_DESC(ospath, "pathname to processed ICS2115 OS firmware");
module_param(reset_time, int, 0444);
MODULE_PARM_DESC(reset_time, "how long to wait for a reset to take effect");
module_param(ramcheck_time, int, 0444);
MODULE_PARM_DESC(ramcheck_time, "how many seconds to wait for the RAM test");
module_param(osrun_time, int, 0444);
MODULE_PARM_DESC(osrun_time, "how many seconds to wait for the ICS2115 OS");
/* if WF_DEBUG not defined, no run-time debugging messages will
be available via the debug flag setting. Given the current
beta state of the driver, this will remain set until a future
version.
*/
#define WF_DEBUG 1
#ifdef WF_DEBUG
#define DPRINT(cond, ...) \
if ((dev->debug & (cond)) == (cond)) { \
snd_printk (__VA_ARGS__); \
}
#else
#define DPRINT(cond, args...)
#endif /* WF_DEBUG */
#define LOGNAME "WaveFront: "
/* bitmasks for WaveFront status port value */
#define STAT_RINTR_ENABLED 0x01
#define STAT_CAN_READ 0x02
#define STAT_INTR_READ 0x04
#define STAT_WINTR_ENABLED 0x10
#define STAT_CAN_WRITE 0x20
#define STAT_INTR_WRITE 0x40
static int wavefront_delete_sample (snd_wavefront_t *, int sampnum);
static int wavefront_find_free_sample (snd_wavefront_t *);
struct wavefront_command {
int cmd;
char *action;
unsigned int read_cnt;
unsigned int write_cnt;
int need_ack;
};
static struct {
int errno;
const char *errstr;
} wavefront_errors[] = {
{ 0x01, "Bad sample number" },
{ 0x02, "Out of sample memory" },
{ 0x03, "Bad patch number" },
{ 0x04, "Error in number of voices" },
{ 0x06, "Sample load already in progress" },
{ 0x0B, "No sample load request pending" },
{ 0x0E, "Bad MIDI channel number" },
{ 0x10, "Download Record Error" },
{ 0x80, "Success" },
{ 0x0 }
};
#define NEEDS_ACK 1
static struct wavefront_command wavefront_commands[] = {
{ WFC_SET_SYNTHVOL, "set synthesizer volume", 0, 1, NEEDS_ACK },
{ WFC_GET_SYNTHVOL, "get synthesizer volume", 1, 0, 0},
{ WFC_SET_NVOICES, "set number of voices", 0, 1, NEEDS_ACK },
{ WFC_GET_NVOICES, "get number of voices", 1, 0, 0 },
{ WFC_SET_TUNING, "set synthesizer tuning", 0, 2, NEEDS_ACK },
{ WFC_GET_TUNING, "get synthesizer tuning", 2, 0, 0 },
{ WFC_DISABLE_CHANNEL, "disable synth channel", 0, 1, NEEDS_ACK },
{ WFC_ENABLE_CHANNEL, "enable synth channel", 0, 1, NEEDS_ACK },
{ WFC_GET_CHANNEL_STATUS, "get synth channel status", 3, 0, 0 },
{ WFC_MISYNTH_OFF, "disable midi-in to synth", 0, 0, NEEDS_ACK },
{ WFC_MISYNTH_ON, "enable midi-in to synth", 0, 0, NEEDS_ACK },
{ WFC_VMIDI_ON, "enable virtual midi mode", 0, 0, NEEDS_ACK },
{ WFC_VMIDI_OFF, "disable virtual midi mode", 0, 0, NEEDS_ACK },
{ WFC_MIDI_STATUS, "report midi status", 1, 0, 0 },
{ WFC_FIRMWARE_VERSION, "report firmware version", 2, 0, 0 },
{ WFC_HARDWARE_VERSION, "report hardware version", 2, 0, 0 },
{ WFC_GET_NSAMPLES, "report number of samples", 2, 0, 0 },
{ WFC_INSTOUT_LEVELS, "report instantaneous output levels", 7, 0, 0 },
{ WFC_PEAKOUT_LEVELS, "report peak output levels", 7, 0, 0 },
{ WFC_DOWNLOAD_SAMPLE, "download sample",
0, WF_SAMPLE_BYTES, NEEDS_ACK },
{ WFC_DOWNLOAD_BLOCK, "download block", 0, 0, NEEDS_ACK},
{ WFC_DOWNLOAD_SAMPLE_HEADER, "download sample header",
0, WF_SAMPLE_HDR_BYTES, NEEDS_ACK },
{ WFC_UPLOAD_SAMPLE_HEADER, "upload sample header", 13, 2, 0 },
/* This command requires a variable number of bytes to be written.
There is a hack in snd_wavefront_cmd() to support this. The actual
count is passed in as the read buffer ptr, cast appropriately.
Ugh.
*/
{ WFC_DOWNLOAD_MULTISAMPLE, "download multisample", 0, 0, NEEDS_ACK },
/* This one is a hack as well. We just read the first byte of the
response, don't fetch an ACK, and leave the rest to the
calling function. Ugly, ugly, ugly.
*/
{ WFC_UPLOAD_MULTISAMPLE, "upload multisample", 2, 1, 0 },
{ WFC_DOWNLOAD_SAMPLE_ALIAS, "download sample alias",
0, WF_ALIAS_BYTES, NEEDS_ACK },
{ WFC_UPLOAD_SAMPLE_ALIAS, "upload sample alias", WF_ALIAS_BYTES, 2, 0},
{ WFC_DELETE_SAMPLE, "delete sample", 0, 2, NEEDS_ACK },
{ WFC_IDENTIFY_SAMPLE_TYPE, "identify sample type", 5, 2, 0 },
{ WFC_UPLOAD_SAMPLE_PARAMS, "upload sample parameters" },
{ WFC_REPORT_FREE_MEMORY, "report free memory", 4, 0, 0 },
{ WFC_DOWNLOAD_PATCH, "download patch", 0, 134, NEEDS_ACK },
{ WFC_UPLOAD_PATCH, "upload patch", 132, 2, 0 },
{ WFC_DOWNLOAD_PROGRAM, "download program", 0, 33, NEEDS_ACK },
{ WFC_UPLOAD_PROGRAM, "upload program", 32, 1, 0 },
{ WFC_DOWNLOAD_EDRUM_PROGRAM, "download enhanced drum program", 0, 9,
NEEDS_ACK},
{ WFC_UPLOAD_EDRUM_PROGRAM, "upload enhanced drum program", 8, 1, 0},
{ WFC_SET_EDRUM_CHANNEL, "set enhanced drum program channel",
0, 1, NEEDS_ACK },
{ WFC_DISABLE_DRUM_PROGRAM, "disable drum program", 0, 1, NEEDS_ACK },
{ WFC_REPORT_CHANNEL_PROGRAMS, "report channel program numbers",
32, 0, 0 },
{ WFC_NOOP, "the no-op command", 0, 0, NEEDS_ACK },
{ 0x00 }
};
static const char *
wavefront_errorstr (int errnum)
{
int i;
for (i = 0; wavefront_errors[i].errstr; i++) {
if (wavefront_errors[i].errno == errnum) {
return wavefront_errors[i].errstr;
}
}
return "Unknown WaveFront error";
}
static struct wavefront_command *
wavefront_get_command (int cmd)
{
int i;
for (i = 0; wavefront_commands[i].cmd != 0; i++) {
if (cmd == wavefront_commands[i].cmd) {
return &wavefront_commands[i];
}
}
return NULL;
}
static inline int
wavefront_status (snd_wavefront_t *dev)
{
return inb (dev->status_port);
}
static int
wavefront_sleep (int limit)
{
schedule_timeout_interruptible(limit);
return signal_pending(current);
}
static int
wavefront_wait (snd_wavefront_t *dev, int mask)
{
int i;
/* Spin for a short period of time, because >99% of all
requests to the WaveFront can be serviced inline like this.
*/
for (i = 0; i < wait_usecs; i += 5) {
if (wavefront_status (dev) & mask) {
return 1;
}
udelay(5);
}
for (i = 0; i < sleep_tries; i++) {
if (wavefront_status (dev) & mask) {
return 1;
}
if (wavefront_sleep (HZ/sleep_interval)) {
return (0);
}
}
return (0);
}
static int
wavefront_read (snd_wavefront_t *dev)
{
if (wavefront_wait (dev, STAT_CAN_READ))
return inb (dev->data_port);
DPRINT (WF_DEBUG_DATA, "read timeout.\n");
return -1;
}
static int
wavefront_write (snd_wavefront_t *dev, unsigned char data)
{
if (wavefront_wait (dev, STAT_CAN_WRITE)) {
outb (data, dev->data_port);
return 0;
}
DPRINT (WF_DEBUG_DATA, "write timeout.\n");
return -1;
}
int
snd_wavefront_cmd (snd_wavefront_t *dev,
int cmd, unsigned char *rbuf, unsigned char *wbuf)
{
int ack;
unsigned int i;
int c;
struct wavefront_command *wfcmd;
if ((wfcmd = wavefront_get_command (cmd)) == NULL) {
snd_printk ("command 0x%x not supported.\n",
cmd);
return 1;
}
/* Hack to handle the one variable-size write command. See
wavefront_send_multisample() for the other half of this
gross and ugly strategy.
*/
if (cmd == WFC_DOWNLOAD_MULTISAMPLE) {
wfcmd->write_cnt = (unsigned long) rbuf;
rbuf = NULL;
}
DPRINT (WF_DEBUG_CMD, "0x%x [%s] (%d,%d,%d)\n",
cmd, wfcmd->action, wfcmd->read_cnt,
wfcmd->write_cnt, wfcmd->need_ack);
if (wavefront_write (dev, cmd)) {
DPRINT ((WF_DEBUG_IO|WF_DEBUG_CMD), "cannot request "
"0x%x [%s].\n",
cmd, wfcmd->action);
return 1;
}
if (wfcmd->write_cnt > 0) {
DPRINT (WF_DEBUG_DATA, "writing %d bytes "
"for 0x%x\n",
wfcmd->write_cnt, cmd);
for (i = 0; i < wfcmd->write_cnt; i++) {
if (wavefront_write (dev, wbuf[i])) {
DPRINT (WF_DEBUG_IO, "bad write for byte "
"%d of 0x%x [%s].\n",
i, cmd, wfcmd->action);
return 1;
}
DPRINT (WF_DEBUG_DATA, "write[%d] = 0x%x\n",
i, wbuf[i]);
}
}
if (wfcmd->read_cnt > 0) {
DPRINT (WF_DEBUG_DATA, "reading %d ints "
"for 0x%x\n",
wfcmd->read_cnt, cmd);
for (i = 0; i < wfcmd->read_cnt; i++) {
if ((c = wavefront_read (dev)) == -1) {
DPRINT (WF_DEBUG_IO, "bad read for byte "
"%d of 0x%x [%s].\n",
i, cmd, wfcmd->action);
return 1;
}
/* Now handle errors. Lots of special cases here */
if (c == 0xff) {
if ((c = wavefront_read (dev)) == -1) {
DPRINT (WF_DEBUG_IO, "bad read for "
"error byte at "
"read byte %d "
"of 0x%x [%s].\n",
i, cmd,
wfcmd->action);
return 1;
}
/* Can you believe this madness ? */
if (c == 1 &&
wfcmd->cmd == WFC_IDENTIFY_SAMPLE_TYPE) {
rbuf[0] = WF_ST_EMPTY;
return (0);
} else if (c == 3 &&
wfcmd->cmd == WFC_UPLOAD_PATCH) {
return 3;
} else if (c == 1 &&
wfcmd->cmd == WFC_UPLOAD_PROGRAM) {
return 1;
} else {
DPRINT (WF_DEBUG_IO, "error %d (%s) "
"during "
"read for byte "
"%d of 0x%x "
"[%s].\n",
c,
wavefront_errorstr (c),
i, cmd,
wfcmd->action);
return 1;
}
} else {
rbuf[i] = c;
}
DPRINT (WF_DEBUG_DATA, "read[%d] = 0x%x\n",i, rbuf[i]);
}
}
if ((wfcmd->read_cnt == 0 && wfcmd->write_cnt == 0) || wfcmd->need_ack) {
DPRINT (WF_DEBUG_CMD, "reading ACK for 0x%x\n", cmd);
/* Some commands need an ACK, but return zero instead
of the standard value.
*/
if ((ack = wavefront_read (dev)) == 0) {
ack = WF_ACK;
}
if (ack != WF_ACK) {
if (ack == -1) {
DPRINT (WF_DEBUG_IO, "cannot read ack for "
"0x%x [%s].\n",
cmd, wfcmd->action);
return 1;
} else {
int err = -1; /* something unknown */
if (ack == 0xff) { /* explicit error */
if ((err = wavefront_read (dev)) == -1) {
DPRINT (WF_DEBUG_DATA,
"cannot read err "
"for 0x%x [%s].\n",
cmd, wfcmd->action);
}
}
DPRINT (WF_DEBUG_IO, "0x%x [%s] "
"failed (0x%x, 0x%x, %s)\n",
cmd, wfcmd->action, ack, err,
wavefront_errorstr (err));
return -err;
}
}
DPRINT (WF_DEBUG_DATA, "ack received "
"for 0x%x [%s]\n",
cmd, wfcmd->action);
} else {
DPRINT (WF_DEBUG_CMD, "0x%x [%s] does not need "
"ACK (%d,%d,%d)\n",
cmd, wfcmd->action, wfcmd->read_cnt,
wfcmd->write_cnt, wfcmd->need_ack);
}
return 0;
}
/***********************************************************************
WaveFront data munging
Things here are weird. All data written to the board cannot
have its most significant bit set. Any data item with values
potentially > 0x7F (127) must be split across multiple bytes.
Sometimes, we need to munge numeric values that are represented on
the x86 side as 8-32 bit values. Sometimes, we need to munge data
that is represented on the x86 side as an array of bytes. The most
efficient approach to handling both cases seems to be to use 2
different functions for munging and 2 for de-munging. This avoids
weird casting and worrying about bit-level offsets.
**********************************************************************/
static unsigned char *
munge_int32 (unsigned int src,
unsigned char *dst,
unsigned int dst_size)
{
unsigned int i;
for (i = 0; i < dst_size; i++) {
*dst = src & 0x7F; /* Mask high bit of LSB */
src = src >> 7; /* Rotate Right 7 bits */
/* Note: we leave the upper bits in place */
dst++;
}
return dst;
};
static int
demunge_int32 (unsigned char* src, int src_size)
{
int i;
int outval = 0;
for (i = src_size - 1; i >= 0; i--) {
outval=(outval<<7)+src[i];
}
return outval;
};
static
unsigned char *
munge_buf (unsigned char *src, unsigned char *dst, unsigned int dst_size)
{
unsigned int i;
unsigned int last = dst_size / 2;
for (i = 0; i < last; i++) {
*dst++ = src[i] & 0x7f;
*dst++ = src[i] >> 7;
}
return dst;
}
static
unsigned char *
demunge_buf (unsigned char *src, unsigned char *dst, unsigned int src_bytes)
{
int i;
unsigned char *end = src + src_bytes;
end = src + src_bytes;
/* NOTE: src and dst *CAN* point to the same address */
for (i = 0; src != end; i++) {
dst[i] = *src++;
dst[i] |= (*src++)<<7;
}
return dst;
}
/***********************************************************************
WaveFront: sample, patch and program management.
***********************************************************************/
static int
wavefront_delete_sample (snd_wavefront_t *dev, int sample_num)
{
unsigned char wbuf[2];
int x;
wbuf[0] = sample_num & 0x7f;
wbuf[1] = sample_num >> 7;
if ((x = snd_wavefront_cmd (dev, WFC_DELETE_SAMPLE, NULL, wbuf)) == 0) {
dev->sample_status[sample_num] = WF_ST_EMPTY;
}
return x;
}
static int
wavefront_get_sample_status (snd_wavefront_t *dev, int assume_rom)
{
int i;
unsigned char rbuf[32], wbuf[32];
unsigned int sc_real, sc_alias, sc_multi;
/* check sample status */
if (snd_wavefront_cmd (dev, WFC_GET_NSAMPLES, rbuf, wbuf)) {
snd_printk ("cannot request sample count.\n");
return -1;
}
sc_real = sc_alias = sc_multi = dev->samples_used = 0;
for (i = 0; i < WF_MAX_SAMPLE; i++) {
wbuf[0] = i & 0x7f;
wbuf[1] = i >> 7;
if (snd_wavefront_cmd (dev, WFC_IDENTIFY_SAMPLE_TYPE, rbuf, wbuf)) {
snd_printk(KERN_WARNING "cannot identify sample "
"type of slot %d\n", i);
dev->sample_status[i] = WF_ST_EMPTY;
continue;
}
dev->sample_status[i] = (WF_SLOT_FILLED|rbuf[0]);
if (assume_rom) {
dev->sample_status[i] |= WF_SLOT_ROM;
}
switch (rbuf[0] & WF_ST_MASK) {
case WF_ST_SAMPLE:
sc_real++;
break;
case WF_ST_MULTISAMPLE:
sc_multi++;
break;
case WF_ST_ALIAS:
sc_alias++;
break;
case WF_ST_EMPTY:
break;
default:
snd_printk ("unknown sample type for "
"slot %d (0x%x)\n",
i, rbuf[0]);
}
if (rbuf[0] != WF_ST_EMPTY) {
dev->samples_used++;
}
}
snd_printk ("%d samples used (%d real, %d aliases, %d multi), "
"%d empty\n", dev->samples_used, sc_real, sc_alias, sc_multi,
WF_MAX_SAMPLE - dev->samples_used);
return (0);
}
static int
wavefront_get_patch_status (snd_wavefront_t *dev)
{
unsigned char patchbuf[WF_PATCH_BYTES];
unsigned char patchnum[2];
wavefront_patch *p;
int i, x, cnt, cnt2;
for (i = 0; i < WF_MAX_PATCH; i++) {
patchnum[0] = i & 0x7f;
patchnum[1] = i >> 7;
if ((x = snd_wavefront_cmd (dev, WFC_UPLOAD_PATCH, patchbuf,
patchnum)) == 0) {
dev->patch_status[i] |= WF_SLOT_FILLED;
p = (wavefront_patch *) patchbuf;
dev->sample_status
[p->sample_number|(p->sample_msb<<7)] |=
WF_SLOT_USED;
} else if (x == 3) { /* Bad patch number */
dev->patch_status[i] = 0;
} else {
snd_printk ("upload patch "
"error 0x%x\n", x);
dev->patch_status[i] = 0;
return 1;
}
}
/* program status has already filled in slot_used bits */
for (i = 0, cnt = 0, cnt2 = 0; i < WF_MAX_PATCH; i++) {
if (dev->patch_status[i] & WF_SLOT_FILLED) {
cnt++;
}
if (dev->patch_status[i] & WF_SLOT_USED) {
cnt2++;
}
}
snd_printk ("%d patch slots filled, %d in use\n", cnt, cnt2);
return (0);
}
static int
wavefront_get_program_status (snd_wavefront_t *dev)
{
unsigned char progbuf[WF_PROGRAM_BYTES];
wavefront_program prog;
unsigned char prognum;
int i, x, l, cnt;
for (i = 0; i < WF_MAX_PROGRAM; i++) {
prognum = i;
if ((x = snd_wavefront_cmd (dev, WFC_UPLOAD_PROGRAM, progbuf,
&prognum)) == 0) {
dev->prog_status[i] |= WF_SLOT_USED;
demunge_buf (progbuf, (unsigned char *) &prog,
WF_PROGRAM_BYTES);
for (l = 0; l < WF_NUM_LAYERS; l++) {
if (prog.layer[l].mute) {
dev->patch_status
[prog.layer[l].patch_number] |=
WF_SLOT_USED;
}
}
} else if (x == 1) { /* Bad program number */
dev->prog_status[i] = 0;
} else {
snd_printk ("upload program "
"error 0x%x\n", x);
dev->prog_status[i] = 0;
}
}
for (i = 0, cnt = 0; i < WF_MAX_PROGRAM; i++) {
if (dev->prog_status[i]) {
cnt++;
}
}
snd_printk ("%d programs slots in use\n", cnt);
return (0);
}
static int
wavefront_send_patch (snd_wavefront_t *dev, wavefront_patch_info *header)
{
unsigned char buf[WF_PATCH_BYTES+2];
unsigned char *bptr;
DPRINT (WF_DEBUG_LOAD_PATCH, "downloading patch %d\n",
header->number);
dev->patch_status[header->number] |= WF_SLOT_FILLED;
bptr = buf;
bptr = munge_int32 (header->number, buf, 2);
munge_buf ((unsigned char *)&header->hdr.p, bptr, WF_PATCH_BYTES);
if (snd_wavefront_cmd (dev, WFC_DOWNLOAD_PATCH, NULL, buf)) {
snd_printk ("download patch failed\n");
return -(EIO);
}
return (0);
}
static int
wavefront_send_program (snd_wavefront_t *dev, wavefront_patch_info *header)
{
unsigned char buf[WF_PROGRAM_BYTES+1];
int i;
DPRINT (WF_DEBUG_LOAD_PATCH, "downloading program %d\n",
header->number);
dev->prog_status[header->number] = WF_SLOT_USED;
/* XXX need to zero existing SLOT_USED bit for program_status[i]
where `i' is the program that's being (potentially) overwritten.
*/
for (i = 0; i < WF_NUM_LAYERS; i++) {
if (header->hdr.pr.layer[i].mute) {
dev->patch_status[header->hdr.pr.layer[i].patch_number] |=
WF_SLOT_USED;
/* XXX need to mark SLOT_USED for sample used by
patch_number, but this means we have to load it. Ick.
*/
}
}
buf[0] = header->number;
munge_buf ((unsigned char *)&header->hdr.pr, &buf[1], WF_PROGRAM_BYTES);
if (snd_wavefront_cmd (dev, WFC_DOWNLOAD_PROGRAM, NULL, buf)) {
snd_printk ("download patch failed\n");
return -(EIO);
}
return (0);
}
static int
wavefront_freemem (snd_wavefront_t *dev)
{
char rbuf[8];
if (snd_wavefront_cmd (dev, WFC_REPORT_FREE_MEMORY, rbuf, NULL)) {
snd_printk ("can't get memory stats.\n");
return -1;
} else {
return demunge_int32 (rbuf, 4);
}
}
static int
wavefront_send_sample (snd_wavefront_t *dev,
wavefront_patch_info *header,
u16 __user *dataptr,
int data_is_unsigned)
{
/* samples are downloaded via a 16-bit wide i/o port
(you could think of it as 2 adjacent 8-bit wide ports
but its less efficient that way). therefore, all
the blocksizes and so forth listed in the documentation,
and used conventionally to refer to sample sizes,
which are given in 8-bit units (bytes), need to be
divided by 2.
*/
u16 sample_short = 0;
u32 length;
u16 __user *data_end = NULL;
unsigned int i;
const unsigned int max_blksize = 4096/2;
unsigned int written;
unsigned int blocksize;
int dma_ack;
int blocknum;
unsigned char sample_hdr[WF_SAMPLE_HDR_BYTES];
unsigned char *shptr;
int skip = 0;
int initial_skip = 0;
DPRINT (WF_DEBUG_LOAD_PATCH, "sample %sdownload for slot %d, "
"type %d, %d bytes from 0x%lx\n",
header->size ? "" : "header ",
header->number, header->subkey,
header->size,
(unsigned long) header->dataptr);
if (header->number == WAVEFRONT_FIND_FREE_SAMPLE_SLOT) {
int x;
if ((x = wavefront_find_free_sample (dev)) < 0) {
return -ENOMEM;
}
snd_printk ("unspecified sample => %d\n", x);
header->number = x;
}
if (header->size) {
/* XXX it's a debatable point whether or not RDONLY semantics
on the ROM samples should cover just the sample data or
the sample header. For now, it only covers the sample data,
so anyone is free at all times to rewrite sample headers.
My reason for this is that we have the sample headers
available in the WFB file for General MIDI, and so these
can always be reset if needed. The sample data, however,
cannot be recovered without a complete reset and firmware
reload of the ICS2115, which is a very expensive operation.
So, doing things this way allows us to honor the notion of
"RESETSAMPLES" reasonably cheaply. Note however, that this
is done purely at user level: there is no WFB parser in
this driver, and so a complete reset (back to General MIDI,
or theoretically some other configuration) is the
responsibility of the user level library.
To try to do this in the kernel would be a little
crazy: we'd need 158K of kernel space just to hold
a copy of the patch/program/sample header data.
*/
if (dev->rom_samples_rdonly) {
if (dev->sample_status[header->number] & WF_SLOT_ROM) {
snd_printk ("sample slot %d "
"write protected\n",
header->number);
return -EACCES;
}
}
wavefront_delete_sample (dev, header->number);
}
if (header->size) {
dev->freemem = wavefront_freemem (dev);
if (dev->freemem < (int)header->size) {
snd_printk ("insufficient memory to "
"load %d byte sample.\n",
header->size);
return -ENOMEM;
}
}
skip = WF_GET_CHANNEL(&header->hdr.s);
if (skip > 0 && header->hdr.s.SampleResolution != LINEAR_16BIT) {
snd_printk ("channel selection only "
"possible on 16-bit samples");
return -(EINVAL);
}
switch (skip) {
case 0:
initial_skip = 0;
skip = 1;
break;
case 1:
initial_skip = 0;
skip = 2;
break;
case 2:
initial_skip = 1;
skip = 2;
break;
case 3:
initial_skip = 2;
skip = 3;
break;
case 4:
initial_skip = 3;
skip = 4;
break;
case 5:
initial_skip = 4;
skip = 5;
break;
case 6:
initial_skip = 5;
skip = 6;
break;
}
DPRINT (WF_DEBUG_LOAD_PATCH, "channel selection: %d => "
"initial skip = %d, skip = %d\n",
WF_GET_CHANNEL (&header->hdr.s),
initial_skip, skip);
/* Be safe, and zero the "Unused" bits ... */
WF_SET_CHANNEL(&header->hdr.s, 0);
/* adjust size for 16 bit samples by dividing by two. We always
send 16 bits per write, even for 8 bit samples, so the length
is always half the size of the sample data in bytes.
*/
length = header->size / 2;
/* the data we're sent has not been munged, and in fact, the
header we have to send isn't just a munged copy either.
so, build the sample header right here.
*/
shptr = &sample_hdr[0];
shptr = munge_int32 (header->number, shptr, 2);
if (header->size) {
shptr = munge_int32 (length, shptr, 4);
}
/* Yes, a 4 byte result doesn't contain all of the offset bits,
but the offset only uses 24 bits.
*/
shptr = munge_int32 (*((u32 *) &header->hdr.s.sampleStartOffset),
shptr, 4);
shptr = munge_int32 (*((u32 *) &header->hdr.s.loopStartOffset),
shptr, 4);
shptr = munge_int32 (*((u32 *) &header->hdr.s.loopEndOffset),
shptr, 4);
shptr = munge_int32 (*((u32 *) &header->hdr.s.sampleEndOffset),
shptr, 4);
/* This one is truly weird. What kind of weirdo decided that in
a system dominated by 16 and 32 bit integers, they would use
a just 12 bits ?
*/
shptr = munge_int32 (header->hdr.s.FrequencyBias, shptr, 3);
/* Why is this nybblified, when the MSB is *always* zero ?
Anyway, we can't take address of bitfield, so make a
good-faith guess at where it starts.
*/
shptr = munge_int32 (*(&header->hdr.s.FrequencyBias+1),
shptr, 2);
if (snd_wavefront_cmd (dev,
header->size ?
WFC_DOWNLOAD_SAMPLE : WFC_DOWNLOAD_SAMPLE_HEADER,
NULL, sample_hdr)) {
snd_printk ("sample %sdownload refused.\n",
header->size ? "" : "header ");
return -(EIO);
}
if (header->size == 0) {
goto sent; /* Sorry. Just had to have one somewhere */
}
data_end = dataptr + length;
/* Do any initial skip over an unused channel's data */
dataptr += initial_skip;
for (written = 0, blocknum = 0;
written < length; written += max_blksize, blocknum++) {
if ((length - written) > max_blksize) {
blocksize = max_blksize;
} else {
/* round to nearest 16-byte value */
blocksize = ALIGN(length - written, 8);
}
if (snd_wavefront_cmd (dev, WFC_DOWNLOAD_BLOCK, NULL, NULL)) {
snd_printk ("download block "
"request refused.\n");
return -(EIO);
}
for (i = 0; i < blocksize; i++) {
if (dataptr < data_end) {
__get_user (sample_short, dataptr);
dataptr += skip;
if (data_is_unsigned) { /* GUS ? */
if (WF_SAMPLE_IS_8BIT(&header->hdr.s)) {
/* 8 bit sample
resolution, sign
extend both bytes.
*/
((unsigned char*)
&sample_short)[0] += 0x7f;
((unsigned char*)
&sample_short)[1] += 0x7f;
} else {
/* 16 bit sample
resolution, sign
extend the MSB.
*/
sample_short += 0x7fff;
}
}
} else {
/* In padding section of final block:
Don't fetch unsupplied data from
user space, just continue with
whatever the final value was.
*/
}
if (i < blocksize - 1) {
outw (sample_short, dev->block_port);
} else {
outw (sample_short, dev->last_block_port);
}
}
/* Get "DMA page acknowledge", even though its really
nothing to do with DMA at all.
*/
if ((dma_ack = wavefront_read (dev)) != WF_DMA_ACK) {
if (dma_ack == -1) {
snd_printk ("upload sample "
"DMA ack timeout\n");
return -(EIO);
} else {
snd_printk ("upload sample "
"DMA ack error 0x%x\n",
dma_ack);
return -(EIO);
}
}
}
dev->sample_status[header->number] = (WF_SLOT_FILLED|WF_ST_SAMPLE);
/* Note, label is here because sending the sample header shouldn't
alter the sample_status info at all.
*/
sent:
return (0);
}
static int
wavefront_send_alias (snd_wavefront_t *dev, wavefront_patch_info *header)
{
unsigned char alias_hdr[WF_ALIAS_BYTES];
DPRINT (WF_DEBUG_LOAD_PATCH, "download alias, %d is "
"alias for %d\n",
header->number,
header->hdr.a.OriginalSample);
munge_int32 (header->number, &alias_hdr[0], 2);
munge_int32 (header->hdr.a.OriginalSample, &alias_hdr[2], 2);
munge_int32 (*((unsigned int *)&header->hdr.a.sampleStartOffset),
&alias_hdr[4], 4);
munge_int32 (*((unsigned int *)&header->hdr.a.loopStartOffset),
&alias_hdr[8], 4);
munge_int32 (*((unsigned int *)&header->hdr.a.loopEndOffset),
&alias_hdr[12], 4);
munge_int32 (*((unsigned int *)&header->hdr.a.sampleEndOffset),
&alias_hdr[16], 4);
munge_int32 (header->hdr.a.FrequencyBias, &alias_hdr[20], 3);
munge_int32 (*(&header->hdr.a.FrequencyBias+1), &alias_hdr[23], 2);
if (snd_wavefront_cmd (dev, WFC_DOWNLOAD_SAMPLE_ALIAS, NULL, alias_hdr)) {
snd_printk ("download alias failed.\n");
return -(EIO);
}
dev->sample_status[header->number] = (WF_SLOT_FILLED|WF_ST_ALIAS);
return (0);
}
static int
wavefront_send_multisample (snd_wavefront_t *dev, wavefront_patch_info *header)
{
int i;
int num_samples;
unsigned char *msample_hdr;
msample_hdr = kmalloc(WF_MSAMPLE_BYTES, GFP_KERNEL);
if (! msample_hdr)
return -ENOMEM;
munge_int32 (header->number, &msample_hdr[0], 2);
/* You'll recall at this point that the "number of samples" value
in a wavefront_multisample struct is actually the log2 of the
real number of samples.
*/
num_samples = (1<<(header->hdr.ms.NumberOfSamples&7));
msample_hdr[2] = (unsigned char) header->hdr.ms.NumberOfSamples;
DPRINT (WF_DEBUG_LOAD_PATCH, "multi %d with %d=%d samples\n",
header->number,
header->hdr.ms.NumberOfSamples,
num_samples);
for (i = 0; i < num_samples; i++) {
DPRINT(WF_DEBUG_LOAD_PATCH|WF_DEBUG_DATA, "sample[%d] = %d\n",
i, header->hdr.ms.SampleNumber[i]);
munge_int32 (header->hdr.ms.SampleNumber[i],
&msample_hdr[3+(i*2)], 2);
}
/* Need a hack here to pass in the number of bytes
to be written to the synth. This is ugly, and perhaps
one day, I'll fix it.
*/
if (snd_wavefront_cmd (dev, WFC_DOWNLOAD_MULTISAMPLE,
(unsigned char *) (long) ((num_samples*2)+3),
msample_hdr)) {
snd_printk ("download of multisample failed.\n");
kfree(msample_hdr);
return -(EIO);
}
dev->sample_status[header->number] = (WF_SLOT_FILLED|WF_ST_MULTISAMPLE);
kfree(msample_hdr);
return (0);
}
static int
wavefront_fetch_multisample (snd_wavefront_t *dev,
wavefront_patch_info *header)
{
int i;
unsigned char log_ns[1];
unsigned char number[2];
int num_samples;
munge_int32 (header->number, number, 2);
if (snd_wavefront_cmd (dev, WFC_UPLOAD_MULTISAMPLE, log_ns, number)) {
snd_printk ("upload multisample failed.\n");
return -(EIO);
}
DPRINT (WF_DEBUG_DATA, "msample %d has %d samples\n",
header->number, log_ns[0]);
header->hdr.ms.NumberOfSamples = log_ns[0];
/* get the number of samples ... */
num_samples = (1 << log_ns[0]);
for (i = 0; i < num_samples; i++) {
char d[2];
int val;
if ((val = wavefront_read (dev)) == -1) {
snd_printk ("upload multisample failed "
"during sample loop.\n");
return -(EIO);
}
d[0] = val;
if ((val = wavefront_read (dev)) == -1) {
snd_printk ("upload multisample failed "
"during sample loop.\n");
return -(EIO);
}
d[1] = val;
header->hdr.ms.SampleNumber[i] =
demunge_int32 ((unsigned char *) d, 2);
DPRINT (WF_DEBUG_DATA, "msample sample[%d] = %d\n",
i, header->hdr.ms.SampleNumber[i]);
}
return (0);
}
static int
wavefront_send_drum (snd_wavefront_t *dev, wavefront_patch_info *header)
{
unsigned char drumbuf[WF_DRUM_BYTES];
wavefront_drum *drum = &header->hdr.d;
int i;
DPRINT (WF_DEBUG_LOAD_PATCH, "downloading edrum for MIDI "
"note %d, patch = %d\n",
header->number, drum->PatchNumber);
drumbuf[0] = header->number & 0x7f;
for (i = 0; i < 4; i++) {
munge_int32 (((unsigned char *)drum)[i], &drumbuf[1+(i*2)], 2);
}
if (snd_wavefront_cmd (dev, WFC_DOWNLOAD_EDRUM_PROGRAM, NULL, drumbuf)) {
snd_printk ("download drum failed.\n");
return -(EIO);
}
return (0);
}
static int
wavefront_find_free_sample (snd_wavefront_t *dev)
{
int i;
for (i = 0; i < WF_MAX_SAMPLE; i++) {
if (!(dev->sample_status[i] & WF_SLOT_FILLED)) {
return i;
}
}
snd_printk ("no free sample slots!\n");
return -1;
}
#if 0
static int
wavefront_find_free_patch (snd_wavefront_t *dev)
{
int i;
for (i = 0; i < WF_MAX_PATCH; i++) {
if (!(dev->patch_status[i] & WF_SLOT_FILLED)) {
return i;
}
}
snd_printk ("no free patch slots!\n");
return -1;
}
#endif
static int
wavefront_load_patch (snd_wavefront_t *dev, const char __user *addr)
{
wavefront_patch_info *header;
int err;
header = kmalloc(sizeof(*header), GFP_KERNEL);
if (! header)
return -ENOMEM;
if (copy_from_user (header, addr, sizeof(wavefront_patch_info) -
sizeof(wavefront_any))) {
snd_printk ("bad address for load patch.\n");
err = -EFAULT;
goto __error;
}
DPRINT (WF_DEBUG_LOAD_PATCH, "download "
"Sample type: %d "
"Sample number: %d "
"Sample size: %d\n",
header->subkey,
header->number,
header->size);
switch (header->subkey) {
case WF_ST_SAMPLE: /* sample or sample_header, based on patch->size */
if (copy_from_user (&header->hdr.s, header->hdrptr,
sizeof (wavefront_sample))) {
err = -EFAULT;
break;
}
err = wavefront_send_sample (dev, header, header->dataptr, 0);
break;
case WF_ST_MULTISAMPLE:
if (copy_from_user (&header->hdr.s, header->hdrptr,
sizeof (wavefront_multisample))) {
err = -EFAULT;
break;
}
err = wavefront_send_multisample (dev, header);
break;
case WF_ST_ALIAS:
if (copy_from_user (&header->hdr.a, header->hdrptr,
sizeof (wavefront_alias))) {
err = -EFAULT;
break;
}
err = wavefront_send_alias (dev, header);
break;
case WF_ST_DRUM:
if (copy_from_user (&header->hdr.d, header->hdrptr,
sizeof (wavefront_drum))) {
err = -EFAULT;
break;
}
err = wavefront_send_drum (dev, header);
break;
case WF_ST_PATCH:
if (copy_from_user (&header->hdr.p, header->hdrptr,
sizeof (wavefront_patch))) {
err = -EFAULT;
break;
}
err = wavefront_send_patch (dev, header);
break;
case WF_ST_PROGRAM:
if (copy_from_user (&header->hdr.pr, header->hdrptr,
sizeof (wavefront_program))) {
err = -EFAULT;
break;
}
err = wavefront_send_program (dev, header);
break;
default:
snd_printk ("unknown patch type %d.\n",
header->subkey);
err = -EINVAL;
break;
}
__error:
kfree(header);
return err;
}
/***********************************************************************
WaveFront: hardware-dependent interface
***********************************************************************/
static void
process_sample_hdr (u8 *buf)
{
wavefront_sample s;
u8 *ptr;
ptr = buf;
/* The board doesn't send us an exact copy of a "wavefront_sample"
in response to an Upload Sample Header command. Instead, we
have to convert the data format back into our data structure,
just as in the Download Sample command, where we have to do
something very similar in the reverse direction.
*/
*((u32 *) &s.sampleStartOffset) = demunge_int32 (ptr, 4); ptr += 4;
*((u32 *) &s.loopStartOffset) = demunge_int32 (ptr, 4); ptr += 4;
*((u32 *) &s.loopEndOffset) = demunge_int32 (ptr, 4); ptr += 4;
*((u32 *) &s.sampleEndOffset) = demunge_int32 (ptr, 4); ptr += 4;
*((u32 *) &s.FrequencyBias) = demunge_int32 (ptr, 3); ptr += 3;
s.SampleResolution = *ptr & 0x3;
s.Loop = *ptr & 0x8;
s.Bidirectional = *ptr & 0x10;
s.Reverse = *ptr & 0x40;
/* Now copy it back to where it came from */
memcpy (buf, (unsigned char *) &s, sizeof (wavefront_sample));
}
static int
wavefront_synth_control (snd_wavefront_card_t *acard,
wavefront_control *wc)
{
snd_wavefront_t *dev = &acard->wavefront;
unsigned char patchnumbuf[2];
int i;
DPRINT (WF_DEBUG_CMD, "synth control with "
"cmd 0x%x\n", wc->cmd);
/* Pre-handling of or for various commands */
switch (wc->cmd) {
case WFC_DISABLE_INTERRUPTS:
snd_printk ("interrupts disabled.\n");
outb (0x80|0x20, dev->control_port);
dev->interrupts_are_midi = 1;
return 0;
case WFC_ENABLE_INTERRUPTS:
snd_printk ("interrupts enabled.\n");
outb (0x80|0x40|0x20, dev->control_port);
dev->interrupts_are_midi = 1;
return 0;
case WFC_INTERRUPT_STATUS:
wc->rbuf[0] = dev->interrupts_are_midi;
return 0;
case WFC_ROMSAMPLES_RDONLY:
dev->rom_samples_rdonly = wc->wbuf[0];
wc->status = 0;
return 0;
case WFC_IDENTIFY_SLOT_TYPE:
i = wc->wbuf[0] | (wc->wbuf[1] << 7);
if (i <0 || i >= WF_MAX_SAMPLE) {
snd_printk ("invalid slot ID %d\n",
i);
wc->status = EINVAL;
return -EINVAL;
}
wc->rbuf[0] = dev->sample_status[i];
wc->status = 0;
return 0;
case WFC_DEBUG_DRIVER:
dev->debug = wc->wbuf[0];
snd_printk ("debug = 0x%x\n", dev->debug);
return 0;
case WFC_UPLOAD_PATCH:
munge_int32 (*((u32 *) wc->wbuf), patchnumbuf, 2);
memcpy (wc->wbuf, patchnumbuf, 2);
break;
case WFC_UPLOAD_MULTISAMPLE:
/* multisamples have to be handled differently, and
cannot be dealt with properly by snd_wavefront_cmd() alone.
*/
wc->status = wavefront_fetch_multisample
(dev, (wavefront_patch_info *) wc->rbuf);
return 0;
case WFC_UPLOAD_SAMPLE_ALIAS:
snd_printk ("support for sample alias upload "
"being considered.\n");
wc->status = EINVAL;
return -EINVAL;
}
wc->status = snd_wavefront_cmd (dev, wc->cmd, wc->rbuf, wc->wbuf);
/* Post-handling of certain commands.
In particular, if the command was an upload, demunge the data
so that the user-level doesn't have to think about it.
*/
if (wc->status == 0) {
switch (wc->cmd) {
/* intercept any freemem requests so that we know
we are always current with the user-level view
of things.
*/
case WFC_REPORT_FREE_MEMORY:
dev->freemem = demunge_int32 (wc->rbuf, 4);
break;
case WFC_UPLOAD_PATCH:
demunge_buf (wc->rbuf, wc->rbuf, WF_PATCH_BYTES);
break;
case WFC_UPLOAD_PROGRAM:
demunge_buf (wc->rbuf, wc->rbuf, WF_PROGRAM_BYTES);
break;
case WFC_UPLOAD_EDRUM_PROGRAM:
demunge_buf (wc->rbuf, wc->rbuf, WF_DRUM_BYTES - 1);
break;
case WFC_UPLOAD_SAMPLE_HEADER:
process_sample_hdr (wc->rbuf);
break;
case WFC_UPLOAD_SAMPLE_ALIAS:
snd_printk ("support for "
"sample aliases still "
"being considered.\n");
break;
case WFC_VMIDI_OFF:
snd_wavefront_midi_disable_virtual (acard);
break;
case WFC_VMIDI_ON:
snd_wavefront_midi_enable_virtual (acard);
break;
}
}
return 0;
}
int
snd_wavefront_synth_open (struct snd_hwdep *hw, struct file *file)
{
if (!try_module_get(hw->card->module))
return -EFAULT;
file->private_data = hw;
return 0;
}
int
snd_wavefront_synth_release (struct snd_hwdep *hw, struct file *file)
{
module_put(hw->card->module);
return 0;
}
int
snd_wavefront_synth_ioctl (struct snd_hwdep *hw, struct file *file,
unsigned int cmd, unsigned long arg)
{
struct snd_card *card;
snd_wavefront_t *dev;
snd_wavefront_card_t *acard;
wavefront_control *wc;
void __user *argp = (void __user *)arg;
int err;
card = (struct snd_card *) hw->card;
if (snd_BUG_ON(!card))
return -ENODEV;
if (snd_BUG_ON(!card->private_data))
return -ENODEV;
acard = card->private_data;
dev = &acard->wavefront;
switch (cmd) {
case WFCTL_LOAD_SPP:
if (wavefront_load_patch (dev, argp) != 0) {
return -EIO;
}
break;
case WFCTL_WFCMD:
wc = memdup_user(argp, sizeof(*wc));
if (IS_ERR(wc))
return PTR_ERR(wc);
if (wavefront_synth_control (acard, wc) < 0)
err = -EIO;
else if (copy_to_user (argp, wc, sizeof (*wc)))
err = -EFAULT;
else
err = 0;
kfree(wc);
return err;
default:
return -EINVAL;
}
return 0;
}
/***********************************************************************/
/* WaveFront: interface for card-level wavefront module */
/***********************************************************************/
void
snd_wavefront_internal_interrupt (snd_wavefront_card_t *card)
{
snd_wavefront_t *dev = &card->wavefront;
/*
Some comments on interrupts. I attempted a version of this
driver that used interrupts throughout the code instead of
doing busy and/or sleep-waiting. Alas, it appears that once
the Motorola firmware is downloaded, the card *never*
generates an RX interrupt. These are successfully generated
during firmware loading, and after that wavefront_status()
reports that an interrupt is pending on the card from time
to time, but it never seems to be delivered to this
driver. Note also that wavefront_status() continues to
report that RX interrupts are enabled, suggesting that I
didn't goof up and disable them by mistake.
Thus, I stepped back to a prior version of
wavefront_wait(), the only place where this really
matters. Its sad, but I've looked through the code to check
on things, and I really feel certain that the Motorola
firmware prevents RX-ready interrupts.
*/
if ((wavefront_status(dev) & (STAT_INTR_READ|STAT_INTR_WRITE)) == 0) {
return;
}
spin_lock(&dev->irq_lock);
dev->irq_ok = 1;
dev->irq_cnt++;
spin_unlock(&dev->irq_lock);
wake_up(&dev->interrupt_sleeper);
}
/* STATUS REGISTER
0 Host Rx Interrupt Enable (1=Enabled)
1 Host Rx Register Full (1=Full)
2 Host Rx Interrupt Pending (1=Interrupt)
3 Unused
4 Host Tx Interrupt (1=Enabled)
5 Host Tx Register empty (1=Empty)
6 Host Tx Interrupt Pending (1=Interrupt)
7 Unused
*/
static int
snd_wavefront_interrupt_bits (int irq)
{
int bits;
switch (irq) {
case 9:
bits = 0x00;
break;
case 5:
bits = 0x08;
break;
case 12:
bits = 0x10;
break;
case 15:
bits = 0x18;
break;
default:
snd_printk ("invalid IRQ %d\n", irq);
bits = -1;
}
return bits;
}
static void
wavefront_should_cause_interrupt (snd_wavefront_t *dev,
int val, int port, unsigned long timeout)
{
wait_queue_t wait;
init_waitqueue_entry(&wait, current);
spin_lock_irq(&dev->irq_lock);
add_wait_queue(&dev->interrupt_sleeper, &wait);
dev->irq_ok = 0;
outb (val,port);
spin_unlock_irq(&dev->irq_lock);
while (!dev->irq_ok && time_before(jiffies, timeout)) {
schedule_timeout_uninterruptible(1);
barrier();
}
}
static int
wavefront_reset_to_cleanliness (snd_wavefront_t *dev)
{
int bits;
int hwv[2];
/* IRQ already checked */
bits = snd_wavefront_interrupt_bits (dev->irq);
/* try reset of port */
outb (0x0, dev->control_port);
/* At this point, the board is in reset, and the H/W initialization
register is accessed at the same address as the data port.
Bit 7 - Enable IRQ Driver
0 - Tri-state the Wave-Board drivers for the PC Bus IRQs
1 - Enable IRQ selected by bits 5:3 to be driven onto the PC Bus.
Bit 6 - MIDI Interface Select
0 - Use the MIDI Input from the 26-pin WaveBlaster
compatible header as the serial MIDI source
1 - Use the MIDI Input from the 9-pin D connector as the
serial MIDI source.
Bits 5:3 - IRQ Selection
0 0 0 - IRQ 2/9
0 0 1 - IRQ 5
0 1 0 - IRQ 12
0 1 1 - IRQ 15
1 0 0 - Reserved
1 0 1 - Reserved
1 1 0 - Reserved
1 1 1 - Reserved
Bits 2:1 - Reserved
Bit 0 - Disable Boot ROM
0 - memory accesses to 03FC30-03FFFFH utilize the internal Boot ROM
1 - memory accesses to 03FC30-03FFFFH are directed to external
storage.
*/
/* configure hardware: IRQ, enable interrupts,
plus external 9-pin MIDI interface selected
*/
outb (0x80 | 0x40 | bits, dev->data_port);
/* CONTROL REGISTER
0 Host Rx Interrupt Enable (1=Enabled) 0x1
1 Unused 0x2
2 Unused 0x4
3 Unused 0x8
4 Host Tx Interrupt Enable 0x10
5 Mute (0=Mute; 1=Play) 0x20
6 Master Interrupt Enable (1=Enabled) 0x40
7 Master Reset (0=Reset; 1=Run) 0x80
Take us out of reset, mute output, master + TX + RX interrupts on.
We'll get an interrupt presumably to tell us that the TX
register is clear.
*/
wavefront_should_cause_interrupt(dev, 0x80|0x40|0x10|0x1,
dev->control_port,
(reset_time*HZ)/100);
/* Note: data port is now the data port, not the h/w initialization
port.
*/
if (!dev->irq_ok) {
snd_printk ("intr not received after h/w un-reset.\n");
goto gone_bad;
}
/* Note: data port is now the data port, not the h/w initialization
port.
At this point, only "HW VERSION" or "DOWNLOAD OS" commands
will work. So, issue one of them, and wait for TX
interrupt. This can take a *long* time after a cold boot,
while the ISC ROM does its RAM test. The SDK says up to 4
seconds - with 12MB of RAM on a Tropez+, it takes a lot
longer than that (~16secs). Note that the card understands
the difference between a warm and a cold boot, so
subsequent ISC2115 reboots (say, caused by module
reloading) will get through this much faster.
XXX Interesting question: why is no RX interrupt received first ?
*/
wavefront_should_cause_interrupt(dev, WFC_HARDWARE_VERSION,
dev->data_port, ramcheck_time*HZ);
if (!dev->irq_ok) {
snd_printk ("post-RAM-check interrupt not received.\n");
goto gone_bad;
}
if (!wavefront_wait (dev, STAT_CAN_READ)) {
snd_printk ("no response to HW version cmd.\n");
goto gone_bad;
}
if ((hwv[0] = wavefront_read (dev)) == -1) {
snd_printk ("board not responding correctly.\n");
goto gone_bad;
}
if (hwv[0] == 0xFF) { /* NAK */
/* Board's RAM test failed. Try to read error code,
and tell us about it either way.
*/
if ((hwv[0] = wavefront_read (dev)) == -1) {
snd_printk ("on-board RAM test failed "
"(bad error code).\n");
} else {
snd_printk ("on-board RAM test failed "
"(error code: 0x%x).\n",
hwv[0]);
}
goto gone_bad;
}
/* We're OK, just get the next byte of the HW version response */
if ((hwv[1] = wavefront_read (dev)) == -1) {
snd_printk ("incorrect h/w response.\n");
goto gone_bad;
}
snd_printk ("hardware version %d.%d\n",
hwv[0], hwv[1]);
return 0;
gone_bad:
return (1);
}
static int
wavefront_download_firmware (snd_wavefront_t *dev, char *path)
{
const unsigned char *buf;
int len, err;
int section_cnt_downloaded = 0;
const struct firmware *firmware;
err = request_firmware(&firmware, path, dev->card->dev);
if (err < 0) {
snd_printk(KERN_ERR "firmware (%s) download failed!!!\n", path);
return 1;
}
len = 0;
buf = firmware->data;
for (;;) {
int section_length = *(signed char *)buf;
if (section_length == 0)
break;
if (section_length < 0 || section_length > WF_SECTION_MAX) {
snd_printk(KERN_ERR
"invalid firmware section length %d\n",
section_length);
goto failure;
}
buf++;
len++;
if (firmware->size < len + section_length) {
snd_printk(KERN_ERR "firmware section read error.\n");
goto failure;
}
/* Send command */
if (wavefront_write(dev, WFC_DOWNLOAD_OS))
goto failure;
for (; section_length; section_length--) {
if (wavefront_write(dev, *buf))
goto failure;
buf++;
len++;
}
/* get ACK */
if (!wavefront_wait(dev, STAT_CAN_READ)) {
snd_printk(KERN_ERR "time out for firmware ACK.\n");
goto failure;
}
err = inb(dev->data_port);
if (err != WF_ACK) {
snd_printk(KERN_ERR
"download of section #%d not "
"acknowledged, ack = 0x%x\n",
section_cnt_downloaded + 1, err);
goto failure;
}
section_cnt_downloaded++;
}
release_firmware(firmware);
return 0;
failure:
release_firmware(firmware);
snd_printk(KERN_ERR "firmware download failed!!!\n");
return 1;
}
static int
wavefront_do_reset (snd_wavefront_t *dev)
{
char voices[1];
if (wavefront_reset_to_cleanliness (dev)) {
snd_printk ("hw reset failed.\n");
goto gone_bad;
}
if (dev->israw) {
if (wavefront_download_firmware (dev, ospath)) {
goto gone_bad;
}
dev->israw = 0;
/* Wait for the OS to get running. The protocol for
this is non-obvious, and was determined by
using port-IO tracing in DOSemu and some
experimentation here.
Rather than using timed waits, use interrupts creatively.
*/
wavefront_should_cause_interrupt (dev, WFC_NOOP,
dev->data_port,
(osrun_time*HZ));
if (!dev->irq_ok) {
snd_printk ("no post-OS interrupt.\n");
goto gone_bad;
}
/* Now, do it again ! */
wavefront_should_cause_interrupt (dev, WFC_NOOP,
dev->data_port, (10*HZ));
if (!dev->irq_ok) {
snd_printk ("no post-OS interrupt(2).\n");
goto gone_bad;
}
/* OK, no (RX/TX) interrupts any more, but leave mute
in effect.
*/
outb (0x80|0x40, dev->control_port);
}
/* SETUPSND.EXE asks for sample memory config here, but since i
have no idea how to interpret the result, we'll forget
about it.
*/
if ((dev->freemem = wavefront_freemem (dev)) < 0) {
goto gone_bad;
}
snd_printk ("available DRAM %dk\n", dev->freemem / 1024);
if (wavefront_write (dev, 0xf0) ||
wavefront_write (dev, 1) ||
(wavefront_read (dev) < 0)) {
dev->debug = 0;
snd_printk ("MPU emulation mode not set.\n");
goto gone_bad;
}
voices[0] = 32;
if (snd_wavefront_cmd (dev, WFC_SET_NVOICES, NULL, voices)) {
snd_printk ("cannot set number of voices to 32.\n");
goto gone_bad;
}
return 0;
gone_bad:
/* reset that sucker so that it doesn't bother us. */
outb (0x0, dev->control_port);
dev->interrupts_are_midi = 0;
return 1;
}
int
snd_wavefront_start (snd_wavefront_t *dev)
{
int samples_are_from_rom;
/* IMPORTANT: assumes that snd_wavefront_detect() and/or
wavefront_reset_to_cleanliness() has already been called
*/
if (dev->israw) {
samples_are_from_rom = 1;
} else {
/* XXX is this always true ? */
samples_are_from_rom = 0;
}
if (dev->israw || fx_raw) {
if (wavefront_do_reset (dev)) {
return -1;
}
}
/* Check for FX device, present only on Tropez+ */
dev->has_fx = (snd_wavefront_fx_detect (dev) == 0);
if (dev->has_fx && fx_raw) {
snd_wavefront_fx_start (dev);
}
wavefront_get_sample_status (dev, samples_are_from_rom);
wavefront_get_program_status (dev);
wavefront_get_patch_status (dev);
/* Start normal operation: unreset, master interrupt enabled, no mute
*/
outb (0x80|0x40|0x20, dev->control_port);
return (0);
}
int
snd_wavefront_detect (snd_wavefront_card_t *card)
{
unsigned char rbuf[4], wbuf[4];
snd_wavefront_t *dev = &card->wavefront;
/* returns zero if a WaveFront card is successfully detected.
negative otherwise.
*/
dev->israw = 0;
dev->has_fx = 0;
dev->debug = debug_default;
dev->interrupts_are_midi = 0;
dev->irq_cnt = 0;
dev->rom_samples_rdonly = 1;
if (snd_wavefront_cmd (dev, WFC_FIRMWARE_VERSION, rbuf, wbuf) == 0) {
dev->fw_version[0] = rbuf[0];
dev->fw_version[1] = rbuf[1];
snd_printk ("firmware %d.%d already loaded.\n",
rbuf[0], rbuf[1]);
/* check that a command actually works */
if (snd_wavefront_cmd (dev, WFC_HARDWARE_VERSION,
rbuf, wbuf) == 0) {
dev->hw_version[0] = rbuf[0];
dev->hw_version[1] = rbuf[1];
} else {
snd_printk ("not raw, but no "
"hardware version!\n");
return -1;
}
if (!wf_raw) {
return 0;
} else {
snd_printk ("reloading firmware as you requested.\n");
dev->israw = 1;
}
} else {
dev->israw = 1;
snd_printk ("no response to firmware probe, assume raw.\n");
}
return 0;
}
MODULE_FIRMWARE(DEFAULT_OSPATH);