OpenCloudOS-Kernel/arch/sparc/kernel/irq_64.c

1160 lines
28 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
// SPDX-License-Identifier: GPL-2.0
/* irq.c: UltraSparc IRQ handling/init/registry.
*
* Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
* Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
* Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz)
*/
#include <linux/sched.h>
#include <linux/linkage.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/kernel_stat.h>
#include <linux/signal.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/ftrace.h>
#include <linux/irq.h>
#include <asm/ptrace.h>
#include <asm/processor.h>
#include <linux/atomic.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/iommu.h>
#include <asm/upa.h>
#include <asm/oplib.h>
#include <asm/prom.h>
#include <asm/timer.h>
#include <asm/smp.h>
#include <asm/starfire.h>
#include <linux/uaccess.h>
#include <asm/cache.h>
#include <asm/cpudata.h>
#include <asm/auxio.h>
#include <asm/head.h>
#include <asm/hypervisor.h>
#include <asm/cacheflush.h>
#include <asm/softirq_stack.h>
#include "entry.h"
sparc64: fix and optimize irq distribution irq_choose_cpu() should compare the affinity mask against cpu_online_map rather than CPU_MASK_ALL, since irq_select_affinity() sets the interrupt's affinity mask to cpu_online_map "and" CPU_MASK_ALL (which ends up being just cpu_online_map). The mask comparison in irq_choose_cpu() will always fail since the two masks are not the same. So the CPU chosen is the first CPU in the intersection of cpu_online_map and CPU_MASK_ALL, which is always CPU0. That means all interrupts are reassigned to CPU0... Distributing interrupts to CPUs in a linearly increasing round robin fashion is not optimal for the UltraSPARC T1/T2. Also, the irq_rover in irq_choose_cpu() causes an interrupt to be assigned to a different processor each time the interrupt is allocated and released. This may lead to an unbalanced distribution over time. A static mapping of interrupts to processors is done to optimize and balance interrupt distribution. For the T1/T2, interrupts are spread to different cores first, and then to strands within a core. The following is some benchmarks showing the effects of interrupt distribution on a T2. The test was done with iperf using a pair of T5220 boxes, each with a 10GBe NIU (XAUI) connected back to back. TCP | Stock Linear RR IRQ Optimized IRQ Streams | 2.6.30-rc5 Distribution Distribution | GBits/sec GBits/sec GBits/sec --------+----------------------------------------- 1 0.839 0.862 0.868 8 1.16 4.96 5.88 16 1.15 6.40 8.04 100 1.09 7.28 8.68 Signed-off-by: Hong H. Pham <hong.pham@windriver.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-06-04 17:10:11 +08:00
#include "cpumap.h"
#include "kstack.h"
struct ino_bucket *ivector_table;
unsigned long ivector_table_pa;
/* On several sun4u processors, it is illegal to mix bypass and
* non-bypass accesses. Therefore we access all INO buckets
* using bypass accesses only.
*/
static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
{
unsigned long ret;
__asm__ __volatile__("ldxa [%1] %2, %0"
: "=&r" (ret)
: "r" (bucket_pa +
offsetof(struct ino_bucket,
__irq_chain_pa)),
"i" (ASI_PHYS_USE_EC));
return ret;
}
static void bucket_clear_chain_pa(unsigned long bucket_pa)
{
__asm__ __volatile__("stxa %%g0, [%0] %1"
: /* no outputs */
: "r" (bucket_pa +
offsetof(struct ino_bucket,
__irq_chain_pa)),
"i" (ASI_PHYS_USE_EC));
}
static unsigned int bucket_get_irq(unsigned long bucket_pa)
{
unsigned int ret;
__asm__ __volatile__("lduwa [%1] %2, %0"
: "=&r" (ret)
: "r" (bucket_pa +
offsetof(struct ino_bucket,
__irq)),
"i" (ASI_PHYS_USE_EC));
return ret;
}
static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq)
{
__asm__ __volatile__("stwa %0, [%1] %2"
: /* no outputs */
: "r" (irq),
"r" (bucket_pa +
offsetof(struct ino_bucket,
__irq)),
"i" (ASI_PHYS_USE_EC));
}
#define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa)
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
static unsigned long hvirq_major __initdata;
static int __init early_hvirq_major(char *p)
{
int rc = kstrtoul(p, 10, &hvirq_major);
return rc;
}
early_param("hvirq", early_hvirq_major);
static int hv_irq_version;
/* Major version 2.0 of HV_GRP_INTR added support for the VIRQ cookie
* based interfaces, but:
*
* 1) Several OSs, Solaris and Linux included, use them even when only
* negotiating version 1.0 (or failing to negotiate at all). So the
* hypervisor has a workaround that provides the VIRQ interfaces even
* when only verion 1.0 of the API is in use.
*
* 2) Second, and more importantly, with major version 2.0 these VIRQ
* interfaces only were actually hooked up for LDC interrupts, even
* though the Hypervisor specification clearly stated:
*
* The new interrupt API functions will be available to a guest
* when it negotiates version 2.0 in the interrupt API group 0x2. When
* a guest negotiates version 2.0, all interrupt sources will only
* support using the cookie interface, and any attempt to use the
* version 1.0 interrupt APIs numbered 0xa0 to 0xa6 will result in the
* ENOTSUPPORTED error being returned.
*
* with an emphasis on "all interrupt sources".
*
* To correct this, major version 3.0 was created which does actually
* support VIRQs for all interrupt sources (not just LDC devices). So
* if we want to move completely over the cookie based VIRQs we must
* negotiate major version 3.0 or later of HV_GRP_INTR.
*/
static bool sun4v_cookie_only_virqs(void)
{
if (hv_irq_version >= 3)
return true;
return false;
}
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
static void __init irq_init_hv(void)
{
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
unsigned long hv_error, major, minor = 0;
if (tlb_type != hypervisor)
return;
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
if (hvirq_major)
major = hvirq_major;
else
major = 3;
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
hv_error = sun4v_hvapi_register(HV_GRP_INTR, major, &minor);
if (!hv_error)
hv_irq_version = major;
else
hv_irq_version = 1;
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
pr_info("SUN4V: Using IRQ API major %d, cookie only virqs %s\n",
hv_irq_version,
sun4v_cookie_only_virqs() ? "enabled" : "disabled");
}
/* This function is for the timer interrupt.*/
int __init arch_probe_nr_irqs(void)
{
return 1;
}
#define DEFAULT_NUM_IVECS (0xfffU)
static unsigned int nr_ivec = DEFAULT_NUM_IVECS;
#define NUM_IVECS (nr_ivec)
static unsigned int __init size_nr_ivec(void)
{
if (tlb_type == hypervisor) {
switch (sun4v_chip_type) {
/* Athena's devhandle|devino is large.*/
case SUN4V_CHIP_SPARC64X:
nr_ivec = 0xffff;
break;
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
}
}
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
return nr_ivec;
}
struct irq_handler_data {
union {
struct {
unsigned int dev_handle;
unsigned int dev_ino;
};
unsigned long sysino;
};
struct ino_bucket bucket;
unsigned long iclr;
unsigned long imap;
};
static inline unsigned int irq_data_to_handle(struct irq_data *data)
{
struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
return ihd->dev_handle;
}
static inline unsigned int irq_data_to_ino(struct irq_data *data)
{
struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
return ihd->dev_ino;
}
static inline unsigned long irq_data_to_sysino(struct irq_data *data)
{
struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
return ihd->sysino;
}
void irq_free(unsigned int irq)
{
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
void *data = irq_get_handler_data(irq);
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
kfree(data);
irq_set_handler_data(irq, NULL);
irq_free_descs(irq, 1);
}
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
unsigned int irq_alloc(unsigned int dev_handle, unsigned int dev_ino)
{
int irq;
irq = __irq_alloc_descs(-1, 1, 1, numa_node_id(), NULL, NULL);
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
if (irq <= 0)
goto out;
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
return irq;
out:
return 0;
}
static unsigned int cookie_exists(u32 devhandle, unsigned int devino)
{
unsigned long hv_err, cookie;
struct ino_bucket *bucket;
unsigned int irq = 0U;
hv_err = sun4v_vintr_get_cookie(devhandle, devino, &cookie);
if (hv_err) {
pr_err("HV get cookie failed hv_err = %ld\n", hv_err);
goto out;
}
if (cookie & ((1UL << 63UL))) {
cookie = ~cookie;
bucket = (struct ino_bucket *) __va(cookie);
irq = bucket->__irq;
}
out:
return irq;
}
static unsigned int sysino_exists(u32 devhandle, unsigned int devino)
{
unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
struct ino_bucket *bucket;
unsigned int irq;
bucket = &ivector_table[sysino];
irq = bucket_get_irq(__pa(bucket));
return irq;
}
void ack_bad_irq(unsigned int irq)
{
pr_crit("BAD IRQ ack %d\n", irq);
}
void irq_install_pre_handler(int irq,
void (*func)(unsigned int, void *, void *),
void *arg1, void *arg2)
{
pr_warn("IRQ pre handler NOT supported.\n");
}
/*
* /proc/interrupts printing:
*/
int arch_show_interrupts(struct seq_file *p, int prec)
{
int j;
seq_printf(p, "NMI: ");
for_each_online_cpu(j)
seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
seq_printf(p, " Non-maskable interrupts\n");
return 0;
}
static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
{
unsigned int tid;
if (this_is_starfire) {
tid = starfire_translate(imap, cpuid);
tid <<= IMAP_TID_SHIFT;
tid &= IMAP_TID_UPA;
} else {
if (tlb_type == cheetah || tlb_type == cheetah_plus) {
unsigned long ver;
__asm__ ("rdpr %%ver, %0" : "=r" (ver));
if ((ver >> 32UL) == __JALAPENO_ID ||
(ver >> 32UL) == __SERRANO_ID) {
tid = cpuid << IMAP_TID_SHIFT;
tid &= IMAP_TID_JBUS;
} else {
unsigned int a = cpuid & 0x1f;
unsigned int n = (cpuid >> 5) & 0x1f;
tid = ((a << IMAP_AID_SHIFT) |
(n << IMAP_NID_SHIFT));
tid &= (IMAP_AID_SAFARI |
IMAP_NID_SAFARI);
}
} else {
tid = cpuid << IMAP_TID_SHIFT;
tid &= IMAP_TID_UPA;
}
}
return tid;
}
#ifdef CONFIG_SMP
static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity)
{
cpumask_t mask;
int cpuid;
cpumask_copy(&mask, affinity);
if (cpumask_equal(&mask, cpu_online_mask)) {
cpuid = map_to_cpu(irq);
} else {
cpumask_t tmp;
cpumask_and(&tmp, cpu_online_mask, &mask);
cpuid = cpumask_empty(&tmp) ? map_to_cpu(irq) : cpumask_first(&tmp);
}
return cpuid;
}
#else
#define irq_choose_cpu(irq, affinity) \
real_hard_smp_processor_id()
#endif
static void sun4u_irq_enable(struct irq_data *data)
{
struct irq_handler_data *handler_data;
handler_data = irq_data_get_irq_handler_data(data);
if (likely(handler_data)) {
unsigned long cpuid, imap, val;
unsigned int tid;
cpuid = irq_choose_cpu(data->irq,
irq_data_get_affinity_mask(data));
imap = handler_data->imap;
tid = sun4u_compute_tid(imap, cpuid);
val = upa_readq(imap);
val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
IMAP_AID_SAFARI | IMAP_NID_SAFARI);
val |= tid | IMAP_VALID;
upa_writeq(val, imap);
upa_writeq(ICLR_IDLE, handler_data->iclr);
}
}
static int sun4u_set_affinity(struct irq_data *data,
const struct cpumask *mask, bool force)
{
struct irq_handler_data *handler_data;
handler_data = irq_data_get_irq_handler_data(data);
if (likely(handler_data)) {
unsigned long cpuid, imap, val;
unsigned int tid;
cpuid = irq_choose_cpu(data->irq, mask);
imap = handler_data->imap;
tid = sun4u_compute_tid(imap, cpuid);
val = upa_readq(imap);
val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
IMAP_AID_SAFARI | IMAP_NID_SAFARI);
val |= tid | IMAP_VALID;
upa_writeq(val, imap);
upa_writeq(ICLR_IDLE, handler_data->iclr);
}
return 0;
}
/* Don't do anything. The desc->status check for IRQ_DISABLED in
* handler_irq() will skip the handler call and that will leave the
* interrupt in the sent state. The next ->enable() call will hit the
* ICLR register to reset the state machine.
*
* This scheme is necessary, instead of clearing the Valid bit in the
* IMAP register, to handle the case of IMAP registers being shared by
* multiple INOs (and thus ICLR registers). Since we use a different
* virtual IRQ for each shared IMAP instance, the generic code thinks
* there is only one user so it prematurely calls ->disable() on
* free_irq().
*
* We have to provide an explicit ->disable() method instead of using
* NULL to get the default. The reason is that if the generic code
* sees that, it also hooks up a default ->shutdown method which
* invokes ->mask() which we do not want. See irq_chip_set_defaults().
*/
static void sun4u_irq_disable(struct irq_data *data)
{
}
static void sun4u_irq_eoi(struct irq_data *data)
{
struct irq_handler_data *handler_data;
handler_data = irq_data_get_irq_handler_data(data);
if (likely(handler_data))
upa_writeq(ICLR_IDLE, handler_data->iclr);
}
static void sun4v_irq_enable(struct irq_data *data)
{
unsigned long cpuid = irq_choose_cpu(data->irq,
irq_data_get_affinity_mask(data));
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
unsigned int ino = irq_data_to_sysino(data);
int err;
err = sun4v_intr_settarget(ino, cpuid);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
"err(%d)\n", ino, cpuid, err);
err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_intr_setstate(%x): "
"err(%d)\n", ino, err);
err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
ino, err);
}
static int sun4v_set_affinity(struct irq_data *data,
const struct cpumask *mask, bool force)
{
unsigned long cpuid = irq_choose_cpu(data->irq, mask);
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
unsigned int ino = irq_data_to_sysino(data);
int err;
err = sun4v_intr_settarget(ino, cpuid);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
"err(%d)\n", ino, cpuid, err);
return 0;
}
static void sun4v_irq_disable(struct irq_data *data)
{
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
unsigned int ino = irq_data_to_sysino(data);
int err;
err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_intr_setenabled(%x): "
"err(%d)\n", ino, err);
}
static void sun4v_irq_eoi(struct irq_data *data)
{
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
unsigned int ino = irq_data_to_sysino(data);
int err;
err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_intr_setstate(%x): "
"err(%d)\n", ino, err);
}
static void sun4v_virq_enable(struct irq_data *data)
{
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
unsigned long dev_handle = irq_data_to_handle(data);
unsigned long dev_ino = irq_data_to_ino(data);
unsigned long cpuid;
int err;
cpuid = irq_choose_cpu(data->irq, irq_data_get_affinity_mask(data));
err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
"err(%d)\n",
dev_handle, dev_ino, cpuid, err);
err = sun4v_vintr_set_state(dev_handle, dev_ino,
HV_INTR_STATE_IDLE);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
"HV_INTR_STATE_IDLE): err(%d)\n",
dev_handle, dev_ino, err);
err = sun4v_vintr_set_valid(dev_handle, dev_ino,
HV_INTR_ENABLED);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
"HV_INTR_ENABLED): err(%d)\n",
dev_handle, dev_ino, err);
}
static int sun4v_virt_set_affinity(struct irq_data *data,
const struct cpumask *mask, bool force)
{
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
unsigned long dev_handle = irq_data_to_handle(data);
unsigned long dev_ino = irq_data_to_ino(data);
unsigned long cpuid;
int err;
cpuid = irq_choose_cpu(data->irq, mask);
err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
"err(%d)\n",
dev_handle, dev_ino, cpuid, err);
return 0;
}
static void sun4v_virq_disable(struct irq_data *data)
{
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
unsigned long dev_handle = irq_data_to_handle(data);
unsigned long dev_ino = irq_data_to_ino(data);
int err;
err = sun4v_vintr_set_valid(dev_handle, dev_ino,
HV_INTR_DISABLED);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
"HV_INTR_DISABLED): err(%d)\n",
dev_handle, dev_ino, err);
}
static void sun4v_virq_eoi(struct irq_data *data)
{
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
unsigned long dev_handle = irq_data_to_handle(data);
unsigned long dev_ino = irq_data_to_ino(data);
int err;
err = sun4v_vintr_set_state(dev_handle, dev_ino,
HV_INTR_STATE_IDLE);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
"HV_INTR_STATE_IDLE): err(%d)\n",
dev_handle, dev_ino, err);
}
static struct irq_chip sun4u_irq = {
.name = "sun4u",
.irq_enable = sun4u_irq_enable,
.irq_disable = sun4u_irq_disable,
.irq_eoi = sun4u_irq_eoi,
.irq_set_affinity = sun4u_set_affinity,
.flags = IRQCHIP_EOI_IF_HANDLED,
};
static struct irq_chip sun4v_irq = {
.name = "sun4v",
.irq_enable = sun4v_irq_enable,
.irq_disable = sun4v_irq_disable,
.irq_eoi = sun4v_irq_eoi,
.irq_set_affinity = sun4v_set_affinity,
.flags = IRQCHIP_EOI_IF_HANDLED,
};
static struct irq_chip sun4v_virq = {
.name = "vsun4v",
.irq_enable = sun4v_virq_enable,
.irq_disable = sun4v_virq_disable,
.irq_eoi = sun4v_virq_eoi,
.irq_set_affinity = sun4v_virt_set_affinity,
.flags = IRQCHIP_EOI_IF_HANDLED,
};
unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
{
struct irq_handler_data *handler_data;
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
struct ino_bucket *bucket;
unsigned int irq;
int ino;
BUG_ON(tlb_type == hypervisor);
ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
bucket = &ivector_table[ino];
irq = bucket_get_irq(__pa(bucket));
if (!irq) {
irq = irq_alloc(0, ino);
bucket_set_irq(__pa(bucket), irq);
irq_set_chip_and_handler_name(irq, &sun4u_irq,
handle_fasteoi_irq, "IVEC");
}
handler_data = irq_get_handler_data(irq);
if (unlikely(handler_data))
goto out;
handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
if (unlikely(!handler_data)) {
prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
prom_halt();
}
irq_set_handler_data(irq, handler_data);
handler_data->imap = imap;
handler_data->iclr = iclr;
out:
return irq;
}
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
static unsigned int sun4v_build_common(u32 devhandle, unsigned int devino,
void (*handler_data_init)(struct irq_handler_data *data,
u32 devhandle, unsigned int devino),
struct irq_chip *chip)
{
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
struct irq_handler_data *data;
unsigned int irq;
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
irq = irq_alloc(devhandle, devino);
if (!irq)
goto out;
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
if (unlikely(!data)) {
pr_err("IRQ handler data allocation failed.\n");
irq_free(irq);
irq = 0;
goto out;
}
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
irq_set_handler_data(irq, data);
handler_data_init(data, devhandle, devino);
irq_set_chip_and_handler_name(irq, chip, handle_fasteoi_irq, "IVEC");
data->imap = ~0UL;
data->iclr = ~0UL;
out:
return irq;
}
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
static unsigned long cookie_assign(unsigned int irq, u32 devhandle,
unsigned int devino)
{
struct irq_handler_data *ihd = irq_get_handler_data(irq);
unsigned long hv_error, cookie;
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
/* handler_irq needs to find the irq. cookie is seen signed in
* sun4v_dev_mondo and treated as a non ivector_table delivery.
*/
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
ihd->bucket.__irq = irq;
cookie = ~__pa(&ihd->bucket);
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
hv_error = sun4v_vintr_set_cookie(devhandle, devino, cookie);
if (hv_error)
pr_err("HV vintr set cookie failed = %ld\n", hv_error);
return hv_error;
}
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
static void cookie_handler_data(struct irq_handler_data *data,
u32 devhandle, unsigned int devino)
{
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
data->dev_handle = devhandle;
data->dev_ino = devino;
}
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
static unsigned int cookie_build_irq(u32 devhandle, unsigned int devino,
struct irq_chip *chip)
{
unsigned long hv_error;
unsigned int irq;
irq = sun4v_build_common(devhandle, devino, cookie_handler_data, chip);
hv_error = cookie_assign(irq, devhandle, devino);
if (hv_error) {
irq_free(irq);
irq = 0;
}
return irq;
}
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
static unsigned int sun4v_build_cookie(u32 devhandle, unsigned int devino)
{
unsigned int irq;
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
irq = cookie_exists(devhandle, devino);
if (irq)
goto out;
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
out:
return irq;
}
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
static void sysino_set_bucket(unsigned int irq)
{
struct irq_handler_data *ihd = irq_get_handler_data(irq);
struct ino_bucket *bucket;
unsigned long sysino;
sysino = sun4v_devino_to_sysino(ihd->dev_handle, ihd->dev_ino);
BUG_ON(sysino >= nr_ivec);
bucket = &ivector_table[sysino];
bucket_set_irq(__pa(bucket), irq);
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
}
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
static void sysino_handler_data(struct irq_handler_data *data,
u32 devhandle, unsigned int devino)
{
unsigned long sysino;
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
sysino = sun4v_devino_to_sysino(devhandle, devino);
data->sysino = sysino;
}
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
static unsigned int sysino_build_irq(u32 devhandle, unsigned int devino,
struct irq_chip *chip)
{
unsigned int irq;
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
irq = sun4v_build_common(devhandle, devino, sysino_handler_data, chip);
if (!irq)
goto out;
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
sysino_set_bucket(irq);
out:
return irq;
}
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
static int sun4v_build_sysino(u32 devhandle, unsigned int devino)
{
int irq;
irq = sysino_exists(devhandle, devino);
if (irq)
goto out;
irq = sysino_build_irq(devhandle, devino, &sun4v_irq);
out:
return irq;
}
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
{
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
unsigned int irq;
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
if (sun4v_cookie_only_virqs())
irq = sun4v_build_cookie(devhandle, devino);
else
irq = sun4v_build_sysino(devhandle, devino);
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
return irq;
}
unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
{
int irq;
irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
if (!irq)
goto out;
/* This is borrowed from the original function.
*/
irq_set_status_flags(irq, IRQ_NOAUTOEN);
out:
return irq;
}
void *hardirq_stack[NR_CPUS];
void *softirq_stack[NR_CPUS];
void __irq_entry handler_irq(int pil, struct pt_regs *regs)
{
unsigned long pstate, bucket_pa;
struct pt_regs *old_regs;
void *orig_sp;
clear_softint(1 << pil);
old_regs = set_irq_regs(regs);
irq_enter();
/* Grab an atomic snapshot of the pending IVECs. */
__asm__ __volatile__("rdpr %%pstate, %0\n\t"
"wrpr %0, %3, %%pstate\n\t"
"ldx [%2], %1\n\t"
"stx %%g0, [%2]\n\t"
"wrpr %0, 0x0, %%pstate\n\t"
: "=&r" (pstate), "=&r" (bucket_pa)
: "r" (irq_work_pa(smp_processor_id())),
"i" (PSTATE_IE)
: "memory");
orig_sp = set_hardirq_stack();
while (bucket_pa) {
unsigned long next_pa;
unsigned int irq;
next_pa = bucket_get_chain_pa(bucket_pa);
irq = bucket_get_irq(bucket_pa);
bucket_clear_chain_pa(bucket_pa);
generic_handle_irq(irq);
bucket_pa = next_pa;
}
restore_hardirq_stack(orig_sp);
irq_exit();
set_irq_regs(old_regs);
}
#ifdef CONFIG_SOFTIRQ_ON_OWN_STACK
void do_softirq_own_stack(void)
{
void *orig_sp, *sp = softirq_stack[smp_processor_id()];
sp += THREAD_SIZE - 192 - STACK_BIAS;
__asm__ __volatile__("mov %%sp, %0\n\t"
"mov %1, %%sp"
: "=&r" (orig_sp)
: "r" (sp));
__do_softirq();
__asm__ __volatile__("mov %0, %%sp"
: : "r" (orig_sp));
}
#endif
#ifdef CONFIG_HOTPLUG_CPU
void fixup_irqs(void)
{
unsigned int irq;
for (irq = 0; irq < NR_IRQS; irq++) {
struct irq_desc *desc = irq_to_desc(irq);
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
struct irq_data *data;
unsigned long flags;
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
if (!desc)
continue;
data = irq_desc_get_irq_data(desc);
raw_spin_lock_irqsave(&desc->lock, flags);
if (desc->action && !irqd_is_per_cpu(data)) {
if (data->chip->irq_set_affinity)
data->chip->irq_set_affinity(data,
irq_data_get_affinity_mask(data),
false);
}
raw_spin_unlock_irqrestore(&desc->lock, flags);
}
tick_ops->disable_irq();
}
#endif
struct sun5_timer {
u64 count0;
u64 limit0;
u64 count1;
u64 limit1;
};
static struct sun5_timer *prom_timers;
static u64 prom_limit0, prom_limit1;
static void map_prom_timers(void)
{
struct device_node *dp;
const unsigned int *addr;
/* PROM timer node hangs out in the top level of device siblings... */
dp = of_find_node_by_path("/");
dp = dp->child;
while (dp) {
if (of_node_name_eq(dp, "counter-timer"))
break;
dp = dp->sibling;
}
/* Assume if node is not present, PROM uses different tick mechanism
* which we should not care about.
*/
if (!dp) {
prom_timers = (struct sun5_timer *) 0;
return;
}
/* If PROM is really using this, it must be mapped by him. */
addr = of_get_property(dp, "address", NULL);
if (!addr) {
prom_printf("PROM does not have timer mapped, trying to continue.\n");
prom_timers = (struct sun5_timer *) 0;
return;
}
prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
}
static void kill_prom_timer(void)
{
if (!prom_timers)
return;
/* Save them away for later. */
prom_limit0 = prom_timers->limit0;
prom_limit1 = prom_timers->limit1;
/* Just as in sun4c PROM uses timer which ticks at IRQ 14.
* We turn both off here just to be paranoid.
*/
prom_timers->limit0 = 0;
prom_timers->limit1 = 0;
/* Wheee, eat the interrupt packet too... */
__asm__ __volatile__(
" mov 0x40, %%g2\n"
" ldxa [%%g0] %0, %%g1\n"
" ldxa [%%g2] %1, %%g1\n"
" stxa %%g0, [%%g0] %0\n"
" membar #Sync\n"
: /* no outputs */
: "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
: "g1", "g2");
}
void notrace init_irqwork_curcpu(void)
{
int cpu = hard_smp_processor_id();
trap_block[cpu].irq_worklist_pa = 0UL;
}
/* Please be very careful with register_one_mondo() and
* sun4v_register_mondo_queues().
*
* On SMP this gets invoked from the CPU trampoline before
* the cpu has fully taken over the trap table from OBP,
* and it's kernel stack + %g6 thread register state is
* not fully cooked yet.
*
* Therefore you cannot make any OBP calls, not even prom_printf,
* from these two routines.
*/
sparc: delete __cpuinit/__CPUINIT usage from all users The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/sparc uses of the __cpuinit macros from C files and removes __CPUINIT from assembly files. Note that even though arch/sparc/kernel/trampoline_64.S has instances of ".previous" in it, they are all paired off against explicit ".section" directives, and not implicitly paired with __CPUINIT (unlike mips and arm were). [1] https://lkml.org/lkml/2013/5/20/589 Cc: "David S. Miller" <davem@davemloft.net> Cc: sparclinux@vger.kernel.org Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-18 03:43:14 +08:00
static void notrace register_one_mondo(unsigned long paddr, unsigned long type,
unsigned long qmask)
{
unsigned long num_entries = (qmask + 1) / 64;
unsigned long status;
status = sun4v_cpu_qconf(type, paddr, num_entries);
if (status != HV_EOK) {
prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
"err %lu\n", type, paddr, num_entries, status);
prom_halt();
}
}
sparc: delete __cpuinit/__CPUINIT usage from all users The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/sparc uses of the __cpuinit macros from C files and removes __CPUINIT from assembly files. Note that even though arch/sparc/kernel/trampoline_64.S has instances of ".previous" in it, they are all paired off against explicit ".section" directives, and not implicitly paired with __CPUINIT (unlike mips and arm were). [1] https://lkml.org/lkml/2013/5/20/589 Cc: "David S. Miller" <davem@davemloft.net> Cc: sparclinux@vger.kernel.org Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-18 03:43:14 +08:00
void notrace sun4v_register_mondo_queues(int this_cpu)
{
struct trap_per_cpu *tb = &trap_block[this_cpu];
register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
tb->cpu_mondo_qmask);
register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
tb->dev_mondo_qmask);
register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
tb->resum_qmask);
register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
tb->nonresum_qmask);
}
/* Each queue region must be a power of 2 multiple of 64 bytes in
* size. The base real address must be aligned to the size of the
* region. Thus, an 8KB queue must be 8KB aligned, for example.
*/
static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
{
unsigned long size = PAGE_ALIGN(qmask + 1);
unsigned long order = get_order(size);
unsigned long p;
p = __get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
if (!p) {
prom_printf("SUN4V: Error, cannot allocate queue.\n");
prom_halt();
}
*pa_ptr = __pa(p);
}
static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
{
#ifdef CONFIG_SMP
unsigned long page;
void *mondo, *p;
BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > PAGE_SIZE);
/* Make sure mondo block is 64byte aligned */
p = kzalloc(127, GFP_KERNEL);
if (!p) {
prom_printf("SUN4V: Error, cannot allocate mondo block.\n");
prom_halt();
}
mondo = (void *)(((unsigned long)p + 63) & ~0x3f);
tb->cpu_mondo_block_pa = __pa(mondo);
page = get_zeroed_page(GFP_KERNEL);
if (!page) {
prom_printf("SUN4V: Error, cannot allocate cpu list page.\n");
prom_halt();
}
tb->cpu_list_pa = __pa(page);
#endif
}
/* Allocate mondo and error queues for all possible cpus. */
static void __init sun4v_init_mondo_queues(void)
{
int cpu;
for_each_possible_cpu(cpu) {
struct trap_per_cpu *tb = &trap_block[cpu];
alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
alloc_one_queue(&tb->nonresum_kernel_buf_pa,
tb->nonresum_qmask);
}
}
static void __init init_send_mondo_info(void)
{
int cpu;
for_each_possible_cpu(cpu) {
struct trap_per_cpu *tb = &trap_block[cpu];
init_cpu_send_mondo_info(tb);
[SPARC64]: Get SUN4V SMP working. The sibling cpu bringup is extremely fragile. We can only perform the most basic calls until we take over the trap table from the firmware/hypervisor on the new cpu. This means no accesses to %g4, %g5, %g6 since those can't be TLB translated without our trap handlers. In order to achieve this: 1) Change sun4v_init_mondo_queues() so that it can operate in several modes. It can allocate the queues, or install them in the current processor, or both. The boot cpu does both in it's call early on. Later, the boot cpu allocates the sibling cpu queue, starts the sibling cpu, then the sibling cpu loads them in. 2) init_cur_cpu_trap() is changed to take the current_thread_info() as an argument instead of reading %g6 directly on the current cpu. 3) Create a trampoline stack for the sibling cpus. We do our basic kernel calls using this stack, which is locked into the kernel image, then go to our proper thread stack after taking over the trap table. 4) While we are in this delicate startup state, we put 0xdeadbeef into %g4/%g5/%g6 in order to catch accidental accesses. 5) On the final prom_set_trap_table*() call, we put &init_thread_union into %g6. This is a hack to make prom_world(0) work. All that wants to do is restore the %asi register using get_thread_current_ds(). Longer term we should just do the OBP calls to set the trap table by hand just like we do for everything else. This would avoid that silly prom_world(0) issue, then we can remove the init_thread_union hack. Signed-off-by: David S. Miller <davem@davemloft.net>
2006-02-17 17:29:17 +08:00
}
}
static struct irqaction timer_irq_action = {
.name = "timer",
};
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
static void __init irq_ivector_init(void)
{
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
unsigned long size, order;
unsigned int ivecs;
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
/* If we are doing cookie only VIRQs then we do not need the ivector
* table to process interrupts.
*/
if (sun4v_cookie_only_virqs())
return;
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
ivecs = size_nr_ivec();
size = sizeof(struct ino_bucket) * ivecs;
order = get_order(size);
ivector_table = (struct ino_bucket *)
__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
if (!ivector_table) {
prom_printf("Fatal error, cannot allocate ivector_table\n");
prom_halt();
}
__flush_dcache_range((unsigned long) ivector_table,
((unsigned long) ivector_table) + size);
ivector_table_pa = __pa(ivector_table);
sparc64: sparse irq This patch attempts to do a few things. The highlights are: 1) enable SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates ivector_table at boot time and 4) default to cookie only VIRQ mechanism for supported firmware. The first firmware with cookie only support for me appears on T5. You can optionally force the HV firmware to not cookie only mode which is the sysino support. The sysino is a deprecated HV mechanism according to the most recent SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the cookie/sysino firmware versioning. The history of this interface is: 1) Major version 1.0 only supported sysino based interrupt interfaces. 2) Major version 2.0 added cookie based VIRQs, however due to the fact that OSs were using the VIRQs without negoatiating major version 2.0 (Linux and Solaris are both guilty), the VIRQs calls were allowed even with major version 1.0 To complicate things even further, the VIRQ interfaces were only actually hooked up in the hypervisor for LDC interrupt sources. VIRQ calls on other device types would result in HV_EINVAL errors. So effectively, major version 2.0 is unusable. 3) Major version 3.0 was created to signal use of VIRQs and the fact that the hypervisor has these calls hooked up for all interrupt sources, not just those for LDC devices. A new boot option is provided should cookie only HV support have issues. hvirq - this is the version for HV_GRP_INTR. This is related to HV API versioning. The code attempts major=3 first by default. The option can be used to override this default. I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no. Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 03:25:03 +08:00
}
/* Only invoked on boot processor.*/
void __init init_IRQ(void)
{
irq_init_hv();
irq_ivector_init();
map_prom_timers();
kill_prom_timer();
if (tlb_type == hypervisor)
sun4v_init_mondo_queues();
init_send_mondo_info();
if (tlb_type == hypervisor) {
/* Load up the boot cpu's entries. */
sun4v_register_mondo_queues(hard_smp_processor_id());
}
/* We need to clear any IRQ's pending in the soft interrupt
* registers, a spurious one could be left around from the
* PROM timer which we just disabled.
*/
clear_softint(get_softint());
/* Now that ivector table is initialized, it is safe
* to receive IRQ vector traps. We will normally take
* one or two right now, in case some device PROM used
* to boot us wants to speak to us. We just ignore them.
*/
__asm__ __volatile__("rdpr %%pstate, %%g1\n\t"
"or %%g1, %0, %%g1\n\t"
"wrpr %%g1, 0x0, %%pstate"
: /* No outputs */
: "i" (PSTATE_IE)
: "g1");
irq_to_desc(0)->action = &timer_irq_action;
}