OpenCloudOS-Kernel/fs/binfmt_flat.c

945 lines
27 KiB
C
Raw Normal View History

/****************************************************************************/
/*
* linux/fs/binfmt_flat.c
*
* Copyright (C) 2000-2003 David McCullough <davidm@snapgear.com>
* Copyright (C) 2002 Greg Ungerer <gerg@snapgear.com>
* Copyright (C) 2002 SnapGear, by Paul Dale <pauli@snapgear.com>
* Copyright (C) 2000, 2001 Lineo, by David McCullough <davidm@lineo.com>
* based heavily on:
*
* linux/fs/binfmt_aout.c:
* Copyright (C) 1991, 1992, 1996 Linus Torvalds
* linux/fs/binfmt_flat.c for 2.0 kernel
* Copyright (C) 1998 Kenneth Albanowski <kjahds@kjahds.com>
* JAN/99 -- coded full program relocation (gerg@snapgear.com)
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/a.out.h>
#include <linux/errno.h>
#include <linux/signal.h>
#include <linux/string.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/stat.h>
#include <linux/fcntl.h>
#include <linux/ptrace.h>
#include <linux/user.h>
#include <linux/slab.h>
#include <linux/binfmts.h>
#include <linux/personality.h>
#include <linux/init.h>
#include <linux/flat.h>
#include <linux/syscalls.h>
#include <asm/byteorder.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/unaligned.h>
#include <asm/cacheflush.h>
/****************************************************************************/
#if 0
#define DEBUG 1
#endif
#ifdef DEBUG
#define DBG_FLT(a...) printk(a)
#else
#define DBG_FLT(a...)
#endif
#define RELOC_FAILED 0xff00ff01 /* Relocation incorrect somewhere */
#define UNLOADED_LIB 0x7ff000ff /* Placeholder for unused library */
struct lib_info {
struct {
unsigned long start_code; /* Start of text segment */
unsigned long start_data; /* Start of data segment */
unsigned long start_brk; /* End of data segment */
unsigned long text_len; /* Length of text segment */
unsigned long entry; /* Start address for this module */
unsigned long build_date; /* When this one was compiled */
short loaded; /* Has this library been loaded? */
} lib_list[MAX_SHARED_LIBS];
};
#ifdef CONFIG_BINFMT_SHARED_FLAT
static int load_flat_shared_library(int id, struct lib_info *p);
#endif
static int load_flat_binary(struct linux_binprm *, struct pt_regs * regs);
core_pattern: ignore RLIMIT_CORE if core_pattern is a pipe For some time /proc/sys/kernel/core_pattern has been able to set its output destination as a pipe, allowing a user space helper to receive and intellegently process a core. This infrastructure however has some shortcommings which can be enhanced. Specifically: 1) The coredump code in the kernel should ignore RLIMIT_CORE limitation when core_pattern is a pipe, since file system resources are not being consumed in this case, unless the user application wishes to save the core, at which point the app is restricted by usual file system limits and restrictions. 2) The core_pattern code should be able to parse and pass options to the user space helper as an argv array. The real core limit of the uid of the crashing proces should also be passable to the user space helper (since it is overridden to zero when called). 3) Some miscellaneous bugs need to be cleaned up (specifically the recognition of a recursive core dump, should the user mode helper itself crash. Also, the core dump code in the kernel should not wait for the user mode helper to exit, since the same context is responsible for writing to the pipe, and a read of the pipe by the user mode helper will result in a deadlock. This patch: Remove the check of RLIMIT_CORE if core_pattern is a pipe. In the event that core_pattern is a pipe, the entire core will be fed to the user mode helper. Signed-off-by: Neil Horman <nhorman@tuxdriver.com> Cc: <martin.pitt@ubuntu.com> Cc: <wwoods@redhat.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 14:26:34 +08:00
static int flat_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit);
static struct linux_binfmt flat_format = {
.module = THIS_MODULE,
.load_binary = load_flat_binary,
.core_dump = flat_core_dump,
.min_coredump = PAGE_SIZE
};
/****************************************************************************/
/*
* Routine writes a core dump image in the current directory.
* Currently only a stub-function.
*/
core_pattern: ignore RLIMIT_CORE if core_pattern is a pipe For some time /proc/sys/kernel/core_pattern has been able to set its output destination as a pipe, allowing a user space helper to receive and intellegently process a core. This infrastructure however has some shortcommings which can be enhanced. Specifically: 1) The coredump code in the kernel should ignore RLIMIT_CORE limitation when core_pattern is a pipe, since file system resources are not being consumed in this case, unless the user application wishes to save the core, at which point the app is restricted by usual file system limits and restrictions. 2) The core_pattern code should be able to parse and pass options to the user space helper as an argv array. The real core limit of the uid of the crashing proces should also be passable to the user space helper (since it is overridden to zero when called). 3) Some miscellaneous bugs need to be cleaned up (specifically the recognition of a recursive core dump, should the user mode helper itself crash. Also, the core dump code in the kernel should not wait for the user mode helper to exit, since the same context is responsible for writing to the pipe, and a read of the pipe by the user mode helper will result in a deadlock. This patch: Remove the check of RLIMIT_CORE if core_pattern is a pipe. In the event that core_pattern is a pipe, the entire core will be fed to the user mode helper. Signed-off-by: Neil Horman <nhorman@tuxdriver.com> Cc: <martin.pitt@ubuntu.com> Cc: <wwoods@redhat.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 14:26:34 +08:00
static int flat_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit)
{
printk("Process %s:%d received signr %d and should have core dumped\n",
current->comm, current->pid, (int) signr);
return(1);
}
/****************************************************************************/
/*
* create_flat_tables() parses the env- and arg-strings in new user
* memory and creates the pointer tables from them, and puts their
* addresses on the "stack", returning the new stack pointer value.
*/
static unsigned long create_flat_tables(
unsigned long pp,
struct linux_binprm * bprm)
{
unsigned long *argv,*envp;
unsigned long * sp;
char * p = (char*)pp;
int argc = bprm->argc;
int envc = bprm->envc;
char dummy;
sp = (unsigned long *) ((-(unsigned long)sizeof(char *))&(unsigned long) p);
sp -= envc+1;
envp = sp;
sp -= argc+1;
argv = sp;
flat_stack_align(sp);
if (flat_argvp_envp_on_stack()) {
--sp; put_user((unsigned long) envp, sp);
--sp; put_user((unsigned long) argv, sp);
}
put_user(argc,--sp);
current->mm->arg_start = (unsigned long) p;
while (argc-->0) {
put_user((unsigned long) p, argv++);
do {
get_user(dummy, p); p++;
} while (dummy);
}
put_user((unsigned long) NULL, argv);
current->mm->arg_end = current->mm->env_start = (unsigned long) p;
while (envc-->0) {
put_user((unsigned long)p, envp); envp++;
do {
get_user(dummy, p); p++;
} while (dummy);
}
put_user((unsigned long) NULL, envp);
current->mm->env_end = (unsigned long) p;
return (unsigned long)sp;
}
/****************************************************************************/
#ifdef CONFIG_BINFMT_ZFLAT
#include <linux/zlib.h>
#define LBUFSIZE 4000
/* gzip flag byte */
#define ASCII_FLAG 0x01 /* bit 0 set: file probably ASCII text */
#define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
#define EXTRA_FIELD 0x04 /* bit 2 set: extra field present */
#define ORIG_NAME 0x08 /* bit 3 set: original file name present */
#define COMMENT 0x10 /* bit 4 set: file comment present */
#define ENCRYPTED 0x20 /* bit 5 set: file is encrypted */
#define RESERVED 0xC0 /* bit 6,7: reserved */
static int decompress_exec(
struct linux_binprm *bprm,
unsigned long offset,
char *dst,
long len,
int fd)
{
unsigned char *buf;
z_stream strm;
loff_t fpos;
int ret, retval;
DBG_FLT("decompress_exec(offset=%x,buf=%x,len=%x)\n",(int)offset, (int)dst, (int)len);
memset(&strm, 0, sizeof(strm));
strm.workspace = kmalloc(zlib_inflate_workspacesize(), GFP_KERNEL);
if (strm.workspace == NULL) {
DBG_FLT("binfmt_flat: no memory for decompress workspace\n");
return -ENOMEM;
}
buf = kmalloc(LBUFSIZE, GFP_KERNEL);
if (buf == NULL) {
DBG_FLT("binfmt_flat: no memory for read buffer\n");
retval = -ENOMEM;
goto out_free;
}
/* Read in first chunk of data and parse gzip header. */
fpos = offset;
ret = bprm->file->f_op->read(bprm->file, buf, LBUFSIZE, &fpos);
strm.next_in = buf;
strm.avail_in = ret;
strm.total_in = 0;
retval = -ENOEXEC;
/* Check minimum size -- gzip header */
if (ret < 10) {
DBG_FLT("binfmt_flat: file too small?\n");
goto out_free_buf;
}
/* Check gzip magic number */
if ((buf[0] != 037) || ((buf[1] != 0213) && (buf[1] != 0236))) {
DBG_FLT("binfmt_flat: unknown compression magic?\n");
goto out_free_buf;
}
/* Check gzip method */
if (buf[2] != 8) {
DBG_FLT("binfmt_flat: unknown compression method?\n");
goto out_free_buf;
}
/* Check gzip flags */
if ((buf[3] & ENCRYPTED) || (buf[3] & CONTINUATION) ||
(buf[3] & RESERVED)) {
DBG_FLT("binfmt_flat: unknown flags?\n");
goto out_free_buf;
}
ret = 10;
if (buf[3] & EXTRA_FIELD) {
ret += 2 + buf[10] + (buf[11] << 8);
if (unlikely(LBUFSIZE == ret)) {
DBG_FLT("binfmt_flat: buffer overflow (EXTRA)?\n");
goto out_free_buf;
}
}
if (buf[3] & ORIG_NAME) {
for (; ret < LBUFSIZE && (buf[ret] != 0); ret++)
;
if (unlikely(LBUFSIZE == ret)) {
DBG_FLT("binfmt_flat: buffer overflow (ORIG_NAME)?\n");
goto out_free_buf;
}
}
if (buf[3] & COMMENT) {
for (; ret < LBUFSIZE && (buf[ret] != 0); ret++)
;
if (unlikely(LBUFSIZE == ret)) {
DBG_FLT("binfmt_flat: buffer overflow (COMMENT)?\n");
goto out_free_buf;
}
}
strm.next_in += ret;
strm.avail_in -= ret;
strm.next_out = dst;
strm.avail_out = len;
strm.total_out = 0;
if (zlib_inflateInit2(&strm, -MAX_WBITS) != Z_OK) {
DBG_FLT("binfmt_flat: zlib init failed?\n");
goto out_free_buf;
}
while ((ret = zlib_inflate(&strm, Z_NO_FLUSH)) == Z_OK) {
ret = bprm->file->f_op->read(bprm->file, buf, LBUFSIZE, &fpos);
if (ret <= 0)
break;
if (ret >= (unsigned long) -4096)
break;
len -= ret;
strm.next_in = buf;
strm.avail_in = ret;
strm.total_in = 0;
}
if (ret < 0) {
DBG_FLT("binfmt_flat: decompression failed (%d), %s\n",
ret, strm.msg);
goto out_zlib;
}
retval = 0;
out_zlib:
zlib_inflateEnd(&strm);
out_free_buf:
kfree(buf);
out_free:
kfree(strm.workspace);
out:
return retval;
}
#endif /* CONFIG_BINFMT_ZFLAT */
/****************************************************************************/
static unsigned long
calc_reloc(unsigned long r, struct lib_info *p, int curid, int internalp)
{
unsigned long addr;
int id;
unsigned long start_brk;
unsigned long start_data;
unsigned long text_len;
unsigned long start_code;
#ifdef CONFIG_BINFMT_SHARED_FLAT
if (r == 0)
id = curid; /* Relocs of 0 are always self referring */
else {
id = (r >> 24) & 0xff; /* Find ID for this reloc */
r &= 0x00ffffff; /* Trim ID off here */
}
if (id >= MAX_SHARED_LIBS) {
printk("BINFMT_FLAT: reference 0x%x to shared library %d",
(unsigned) r, id);
goto failed;
}
if (curid != id) {
if (internalp) {
printk("BINFMT_FLAT: reloc address 0x%x not in same module "
"(%d != %d)", (unsigned) r, curid, id);
goto failed;
} else if ( ! p->lib_list[id].loaded &&
load_flat_shared_library(id, p) > (unsigned long) -4096) {
printk("BINFMT_FLAT: failed to load library %d", id);
goto failed;
}
/* Check versioning information (i.e. time stamps) */
if (p->lib_list[id].build_date && p->lib_list[curid].build_date &&
p->lib_list[curid].build_date < p->lib_list[id].build_date) {
printk("BINFMT_FLAT: library %d is younger than %d", id, curid);
goto failed;
}
}
#else
id = 0;
#endif
start_brk = p->lib_list[id].start_brk;
start_data = p->lib_list[id].start_data;
start_code = p->lib_list[id].start_code;
text_len = p->lib_list[id].text_len;
if (!flat_reloc_valid(r, start_brk - start_data + text_len)) {
printk("BINFMT_FLAT: reloc outside program 0x%x (0 - 0x%x/0x%x)",
(int) r,(int)(start_brk-start_code),(int)text_len);
goto failed;
}
if (r < text_len) /* In text segment */
addr = r + start_code;
else /* In data segment */
addr = r - text_len + start_data;
/* Range checked already above so doing the range tests is redundant...*/
return(addr);
failed:
printk(", killing %s!\n", current->comm);
send_sig(SIGSEGV, current, 0);
return RELOC_FAILED;
}
/****************************************************************************/
void old_reloc(unsigned long rl)
{
#ifdef DEBUG
char *segment[] = { "TEXT", "DATA", "BSS", "*UNKNOWN*" };
#endif
flat_v2_reloc_t r;
unsigned long *ptr;
r.value = rl;
#if defined(CONFIG_COLDFIRE)
ptr = (unsigned long *) (current->mm->start_code + r.reloc.offset);
#else
ptr = (unsigned long *) (current->mm->start_data + r.reloc.offset);
#endif
#ifdef DEBUG
printk("Relocation of variable at DATASEG+%x "
"(address %p, currently %x) into segment %s\n",
r.reloc.offset, ptr, (int)*ptr, segment[r.reloc.type]);
#endif
switch (r.reloc.type) {
case OLD_FLAT_RELOC_TYPE_TEXT:
*ptr += current->mm->start_code;
break;
case OLD_FLAT_RELOC_TYPE_DATA:
*ptr += current->mm->start_data;
break;
case OLD_FLAT_RELOC_TYPE_BSS:
*ptr += current->mm->end_data;
break;
default:
printk("BINFMT_FLAT: Unknown relocation type=%x\n", r.reloc.type);
break;
}
#ifdef DEBUG
printk("Relocation became %x\n", (int)*ptr);
#endif
}
/****************************************************************************/
static int load_flat_file(struct linux_binprm * bprm,
struct lib_info *libinfo, int id, unsigned long *extra_stack)
{
struct flat_hdr * hdr;
unsigned long textpos = 0, datapos = 0, result;
unsigned long realdatastart = 0;
unsigned long text_len, data_len, bss_len, stack_len, flags;
unsigned long len, reallen, memp = 0;
unsigned long extra, rlim;
unsigned long *reloc = 0, *rp;
struct inode *inode;
int i, rev, relocs = 0;
loff_t fpos;
unsigned long start_code, end_code;
int ret;
hdr = ((struct flat_hdr *) bprm->buf); /* exec-header */
inode = bprm->file->f_path.dentry->d_inode;
text_len = ntohl(hdr->data_start);
data_len = ntohl(hdr->data_end) - ntohl(hdr->data_start);
bss_len = ntohl(hdr->bss_end) - ntohl(hdr->data_end);
stack_len = ntohl(hdr->stack_size);
if (extra_stack) {
stack_len += *extra_stack;
*extra_stack = stack_len;
}
relocs = ntohl(hdr->reloc_count);
flags = ntohl(hdr->flags);
rev = ntohl(hdr->rev);
if (strncmp(hdr->magic, "bFLT", 4)) {
/*
* because a lot of people do not manage to produce good
* flat binaries, we leave this printk to help them realise
* the problem. We only print the error if its not a script file
*/
if (strncmp(hdr->magic, "#!", 2))
printk("BINFMT_FLAT: bad header magic\n");
ret = -ENOEXEC;
goto err;
}
if (flags & FLAT_FLAG_KTRACE)
printk("BINFMT_FLAT: Loading file: %s\n", bprm->filename);
if (rev != FLAT_VERSION && rev != OLD_FLAT_VERSION) {
printk("BINFMT_FLAT: bad flat file version 0x%x (supported 0x%x and 0x%x)\n", rev, FLAT_VERSION, OLD_FLAT_VERSION);
ret = -ENOEXEC;
goto err;
}
/* Don't allow old format executables to use shared libraries */
if (rev == OLD_FLAT_VERSION && id != 0) {
printk("BINFMT_FLAT: shared libraries are not available before rev 0x%x\n",
(int) FLAT_VERSION);
ret = -ENOEXEC;
goto err;
}
/*
* fix up the flags for the older format, there were all kinds
* of endian hacks, this only works for the simple cases
*/
if (rev == OLD_FLAT_VERSION && flat_old_ram_flag(flags))
flags = FLAT_FLAG_RAM;
#ifndef CONFIG_BINFMT_ZFLAT
if (flags & (FLAT_FLAG_GZIP|FLAT_FLAG_GZDATA)) {
printk("Support for ZFLAT executables is not enabled.\n");
ret = -ENOEXEC;
goto err;
}
#endif
/*
* Check initial limits. This avoids letting people circumvent
* size limits imposed on them by creating programs with large
* arrays in the data or bss.
*/
rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
if (rlim >= RLIM_INFINITY)
rlim = ~0;
if (data_len + bss_len > rlim) {
ret = -ENOMEM;
goto err;
}
/* Flush all traces of the currently running executable */
if (id == 0) {
result = flush_old_exec(bprm);
if (result) {
ret = result;
goto err;
}
/* OK, This is the point of no return */
set_personality(PER_LINUX_32BIT);
}
/*
* calculate the extra space we need to map in
*/
extra = max(bss_len + stack_len, relocs * sizeof(unsigned long));
/*
* there are a couple of cases here, the separate code/data
* case, and then the fully copied to RAM case which lumps
* it all together.
*/
if ((flags & (FLAT_FLAG_RAM|FLAT_FLAG_GZIP)) == 0) {
/*
* this should give us a ROM ptr, but if it doesn't we don't
* really care
*/
DBG_FLT("BINFMT_FLAT: ROM mapping of file (we hope)\n");
down_write(&current->mm->mmap_sem);
textpos = do_mmap(bprm->file, 0, text_len, PROT_READ|PROT_EXEC, MAP_PRIVATE, 0);
up_write(&current->mm->mmap_sem);
if (!textpos || textpos >= (unsigned long) -4096) {
if (!textpos)
textpos = (unsigned long) -ENOMEM;
printk("Unable to mmap process text, errno %d\n", (int)-textpos);
ret = textpos;
goto err;
}
len = data_len + extra + MAX_SHARED_LIBS * sizeof(unsigned long);
down_write(&current->mm->mmap_sem);
realdatastart = do_mmap(0, 0, len,
PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, 0);
/* Remap to use all availabe slack region space */
if (realdatastart && (realdatastart < (unsigned long)-4096)) {
reallen = ksize(realdatastart);
if (reallen > len) {
realdatastart = do_mremap(realdatastart, len,
reallen, MREMAP_FIXED, realdatastart);
}
}
up_write(&current->mm->mmap_sem);
if (realdatastart == 0 || realdatastart >= (unsigned long)-4096) {
if (!realdatastart)
realdatastart = (unsigned long) -ENOMEM;
printk("Unable to allocate RAM for process data, errno %d\n",
(int)-realdatastart);
do_munmap(current->mm, textpos, text_len);
ret = realdatastart;
goto err;
}
datapos = realdatastart + MAX_SHARED_LIBS * sizeof(unsigned long);
DBG_FLT("BINFMT_FLAT: Allocated data+bss+stack (%d bytes): %x\n",
(int)(data_len + bss_len + stack_len), (int)datapos);
fpos = ntohl(hdr->data_start);
#ifdef CONFIG_BINFMT_ZFLAT
if (flags & FLAT_FLAG_GZDATA) {
result = decompress_exec(bprm, fpos, (char *) datapos,
data_len + (relocs * sizeof(unsigned long)), 0);
} else
#endif
{
result = bprm->file->f_op->read(bprm->file, (char *) datapos,
data_len + (relocs * sizeof(unsigned long)), &fpos);
}
if (result >= (unsigned long)-4096) {
printk("Unable to read data+bss, errno %d\n", (int)-result);
do_munmap(current->mm, textpos, text_len);
do_munmap(current->mm, realdatastart, data_len + extra);
ret = result;
goto err;
}
reloc = (unsigned long *) (datapos+(ntohl(hdr->reloc_start)-text_len));
memp = realdatastart;
} else {
len = text_len + data_len + extra + MAX_SHARED_LIBS * sizeof(unsigned long);
down_write(&current->mm->mmap_sem);
textpos = do_mmap(0, 0, len,
PROT_READ | PROT_EXEC | PROT_WRITE, MAP_PRIVATE, 0);
/* Remap to use all availabe slack region space */
if (textpos && (textpos < (unsigned long) -4096)) {
reallen = ksize(textpos);
if (reallen > len) {
textpos = do_mremap(textpos, len, reallen,
MREMAP_FIXED, textpos);
}
}
up_write(&current->mm->mmap_sem);
if (!textpos || textpos >= (unsigned long) -4096) {
if (!textpos)
textpos = (unsigned long) -ENOMEM;
printk("Unable to allocate RAM for process text/data, errno %d\n",
(int)-textpos);
ret = textpos;
goto err;
}
realdatastart = textpos + ntohl(hdr->data_start);
datapos = realdatastart + MAX_SHARED_LIBS * sizeof(unsigned long);
reloc = (unsigned long *) (textpos + ntohl(hdr->reloc_start) +
MAX_SHARED_LIBS * sizeof(unsigned long));
memp = textpos;
#ifdef CONFIG_BINFMT_ZFLAT
/*
* load it all in and treat it like a RAM load from now on
*/
if (flags & FLAT_FLAG_GZIP) {
result = decompress_exec(bprm, sizeof (struct flat_hdr),
(((char *) textpos) + sizeof (struct flat_hdr)),
(text_len + data_len + (relocs * sizeof(unsigned long))
- sizeof (struct flat_hdr)),
0);
memmove((void *) datapos, (void *) realdatastart,
data_len + (relocs * sizeof(unsigned long)));
} else if (flags & FLAT_FLAG_GZDATA) {
fpos = 0;
result = bprm->file->f_op->read(bprm->file,
(char *) textpos, text_len, &fpos);
if (result < (unsigned long) -4096)
result = decompress_exec(bprm, text_len, (char *) datapos,
data_len + (relocs * sizeof(unsigned long)), 0);
}
else
#endif
{
fpos = 0;
result = bprm->file->f_op->read(bprm->file,
(char *) textpos, text_len, &fpos);
if (result < (unsigned long) -4096) {
fpos = ntohl(hdr->data_start);
result = bprm->file->f_op->read(bprm->file, (char *) datapos,
data_len + (relocs * sizeof(unsigned long)), &fpos);
}
}
if (result >= (unsigned long)-4096) {
printk("Unable to read code+data+bss, errno %d\n",(int)-result);
do_munmap(current->mm, textpos, text_len + data_len + extra +
MAX_SHARED_LIBS * sizeof(unsigned long));
ret = result;
goto err;
}
}
if (flags & FLAT_FLAG_KTRACE)
printk("Mapping is %x, Entry point is %x, data_start is %x\n",
(int)textpos, 0x00ffffff&ntohl(hdr->entry), ntohl(hdr->data_start));
/* The main program needs a little extra setup in the task structure */
start_code = textpos + sizeof (struct flat_hdr);
end_code = textpos + text_len;
if (id == 0) {
current->mm->start_code = start_code;
current->mm->end_code = end_code;
current->mm->start_data = datapos;
current->mm->end_data = datapos + data_len;
/*
* set up the brk stuff, uses any slack left in data/bss/stack
* allocation. We put the brk after the bss (between the bss
* and stack) like other platforms.
*/
current->mm->start_brk = datapos + data_len + bss_len;
current->mm->brk = (current->mm->start_brk + 3) & ~3;
current->mm->context.end_brk = memp + ksize((void *) memp) - stack_len;
}
if (flags & FLAT_FLAG_KTRACE)
printk("%s %s: TEXT=%x-%x DATA=%x-%x BSS=%x-%x\n",
id ? "Lib" : "Load", bprm->filename,
(int) start_code, (int) end_code,
(int) datapos,
(int) (datapos + data_len),
(int) (datapos + data_len),
(int) (((datapos + data_len + bss_len) + 3) & ~3));
text_len -= sizeof(struct flat_hdr); /* the real code len */
/* Store the current module values into the global library structure */
libinfo->lib_list[id].start_code = start_code;
libinfo->lib_list[id].start_data = datapos;
libinfo->lib_list[id].start_brk = datapos + data_len + bss_len;
libinfo->lib_list[id].text_len = text_len;
libinfo->lib_list[id].loaded = 1;
libinfo->lib_list[id].entry = (0x00ffffff & ntohl(hdr->entry)) + textpos;
libinfo->lib_list[id].build_date = ntohl(hdr->build_date);
/*
* We just load the allocations into some temporary memory to
* help simplify all this mumbo jumbo
*
* We've got two different sections of relocation entries.
* The first is the GOT which resides at the begining of the data segment
* and is terminated with a -1. This one can be relocated in place.
* The second is the extra relocation entries tacked after the image's
* data segment. These require a little more processing as the entry is
* really an offset into the image which contains an offset into the
* image.
*/
if (flags & FLAT_FLAG_GOTPIC) {
for (rp = (unsigned long *)datapos; *rp != 0xffffffff; rp++) {
unsigned long addr;
if (*rp) {
addr = calc_reloc(*rp, libinfo, id, 0);
if (addr == RELOC_FAILED) {
ret = -ENOEXEC;
goto err;
}
*rp = addr;
}
}
}
/*
* Now run through the relocation entries.
* We've got to be careful here as C++ produces relocatable zero
* entries in the constructor and destructor tables which are then
* tested for being not zero (which will always occur unless we're
* based from address zero). This causes an endless loop as __start
* is at zero. The solution used is to not relocate zero addresses.
* This has the negative side effect of not allowing a global data
* reference to be statically initialised to _stext (I've moved
* __start to address 4 so that is okay).
*/
if (rev > OLD_FLAT_VERSION) {
unsigned long persistent = 0;
for (i=0; i < relocs; i++) {
unsigned long addr, relval;
/* Get the address of the pointer to be
relocated (of course, the address has to be
relocated first). */
relval = ntohl(reloc[i]);
if (flat_set_persistent (relval, &persistent))
continue;
addr = flat_get_relocate_addr(relval);
rp = (unsigned long *) calc_reloc(addr, libinfo, id, 1);
if (rp == (unsigned long *)RELOC_FAILED) {
ret = -ENOEXEC;
goto err;
}
/* Get the pointer's value. */
addr = flat_get_addr_from_rp(rp, relval, flags,
&persistent);
if (addr != 0) {
/*
* Do the relocation. PIC relocs in the data section are
* already in target order
*/
if ((flags & FLAT_FLAG_GOTPIC) == 0)
addr = ntohl(addr);
addr = calc_reloc(addr, libinfo, id, 0);
if (addr == RELOC_FAILED) {
ret = -ENOEXEC;
goto err;
}
/* Write back the relocated pointer. */
flat_put_addr_at_rp(rp, addr, relval);
}
}
} else {
for (i=0; i < relocs; i++)
old_reloc(ntohl(reloc[i]));
}
flush_icache_range(start_code, end_code);
/* zero the BSS, BRK and stack areas */
memset((void*)(datapos + data_len), 0, bss_len +
(memp + ksize((void *) memp) - stack_len - /* end brk */
libinfo->lib_list[id].start_brk) + /* start brk */
stack_len);
return 0;
err:
return ret;
}
/****************************************************************************/
#ifdef CONFIG_BINFMT_SHARED_FLAT
/*
* Load a shared library into memory. The library gets its own data
* segment (including bss) but not argv/argc/environ.
*/
static int load_flat_shared_library(int id, struct lib_info *libs)
{
struct linux_binprm bprm;
int res;
char buf[16];
/* Create the file name */
sprintf(buf, "/lib/lib%d.so", id);
/* Open the file up */
bprm.filename = buf;
bprm.file = open_exec(bprm.filename);
res = PTR_ERR(bprm.file);
if (IS_ERR(bprm.file))
return res;
res = prepare_binprm(&bprm);
if (res <= (unsigned long)-4096)
res = load_flat_file(&bprm, libs, id, NULL);
if (bprm.file) {
allow_write_access(bprm.file);
fput(bprm.file);
bprm.file = NULL;
}
return(res);
}
#endif /* CONFIG_BINFMT_SHARED_FLAT */
/****************************************************************************/
/*
* These are the functions used to load flat style executables and shared
* libraries. There is no binary dependent code anywhere else.
*/
static int load_flat_binary(struct linux_binprm * bprm, struct pt_regs * regs)
{
struct lib_info libinfo;
unsigned long p = bprm->p;
unsigned long stack_len;
unsigned long start_addr;
unsigned long *sp;
int res;
int i, j;
memset(&libinfo, 0, sizeof(libinfo));
/*
* We have to add the size of our arguments to our stack size
* otherwise it's too easy for users to create stack overflows
* by passing in a huge argument list. And yes, we have to be
* pedantic and include space for the argv/envp array as it may have
* a lot of entries.
*/
#define TOP_OF_ARGS (PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *))
stack_len = TOP_OF_ARGS - bprm->p; /* the strings */
stack_len += (bprm->argc + 1) * sizeof(char *); /* the argv array */
stack_len += (bprm->envc + 1) * sizeof(char *); /* the envp array */
res = load_flat_file(bprm, &libinfo, 0, &stack_len);
if (res > (unsigned long)-4096)
return res;
/* Update data segment pointers for all libraries */
for (i=0; i<MAX_SHARED_LIBS; i++)
if (libinfo.lib_list[i].loaded)
for (j=0; j<MAX_SHARED_LIBS; j++)
(-(j+1))[(unsigned long *)(libinfo.lib_list[i].start_data)] =
(libinfo.lib_list[j].loaded)?
libinfo.lib_list[j].start_data:UNLOADED_LIB;
compute_creds(bprm);
current->flags &= ~PF_FORKNOEXEC;
set_binfmt(&flat_format);
p = ((current->mm->context.end_brk + stack_len + 3) & ~3) - 4;
DBG_FLT("p=%x\n", (int)p);
/* copy the arg pages onto the stack, this could be more efficient :-) */
for (i = TOP_OF_ARGS - 1; i >= bprm->p; i--)
* (char *) --p =
((char *) page_address(bprm->page[i/PAGE_SIZE]))[i % PAGE_SIZE];
sp = (unsigned long *) create_flat_tables(p, bprm);
/* Fake some return addresses to ensure the call chain will
* initialise library in order for us. We are required to call
* lib 1 first, then 2, ... and finally the main program (id 0).
*/
start_addr = libinfo.lib_list[0].entry;
#ifdef CONFIG_BINFMT_SHARED_FLAT
for (i = MAX_SHARED_LIBS-1; i>0; i--) {
if (libinfo.lib_list[i].loaded) {
/* Push previos first to call address */
--sp; put_user(start_addr, sp);
start_addr = libinfo.lib_list[i].entry;
}
}
#endif
/* Stash our initial stack pointer into the mm structure */
current->mm->start_stack = (unsigned long )sp;
DBG_FLT("start_thread(regs=0x%x, entry=0x%x, start_stack=0x%x)\n",
(int)regs, (int)start_addr, (int)current->mm->start_stack);
start_thread(regs, start_addr, current->mm->start_stack);
if (current->ptrace & PT_PTRACED)
send_sig(SIGTRAP, current, 0);
return 0;
}
/****************************************************************************/
static int __init init_flat_binfmt(void)
{
return register_binfmt(&flat_format);
}
static void __exit exit_flat_binfmt(void)
{
unregister_binfmt(&flat_format);
}
/****************************************************************************/
core_initcall(init_flat_binfmt);
module_exit(exit_flat_binfmt);
/****************************************************************************/