OpenCloudOS-Kernel/arch/tile/kernel/single_step.c

783 lines
22 KiB
C
Raw Normal View History

/*
* Copyright 2010 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*
* A code-rewriter that enables instruction single-stepping.
*/
#include <linux/smp.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/thread_info.h>
#include <linux/uaccess.h>
#include <linux/mman.h>
#include <linux/types.h>
#include <linux/err.h>
#include <linux/prctl.h>
#include <asm/cacheflush.h>
#include <asm/traps.h>
#include <asm/uaccess.h>
#include <asm/unaligned.h>
#include <arch/abi.h>
#include <arch/spr_def.h>
#include <arch/opcode.h>
#ifndef __tilegx__ /* Hardware support for single step unavailable. */
#define signExtend17(val) sign_extend((val), 17)
#define TILE_X1_MASK (0xffffffffULL << 31)
enum mem_op {
MEMOP_NONE,
MEMOP_LOAD,
MEMOP_STORE,
MEMOP_LOAD_POSTINCR,
MEMOP_STORE_POSTINCR
};
static inline tilepro_bundle_bits set_BrOff_X1(tilepro_bundle_bits n,
s32 offset)
{
tilepro_bundle_bits result;
/* mask out the old offset */
tilepro_bundle_bits mask = create_BrOff_X1(-1);
result = n & (~mask);
/* or in the new offset */
result |= create_BrOff_X1(offset);
return result;
}
static inline tilepro_bundle_bits move_X1(tilepro_bundle_bits n, int dest,
int src)
{
tilepro_bundle_bits result;
tilepro_bundle_bits op;
result = n & (~TILE_X1_MASK);
op = create_Opcode_X1(SPECIAL_0_OPCODE_X1) |
create_RRROpcodeExtension_X1(OR_SPECIAL_0_OPCODE_X1) |
create_Dest_X1(dest) |
create_SrcB_X1(TREG_ZERO) |
create_SrcA_X1(src) ;
result |= op;
return result;
}
static inline tilepro_bundle_bits nop_X1(tilepro_bundle_bits n)
{
return move_X1(n, TREG_ZERO, TREG_ZERO);
}
static inline tilepro_bundle_bits addi_X1(
tilepro_bundle_bits n, int dest, int src, int imm)
{
n &= ~TILE_X1_MASK;
n |= (create_SrcA_X1(src) |
create_Dest_X1(dest) |
create_Imm8_X1(imm) |
create_S_X1(0) |
create_Opcode_X1(IMM_0_OPCODE_X1) |
create_ImmOpcodeExtension_X1(ADDI_IMM_0_OPCODE_X1));
return n;
}
static tilepro_bundle_bits rewrite_load_store_unaligned(
struct single_step_state *state,
tilepro_bundle_bits bundle,
struct pt_regs *regs,
enum mem_op mem_op,
int size, int sign_ext)
{
unsigned char __user *addr;
int val_reg, addr_reg, err, val;
int align_ctl;
align_ctl = unaligned_fixup;
switch (task_thread_info(current)->align_ctl) {
case PR_UNALIGN_NOPRINT:
align_ctl = 1;
break;
case PR_UNALIGN_SIGBUS:
align_ctl = 0;
break;
}
/* Get address and value registers */
if (bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK) {
addr_reg = get_SrcA_Y2(bundle);
val_reg = get_SrcBDest_Y2(bundle);
} else if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
addr_reg = get_SrcA_X1(bundle);
val_reg = get_Dest_X1(bundle);
} else {
addr_reg = get_SrcA_X1(bundle);
val_reg = get_SrcB_X1(bundle);
}
/*
* If registers are not GPRs, don't try to handle it.
*
* FIXME: we could handle non-GPR loads by getting the real value
* from memory, writing it to the single step buffer, using a
* temp_reg to hold a pointer to that memory, then executing that
* instruction and resetting temp_reg. For non-GPR stores, it's a
* little trickier; we could use the single step buffer for that
* too, but we'd have to add some more state bits so that we could
* call back in here to copy that value to the real target. For
* now, we just handle the simple case.
*/
if ((val_reg >= PTREGS_NR_GPRS &&
(val_reg != TREG_ZERO ||
mem_op == MEMOP_LOAD ||
mem_op == MEMOP_LOAD_POSTINCR)) ||
addr_reg >= PTREGS_NR_GPRS)
return bundle;
/* If it's aligned, don't handle it specially */
addr = (void __user *)regs->regs[addr_reg];
if (((unsigned long)addr % size) == 0)
return bundle;
/*
* Return SIGBUS with the unaligned address, if requested.
* Note that we return SIGBUS even for completely invalid addresses
* as long as they are in fact unaligned; this matches what the
* tilepro hardware would be doing, if it could provide us with the
* actual bad address in an SPR, which it doesn't.
*/
if (align_ctl == 0) {
siginfo_t info = {
.si_signo = SIGBUS,
.si_code = BUS_ADRALN,
.si_addr = addr
};
trace_unhandled_signal("unaligned trap", regs,
(unsigned long)addr, SIGBUS);
force_sig_info(info.si_signo, &info, current);
return (tilepro_bundle_bits) 0;
}
/* Handle unaligned load/store */
if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
unsigned short val_16;
switch (size) {
case 2:
err = copy_from_user(&val_16, addr, sizeof(val_16));
val = sign_ext ? ((short)val_16) : val_16;
break;
case 4:
err = copy_from_user(&val, addr, sizeof(val));
break;
default:
BUG();
}
if (err == 0) {
state->update_reg = val_reg;
state->update_value = val;
state->update = 1;
}
} else {
unsigned short val_16;
val = (val_reg == TREG_ZERO) ? 0 : regs->regs[val_reg];
switch (size) {
case 2:
val_16 = val;
err = copy_to_user(addr, &val_16, sizeof(val_16));
break;
case 4:
err = copy_to_user(addr, &val, sizeof(val));
break;
default:
BUG();
}
}
if (err) {
siginfo_t info = {
.si_signo = SIGBUS,
.si_code = BUS_ADRALN,
.si_addr = addr
};
trace_unhandled_signal("bad address for unaligned fixup", regs,
(unsigned long)addr, SIGBUS);
force_sig_info(info.si_signo, &info, current);
return (tilepro_bundle_bits) 0;
}
if (unaligned_printk || unaligned_fixup_count == 0) {
pr_info("Process %d/%s: PC %#lx: Fixup of unaligned %s at %#lx\n",
current->pid, current->comm, regs->pc,
mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR ?
"load" : "store",
(unsigned long)addr);
if (!unaligned_printk) {
#define P pr_info
P("\n");
P("Unaligned fixups in the kernel will slow your application considerably.\n");
P("To find them, write a \"1\" to /proc/sys/tile/unaligned_fixup/printk,\n");
P("which requests the kernel show all unaligned fixups, or write a \"0\"\n");
P("to /proc/sys/tile/unaligned_fixup/enabled, in which case each unaligned\n");
P("access will become a SIGBUS you can debug. No further warnings will be\n");
P("shown so as to avoid additional slowdown, but you can track the number\n");
P("of fixups performed via /proc/sys/tile/unaligned_fixup/count.\n");
P("Use the tile-addr2line command (see \"info addr2line\") to decode PCs.\n");
P("\n");
#undef P
}
}
++unaligned_fixup_count;
if (bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK) {
/* Convert the Y2 instruction to a prefetch. */
bundle &= ~(create_SrcBDest_Y2(-1) |
create_Opcode_Y2(-1));
bundle |= (create_SrcBDest_Y2(TREG_ZERO) |
create_Opcode_Y2(LW_OPCODE_Y2));
/* Replace the load postincr with an addi */
} else if (mem_op == MEMOP_LOAD_POSTINCR) {
bundle = addi_X1(bundle, addr_reg, addr_reg,
get_Imm8_X1(bundle));
/* Replace the store postincr with an addi */
} else if (mem_op == MEMOP_STORE_POSTINCR) {
bundle = addi_X1(bundle, addr_reg, addr_reg,
get_Dest_Imm8_X1(bundle));
} else {
/* Convert the X1 instruction to a nop. */
bundle &= ~(create_Opcode_X1(-1) |
create_UnShOpcodeExtension_X1(-1) |
create_UnOpcodeExtension_X1(-1));
bundle |= (create_Opcode_X1(SHUN_0_OPCODE_X1) |
create_UnShOpcodeExtension_X1(
UN_0_SHUN_0_OPCODE_X1) |
create_UnOpcodeExtension_X1(
NOP_UN_0_SHUN_0_OPCODE_X1));
}
return bundle;
}
/*
* Called after execve() has started the new image. This allows us
* to reset the info state. Note that the the mmap'ed memory, if there
* was any, has already been unmapped by the exec.
*/
void single_step_execve(void)
{
struct thread_info *ti = current_thread_info();
kfree(ti->step_state);
ti->step_state = NULL;
}
/*
* single_step_once() - entry point when single stepping has been triggered.
* @regs: The machine register state
*
* When we arrive at this routine via a trampoline, the single step
* engine copies the executing bundle to the single step buffer.
* If the instruction is a condition branch, then the target is
* reset to one past the next instruction. If the instruction
* sets the lr, then that is noted. If the instruction is a jump
* or call, then the new target pc is preserved and the current
* bundle instruction set to null.
*
* The necessary post-single-step rewriting information is stored in
* single_step_state-> We use data segment values because the
* stack will be rewound when we run the rewritten single-stepped
* instruction.
*/
void single_step_once(struct pt_regs *regs)
{
extern tilepro_bundle_bits __single_step_ill_insn;
extern tilepro_bundle_bits __single_step_j_insn;
extern tilepro_bundle_bits __single_step_addli_insn;
extern tilepro_bundle_bits __single_step_auli_insn;
struct thread_info *info = (void *)current_thread_info();
struct single_step_state *state = info->step_state;
int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
tilepro_bundle_bits __user *buffer, *pc;
tilepro_bundle_bits bundle;
int temp_reg;
int target_reg = TREG_LR;
int err;
enum mem_op mem_op = MEMOP_NONE;
int size = 0, sign_ext = 0; /* happy compiler */
int align_ctl;
align_ctl = unaligned_fixup;
switch (task_thread_info(current)->align_ctl) {
case PR_UNALIGN_NOPRINT:
align_ctl = 1;
break;
case PR_UNALIGN_SIGBUS:
align_ctl = 0;
break;
}
asm(
" .pushsection .rodata.single_step\n"
" .align 8\n"
" .globl __single_step_ill_insn\n"
"__single_step_ill_insn:\n"
" ill\n"
" .globl __single_step_addli_insn\n"
"__single_step_addli_insn:\n"
" { nop; addli r0, zero, 0 }\n"
" .globl __single_step_auli_insn\n"
"__single_step_auli_insn:\n"
" { nop; auli r0, r0, 0 }\n"
" .globl __single_step_j_insn\n"
"__single_step_j_insn:\n"
" j .\n"
" .popsection\n"
);
/*
* Enable interrupts here to allow touching userspace and the like.
* The callers expect this: do_trap() already has interrupts
* enabled, and do_work_pending() handles functions that enable
* interrupts internally.
*/
local_irq_enable();
if (state == NULL) {
/* allocate a page of writable, executable memory */
state = kmalloc(sizeof(struct single_step_state), GFP_KERNEL);
if (state == NULL) {
pr_err("Out of kernel memory trying to single-step\n");
return;
}
/* allocate a cache line of writable, executable memory */
buffer = (void __user *) vm_mmap(NULL, 0, 64,
PROT_EXEC | PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS,
0);
if (IS_ERR((void __force *)buffer)) {
kfree(state);
pr_err("Out of kernel pages trying to single-step\n");
return;
}
state->buffer = buffer;
state->is_enabled = 0;
info->step_state = state;
/* Validate our stored instruction patterns */
BUG_ON(get_Opcode_X1(__single_step_addli_insn) !=
ADDLI_OPCODE_X1);
BUG_ON(get_Opcode_X1(__single_step_auli_insn) !=
AULI_OPCODE_X1);
BUG_ON(get_SrcA_X1(__single_step_addli_insn) != TREG_ZERO);
BUG_ON(get_Dest_X1(__single_step_addli_insn) != 0);
BUG_ON(get_JOffLong_X1(__single_step_j_insn) != 0);
}
/*
* If we are returning from a syscall, we still haven't hit the
* "ill" for the swint1 instruction. So back the PC up to be
* pointing at the swint1, but we'll actually return directly
* back to the "ill" so we come back in via SIGILL as if we
* had "executed" the swint1 without ever being in kernel space.
*/
if (regs->faultnum == INT_SWINT_1)
regs->pc -= 8;
pc = (tilepro_bundle_bits __user *)(regs->pc);
if (get_user(bundle, pc) != 0) {
pr_err("Couldn't read instruction at %p trying to step\n", pc);
return;
}
/* We'll follow the instruction with 2 ill op bundles */
state->orig_pc = (unsigned long)pc;
state->next_pc = (unsigned long)(pc + 1);
state->branch_next_pc = 0;
state->update = 0;
if (!(bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK)) {
/* two wide, check for control flow */
int opcode = get_Opcode_X1(bundle);
switch (opcode) {
/* branches */
case BRANCH_OPCODE_X1:
{
s32 offset = signExtend17(get_BrOff_X1(bundle));
/*
* For branches, we use a rewriting trick to let the
* hardware evaluate whether the branch is taken or
* untaken. We record the target offset and then
* rewrite the branch instruction to target 1 insn
* ahead if the branch is taken. We then follow the
* rewritten branch with two bundles, each containing
* an "ill" instruction. The supervisor examines the
* pc after the single step code is executed, and if
* the pc is the first ill instruction, then the
* branch (if any) was not taken. If the pc is the
* second ill instruction, then the branch was
* taken. The new pc is computed for these cases, and
* inserted into the registers for the thread. If
* the pc is the start of the single step code, then
* an exception or interrupt was taken before the
* code started processing, and the same "original"
* pc is restored. This change, different from the
* original implementation, has the advantage of
* executing a single user instruction.
*/
state->branch_next_pc = (unsigned long)(pc + offset);
/* rewrite branch offset to go forward one bundle */
bundle = set_BrOff_X1(bundle, 2);
}
break;
/* jumps */
case JALB_OPCODE_X1:
case JALF_OPCODE_X1:
state->update = 1;
state->next_pc =
(unsigned long) (pc + get_JOffLong_X1(bundle));
break;
case JB_OPCODE_X1:
case JF_OPCODE_X1:
state->next_pc =
(unsigned long) (pc + get_JOffLong_X1(bundle));
bundle = nop_X1(bundle);
break;
case SPECIAL_0_OPCODE_X1:
switch (get_RRROpcodeExtension_X1(bundle)) {
/* jump-register */
case JALRP_SPECIAL_0_OPCODE_X1:
case JALR_SPECIAL_0_OPCODE_X1:
state->update = 1;
state->next_pc =
regs->regs[get_SrcA_X1(bundle)];
break;
case JRP_SPECIAL_0_OPCODE_X1:
case JR_SPECIAL_0_OPCODE_X1:
state->next_pc =
regs->regs[get_SrcA_X1(bundle)];
bundle = nop_X1(bundle);
break;
case LNK_SPECIAL_0_OPCODE_X1:
state->update = 1;
target_reg = get_Dest_X1(bundle);
break;
/* stores */
case SH_SPECIAL_0_OPCODE_X1:
mem_op = MEMOP_STORE;
size = 2;
break;
case SW_SPECIAL_0_OPCODE_X1:
mem_op = MEMOP_STORE;
size = 4;
break;
}
break;
/* loads and iret */
case SHUN_0_OPCODE_X1:
if (get_UnShOpcodeExtension_X1(bundle) ==
UN_0_SHUN_0_OPCODE_X1) {
switch (get_UnOpcodeExtension_X1(bundle)) {
case LH_UN_0_SHUN_0_OPCODE_X1:
mem_op = MEMOP_LOAD;
size = 2;
sign_ext = 1;
break;
case LH_U_UN_0_SHUN_0_OPCODE_X1:
mem_op = MEMOP_LOAD;
size = 2;
sign_ext = 0;
break;
case LW_UN_0_SHUN_0_OPCODE_X1:
mem_op = MEMOP_LOAD;
size = 4;
break;
case IRET_UN_0_SHUN_0_OPCODE_X1:
{
unsigned long ex0_0 = __insn_mfspr(
SPR_EX_CONTEXT_0_0);
unsigned long ex0_1 = __insn_mfspr(
SPR_EX_CONTEXT_0_1);
/*
* Special-case it if we're iret'ing
* to PL0 again. Otherwise just let
* it run and it will generate SIGILL.
*/
if (EX1_PL(ex0_1) == USER_PL) {
state->next_pc = ex0_0;
regs->ex1 = ex0_1;
bundle = nop_X1(bundle);
}
}
}
}
break;
/* postincrement operations */
case IMM_0_OPCODE_X1:
switch (get_ImmOpcodeExtension_X1(bundle)) {
case LWADD_IMM_0_OPCODE_X1:
mem_op = MEMOP_LOAD_POSTINCR;
size = 4;
break;
case LHADD_IMM_0_OPCODE_X1:
mem_op = MEMOP_LOAD_POSTINCR;
size = 2;
sign_ext = 1;
break;
case LHADD_U_IMM_0_OPCODE_X1:
mem_op = MEMOP_LOAD_POSTINCR;
size = 2;
sign_ext = 0;
break;
case SWADD_IMM_0_OPCODE_X1:
mem_op = MEMOP_STORE_POSTINCR;
size = 4;
break;
case SHADD_IMM_0_OPCODE_X1:
mem_op = MEMOP_STORE_POSTINCR;
size = 2;
break;
default:
break;
}
break;
}
if (state->update) {
/*
* Get an available register. We start with a
* bitmask with 1's for available registers.
* We truncate to the low 32 registers since
* we are guaranteed to have set bits in the
* low 32 bits, then use ctz to pick the first.
*/
u32 mask = (u32) ~((1ULL << get_Dest_X0(bundle)) |
(1ULL << get_SrcA_X0(bundle)) |
(1ULL << get_SrcB_X0(bundle)) |
(1ULL << target_reg));
temp_reg = __builtin_ctz(mask);
state->update_reg = temp_reg;
state->update_value = regs->regs[temp_reg];
regs->regs[temp_reg] = (unsigned long) (pc+1);
regs->flags |= PT_FLAGS_RESTORE_REGS;
bundle = move_X1(bundle, target_reg, temp_reg);
}
} else {
int opcode = get_Opcode_Y2(bundle);
switch (opcode) {
/* loads */
case LH_OPCODE_Y2:
mem_op = MEMOP_LOAD;
size = 2;
sign_ext = 1;
break;
case LH_U_OPCODE_Y2:
mem_op = MEMOP_LOAD;
size = 2;
sign_ext = 0;
break;
case LW_OPCODE_Y2:
mem_op = MEMOP_LOAD;
size = 4;
break;
/* stores */
case SH_OPCODE_Y2:
mem_op = MEMOP_STORE;
size = 2;
break;
case SW_OPCODE_Y2:
mem_op = MEMOP_STORE;
size = 4;
break;
}
}
/*
* Check if we need to rewrite an unaligned load/store.
* Returning zero is a special value meaning we generated a signal.
*/
if (mem_op != MEMOP_NONE && align_ctl >= 0) {
bundle = rewrite_load_store_unaligned(state, bundle, regs,
mem_op, size, sign_ext);
if (bundle == 0)
return;
}
/* write the bundle to our execution area */
buffer = state->buffer;
err = __put_user(bundle, buffer++);
/*
* If we're really single-stepping, we take an INT_ILL after.
* If we're just handling an unaligned access, we can just
* jump directly back to where we were in user code.
*/
if (is_single_step) {
err |= __put_user(__single_step_ill_insn, buffer++);
err |= __put_user(__single_step_ill_insn, buffer++);
} else {
long delta;
if (state->update) {
/* We have some state to update; do it inline */
int ha16;
bundle = __single_step_addli_insn;
bundle |= create_Dest_X1(state->update_reg);
bundle |= create_Imm16_X1(state->update_value);
err |= __put_user(bundle, buffer++);
bundle = __single_step_auli_insn;
bundle |= create_Dest_X1(state->update_reg);
bundle |= create_SrcA_X1(state->update_reg);
ha16 = (state->update_value + 0x8000) >> 16;
bundle |= create_Imm16_X1(ha16);
err |= __put_user(bundle, buffer++);
state->update = 0;
}
/* End with a jump back to the next instruction */
delta = ((regs->pc + TILEPRO_BUNDLE_SIZE_IN_BYTES) -
(unsigned long)buffer) >>
TILEPRO_LOG2_BUNDLE_ALIGNMENT_IN_BYTES;
bundle = __single_step_j_insn;
bundle |= create_JOffLong_X1(delta);
err |= __put_user(bundle, buffer++);
}
if (err) {
pr_err("Fault when writing to single-step buffer\n");
return;
}
/*
* Flush the buffer.
* We do a local flush only, since this is a thread-specific buffer.
*/
__flush_icache_range((unsigned long)state->buffer,
(unsigned long)buffer);
/* Indicate enabled */
state->is_enabled = is_single_step;
regs->pc = (unsigned long)state->buffer;
/* Fault immediately if we are coming back from a syscall. */
if (regs->faultnum == INT_SWINT_1)
regs->pc += 8;
}
#else
static DEFINE_PER_CPU(unsigned long, ss_saved_pc);
/*
* Called directly on the occasion of an interrupt.
*
* If the process doesn't have single step set, then we use this as an
* opportunity to turn single step off.
*
* It has been mentioned that we could conditionally turn off single stepping
* on each entry into the kernel and rely on single_step_once to turn it
* on for the processes that matter (as we already do), but this
* implementation is somewhat more efficient in that we muck with registers
* once on a bum interrupt rather than on every entry into the kernel.
*
* If SINGLE_STEP_CONTROL_K has CANCELED set, then an interrupt occurred,
* so we have to run through this process again before we can say that an
* instruction has executed.
*
* swint will set CANCELED, but it's a legitimate instruction. Fortunately
* it changes the PC. If it hasn't changed, then we know that the interrupt
* wasn't generated by swint and we'll need to run this process again before
* we can say an instruction has executed.
*
* If either CANCELED == 0 or the PC's changed, we send out SIGTRAPs and get
* on with our lives.
*/
void gx_singlestep_handle(struct pt_regs *regs, int fault_num)
{
tile: Replace __get_cpu_var uses __get_cpu_var() is used for multiple purposes in the kernel source. One of them is address calculation via the form &__get_cpu_var(x). This calculates the address for the instance of the percpu variable of the current processor based on an offset. Other use cases are for storing and retrieving data from the current processors percpu area. __get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment. __get_cpu_var() is defined as : #define __get_cpu_var(var) (*this_cpu_ptr(&(var))) __get_cpu_var() always only does an address determination. However, store and retrieve operations could use a segment prefix (or global register on other platforms) to avoid the address calculation. this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use optimized assembly code to read and write per cpu variables. This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr() or into a use of this_cpu operations that use the offset. Thereby address calculations are avoided and less registers are used when code is generated. At the end of the patch set all uses of __get_cpu_var have been removed so the macro is removed too. The patch set includes passes over all arches as well. Once these operations are used throughout then specialized macros can be defined in non -x86 arches as well in order to optimize per cpu access by f.e. using a global register that may be set to the per cpu base. Transformations done to __get_cpu_var() 1. Determine the address of the percpu instance of the current processor. DEFINE_PER_CPU(int, y); int *x = &__get_cpu_var(y); Converts to int *x = this_cpu_ptr(&y); 2. Same as #1 but this time an array structure is involved. DEFINE_PER_CPU(int, y[20]); int *x = __get_cpu_var(y); Converts to int *x = this_cpu_ptr(y); 3. Retrieve the content of the current processors instance of a per cpu variable. DEFINE_PER_CPU(int, y); int x = __get_cpu_var(y) Converts to int x = __this_cpu_read(y); 4. Retrieve the content of a percpu struct DEFINE_PER_CPU(struct mystruct, y); struct mystruct x = __get_cpu_var(y); Converts to memcpy(&x, this_cpu_ptr(&y), sizeof(x)); 5. Assignment to a per cpu variable DEFINE_PER_CPU(int, y) __get_cpu_var(y) = x; Converts to __this_cpu_write(y, x); 6. Increment/Decrement etc of a per cpu variable DEFINE_PER_CPU(int, y); __get_cpu_var(y)++ Converts to __this_cpu_inc(y) Acked-by: Chris Metcalf <cmetcalf@tilera.com> Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-18 01:30:50 +08:00
unsigned long *ss_pc = this_cpu_ptr(&ss_saved_pc);
struct thread_info *info = (void *)current_thread_info();
int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
if (is_single_step == 0) {
__insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 0);
} else if ((*ss_pc != regs->pc) ||
(!(control & SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK))) {
control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
__insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
send_sigtrap(current, regs);
}
}
/*
* Called from need_singlestep. Set up the control registers and the enable
* register, then return back.
*/
void single_step_once(struct pt_regs *regs)
{
tile: Replace __get_cpu_var uses __get_cpu_var() is used for multiple purposes in the kernel source. One of them is address calculation via the form &__get_cpu_var(x). This calculates the address for the instance of the percpu variable of the current processor based on an offset. Other use cases are for storing and retrieving data from the current processors percpu area. __get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment. __get_cpu_var() is defined as : #define __get_cpu_var(var) (*this_cpu_ptr(&(var))) __get_cpu_var() always only does an address determination. However, store and retrieve operations could use a segment prefix (or global register on other platforms) to avoid the address calculation. this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use optimized assembly code to read and write per cpu variables. This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr() or into a use of this_cpu operations that use the offset. Thereby address calculations are avoided and less registers are used when code is generated. At the end of the patch set all uses of __get_cpu_var have been removed so the macro is removed too. The patch set includes passes over all arches as well. Once these operations are used throughout then specialized macros can be defined in non -x86 arches as well in order to optimize per cpu access by f.e. using a global register that may be set to the per cpu base. Transformations done to __get_cpu_var() 1. Determine the address of the percpu instance of the current processor. DEFINE_PER_CPU(int, y); int *x = &__get_cpu_var(y); Converts to int *x = this_cpu_ptr(&y); 2. Same as #1 but this time an array structure is involved. DEFINE_PER_CPU(int, y[20]); int *x = __get_cpu_var(y); Converts to int *x = this_cpu_ptr(y); 3. Retrieve the content of the current processors instance of a per cpu variable. DEFINE_PER_CPU(int, y); int x = __get_cpu_var(y) Converts to int x = __this_cpu_read(y); 4. Retrieve the content of a percpu struct DEFINE_PER_CPU(struct mystruct, y); struct mystruct x = __get_cpu_var(y); Converts to memcpy(&x, this_cpu_ptr(&y), sizeof(x)); 5. Assignment to a per cpu variable DEFINE_PER_CPU(int, y) __get_cpu_var(y) = x; Converts to __this_cpu_write(y, x); 6. Increment/Decrement etc of a per cpu variable DEFINE_PER_CPU(int, y); __get_cpu_var(y)++ Converts to __this_cpu_inc(y) Acked-by: Chris Metcalf <cmetcalf@tilera.com> Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-18 01:30:50 +08:00
unsigned long *ss_pc = this_cpu_ptr(&ss_saved_pc);
unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
*ss_pc = regs->pc;
control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
__insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
__insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 1 << USER_PL);
}
void single_step_execve(void)
{
/* Nothing */
}
#endif /* !__tilegx__ */