"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
/*
|
|
|
|
* Read-Copy Update mechanism for mutual exclusion
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
2013-12-04 02:02:52 +08:00
|
|
|
* along with this program; if not, you can access it online at
|
|
|
|
* http://www.gnu.org/licenses/gpl-2.0.html.
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
*
|
|
|
|
* Copyright IBM Corporation, 2008
|
|
|
|
*
|
|
|
|
* Authors: Dipankar Sarma <dipankar@in.ibm.com>
|
|
|
|
* Manfred Spraul <manfred@colorfullife.com>
|
|
|
|
* Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
|
|
|
|
*
|
|
|
|
* Based on the original work by Paul McKenney <paulmck@us.ibm.com>
|
|
|
|
* and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
|
|
|
|
*
|
|
|
|
* For detailed explanation of Read-Copy Update mechanism see -
|
2009-09-19 01:28:19 +08:00
|
|
|
* Documentation/RCU
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
*/
|
2018-05-15 04:27:33 +08:00
|
|
|
|
|
|
|
#define pr_fmt(fmt) "rcu: " fmt
|
|
|
|
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
#include <linux/types.h>
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/spinlock.h>
|
|
|
|
#include <linux/smp.h>
|
2017-02-06 16:50:49 +08:00
|
|
|
#include <linux/rcupdate_wait.h>
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <linux/sched.h>
|
2017-02-09 01:51:35 +08:00
|
|
|
#include <linux/sched/debug.h>
|
2009-08-02 17:28:21 +08:00
|
|
|
#include <linux/nmi.h>
|
rcu: Avoid acquiring rcu_node locks in timer functions
This commit switches manipulations of the rcu_node ->wakemask field
to atomic operations, which allows rcu_cpu_kthread_timer() to avoid
acquiring the rcu_node lock. This should avoid the following lockdep
splat reported by Valdis Kletnieks:
[ 12.872150] usb 1-4: new high speed USB device number 3 using ehci_hcd
[ 12.986667] usb 1-4: New USB device found, idVendor=413c, idProduct=2513
[ 12.986679] usb 1-4: New USB device strings: Mfr=0, Product=0, SerialNumber=0
[ 12.987691] hub 1-4:1.0: USB hub found
[ 12.987877] hub 1-4:1.0: 3 ports detected
[ 12.996372] input: PS/2 Generic Mouse as /devices/platform/i8042/serio1/input/input10
[ 13.071471] udevadm used greatest stack depth: 3984 bytes left
[ 13.172129]
[ 13.172130] =======================================================
[ 13.172425] [ INFO: possible circular locking dependency detected ]
[ 13.172650] 2.6.39-rc6-mmotm0506 #1
[ 13.172773] -------------------------------------------------------
[ 13.172997] blkid/267 is trying to acquire lock:
[ 13.173009] (&p->pi_lock){-.-.-.}, at: [<ffffffff81032d8f>] try_to_wake_up+0x29/0x1aa
[ 13.173009]
[ 13.173009] but task is already holding lock:
[ 13.173009] (rcu_node_level_0){..-...}, at: [<ffffffff810901cc>] rcu_cpu_kthread_timer+0x27/0x58
[ 13.173009]
[ 13.173009] which lock already depends on the new lock.
[ 13.173009]
[ 13.173009]
[ 13.173009] the existing dependency chain (in reverse order) is:
[ 13.173009]
[ 13.173009] -> #2 (rcu_node_level_0){..-...}:
[ 13.173009] [<ffffffff810679b9>] check_prevs_add+0x8b/0x104
[ 13.173009] [<ffffffff81067da1>] validate_chain+0x36f/0x3ab
[ 13.173009] [<ffffffff8106846b>] __lock_acquire+0x369/0x3e2
[ 13.173009] [<ffffffff81068a0f>] lock_acquire+0xfc/0x14c
[ 13.173009] [<ffffffff815697f1>] _raw_spin_lock+0x36/0x45
[ 13.173009] [<ffffffff81090794>] rcu_read_unlock_special+0x8c/0x1d5
[ 13.173009] [<ffffffff8109092c>] __rcu_read_unlock+0x4f/0xd7
[ 13.173009] [<ffffffff81027bd3>] rcu_read_unlock+0x21/0x23
[ 13.173009] [<ffffffff8102cc34>] cpuacct_charge+0x6c/0x75
[ 13.173009] [<ffffffff81030cc6>] update_curr+0x101/0x12e
[ 13.173009] [<ffffffff810311d0>] check_preempt_wakeup+0xf7/0x23b
[ 13.173009] [<ffffffff8102acb3>] check_preempt_curr+0x2b/0x68
[ 13.173009] [<ffffffff81031d40>] ttwu_do_wakeup+0x76/0x128
[ 13.173009] [<ffffffff81031e49>] ttwu_do_activate.constprop.63+0x57/0x5c
[ 13.173009] [<ffffffff81031e96>] scheduler_ipi+0x48/0x5d
[ 13.173009] [<ffffffff810177d5>] smp_reschedule_interrupt+0x16/0x18
[ 13.173009] [<ffffffff815710f3>] reschedule_interrupt+0x13/0x20
[ 13.173009] [<ffffffff810b66d1>] rcu_read_unlock+0x21/0x23
[ 13.173009] [<ffffffff810b739c>] find_get_page+0xa9/0xb9
[ 13.173009] [<ffffffff810b8b48>] filemap_fault+0x6a/0x34d
[ 13.173009] [<ffffffff810d1a25>] __do_fault+0x54/0x3e6
[ 13.173009] [<ffffffff810d447a>] handle_pte_fault+0x12c/0x1ed
[ 13.173009] [<ffffffff810d48f7>] handle_mm_fault+0x1cd/0x1e0
[ 13.173009] [<ffffffff8156cfee>] do_page_fault+0x42d/0x5de
[ 13.173009] [<ffffffff8156a75f>] page_fault+0x1f/0x30
[ 13.173009]
[ 13.173009] -> #1 (&rq->lock){-.-.-.}:
[ 13.173009] [<ffffffff810679b9>] check_prevs_add+0x8b/0x104
[ 13.173009] [<ffffffff81067da1>] validate_chain+0x36f/0x3ab
[ 13.173009] [<ffffffff8106846b>] __lock_acquire+0x369/0x3e2
[ 13.173009] [<ffffffff81068a0f>] lock_acquire+0xfc/0x14c
[ 13.173009] [<ffffffff815697f1>] _raw_spin_lock+0x36/0x45
[ 13.173009] [<ffffffff81027e19>] __task_rq_lock+0x8b/0xd3
[ 13.173009] [<ffffffff81032f7f>] wake_up_new_task+0x41/0x108
[ 13.173009] [<ffffffff810376c3>] do_fork+0x265/0x33f
[ 13.173009] [<ffffffff81007d02>] kernel_thread+0x6b/0x6d
[ 13.173009] [<ffffffff8153a9dd>] rest_init+0x21/0xd2
[ 13.173009] [<ffffffff81b1db4f>] start_kernel+0x3bb/0x3c6
[ 13.173009] [<ffffffff81b1d29f>] x86_64_start_reservations+0xaf/0xb3
[ 13.173009] [<ffffffff81b1d393>] x86_64_start_kernel+0xf0/0xf7
[ 13.173009]
[ 13.173009] -> #0 (&p->pi_lock){-.-.-.}:
[ 13.173009] [<ffffffff81067788>] check_prev_add+0x68/0x20e
[ 13.173009] [<ffffffff810679b9>] check_prevs_add+0x8b/0x104
[ 13.173009] [<ffffffff81067da1>] validate_chain+0x36f/0x3ab
[ 13.173009] [<ffffffff8106846b>] __lock_acquire+0x369/0x3e2
[ 13.173009] [<ffffffff81068a0f>] lock_acquire+0xfc/0x14c
[ 13.173009] [<ffffffff815698ea>] _raw_spin_lock_irqsave+0x44/0x57
[ 13.173009] [<ffffffff81032d8f>] try_to_wake_up+0x29/0x1aa
[ 13.173009] [<ffffffff81032f3c>] wake_up_process+0x10/0x12
[ 13.173009] [<ffffffff810901e9>] rcu_cpu_kthread_timer+0x44/0x58
[ 13.173009] [<ffffffff81045286>] call_timer_fn+0xac/0x1e9
[ 13.173009] [<ffffffff8104556d>] run_timer_softirq+0x1aa/0x1f2
[ 13.173009] [<ffffffff8103e487>] __do_softirq+0x109/0x26a
[ 13.173009] [<ffffffff8157144c>] call_softirq+0x1c/0x30
[ 13.173009] [<ffffffff81003207>] do_softirq+0x44/0xf1
[ 13.173009] [<ffffffff8103e8b9>] irq_exit+0x58/0xc8
[ 13.173009] [<ffffffff81017f5a>] smp_apic_timer_interrupt+0x79/0x87
[ 13.173009] [<ffffffff81570fd3>] apic_timer_interrupt+0x13/0x20
[ 13.173009] [<ffffffff810bd51a>] get_page_from_freelist+0x2aa/0x310
[ 13.173009] [<ffffffff810bdf03>] __alloc_pages_nodemask+0x178/0x243
[ 13.173009] [<ffffffff8101fe2f>] pte_alloc_one+0x1e/0x3a
[ 13.173009] [<ffffffff810d27fe>] __pte_alloc+0x22/0x14b
[ 13.173009] [<ffffffff810d48a8>] handle_mm_fault+0x17e/0x1e0
[ 13.173009] [<ffffffff8156cfee>] do_page_fault+0x42d/0x5de
[ 13.173009] [<ffffffff8156a75f>] page_fault+0x1f/0x30
[ 13.173009]
[ 13.173009] other info that might help us debug this:
[ 13.173009]
[ 13.173009] Chain exists of:
[ 13.173009] &p->pi_lock --> &rq->lock --> rcu_node_level_0
[ 13.173009]
[ 13.173009] Possible unsafe locking scenario:
[ 13.173009]
[ 13.173009] CPU0 CPU1
[ 13.173009] ---- ----
[ 13.173009] lock(rcu_node_level_0);
[ 13.173009] lock(&rq->lock);
[ 13.173009] lock(rcu_node_level_0);
[ 13.173009] lock(&p->pi_lock);
[ 13.173009]
[ 13.173009] *** DEADLOCK ***
[ 13.173009]
[ 13.173009] 3 locks held by blkid/267:
[ 13.173009] #0: (&mm->mmap_sem){++++++}, at: [<ffffffff8156cdb4>] do_page_fault+0x1f3/0x5de
[ 13.173009] #1: (&yield_timer){+.-...}, at: [<ffffffff810451da>] call_timer_fn+0x0/0x1e9
[ 13.173009] #2: (rcu_node_level_0){..-...}, at: [<ffffffff810901cc>] rcu_cpu_kthread_timer+0x27/0x58
[ 13.173009]
[ 13.173009] stack backtrace:
[ 13.173009] Pid: 267, comm: blkid Not tainted 2.6.39-rc6-mmotm0506 #1
[ 13.173009] Call Trace:
[ 13.173009] <IRQ> [<ffffffff8154a529>] print_circular_bug+0xc8/0xd9
[ 13.173009] [<ffffffff81067788>] check_prev_add+0x68/0x20e
[ 13.173009] [<ffffffff8100c861>] ? save_stack_trace+0x28/0x46
[ 13.173009] [<ffffffff810679b9>] check_prevs_add+0x8b/0x104
[ 13.173009] [<ffffffff81067da1>] validate_chain+0x36f/0x3ab
[ 13.173009] [<ffffffff8106846b>] __lock_acquire+0x369/0x3e2
[ 13.173009] [<ffffffff81032d8f>] ? try_to_wake_up+0x29/0x1aa
[ 13.173009] [<ffffffff81068a0f>] lock_acquire+0xfc/0x14c
[ 13.173009] [<ffffffff81032d8f>] ? try_to_wake_up+0x29/0x1aa
[ 13.173009] [<ffffffff810901a5>] ? rcu_check_quiescent_state+0x82/0x82
[ 13.173009] [<ffffffff815698ea>] _raw_spin_lock_irqsave+0x44/0x57
[ 13.173009] [<ffffffff81032d8f>] ? try_to_wake_up+0x29/0x1aa
[ 13.173009] [<ffffffff81032d8f>] try_to_wake_up+0x29/0x1aa
[ 13.173009] [<ffffffff810901a5>] ? rcu_check_quiescent_state+0x82/0x82
[ 13.173009] [<ffffffff81032f3c>] wake_up_process+0x10/0x12
[ 13.173009] [<ffffffff810901e9>] rcu_cpu_kthread_timer+0x44/0x58
[ 13.173009] [<ffffffff810901a5>] ? rcu_check_quiescent_state+0x82/0x82
[ 13.173009] [<ffffffff81045286>] call_timer_fn+0xac/0x1e9
[ 13.173009] [<ffffffff810451da>] ? del_timer+0x75/0x75
[ 13.173009] [<ffffffff810901a5>] ? rcu_check_quiescent_state+0x82/0x82
[ 13.173009] [<ffffffff8104556d>] run_timer_softirq+0x1aa/0x1f2
[ 13.173009] [<ffffffff8103e487>] __do_softirq+0x109/0x26a
[ 13.173009] [<ffffffff8106365f>] ? tick_dev_program_event+0x37/0xf6
[ 13.173009] [<ffffffff810a0e4a>] ? time_hardirqs_off+0x1b/0x2f
[ 13.173009] [<ffffffff8157144c>] call_softirq+0x1c/0x30
[ 13.173009] [<ffffffff81003207>] do_softirq+0x44/0xf1
[ 13.173009] [<ffffffff8103e8b9>] irq_exit+0x58/0xc8
[ 13.173009] [<ffffffff81017f5a>] smp_apic_timer_interrupt+0x79/0x87
[ 13.173009] [<ffffffff81570fd3>] apic_timer_interrupt+0x13/0x20
[ 13.173009] <EOI> [<ffffffff810bd384>] ? get_page_from_freelist+0x114/0x310
[ 13.173009] [<ffffffff810bd51a>] ? get_page_from_freelist+0x2aa/0x310
[ 13.173009] [<ffffffff812220e7>] ? clear_page_c+0x7/0x10
[ 13.173009] [<ffffffff810bd1ef>] ? prep_new_page+0x14c/0x1cd
[ 13.173009] [<ffffffff810bd51a>] get_page_from_freelist+0x2aa/0x310
[ 13.173009] [<ffffffff810bdf03>] __alloc_pages_nodemask+0x178/0x243
[ 13.173009] [<ffffffff810d46b9>] ? __pmd_alloc+0x87/0x99
[ 13.173009] [<ffffffff8101fe2f>] pte_alloc_one+0x1e/0x3a
[ 13.173009] [<ffffffff810d46b9>] ? __pmd_alloc+0x87/0x99
[ 13.173009] [<ffffffff810d27fe>] __pte_alloc+0x22/0x14b
[ 13.173009] [<ffffffff810d48a8>] handle_mm_fault+0x17e/0x1e0
[ 13.173009] [<ffffffff8156cfee>] do_page_fault+0x42d/0x5de
[ 13.173009] [<ffffffff810d915f>] ? sys_brk+0x32/0x10c
[ 13.173009] [<ffffffff810a0e4a>] ? time_hardirqs_off+0x1b/0x2f
[ 13.173009] [<ffffffff81065c4f>] ? trace_hardirqs_off_caller+0x3f/0x9c
[ 13.173009] [<ffffffff812235dd>] ? trace_hardirqs_off_thunk+0x3a/0x3c
[ 13.173009] [<ffffffff8156a75f>] page_fault+0x1f/0x30
[ 14.010075] usb 5-1: new full speed USB device number 2 using uhci_hcd
Reported-by: Valdis Kletnieks <Valdis.Kletnieks@vt.edu>
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-05-11 20:41:41 +08:00
|
|
|
#include <linux/atomic.h>
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
#include <linux/bitops.h>
|
2011-05-24 02:51:41 +08:00
|
|
|
#include <linux/export.h>
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
#include <linux/completion.h>
|
|
|
|
#include <linux/moduleparam.h>
|
|
|
|
#include <linux/percpu.h>
|
|
|
|
#include <linux/notifier.h>
|
|
|
|
#include <linux/cpu.h>
|
|
|
|
#include <linux/mutex.h>
|
|
|
|
#include <linux/time.h>
|
2010-04-03 07:17:17 +08:00
|
|
|
#include <linux/kernel_stat.h>
|
2011-01-13 06:10:23 +08:00
|
|
|
#include <linux/wait.h>
|
|
|
|
#include <linux/kthread.h>
|
2017-02-02 01:07:51 +08:00
|
|
|
#include <uapi/linux/sched/types.h>
|
2011-05-21 03:50:29 +08:00
|
|
|
#include <linux/prefetch.h>
|
2012-01-24 09:05:46 +08:00
|
|
|
#include <linux/delay.h>
|
|
|
|
#include <linux/stop_machine.h>
|
2012-07-07 20:57:03 +08:00
|
|
|
#include <linux/random.h>
|
2015-04-30 02:36:05 +08:00
|
|
|
#include <linux/trace_events.h>
|
2013-04-22 06:12:42 +08:00
|
|
|
#include <linux/suspend.h>
|
2017-04-06 00:05:18 +08:00
|
|
|
#include <linux/ftrace.h>
|
2018-07-26 02:49:47 +08:00
|
|
|
#include <linux/tick.h>
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
|
2013-10-09 11:23:47 +08:00
|
|
|
#include "tree.h"
|
2011-06-18 06:53:19 +08:00
|
|
|
#include "rcu.h"
|
2009-08-23 04:56:45 +08:00
|
|
|
|
2013-10-09 11:23:47 +08:00
|
|
|
#ifdef MODULE_PARAM_PREFIX
|
|
|
|
#undef MODULE_PARAM_PREFIX
|
|
|
|
#endif
|
|
|
|
#define MODULE_PARAM_PREFIX "rcutree."
|
|
|
|
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
/* Data structures. */
|
|
|
|
|
2013-07-13 05:18:47 +08:00
|
|
|
/*
|
2018-08-04 12:00:38 +08:00
|
|
|
* Steal a bit from the bottom of ->dynticks for idle entry/exit
|
|
|
|
* control. Initially this is for TLB flushing.
|
2013-07-13 05:18:47 +08:00
|
|
|
*/
|
2018-08-04 12:00:38 +08:00
|
|
|
#define RCU_DYNTICK_CTRL_MASK 0x1
|
|
|
|
#define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
|
|
|
|
#ifndef rcu_eqs_special_exit
|
|
|
|
#define rcu_eqs_special_exit() do { } while (0)
|
2014-07-13 01:01:49 +08:00
|
|
|
#endif
|
|
|
|
|
2018-08-04 12:00:38 +08:00
|
|
|
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
|
|
|
|
.dynticks_nesting = 1,
|
|
|
|
.dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
|
2018-08-04 12:00:38 +08:00
|
|
|
.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
|
2018-08-04 12:00:38 +08:00
|
|
|
};
|
2018-07-04 05:15:31 +08:00
|
|
|
struct rcu_state rcu_state = {
|
|
|
|
.level = { &rcu_state.node[0] },
|
|
|
|
.gp_state = RCU_GP_IDLE,
|
|
|
|
.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
|
|
|
|
.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
|
|
|
|
.name = RCU_NAME,
|
|
|
|
.abbr = RCU_ABBR,
|
|
|
|
.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
|
|
|
|
.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
|
2018-08-16 00:05:29 +08:00
|
|
|
.ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
|
2018-07-04 05:15:31 +08:00
|
|
|
};
|
2011-02-08 04:47:15 +08:00
|
|
|
|
2015-04-21 02:40:50 +08:00
|
|
|
/* Dump rcu_node combining tree at boot to verify correct setup. */
|
|
|
|
static bool dump_tree;
|
|
|
|
module_param(dump_tree, bool, 0444);
|
2015-04-21 01:27:15 +08:00
|
|
|
/* Control rcu_node-tree auto-balancing at boot time. */
|
|
|
|
static bool rcu_fanout_exact;
|
|
|
|
module_param(rcu_fanout_exact, bool, 0444);
|
2015-04-22 00:12:13 +08:00
|
|
|
/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
|
|
|
|
static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
|
2012-07-02 06:42:33 +08:00
|
|
|
module_param(rcu_fanout_leaf, int, 0444);
|
2012-04-24 06:52:53 +08:00
|
|
|
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
|
2015-06-03 14:18:30 +08:00
|
|
|
/* Number of rcu_nodes at specified level. */
|
2017-03-16 04:11:11 +08:00
|
|
|
int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
|
2012-04-24 06:52:53 +08:00
|
|
|
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
|
2016-06-03 00:51:41 +08:00
|
|
|
/* panic() on RCU Stall sysctl. */
|
|
|
|
int sysctl_panic_on_rcu_stall __read_mostly;
|
2012-04-24 06:52:53 +08:00
|
|
|
|
2011-07-11 06:57:35 +08:00
|
|
|
/*
|
rcu: Narrow early boot window of illegal synchronous grace periods
The current preemptible RCU implementation goes through three phases
during bootup. In the first phase, there is only one CPU that is running
with preemption disabled, so that a no-op is a synchronous grace period.
In the second mid-boot phase, the scheduler is running, but RCU has
not yet gotten its kthreads spawned (and, for expedited grace periods,
workqueues are not yet running. During this time, any attempt to do
a synchronous grace period will hang the system (or complain bitterly,
depending). In the third and final phase, RCU is fully operational and
everything works normally.
This has been OK for some time, but there has recently been some
synchronous grace periods showing up during the second mid-boot phase.
This code worked "by accident" for awhile, but started failing as soon
as expedited RCU grace periods switched over to workqueues in commit
8b355e3bc140 ("rcu: Drive expedited grace periods from workqueue").
Note that the code was buggy even before this commit, as it was subject
to failure on real-time systems that forced all expedited grace periods
to run as normal grace periods (for example, using the rcu_normal ksysfs
parameter). The callchain from the failure case is as follows:
early_amd_iommu_init()
|-> acpi_put_table(ivrs_base);
|-> acpi_tb_put_table(table_desc);
|-> acpi_tb_invalidate_table(table_desc);
|-> acpi_tb_release_table(...)
|-> acpi_os_unmap_memory
|-> acpi_os_unmap_iomem
|-> acpi_os_map_cleanup
|-> synchronize_rcu_expedited
The kernel showing this callchain was built with CONFIG_PREEMPT_RCU=y,
which caused the code to try using workqueues before they were
initialized, which did not go well.
This commit therefore reworks RCU to permit synchronous grace periods
to proceed during this mid-boot phase. This commit is therefore a
fix to a regression introduced in v4.9, and is therefore being put
forward post-merge-window in v4.10.
This commit sets a flag from the existing rcu_scheduler_starting()
function which causes all synchronous grace periods to take the expedited
path. The expedited path now checks this flag, using the requesting task
to drive the expedited grace period forward during the mid-boot phase.
Finally, this flag is updated by a core_initcall() function named
rcu_exp_runtime_mode(), which causes the runtime codepaths to be used.
Note that this arrangement assumes that tasks are not sent POSIX signals
(or anything similar) from the time that the first task is spawned
through core_initcall() time.
Fixes: 8b355e3bc140 ("rcu: Drive expedited grace periods from workqueue")
Reported-by: "Zheng, Lv" <lv.zheng@intel.com>
Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Stan Kain <stan.kain@gmail.com>
Tested-by: Ivan <waffolz@hotmail.com>
Tested-by: Emanuel Castelo <emanuel.castelo@gmail.com>
Tested-by: Bruno Pesavento <bpesavento@infinito.it>
Tested-by: Borislav Petkov <bp@suse.de>
Tested-by: Frederic Bezies <fredbezies@gmail.com>
Cc: <stable@vger.kernel.org> # 4.9.0-
2017-01-10 18:28:26 +08:00
|
|
|
* The rcu_scheduler_active variable is initialized to the value
|
|
|
|
* RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
|
|
|
|
* first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
|
|
|
|
* RCU can assume that there is but one task, allowing RCU to (for example)
|
2016-04-08 20:00:03 +08:00
|
|
|
* optimize synchronize_rcu() to a simple barrier(). When this variable
|
rcu: Narrow early boot window of illegal synchronous grace periods
The current preemptible RCU implementation goes through three phases
during bootup. In the first phase, there is only one CPU that is running
with preemption disabled, so that a no-op is a synchronous grace period.
In the second mid-boot phase, the scheduler is running, but RCU has
not yet gotten its kthreads spawned (and, for expedited grace periods,
workqueues are not yet running. During this time, any attempt to do
a synchronous grace period will hang the system (or complain bitterly,
depending). In the third and final phase, RCU is fully operational and
everything works normally.
This has been OK for some time, but there has recently been some
synchronous grace periods showing up during the second mid-boot phase.
This code worked "by accident" for awhile, but started failing as soon
as expedited RCU grace periods switched over to workqueues in commit
8b355e3bc140 ("rcu: Drive expedited grace periods from workqueue").
Note that the code was buggy even before this commit, as it was subject
to failure on real-time systems that forced all expedited grace periods
to run as normal grace periods (for example, using the rcu_normal ksysfs
parameter). The callchain from the failure case is as follows:
early_amd_iommu_init()
|-> acpi_put_table(ivrs_base);
|-> acpi_tb_put_table(table_desc);
|-> acpi_tb_invalidate_table(table_desc);
|-> acpi_tb_release_table(...)
|-> acpi_os_unmap_memory
|-> acpi_os_unmap_iomem
|-> acpi_os_map_cleanup
|-> synchronize_rcu_expedited
The kernel showing this callchain was built with CONFIG_PREEMPT_RCU=y,
which caused the code to try using workqueues before they were
initialized, which did not go well.
This commit therefore reworks RCU to permit synchronous grace periods
to proceed during this mid-boot phase. This commit is therefore a
fix to a regression introduced in v4.9, and is therefore being put
forward post-merge-window in v4.10.
This commit sets a flag from the existing rcu_scheduler_starting()
function which causes all synchronous grace periods to take the expedited
path. The expedited path now checks this flag, using the requesting task
to drive the expedited grace period forward during the mid-boot phase.
Finally, this flag is updated by a core_initcall() function named
rcu_exp_runtime_mode(), which causes the runtime codepaths to be used.
Note that this arrangement assumes that tasks are not sent POSIX signals
(or anything similar) from the time that the first task is spawned
through core_initcall() time.
Fixes: 8b355e3bc140 ("rcu: Drive expedited grace periods from workqueue")
Reported-by: "Zheng, Lv" <lv.zheng@intel.com>
Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Stan Kain <stan.kain@gmail.com>
Tested-by: Ivan <waffolz@hotmail.com>
Tested-by: Emanuel Castelo <emanuel.castelo@gmail.com>
Tested-by: Bruno Pesavento <bpesavento@infinito.it>
Tested-by: Borislav Petkov <bp@suse.de>
Tested-by: Frederic Bezies <fredbezies@gmail.com>
Cc: <stable@vger.kernel.org> # 4.9.0-
2017-01-10 18:28:26 +08:00
|
|
|
* is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
|
|
|
|
* to detect real grace periods. This variable is also used to suppress
|
|
|
|
* boot-time false positives from lockdep-RCU error checking. Finally, it
|
|
|
|
* transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
|
|
|
|
* is fully initialized, including all of its kthreads having been spawned.
|
2011-07-11 06:57:35 +08:00
|
|
|
*/
|
2010-04-03 07:17:17 +08:00
|
|
|
int rcu_scheduler_active __read_mostly;
|
|
|
|
EXPORT_SYMBOL_GPL(rcu_scheduler_active);
|
|
|
|
|
2011-07-11 06:57:35 +08:00
|
|
|
/*
|
|
|
|
* The rcu_scheduler_fully_active variable transitions from zero to one
|
|
|
|
* during the early_initcall() processing, which is after the scheduler
|
|
|
|
* is capable of creating new tasks. So RCU processing (for example,
|
|
|
|
* creating tasks for RCU priority boosting) must be delayed until after
|
|
|
|
* rcu_scheduler_fully_active transitions from zero to one. We also
|
|
|
|
* currently delay invocation of any RCU callbacks until after this point.
|
|
|
|
*
|
|
|
|
* It might later prove better for people registering RCU callbacks during
|
|
|
|
* early boot to take responsibility for these callbacks, but one step at
|
|
|
|
* a time.
|
|
|
|
*/
|
|
|
|
static int rcu_scheduler_fully_active __read_mostly;
|
|
|
|
|
2018-07-04 08:22:34 +08:00
|
|
|
static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
|
|
|
|
unsigned long gps, unsigned long flags);
|
rcu: Process offlining and onlining only at grace-period start
Races between CPU hotplug and grace periods can be difficult to resolve,
so the ->onoff_mutex is used to exclude the two events. Unfortunately,
this means that it is impossible for an outgoing CPU to perform the
last bits of its offlining from its last pass through the idle loop,
because sleeplocks cannot be acquired in that context.
This commit avoids these problems by buffering online and offline events
in a new ->qsmaskinitnext field in the leaf rcu_node structures. When a
grace period starts, the events accumulated in this mask are applied to
the ->qsmaskinit field, and, if needed, up the rcu_node tree. The special
case of all CPUs corresponding to a given leaf rcu_node structure being
offline while there are still elements in that structure's ->blkd_tasks
list is handled using a new ->wait_blkd_tasks field. In this case,
propagating the offline bits up the tree is deferred until the beginning
of the grace period after all of the tasks have exited their RCU read-side
critical sections and removed themselves from the list, at which point
the ->wait_blkd_tasks flag is cleared. If one of that leaf rcu_node
structure's CPUs comes back online before the list empties, then the
->wait_blkd_tasks flag is simply cleared.
This of course means that RCU's notion of which CPUs are offline can be
out of date. This is OK because RCU need only wait on CPUs that were
online at the time that the grace period started. In addition, RCU's
force-quiescent-state actions will handle the case where a CPU goes
offline after the grace period starts.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2015-01-24 13:52:37 +08:00
|
|
|
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
|
|
|
|
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
|
2012-07-16 18:42:35 +08:00
|
|
|
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
|
2011-06-16 06:47:09 +08:00
|
|
|
static void invoke_rcu_core(void);
|
2018-07-04 08:22:34 +08:00
|
|
|
static void invoke_rcu_callbacks(struct rcu_data *rdp);
|
2018-07-04 08:22:34 +08:00
|
|
|
static void rcu_report_exp_rdp(struct rcu_data *rdp);
|
2016-04-16 07:35:29 +08:00
|
|
|
static void sync_sched_exp_online_cleanup(int cpu);
|
2011-01-13 06:10:23 +08:00
|
|
|
|
2014-12-12 23:37:48 +08:00
|
|
|
/* rcuc/rcub kthread realtime priority */
|
2015-04-22 00:22:14 +08:00
|
|
|
static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
|
2014-12-12 23:37:48 +08:00
|
|
|
module_param(kthread_prio, int, 0644);
|
|
|
|
|
2015-04-15 10:33:59 +08:00
|
|
|
/* Delay in jiffies for grace-period initialization delays, debug only. */
|
2015-03-11 09:33:20 +08:00
|
|
|
|
rcu: Remove *_SLOW_* Kconfig options
The RCU_TORTURE_TEST_SLOW_PREINIT, RCU_TORTURE_TEST_SLOW_PREINIT_DELAY,
RCU_TORTURE_TEST_SLOW_PREINIT_DELAY, RCU_TORTURE_TEST_SLOW_INIT,
RCU_TORTURE_TEST_SLOW_INIT_DELAY, RCU_TORTURE_TEST_SLOW_CLEANUP,
and RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY Kconfig options are only
useful for torture testing, and there are the rcutree.gp_cleanup_delay,
rcutree.gp_init_delay, and rcutree.gp_preinit_delay kernel boot parameters
that rcutorture can use instead. The effect of these parameters is to
artificially slow down grace period initialization and cleanup in order
to make some types of race conditions happen more often.
This commit therefore simplifies Tree RCU a bit by removing the Kconfig
options and adding the corresponding kernel parameters to rcutorture's
.boot files instead. However, this commit also leaves out the kernel
parameters for TREE02, TREE04, and TREE07 in order to have about the
same number of tests slowed as not slowed. TREE01, TREE03, TREE05,
and TREE06 are slowed, and the rest are not slowed.
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-05-11 05:36:55 +08:00
|
|
|
static int gp_preinit_delay;
|
|
|
|
module_param(gp_preinit_delay, int, 0444);
|
|
|
|
static int gp_init_delay;
|
|
|
|
module_param(gp_init_delay, int, 0444);
|
|
|
|
static int gp_cleanup_delay;
|
|
|
|
module_param(gp_cleanup_delay, int, 0444);
|
2015-03-11 09:33:20 +08:00
|
|
|
|
2018-07-03 03:15:25 +08:00
|
|
|
/* Retrieve RCU kthreads priority for rcutorture */
|
2018-06-20 06:14:18 +08:00
|
|
|
int rcu_get_gp_kthreads_prio(void)
|
|
|
|
{
|
|
|
|
return kthread_prio;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
|
|
|
|
|
2015-04-16 03:08:22 +08:00
|
|
|
/*
|
|
|
|
* Number of grace periods between delays, normalized by the duration of
|
2017-02-09 06:49:27 +08:00
|
|
|
* the delay. The longer the delay, the more the grace periods between
|
2015-04-16 03:08:22 +08:00
|
|
|
* each delay. The reason for this normalization is that it means that,
|
|
|
|
* for non-zero delays, the overall slowdown of grace periods is constant
|
|
|
|
* regardless of the duration of the delay. This arrangement balances
|
|
|
|
* the need for long delays to increase some race probabilities with the
|
|
|
|
* need for fast grace periods to increase other race probabilities.
|
|
|
|
*/
|
|
|
|
#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
|
2015-01-23 10:24:08 +08:00
|
|
|
|
rcu: Process offlining and onlining only at grace-period start
Races between CPU hotplug and grace periods can be difficult to resolve,
so the ->onoff_mutex is used to exclude the two events. Unfortunately,
this means that it is impossible for an outgoing CPU to perform the
last bits of its offlining from its last pass through the idle loop,
because sleeplocks cannot be acquired in that context.
This commit avoids these problems by buffering online and offline events
in a new ->qsmaskinitnext field in the leaf rcu_node structures. When a
grace period starts, the events accumulated in this mask are applied to
the ->qsmaskinit field, and, if needed, up the rcu_node tree. The special
case of all CPUs corresponding to a given leaf rcu_node structure being
offline while there are still elements in that structure's ->blkd_tasks
list is handled using a new ->wait_blkd_tasks field. In this case,
propagating the offline bits up the tree is deferred until the beginning
of the grace period after all of the tasks have exited their RCU read-side
critical sections and removed themselves from the list, at which point
the ->wait_blkd_tasks flag is cleared. If one of that leaf rcu_node
structure's CPUs comes back online before the list empties, then the
->wait_blkd_tasks flag is simply cleared.
This of course means that RCU's notion of which CPUs are offline can be
out of date. This is OK because RCU need only wait on CPUs that were
online at the time that the grace period started. In addition, RCU's
force-quiescent-state actions will handle the case where a CPU goes
offline after the grace period starts.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2015-01-24 13:52:37 +08:00
|
|
|
/*
|
|
|
|
* Compute the mask of online CPUs for the specified rcu_node structure.
|
|
|
|
* This will not be stable unless the rcu_node structure's ->lock is
|
|
|
|
* held, but the bit corresponding to the current CPU will be stable
|
|
|
|
* in most contexts.
|
|
|
|
*/
|
|
|
|
unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
|
|
|
|
{
|
2015-03-04 06:57:58 +08:00
|
|
|
return READ_ONCE(rnp->qsmaskinitnext);
|
rcu: Process offlining and onlining only at grace-period start
Races between CPU hotplug and grace periods can be difficult to resolve,
so the ->onoff_mutex is used to exclude the two events. Unfortunately,
this means that it is impossible for an outgoing CPU to perform the
last bits of its offlining from its last pass through the idle loop,
because sleeplocks cannot be acquired in that context.
This commit avoids these problems by buffering online and offline events
in a new ->qsmaskinitnext field in the leaf rcu_node structures. When a
grace period starts, the events accumulated in this mask are applied to
the ->qsmaskinit field, and, if needed, up the rcu_node tree. The special
case of all CPUs corresponding to a given leaf rcu_node structure being
offline while there are still elements in that structure's ->blkd_tasks
list is handled using a new ->wait_blkd_tasks field. In this case,
propagating the offline bits up the tree is deferred until the beginning
of the grace period after all of the tasks have exited their RCU read-side
critical sections and removed themselves from the list, at which point
the ->wait_blkd_tasks flag is cleared. If one of that leaf rcu_node
structure's CPUs comes back online before the list empties, then the
->wait_blkd_tasks flag is simply cleared.
This of course means that RCU's notion of which CPUs are offline can be
out of date. This is OK because RCU need only wait on CPUs that were
online at the time that the grace period started. In addition, RCU's
force-quiescent-state actions will handle the case where a CPU goes
offline after the grace period starts.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2015-01-24 13:52:37 +08:00
|
|
|
}
|
|
|
|
|
2009-09-24 00:50:41 +08:00
|
|
|
/*
|
2015-03-04 06:57:58 +08:00
|
|
|
* Return true if an RCU grace period is in progress. The READ_ONCE()s
|
2009-09-24 00:50:41 +08:00
|
|
|
* permit this function to be invoked without holding the root rcu_node
|
|
|
|
* structure's ->lock, but of course results can be subject to change.
|
|
|
|
*/
|
2018-07-04 08:22:34 +08:00
|
|
|
static int rcu_gp_in_progress(void)
|
2009-09-24 00:50:41 +08:00
|
|
|
{
|
2018-07-04 08:22:34 +08:00
|
|
|
return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
|
2009-03-13 10:20:49 +08:00
|
|
|
}
|
|
|
|
|
2018-06-29 05:45:25 +08:00
|
|
|
void rcu_softirq_qs(void)
|
2009-03-13 10:20:49 +08:00
|
|
|
{
|
2018-07-03 05:30:37 +08:00
|
|
|
rcu_qs();
|
2018-06-29 05:45:25 +08:00
|
|
|
rcu_preempt_deferred_qs(current);
|
2009-03-13 10:20:49 +08:00
|
|
|
}
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
|
2016-11-03 05:23:30 +08:00
|
|
|
/*
|
|
|
|
* Record entry into an extended quiescent state. This is only to be
|
|
|
|
* called when not already in an extended quiescent state.
|
|
|
|
*/
|
|
|
|
static void rcu_dynticks_eqs_enter(void)
|
|
|
|
{
|
2018-08-04 12:00:38 +08:00
|
|
|
struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
|
rcu: Maintain special bits at bottom of ->dynticks counter
Currently, IPIs are used to force other CPUs to invalidate their TLBs
in response to a kernel virtual-memory mapping change. This works, but
degrades both battery lifetime (for idle CPUs) and real-time response
(for nohz_full CPUs), and in addition results in unnecessary IPIs due to
the fact that CPUs executing in usermode are unaffected by stale kernel
mappings. It would be better to cause a CPU executing in usermode to
wait until it is entering kernel mode to do the flush, first to avoid
interrupting usemode tasks and second to handle multiple flush requests
with a single flush in the case of a long-running user task.
This commit therefore reserves a bit at the bottom of the ->dynticks
counter, which is checked upon exit from extended quiescent states.
If it is set, it is cleared and then a new rcu_eqs_special_exit() macro is
invoked, which, if not supplied, is an empty single-pass do-while loop.
If this bottom bit is set on -entry- to an extended quiescent state,
then a WARN_ON_ONCE() triggers.
This bottom bit may be set using a new rcu_eqs_special_set() function,
which returns true if the bit was set, or false if the CPU turned
out to not be in an extended quiescent state. Please note that this
function refuses to set the bit for a non-nohz_full CPU when that CPU
is executing in usermode because usermode execution is tracked by RCU
as a dyntick-idle extended quiescent state only for nohz_full CPUs.
Reported-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2016-11-09 06:25:21 +08:00
|
|
|
int seq;
|
2016-11-03 05:23:30 +08:00
|
|
|
|
|
|
|
/*
|
rcu: Maintain special bits at bottom of ->dynticks counter
Currently, IPIs are used to force other CPUs to invalidate their TLBs
in response to a kernel virtual-memory mapping change. This works, but
degrades both battery lifetime (for idle CPUs) and real-time response
(for nohz_full CPUs), and in addition results in unnecessary IPIs due to
the fact that CPUs executing in usermode are unaffected by stale kernel
mappings. It would be better to cause a CPU executing in usermode to
wait until it is entering kernel mode to do the flush, first to avoid
interrupting usemode tasks and second to handle multiple flush requests
with a single flush in the case of a long-running user task.
This commit therefore reserves a bit at the bottom of the ->dynticks
counter, which is checked upon exit from extended quiescent states.
If it is set, it is cleared and then a new rcu_eqs_special_exit() macro is
invoked, which, if not supplied, is an empty single-pass do-while loop.
If this bottom bit is set on -entry- to an extended quiescent state,
then a WARN_ON_ONCE() triggers.
This bottom bit may be set using a new rcu_eqs_special_set() function,
which returns true if the bit was set, or false if the CPU turned
out to not be in an extended quiescent state. Please note that this
function refuses to set the bit for a non-nohz_full CPU when that CPU
is executing in usermode because usermode execution is tracked by RCU
as a dyntick-idle extended quiescent state only for nohz_full CPUs.
Reported-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2016-11-09 06:25:21 +08:00
|
|
|
* CPUs seeing atomic_add_return() must see prior RCU read-side
|
2016-11-03 05:23:30 +08:00
|
|
|
* critical sections, and we also must force ordering with the
|
|
|
|
* next idle sojourn.
|
|
|
|
*/
|
2018-08-04 12:00:38 +08:00
|
|
|
seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
|
rcu: Maintain special bits at bottom of ->dynticks counter
Currently, IPIs are used to force other CPUs to invalidate their TLBs
in response to a kernel virtual-memory mapping change. This works, but
degrades both battery lifetime (for idle CPUs) and real-time response
(for nohz_full CPUs), and in addition results in unnecessary IPIs due to
the fact that CPUs executing in usermode are unaffected by stale kernel
mappings. It would be better to cause a CPU executing in usermode to
wait until it is entering kernel mode to do the flush, first to avoid
interrupting usemode tasks and second to handle multiple flush requests
with a single flush in the case of a long-running user task.
This commit therefore reserves a bit at the bottom of the ->dynticks
counter, which is checked upon exit from extended quiescent states.
If it is set, it is cleared and then a new rcu_eqs_special_exit() macro is
invoked, which, if not supplied, is an empty single-pass do-while loop.
If this bottom bit is set on -entry- to an extended quiescent state,
then a WARN_ON_ONCE() triggers.
This bottom bit may be set using a new rcu_eqs_special_set() function,
which returns true if the bit was set, or false if the CPU turned
out to not be in an extended quiescent state. Please note that this
function refuses to set the bit for a non-nohz_full CPU when that CPU
is executing in usermode because usermode execution is tracked by RCU
as a dyntick-idle extended quiescent state only for nohz_full CPUs.
Reported-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2016-11-09 06:25:21 +08:00
|
|
|
/* Better be in an extended quiescent state! */
|
|
|
|
WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
|
|
|
|
(seq & RCU_DYNTICK_CTRL_CTR));
|
|
|
|
/* Better not have special action (TLB flush) pending! */
|
|
|
|
WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
|
|
|
|
(seq & RCU_DYNTICK_CTRL_MASK));
|
2016-11-03 05:23:30 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Record exit from an extended quiescent state. This is only to be
|
|
|
|
* called from an extended quiescent state.
|
|
|
|
*/
|
|
|
|
static void rcu_dynticks_eqs_exit(void)
|
|
|
|
{
|
2018-08-04 12:00:38 +08:00
|
|
|
struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
|
rcu: Maintain special bits at bottom of ->dynticks counter
Currently, IPIs are used to force other CPUs to invalidate their TLBs
in response to a kernel virtual-memory mapping change. This works, but
degrades both battery lifetime (for idle CPUs) and real-time response
(for nohz_full CPUs), and in addition results in unnecessary IPIs due to
the fact that CPUs executing in usermode are unaffected by stale kernel
mappings. It would be better to cause a CPU executing in usermode to
wait until it is entering kernel mode to do the flush, first to avoid
interrupting usemode tasks and second to handle multiple flush requests
with a single flush in the case of a long-running user task.
This commit therefore reserves a bit at the bottom of the ->dynticks
counter, which is checked upon exit from extended quiescent states.
If it is set, it is cleared and then a new rcu_eqs_special_exit() macro is
invoked, which, if not supplied, is an empty single-pass do-while loop.
If this bottom bit is set on -entry- to an extended quiescent state,
then a WARN_ON_ONCE() triggers.
This bottom bit may be set using a new rcu_eqs_special_set() function,
which returns true if the bit was set, or false if the CPU turned
out to not be in an extended quiescent state. Please note that this
function refuses to set the bit for a non-nohz_full CPU when that CPU
is executing in usermode because usermode execution is tracked by RCU
as a dyntick-idle extended quiescent state only for nohz_full CPUs.
Reported-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2016-11-09 06:25:21 +08:00
|
|
|
int seq;
|
2016-11-03 05:23:30 +08:00
|
|
|
|
|
|
|
/*
|
rcu: Maintain special bits at bottom of ->dynticks counter
Currently, IPIs are used to force other CPUs to invalidate their TLBs
in response to a kernel virtual-memory mapping change. This works, but
degrades both battery lifetime (for idle CPUs) and real-time response
(for nohz_full CPUs), and in addition results in unnecessary IPIs due to
the fact that CPUs executing in usermode are unaffected by stale kernel
mappings. It would be better to cause a CPU executing in usermode to
wait until it is entering kernel mode to do the flush, first to avoid
interrupting usemode tasks and second to handle multiple flush requests
with a single flush in the case of a long-running user task.
This commit therefore reserves a bit at the bottom of the ->dynticks
counter, which is checked upon exit from extended quiescent states.
If it is set, it is cleared and then a new rcu_eqs_special_exit() macro is
invoked, which, if not supplied, is an empty single-pass do-while loop.
If this bottom bit is set on -entry- to an extended quiescent state,
then a WARN_ON_ONCE() triggers.
This bottom bit may be set using a new rcu_eqs_special_set() function,
which returns true if the bit was set, or false if the CPU turned
out to not be in an extended quiescent state. Please note that this
function refuses to set the bit for a non-nohz_full CPU when that CPU
is executing in usermode because usermode execution is tracked by RCU
as a dyntick-idle extended quiescent state only for nohz_full CPUs.
Reported-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2016-11-09 06:25:21 +08:00
|
|
|
* CPUs seeing atomic_add_return() must see prior idle sojourns,
|
2016-11-03 05:23:30 +08:00
|
|
|
* and we also must force ordering with the next RCU read-side
|
|
|
|
* critical section.
|
|
|
|
*/
|
2018-08-04 12:00:38 +08:00
|
|
|
seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
|
rcu: Maintain special bits at bottom of ->dynticks counter
Currently, IPIs are used to force other CPUs to invalidate their TLBs
in response to a kernel virtual-memory mapping change. This works, but
degrades both battery lifetime (for idle CPUs) and real-time response
(for nohz_full CPUs), and in addition results in unnecessary IPIs due to
the fact that CPUs executing in usermode are unaffected by stale kernel
mappings. It would be better to cause a CPU executing in usermode to
wait until it is entering kernel mode to do the flush, first to avoid
interrupting usemode tasks and second to handle multiple flush requests
with a single flush in the case of a long-running user task.
This commit therefore reserves a bit at the bottom of the ->dynticks
counter, which is checked upon exit from extended quiescent states.
If it is set, it is cleared and then a new rcu_eqs_special_exit() macro is
invoked, which, if not supplied, is an empty single-pass do-while loop.
If this bottom bit is set on -entry- to an extended quiescent state,
then a WARN_ON_ONCE() triggers.
This bottom bit may be set using a new rcu_eqs_special_set() function,
which returns true if the bit was set, or false if the CPU turned
out to not be in an extended quiescent state. Please note that this
function refuses to set the bit for a non-nohz_full CPU when that CPU
is executing in usermode because usermode execution is tracked by RCU
as a dyntick-idle extended quiescent state only for nohz_full CPUs.
Reported-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2016-11-09 06:25:21 +08:00
|
|
|
WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
|
|
|
|
!(seq & RCU_DYNTICK_CTRL_CTR));
|
|
|
|
if (seq & RCU_DYNTICK_CTRL_MASK) {
|
2018-08-04 12:00:38 +08:00
|
|
|
atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
|
rcu: Maintain special bits at bottom of ->dynticks counter
Currently, IPIs are used to force other CPUs to invalidate their TLBs
in response to a kernel virtual-memory mapping change. This works, but
degrades both battery lifetime (for idle CPUs) and real-time response
(for nohz_full CPUs), and in addition results in unnecessary IPIs due to
the fact that CPUs executing in usermode are unaffected by stale kernel
mappings. It would be better to cause a CPU executing in usermode to
wait until it is entering kernel mode to do the flush, first to avoid
interrupting usemode tasks and second to handle multiple flush requests
with a single flush in the case of a long-running user task.
This commit therefore reserves a bit at the bottom of the ->dynticks
counter, which is checked upon exit from extended quiescent states.
If it is set, it is cleared and then a new rcu_eqs_special_exit() macro is
invoked, which, if not supplied, is an empty single-pass do-while loop.
If this bottom bit is set on -entry- to an extended quiescent state,
then a WARN_ON_ONCE() triggers.
This bottom bit may be set using a new rcu_eqs_special_set() function,
which returns true if the bit was set, or false if the CPU turned
out to not be in an extended quiescent state. Please note that this
function refuses to set the bit for a non-nohz_full CPU when that CPU
is executing in usermode because usermode execution is tracked by RCU
as a dyntick-idle extended quiescent state only for nohz_full CPUs.
Reported-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2016-11-09 06:25:21 +08:00
|
|
|
smp_mb__after_atomic(); /* _exit after clearing mask. */
|
|
|
|
/* Prefer duplicate flushes to losing a flush. */
|
|
|
|
rcu_eqs_special_exit();
|
|
|
|
}
|
2016-11-03 05:23:30 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Reset the current CPU's ->dynticks counter to indicate that the
|
|
|
|
* newly onlined CPU is no longer in an extended quiescent state.
|
|
|
|
* This will either leave the counter unchanged, or increment it
|
|
|
|
* to the next non-quiescent value.
|
|
|
|
*
|
|
|
|
* The non-atomic test/increment sequence works because the upper bits
|
|
|
|
* of the ->dynticks counter are manipulated only by the corresponding CPU,
|
|
|
|
* or when the corresponding CPU is offline.
|
|
|
|
*/
|
|
|
|
static void rcu_dynticks_eqs_online(void)
|
|
|
|
{
|
2018-08-04 12:00:38 +08:00
|
|
|
struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
|
2016-11-03 05:23:30 +08:00
|
|
|
|
2018-08-04 12:00:38 +08:00
|
|
|
if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
|
2016-11-03 05:23:30 +08:00
|
|
|
return;
|
2018-08-04 12:00:38 +08:00
|
|
|
atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
|
2016-11-03 05:23:30 +08:00
|
|
|
}
|
|
|
|
|
2016-11-03 08:25:06 +08:00
|
|
|
/*
|
|
|
|
* Is the current CPU in an extended quiescent state?
|
|
|
|
*
|
|
|
|
* No ordering, as we are sampling CPU-local information.
|
|
|
|
*/
|
|
|
|
bool rcu_dynticks_curr_cpu_in_eqs(void)
|
|
|
|
{
|
2018-08-04 12:00:38 +08:00
|
|
|
struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
|
2016-11-03 08:25:06 +08:00
|
|
|
|
2018-08-04 12:00:38 +08:00
|
|
|
return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
|
2016-11-03 08:25:06 +08:00
|
|
|
}
|
|
|
|
|
2016-11-03 05:12:05 +08:00
|
|
|
/*
|
|
|
|
* Snapshot the ->dynticks counter with full ordering so as to allow
|
|
|
|
* stable comparison of this counter with past and future snapshots.
|
|
|
|
*/
|
2018-08-04 12:00:38 +08:00
|
|
|
int rcu_dynticks_snap(struct rcu_data *rdp)
|
2016-11-03 05:12:05 +08:00
|
|
|
{
|
2018-08-04 12:00:38 +08:00
|
|
|
int snap = atomic_add_return(0, &rdp->dynticks);
|
2016-11-03 05:12:05 +08:00
|
|
|
|
rcu: Maintain special bits at bottom of ->dynticks counter
Currently, IPIs are used to force other CPUs to invalidate their TLBs
in response to a kernel virtual-memory mapping change. This works, but
degrades both battery lifetime (for idle CPUs) and real-time response
(for nohz_full CPUs), and in addition results in unnecessary IPIs due to
the fact that CPUs executing in usermode are unaffected by stale kernel
mappings. It would be better to cause a CPU executing in usermode to
wait until it is entering kernel mode to do the flush, first to avoid
interrupting usemode tasks and second to handle multiple flush requests
with a single flush in the case of a long-running user task.
This commit therefore reserves a bit at the bottom of the ->dynticks
counter, which is checked upon exit from extended quiescent states.
If it is set, it is cleared and then a new rcu_eqs_special_exit() macro is
invoked, which, if not supplied, is an empty single-pass do-while loop.
If this bottom bit is set on -entry- to an extended quiescent state,
then a WARN_ON_ONCE() triggers.
This bottom bit may be set using a new rcu_eqs_special_set() function,
which returns true if the bit was set, or false if the CPU turned
out to not be in an extended quiescent state. Please note that this
function refuses to set the bit for a non-nohz_full CPU when that CPU
is executing in usermode because usermode execution is tracked by RCU
as a dyntick-idle extended quiescent state only for nohz_full CPUs.
Reported-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2016-11-09 06:25:21 +08:00
|
|
|
return snap & ~RCU_DYNTICK_CTRL_MASK;
|
2016-11-03 05:12:05 +08:00
|
|
|
}
|
|
|
|
|
2016-11-03 08:25:06 +08:00
|
|
|
/*
|
|
|
|
* Return true if the snapshot returned from rcu_dynticks_snap()
|
|
|
|
* indicates that RCU is in an extended quiescent state.
|
|
|
|
*/
|
|
|
|
static bool rcu_dynticks_in_eqs(int snap)
|
|
|
|
{
|
rcu: Maintain special bits at bottom of ->dynticks counter
Currently, IPIs are used to force other CPUs to invalidate their TLBs
in response to a kernel virtual-memory mapping change. This works, but
degrades both battery lifetime (for idle CPUs) and real-time response
(for nohz_full CPUs), and in addition results in unnecessary IPIs due to
the fact that CPUs executing in usermode are unaffected by stale kernel
mappings. It would be better to cause a CPU executing in usermode to
wait until it is entering kernel mode to do the flush, first to avoid
interrupting usemode tasks and second to handle multiple flush requests
with a single flush in the case of a long-running user task.
This commit therefore reserves a bit at the bottom of the ->dynticks
counter, which is checked upon exit from extended quiescent states.
If it is set, it is cleared and then a new rcu_eqs_special_exit() macro is
invoked, which, if not supplied, is an empty single-pass do-while loop.
If this bottom bit is set on -entry- to an extended quiescent state,
then a WARN_ON_ONCE() triggers.
This bottom bit may be set using a new rcu_eqs_special_set() function,
which returns true if the bit was set, or false if the CPU turned
out to not be in an extended quiescent state. Please note that this
function refuses to set the bit for a non-nohz_full CPU when that CPU
is executing in usermode because usermode execution is tracked by RCU
as a dyntick-idle extended quiescent state only for nohz_full CPUs.
Reported-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2016-11-09 06:25:21 +08:00
|
|
|
return !(snap & RCU_DYNTICK_CTRL_CTR);
|
2016-11-03 08:25:06 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2018-08-04 12:00:38 +08:00
|
|
|
* Return true if the CPU corresponding to the specified rcu_data
|
2016-11-03 08:25:06 +08:00
|
|
|
* structure has spent some time in an extended quiescent state since
|
|
|
|
* rcu_dynticks_snap() returned the specified snapshot.
|
|
|
|
*/
|
2018-08-04 12:00:38 +08:00
|
|
|
static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
|
2016-11-03 08:25:06 +08:00
|
|
|
{
|
2018-08-04 12:00:38 +08:00
|
|
|
return snap != rcu_dynticks_snap(rdp);
|
2016-11-03 08:25:06 +08:00
|
|
|
}
|
|
|
|
|
rcu: Maintain special bits at bottom of ->dynticks counter
Currently, IPIs are used to force other CPUs to invalidate their TLBs
in response to a kernel virtual-memory mapping change. This works, but
degrades both battery lifetime (for idle CPUs) and real-time response
(for nohz_full CPUs), and in addition results in unnecessary IPIs due to
the fact that CPUs executing in usermode are unaffected by stale kernel
mappings. It would be better to cause a CPU executing in usermode to
wait until it is entering kernel mode to do the flush, first to avoid
interrupting usemode tasks and second to handle multiple flush requests
with a single flush in the case of a long-running user task.
This commit therefore reserves a bit at the bottom of the ->dynticks
counter, which is checked upon exit from extended quiescent states.
If it is set, it is cleared and then a new rcu_eqs_special_exit() macro is
invoked, which, if not supplied, is an empty single-pass do-while loop.
If this bottom bit is set on -entry- to an extended quiescent state,
then a WARN_ON_ONCE() triggers.
This bottom bit may be set using a new rcu_eqs_special_set() function,
which returns true if the bit was set, or false if the CPU turned
out to not be in an extended quiescent state. Please note that this
function refuses to set the bit for a non-nohz_full CPU when that CPU
is executing in usermode because usermode execution is tracked by RCU
as a dyntick-idle extended quiescent state only for nohz_full CPUs.
Reported-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2016-11-09 06:25:21 +08:00
|
|
|
/*
|
|
|
|
* Set the special (bottom) bit of the specified CPU so that it
|
|
|
|
* will take special action (such as flushing its TLB) on the
|
|
|
|
* next exit from an extended quiescent state. Returns true if
|
|
|
|
* the bit was successfully set, or false if the CPU was not in
|
|
|
|
* an extended quiescent state.
|
|
|
|
*/
|
|
|
|
bool rcu_eqs_special_set(int cpu)
|
|
|
|
{
|
|
|
|
int old;
|
|
|
|
int new;
|
2018-08-04 12:00:38 +08:00
|
|
|
struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
|
rcu: Maintain special bits at bottom of ->dynticks counter
Currently, IPIs are used to force other CPUs to invalidate their TLBs
in response to a kernel virtual-memory mapping change. This works, but
degrades both battery lifetime (for idle CPUs) and real-time response
(for nohz_full CPUs), and in addition results in unnecessary IPIs due to
the fact that CPUs executing in usermode are unaffected by stale kernel
mappings. It would be better to cause a CPU executing in usermode to
wait until it is entering kernel mode to do the flush, first to avoid
interrupting usemode tasks and second to handle multiple flush requests
with a single flush in the case of a long-running user task.
This commit therefore reserves a bit at the bottom of the ->dynticks
counter, which is checked upon exit from extended quiescent states.
If it is set, it is cleared and then a new rcu_eqs_special_exit() macro is
invoked, which, if not supplied, is an empty single-pass do-while loop.
If this bottom bit is set on -entry- to an extended quiescent state,
then a WARN_ON_ONCE() triggers.
This bottom bit may be set using a new rcu_eqs_special_set() function,
which returns true if the bit was set, or false if the CPU turned
out to not be in an extended quiescent state. Please note that this
function refuses to set the bit for a non-nohz_full CPU when that CPU
is executing in usermode because usermode execution is tracked by RCU
as a dyntick-idle extended quiescent state only for nohz_full CPUs.
Reported-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2016-11-09 06:25:21 +08:00
|
|
|
|
|
|
|
do {
|
2018-08-04 12:00:38 +08:00
|
|
|
old = atomic_read(&rdp->dynticks);
|
rcu: Maintain special bits at bottom of ->dynticks counter
Currently, IPIs are used to force other CPUs to invalidate their TLBs
in response to a kernel virtual-memory mapping change. This works, but
degrades both battery lifetime (for idle CPUs) and real-time response
(for nohz_full CPUs), and in addition results in unnecessary IPIs due to
the fact that CPUs executing in usermode are unaffected by stale kernel
mappings. It would be better to cause a CPU executing in usermode to
wait until it is entering kernel mode to do the flush, first to avoid
interrupting usemode tasks and second to handle multiple flush requests
with a single flush in the case of a long-running user task.
This commit therefore reserves a bit at the bottom of the ->dynticks
counter, which is checked upon exit from extended quiescent states.
If it is set, it is cleared and then a new rcu_eqs_special_exit() macro is
invoked, which, if not supplied, is an empty single-pass do-while loop.
If this bottom bit is set on -entry- to an extended quiescent state,
then a WARN_ON_ONCE() triggers.
This bottom bit may be set using a new rcu_eqs_special_set() function,
which returns true if the bit was set, or false if the CPU turned
out to not be in an extended quiescent state. Please note that this
function refuses to set the bit for a non-nohz_full CPU when that CPU
is executing in usermode because usermode execution is tracked by RCU
as a dyntick-idle extended quiescent state only for nohz_full CPUs.
Reported-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2016-11-09 06:25:21 +08:00
|
|
|
if (old & RCU_DYNTICK_CTRL_CTR)
|
|
|
|
return false;
|
|
|
|
new = old | RCU_DYNTICK_CTRL_MASK;
|
2018-08-04 12:00:38 +08:00
|
|
|
} while (atomic_cmpxchg(&rdp->dynticks, old, new) != old);
|
rcu: Maintain special bits at bottom of ->dynticks counter
Currently, IPIs are used to force other CPUs to invalidate their TLBs
in response to a kernel virtual-memory mapping change. This works, but
degrades both battery lifetime (for idle CPUs) and real-time response
(for nohz_full CPUs), and in addition results in unnecessary IPIs due to
the fact that CPUs executing in usermode are unaffected by stale kernel
mappings. It would be better to cause a CPU executing in usermode to
wait until it is entering kernel mode to do the flush, first to avoid
interrupting usemode tasks and second to handle multiple flush requests
with a single flush in the case of a long-running user task.
This commit therefore reserves a bit at the bottom of the ->dynticks
counter, which is checked upon exit from extended quiescent states.
If it is set, it is cleared and then a new rcu_eqs_special_exit() macro is
invoked, which, if not supplied, is an empty single-pass do-while loop.
If this bottom bit is set on -entry- to an extended quiescent state,
then a WARN_ON_ONCE() triggers.
This bottom bit may be set using a new rcu_eqs_special_set() function,
which returns true if the bit was set, or false if the CPU turned
out to not be in an extended quiescent state. Please note that this
function refuses to set the bit for a non-nohz_full CPU when that CPU
is executing in usermode because usermode execution is tracked by RCU
as a dyntick-idle extended quiescent state only for nohz_full CPUs.
Reported-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2016-11-09 06:25:21 +08:00
|
|
|
return true;
|
2016-11-03 04:33:57 +08:00
|
|
|
}
|
rcu: Make cond_resched_rcu_qs() apply to normal RCU flavors
Although cond_resched_rcu_qs() only applies to TASKS_RCU, it is used
in places where it would be useful for it to apply to the normal RCU
flavors, rcu_preempt, rcu_sched, and rcu_bh. This is especially the
case for workloads that aggressively overload the system, particularly
those that generate large numbers of RCU updates on systems running
NO_HZ_FULL CPUs. This commit therefore communicates quiescent states
from cond_resched_rcu_qs() to the normal RCU flavors.
Note that it is unfortunately necessary to leave the old ->passed_quiesce
mechanism in place to allow quiescent states that apply to only one
flavor to be recorded. (Yes, we could decrement ->rcu_qs_ctr_snap in
that case, but that is not so good for debugging of RCU internals.)
In addition, if one of the RCU flavor's grace period has stalled, this
will invoke rcu_momentary_dyntick_idle(), resulting in a heavy-weight
quiescent state visible from other CPUs.
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Reported-by: Dave Jones <davej@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Merge commit from Sasha Levin fixing a bug where __this_cpu()
was used in preemptible code. ]
2014-12-14 12:32:04 +08:00
|
|
|
|
2014-06-21 07:49:01 +08:00
|
|
|
/*
|
|
|
|
* Let the RCU core know that this CPU has gone through the scheduler,
|
|
|
|
* which is a quiescent state. This is called when the need for a
|
|
|
|
* quiescent state is urgent, so we burn an atomic operation and full
|
|
|
|
* memory barriers to let the RCU core know about it, regardless of what
|
|
|
|
* this CPU might (or might not) do in the near future.
|
|
|
|
*
|
2017-01-28 05:17:02 +08:00
|
|
|
* We inform the RCU core by emulating a zero-duration dyntick-idle period.
|
2015-10-08 00:10:48 +08:00
|
|
|
*
|
2018-05-17 07:01:56 +08:00
|
|
|
* The caller must have disabled interrupts and must not be idle.
|
2014-06-21 07:49:01 +08:00
|
|
|
*/
|
2018-07-11 05:00:14 +08:00
|
|
|
static void __maybe_unused rcu_momentary_dyntick_idle(void)
|
2014-06-21 07:49:01 +08:00
|
|
|
{
|
2018-05-17 07:01:56 +08:00
|
|
|
int special;
|
|
|
|
|
2018-08-04 12:00:38 +08:00
|
|
|
raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
|
2018-08-04 12:00:38 +08:00
|
|
|
special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
|
|
|
|
&this_cpu_ptr(&rcu_data)->dynticks);
|
2018-05-17 07:01:56 +08:00
|
|
|
/* It is illegal to call this from idle state. */
|
|
|
|
WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
|
rcu: Defer reporting RCU-preempt quiescent states when disabled
This commit defers reporting of RCU-preempt quiescent states at
rcu_read_unlock_special() time when any of interrupts, softirq, or
preemption are disabled. These deferred quiescent states are reported
at a later RCU_SOFTIRQ, context switch, idle entry, or CPU-hotplug
offline operation. Of course, if another RCU read-side critical
section has started in the meantime, the reporting of the quiescent
state will be further deferred.
This also means that disabling preemption, interrupts, and/or
softirqs will act as an RCU-preempt read-side critical section.
This is enforced by checking preempt_count() as needed.
Some special cases must be handled on an ad-hoc basis, for example,
context switch is a quiescent state even though both the scheduler and
do_exit() disable preemption. In these cases, additional calls to
rcu_preempt_deferred_qs() override the preemption disabling. Similar
logic overrides disabled interrupts in rcu_preempt_check_callbacks()
because in this case the quiescent state happened just before the
corresponding scheduling-clock interrupt.
In theory, this change lifts a long-standing restriction that required
that if interrupts were disabled across a call to rcu_read_unlock()
that the matching rcu_read_lock() also be contained within that
interrupts-disabled region of code. Because the reporting of the
corresponding RCU-preempt quiescent state is now deferred until
after interrupts have been enabled, it is no longer possible for this
situation to result in deadlocks involving the scheduler's runqueue and
priority-inheritance locks. This may allow some code simplification that
might reduce interrupt latency a bit. Unfortunately, in practice this
would also defer deboosting a low-priority task that had been subjected
to RCU priority boosting, so real-time-response considerations might
well force this restriction to remain in place.
Because RCU-preempt grace periods are now blocked not only by RCU
read-side critical sections, but also by disabling of interrupts,
preemption, and softirqs, it will be possible to eliminate RCU-bh and
RCU-sched in favor of RCU-preempt in CONFIG_PREEMPT=y kernels. This may
require some additional plumbing to provide the network denial-of-service
guarantees that have been traditionally provided by RCU-bh. Once these
are in place, CONFIG_PREEMPT=n kernels will be able to fold RCU-bh
into RCU-sched. This would mean that all kernels would have but
one flavor of RCU, which would open the door to significant code
cleanup.
Moving to a single flavor of RCU would also have the beneficial effect
of reducing the NOCB kthreads by at least a factor of two.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Apply rcu_read_unlock_special() preempt_count() feedback
from Joel Fernandes. ]
[ paulmck: Adjust rcu_eqs_enter() call to rcu_preempt_deferred_qs() in
response to bug reports from kbuild test robot. ]
[ paulmck: Fix bug located by kbuild test robot involving recursion
via rcu_preempt_deferred_qs(). ]
2018-06-22 03:50:01 +08:00
|
|
|
rcu_preempt_deferred_qs(current);
|
2014-06-21 07:49:01 +08:00
|
|
|
}
|
|
|
|
|
2018-07-03 05:30:37 +08:00
|
|
|
/**
|
|
|
|
* rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
|
rcu: Don't disable preemption for Tiny and Tree RCU readers
Because preempt_disable() maps to barrier() for non-debug builds,
it forces the compiler to spill and reload registers. Because Tree
RCU and Tiny RCU now only appear in CONFIG_PREEMPT=n builds, these
barrier() instances generate needless extra code for each instance of
rcu_read_lock() and rcu_read_unlock(). This extra code slows down Tree
RCU and bloats Tiny RCU.
This commit therefore removes the preempt_disable() and preempt_enable()
from the non-preemptible implementations of __rcu_read_lock() and
__rcu_read_unlock(), respectively. However, for debug purposes,
preempt_disable() and preempt_enable() are still invoked if
CONFIG_PREEMPT_COUNT=y, because this allows detection of sleeping inside
atomic sections in non-preemptible kernels.
However, Tiny and Tree RCU operates by coalescing all RCU read-side
critical sections on a given CPU that lie between successive quiescent
states. It is therefore necessary to compensate for removing barriers
from __rcu_read_lock() and __rcu_read_unlock() by adding them to a
couple of the RCU functions invoked during quiescent states, namely to
rcu_all_qs() and rcu_note_context_switch(). However, note that the latter
is more paranoia than necessity, at least until link-time optimizations
become more aggressive.
This is based on an earlier patch by Paul E. McKenney, fixing
a bug encountered in kernels built with CONFIG_PREEMPT=n and
CONFIG_PREEMPT_COUNT=y.
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2015-07-31 07:55:38 +08:00
|
|
|
*
|
2018-07-03 05:30:37 +08:00
|
|
|
* If the current CPU is idle or running at a first-level (not nested)
|
|
|
|
* interrupt from idle, return true. The caller must have at least
|
|
|
|
* disabled preemption.
|
rcu: Make cond_resched_rcu_qs() apply to normal RCU flavors
Although cond_resched_rcu_qs() only applies to TASKS_RCU, it is used
in places where it would be useful for it to apply to the normal RCU
flavors, rcu_preempt, rcu_sched, and rcu_bh. This is especially the
case for workloads that aggressively overload the system, particularly
those that generate large numbers of RCU updates on systems running
NO_HZ_FULL CPUs. This commit therefore communicates quiescent states
from cond_resched_rcu_qs() to the normal RCU flavors.
Note that it is unfortunately necessary to leave the old ->passed_quiesce
mechanism in place to allow quiescent states that apply to only one
flavor to be recorded. (Yes, we could decrement ->rcu_qs_ctr_snap in
that case, but that is not so good for debugging of RCU internals.)
In addition, if one of the RCU flavor's grace period has stalled, this
will invoke rcu_momentary_dyntick_idle(), resulting in a heavy-weight
quiescent state visible from other CPUs.
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Reported-by: Dave Jones <davej@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Merge commit from Sasha Levin fixing a bug where __this_cpu()
was used in preemptible code. ]
2014-12-14 12:32:04 +08:00
|
|
|
*/
|
2018-07-03 05:30:37 +08:00
|
|
|
static int rcu_is_cpu_rrupt_from_idle(void)
|
rcu: Make cond_resched_rcu_qs() apply to normal RCU flavors
Although cond_resched_rcu_qs() only applies to TASKS_RCU, it is used
in places where it would be useful for it to apply to the normal RCU
flavors, rcu_preempt, rcu_sched, and rcu_bh. This is especially the
case for workloads that aggressively overload the system, particularly
those that generate large numbers of RCU updates on systems running
NO_HZ_FULL CPUs. This commit therefore communicates quiescent states
from cond_resched_rcu_qs() to the normal RCU flavors.
Note that it is unfortunately necessary to leave the old ->passed_quiesce
mechanism in place to allow quiescent states that apply to only one
flavor to be recorded. (Yes, we could decrement ->rcu_qs_ctr_snap in
that case, but that is not so good for debugging of RCU internals.)
In addition, if one of the RCU flavor's grace period has stalled, this
will invoke rcu_momentary_dyntick_idle(), resulting in a heavy-weight
quiescent state visible from other CPUs.
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Reported-by: Dave Jones <davej@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Merge commit from Sasha Levin fixing a bug where __this_cpu()
was used in preemptible code. ]
2014-12-14 12:32:04 +08:00
|
|
|
{
|
2018-08-04 12:00:38 +08:00
|
|
|
return __this_cpu_read(rcu_data.dynticks_nesting) <= 0 &&
|
|
|
|
__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 1;
|
rcu: Make cond_resched_rcu_qs() apply to normal RCU flavors
Although cond_resched_rcu_qs() only applies to TASKS_RCU, it is used
in places where it would be useful for it to apply to the normal RCU
flavors, rcu_preempt, rcu_sched, and rcu_bh. This is especially the
case for workloads that aggressively overload the system, particularly
those that generate large numbers of RCU updates on systems running
NO_HZ_FULL CPUs. This commit therefore communicates quiescent states
from cond_resched_rcu_qs() to the normal RCU flavors.
Note that it is unfortunately necessary to leave the old ->passed_quiesce
mechanism in place to allow quiescent states that apply to only one
flavor to be recorded. (Yes, we could decrement ->rcu_qs_ctr_snap in
that case, but that is not so good for debugging of RCU internals.)
In addition, if one of the RCU flavor's grace period has stalled, this
will invoke rcu_momentary_dyntick_idle(), resulting in a heavy-weight
quiescent state visible from other CPUs.
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Reported-by: Dave Jones <davej@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Merge commit from Sasha Levin fixing a bug where __this_cpu()
was used in preemptible code. ]
2014-12-14 12:32:04 +08:00
|
|
|
}
|
|
|
|
|
2017-04-29 02:12:34 +08:00
|
|
|
#define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */
|
|
|
|
static long blimit = DEFAULT_RCU_BLIMIT;
|
|
|
|
#define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
|
|
|
|
static long qhimark = DEFAULT_RCU_QHIMARK;
|
|
|
|
#define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
|
|
|
|
static long qlowmark = DEFAULT_RCU_QLOMARK;
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
|
2012-10-18 19:55:36 +08:00
|
|
|
module_param(blimit, long, 0444);
|
|
|
|
module_param(qhimark, long, 0444);
|
|
|
|
module_param(qlowmark, long, 0444);
|
2009-09-28 22:46:32 +08:00
|
|
|
|
2013-04-04 13:14:11 +08:00
|
|
|
static ulong jiffies_till_first_fqs = ULONG_MAX;
|
|
|
|
static ulong jiffies_till_next_fqs = ULONG_MAX;
|
2016-01-04 12:29:57 +08:00
|
|
|
static bool rcu_kick_kthreads;
|
rcu: Control grace-period duration from sysfs
Although almost everyone is well-served by the defaults, some uses of RCU
benefit from shorter grace periods, while others benefit more from the
greater efficiency provided by longer grace periods. Situations requiring
a large number of grace periods to elapse (and wireshark startup has
been called out as an example of this) are helped by lower-latency
grace periods. Furthermore, in some embedded applications, people are
willing to accept a small degradation in update efficiency (due to there
being more of the shorter grace-period operations) in order to gain the
lower latency.
In contrast, those few systems with thousands of CPUs need longer grace
periods because the CPU overhead of a grace period rises roughly
linearly with the number of CPUs. Such systems normally do not make
much use of facilities that require large numbers of grace periods to
elapse, so this is a good tradeoff.
Therefore, this commit allows the durations to be controlled from sysfs.
There are two sysfs parameters, one named "jiffies_till_first_fqs" that
specifies the delay in jiffies from the end of grace-period initialization
until the first attempt to force quiescent states, and the other named
"jiffies_till_next_fqs" that specifies the delay (again in jiffies)
between subsequent attempts to force quiescent states. They both default
to three jiffies, which is compatible with the old hard-coded behavior.
At some future time, it may be possible to automatically increase the
grace-period length with the number of CPUs, but we do not yet have
sufficient data to do a good job. Preliminary data indicates that we
should add an addiitonal jiffy to each of the delays for every 200 CPUs
in the system, but more experimentation is needed. For now, the number
of systems with more than 1,000 CPUs is small enough that this can be
relegated to boot-time hand tuning.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2012-06-27 11:45:57 +08:00
|
|
|
|
rcu: Compute jiffies_till_sched_qs from other kernel parameters
The jiffies_till_sched_qs value used to determine how old a grace period
must be before RCU enlists the help of the scheduler to force a quiescent
state on the holdout CPU. Currently, this defaults to HZ/10 regardless of
system size and may be set only at boot time. This can be a problem for
very large systems, because if the values of the jiffies_till_first_fqs
and jiffies_till_next_fqs kernel parameters are left at their defaults,
they are calculated to increase as the number of CPUs actually configured
on the system increases. Thus, on a sufficiently large system, RCU would
enlist the help of the scheduler before the grace-period kthread had a
chance to scan for idle CPUs, which wastes CPU time.
This commit therefore allows jiffies_till_sched_qs to be set, if desired,
but if left as default, computes is as jiffies_till_first_fqs plus twice
jiffies_till_next_fqs, thus allowing three force-quiescent-state scans
for idle CPUs. This scales with the number of CPUs, providing sensible
default values.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-26 02:25:23 +08:00
|
|
|
/*
|
|
|
|
* How long the grace period must be before we start recruiting
|
|
|
|
* quiescent-state help from rcu_note_context_switch().
|
|
|
|
*/
|
|
|
|
static ulong jiffies_till_sched_qs = ULONG_MAX;
|
|
|
|
module_param(jiffies_till_sched_qs, ulong, 0444);
|
|
|
|
static ulong jiffies_to_sched_qs; /* Adjusted version of above if not default */
|
|
|
|
module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Make sure that we give the grace-period kthread time to detect any
|
|
|
|
* idle CPUs before taking active measures to force quiescent states.
|
|
|
|
* However, don't go below 100 milliseconds, adjusted upwards for really
|
|
|
|
* large systems.
|
|
|
|
*/
|
|
|
|
static void adjust_jiffies_till_sched_qs(void)
|
|
|
|
{
|
|
|
|
unsigned long j;
|
|
|
|
|
|
|
|
/* If jiffies_till_sched_qs was specified, respect the request. */
|
|
|
|
if (jiffies_till_sched_qs != ULONG_MAX) {
|
|
|
|
WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
j = READ_ONCE(jiffies_till_first_fqs) +
|
|
|
|
2 * READ_ONCE(jiffies_till_next_fqs);
|
|
|
|
if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
|
|
|
|
j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
|
|
|
|
pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
|
|
|
|
WRITE_ONCE(jiffies_to_sched_qs, j);
|
|
|
|
}
|
|
|
|
|
2018-06-01 10:03:09 +08:00
|
|
|
static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
|
|
|
|
{
|
|
|
|
ulong j;
|
|
|
|
int ret = kstrtoul(val, 0, &j);
|
|
|
|
|
rcu: Compute jiffies_till_sched_qs from other kernel parameters
The jiffies_till_sched_qs value used to determine how old a grace period
must be before RCU enlists the help of the scheduler to force a quiescent
state on the holdout CPU. Currently, this defaults to HZ/10 regardless of
system size and may be set only at boot time. This can be a problem for
very large systems, because if the values of the jiffies_till_first_fqs
and jiffies_till_next_fqs kernel parameters are left at their defaults,
they are calculated to increase as the number of CPUs actually configured
on the system increases. Thus, on a sufficiently large system, RCU would
enlist the help of the scheduler before the grace-period kthread had a
chance to scan for idle CPUs, which wastes CPU time.
This commit therefore allows jiffies_till_sched_qs to be set, if desired,
but if left as default, computes is as jiffies_till_first_fqs plus twice
jiffies_till_next_fqs, thus allowing three force-quiescent-state scans
for idle CPUs. This scales with the number of CPUs, providing sensible
default values.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-26 02:25:23 +08:00
|
|
|
if (!ret) {
|
2018-06-01 10:03:09 +08:00
|
|
|
WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
|
rcu: Compute jiffies_till_sched_qs from other kernel parameters
The jiffies_till_sched_qs value used to determine how old a grace period
must be before RCU enlists the help of the scheduler to force a quiescent
state on the holdout CPU. Currently, this defaults to HZ/10 regardless of
system size and may be set only at boot time. This can be a problem for
very large systems, because if the values of the jiffies_till_first_fqs
and jiffies_till_next_fqs kernel parameters are left at their defaults,
they are calculated to increase as the number of CPUs actually configured
on the system increases. Thus, on a sufficiently large system, RCU would
enlist the help of the scheduler before the grace-period kthread had a
chance to scan for idle CPUs, which wastes CPU time.
This commit therefore allows jiffies_till_sched_qs to be set, if desired,
but if left as default, computes is as jiffies_till_first_fqs plus twice
jiffies_till_next_fqs, thus allowing three force-quiescent-state scans
for idle CPUs. This scales with the number of CPUs, providing sensible
default values.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-26 02:25:23 +08:00
|
|
|
adjust_jiffies_till_sched_qs();
|
|
|
|
}
|
2018-06-01 10:03:09 +08:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
|
|
|
|
{
|
|
|
|
ulong j;
|
|
|
|
int ret = kstrtoul(val, 0, &j);
|
|
|
|
|
rcu: Compute jiffies_till_sched_qs from other kernel parameters
The jiffies_till_sched_qs value used to determine how old a grace period
must be before RCU enlists the help of the scheduler to force a quiescent
state on the holdout CPU. Currently, this defaults to HZ/10 regardless of
system size and may be set only at boot time. This can be a problem for
very large systems, because if the values of the jiffies_till_first_fqs
and jiffies_till_next_fqs kernel parameters are left at their defaults,
they are calculated to increase as the number of CPUs actually configured
on the system increases. Thus, on a sufficiently large system, RCU would
enlist the help of the scheduler before the grace-period kthread had a
chance to scan for idle CPUs, which wastes CPU time.
This commit therefore allows jiffies_till_sched_qs to be set, if desired,
but if left as default, computes is as jiffies_till_first_fqs plus twice
jiffies_till_next_fqs, thus allowing three force-quiescent-state scans
for idle CPUs. This scales with the number of CPUs, providing sensible
default values.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-26 02:25:23 +08:00
|
|
|
if (!ret) {
|
2018-06-01 10:03:09 +08:00
|
|
|
WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
|
rcu: Compute jiffies_till_sched_qs from other kernel parameters
The jiffies_till_sched_qs value used to determine how old a grace period
must be before RCU enlists the help of the scheduler to force a quiescent
state on the holdout CPU. Currently, this defaults to HZ/10 regardless of
system size and may be set only at boot time. This can be a problem for
very large systems, because if the values of the jiffies_till_first_fqs
and jiffies_till_next_fqs kernel parameters are left at their defaults,
they are calculated to increase as the number of CPUs actually configured
on the system increases. Thus, on a sufficiently large system, RCU would
enlist the help of the scheduler before the grace-period kthread had a
chance to scan for idle CPUs, which wastes CPU time.
This commit therefore allows jiffies_till_sched_qs to be set, if desired,
but if left as default, computes is as jiffies_till_first_fqs plus twice
jiffies_till_next_fqs, thus allowing three force-quiescent-state scans
for idle CPUs. This scales with the number of CPUs, providing sensible
default values.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-26 02:25:23 +08:00
|
|
|
adjust_jiffies_till_sched_qs();
|
|
|
|
}
|
2018-06-01 10:03:09 +08:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct kernel_param_ops first_fqs_jiffies_ops = {
|
|
|
|
.set = param_set_first_fqs_jiffies,
|
|
|
|
.get = param_get_ulong,
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct kernel_param_ops next_fqs_jiffies_ops = {
|
|
|
|
.set = param_set_next_fqs_jiffies,
|
|
|
|
.get = param_get_ulong,
|
|
|
|
};
|
|
|
|
|
|
|
|
module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
|
|
|
|
module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
|
2016-01-04 12:29:57 +08:00
|
|
|
module_param(rcu_kick_kthreads, bool, 0644);
|
rcu: Control grace-period duration from sysfs
Although almost everyone is well-served by the defaults, some uses of RCU
benefit from shorter grace periods, while others benefit more from the
greater efficiency provided by longer grace periods. Situations requiring
a large number of grace periods to elapse (and wireshark startup has
been called out as an example of this) are helped by lower-latency
grace periods. Furthermore, in some embedded applications, people are
willing to accept a small degradation in update efficiency (due to there
being more of the shorter grace-period operations) in order to gain the
lower latency.
In contrast, those few systems with thousands of CPUs need longer grace
periods because the CPU overhead of a grace period rises roughly
linearly with the number of CPUs. Such systems normally do not make
much use of facilities that require large numbers of grace periods to
elapse, so this is a good tradeoff.
Therefore, this commit allows the durations to be controlled from sysfs.
There are two sysfs parameters, one named "jiffies_till_first_fqs" that
specifies the delay in jiffies from the end of grace-period initialization
until the first attempt to force quiescent states, and the other named
"jiffies_till_next_fqs" that specifies the delay (again in jiffies)
between subsequent attempts to force quiescent states. They both default
to three jiffies, which is compatible with the old hard-coded behavior.
At some future time, it may be possible to automatically increase the
grace-period length with the number of CPUs, but we do not yet have
sufficient data to do a good job. Preliminary data indicates that we
should add an addiitonal jiffy to each of the delays for every 200 CPUs
in the system, but more experimentation is needed. For now, the number
of systems with more than 1,000 CPUs is small enough that this can be
relegated to boot-time hand tuning.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2012-06-27 11:45:57 +08:00
|
|
|
|
2018-07-06 08:55:14 +08:00
|
|
|
static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
|
2018-07-04 08:22:34 +08:00
|
|
|
static void force_quiescent_state(void);
|
2014-10-21 23:03:57 +08:00
|
|
|
static int rcu_pending(void);
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
|
|
|
|
/*
|
2018-04-28 02:39:34 +08:00
|
|
|
* Return the number of RCU GPs completed thus far for debug & stats.
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
*/
|
2018-04-28 02:39:34 +08:00
|
|
|
unsigned long rcu_get_gp_seq(void)
|
2014-11-22 09:10:16 +08:00
|
|
|
{
|
2018-07-04 06:54:39 +08:00
|
|
|
return READ_ONCE(rcu_state.gp_seq);
|
2014-11-22 09:10:16 +08:00
|
|
|
}
|
2018-04-28 02:39:34 +08:00
|
|
|
EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
|
2014-11-22 09:10:16 +08:00
|
|
|
|
2016-01-13 05:43:30 +08:00
|
|
|
/*
|
|
|
|
* Return the number of RCU expedited batches completed thus far for
|
|
|
|
* debug & stats. Odd numbers mean that a batch is in progress, even
|
|
|
|
* numbers mean idle. The value returned will thus be roughly double
|
|
|
|
* the cumulative batches since boot.
|
|
|
|
*/
|
|
|
|
unsigned long rcu_exp_batches_completed(void)
|
|
|
|
{
|
2018-07-04 06:54:39 +08:00
|
|
|
return rcu_state.expedited_sequence;
|
2016-01-13 05:43:30 +08:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
|
|
|
|
|
2014-03-19 17:18:31 +08:00
|
|
|
/*
|
|
|
|
* Force a quiescent state.
|
|
|
|
*/
|
|
|
|
void rcu_force_quiescent_state(void)
|
|
|
|
{
|
2018-07-04 08:22:34 +08:00
|
|
|
force_quiescent_state();
|
2014-03-19 17:18:31 +08:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
|
|
|
|
|
2014-03-12 22:10:41 +08:00
|
|
|
/*
|
|
|
|
* Show the state of the grace-period kthreads.
|
|
|
|
*/
|
|
|
|
void show_rcu_gp_kthreads(void)
|
|
|
|
{
|
2018-05-29 01:33:08 +08:00
|
|
|
int cpu;
|
|
|
|
struct rcu_data *rdp;
|
|
|
|
struct rcu_node *rnp;
|
2014-03-12 22:10:41 +08:00
|
|
|
|
2018-07-05 06:35:00 +08:00
|
|
|
pr_info("%s: wait state: %d ->state: %#lx\n", rcu_state.name,
|
|
|
|
rcu_state.gp_state, rcu_state.gp_kthread->state);
|
|
|
|
rcu_for_each_node_breadth_first(rnp) {
|
|
|
|
if (ULONG_CMP_GE(rcu_state.gp_seq, rnp->gp_seq_needed))
|
|
|
|
continue;
|
|
|
|
pr_info("\trcu_node %d:%d ->gp_seq %lu ->gp_seq_needed %lu\n",
|
|
|
|
rnp->grplo, rnp->grphi, rnp->gp_seq,
|
|
|
|
rnp->gp_seq_needed);
|
|
|
|
if (!rcu_is_leaf_node(rnp))
|
|
|
|
continue;
|
|
|
|
for_each_leaf_node_possible_cpu(rnp, cpu) {
|
|
|
|
rdp = per_cpu_ptr(&rcu_data, cpu);
|
|
|
|
if (rdp->gpwrap ||
|
|
|
|
ULONG_CMP_GE(rcu_state.gp_seq,
|
|
|
|
rdp->gp_seq_needed))
|
2018-05-29 01:33:08 +08:00
|
|
|
continue;
|
2018-07-05 06:35:00 +08:00
|
|
|
pr_info("\tcpu %d ->gp_seq_needed %lu\n",
|
|
|
|
cpu, rdp->gp_seq_needed);
|
2018-05-29 01:33:08 +08:00
|
|
|
}
|
2014-03-12 22:10:41 +08:00
|
|
|
}
|
2018-07-05 06:35:00 +08:00
|
|
|
/* sched_show_task(rcu_state.gp_kthread); */
|
2014-03-12 22:10:41 +08:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
|
|
|
|
|
2014-02-20 02:51:42 +08:00
|
|
|
/*
|
|
|
|
* Send along grace-period-related data for rcutorture diagnostics.
|
|
|
|
*/
|
|
|
|
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
|
2018-05-01 21:42:51 +08:00
|
|
|
unsigned long *gp_seq)
|
2014-02-20 02:51:42 +08:00
|
|
|
{
|
|
|
|
switch (test_type) {
|
|
|
|
case RCU_FLAVOR:
|
|
|
|
case RCU_BH_FLAVOR:
|
|
|
|
case RCU_SCHED_FLAVOR:
|
2018-07-05 06:39:40 +08:00
|
|
|
*flags = READ_ONCE(rcu_state.gp_flags);
|
|
|
|
*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
|
2014-02-20 02:51:42 +08:00
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
|
|
|
|
|
2014-03-11 01:55:52 +08:00
|
|
|
/*
|
2018-07-08 09:12:26 +08:00
|
|
|
* Return the root node of the rcu_state structure.
|
2014-03-11 01:55:52 +08:00
|
|
|
*/
|
2018-07-04 08:22:34 +08:00
|
|
|
static struct rcu_node *rcu_get_root(void)
|
2014-03-11 01:55:52 +08:00
|
|
|
{
|
2018-07-04 08:22:34 +08:00
|
|
|
return &rcu_state.node[0];
|
2014-03-11 01:55:52 +08:00
|
|
|
}
|
|
|
|
|
rcu: Track idleness independent of idle tasks
Earlier versions of RCU used the scheduling-clock tick to detect idleness
by checking for the idle task, but handled idleness differently for
CONFIG_NO_HZ=y. But there are now a number of uses of RCU read-side
critical sections in the idle task, for example, for tracing. A more
fine-grained detection of idleness is therefore required.
This commit presses the old dyntick-idle code into full-time service,
so that rcu_idle_enter(), previously known as rcu_enter_nohz(), is
always invoked at the beginning of an idle loop iteration. Similarly,
rcu_idle_exit(), previously known as rcu_exit_nohz(), is always invoked
at the end of an idle-loop iteration. This allows the idle task to
use RCU everywhere except between consecutive rcu_idle_enter() and
rcu_idle_exit() calls, in turn allowing architecture maintainers to
specify exactly where in the idle loop that RCU may be used.
Because some of the userspace upcall uses can result in what looks
to RCU like half of an interrupt, it is not possible to expect that
the irq_enter() and irq_exit() hooks will give exact counts. This
patch therefore expands the ->dynticks_nesting counter to 64 bits
and uses two separate bitfields to count process/idle transitions
and interrupt entry/exit transitions. It is presumed that userspace
upcalls do not happen in the idle loop or from usermode execution
(though usermode might do a system call that results in an upcall).
The counter is hard-reset on each process/idle transition, which
avoids the interrupt entry/exit error from accumulating. Overflow
is avoided by the 64-bitness of the ->dyntick_nesting counter.
This commit also adds warnings if a non-idle task asks RCU to enter
idle state (and these checks will need some adjustment before applying
Frederic's OS-jitter patches (http://lkml.org/lkml/2011/10/7/246).
In addition, validation of ->dynticks and ->dynticks_nesting is added.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-10-01 03:10:22 +08:00
|
|
|
/*
|
2017-10-06 07:37:03 +08:00
|
|
|
* Enter an RCU extended quiescent state, which can be either the
|
|
|
|
* idle loop or adaptive-tickless usermode execution.
|
rcu: Track idleness independent of idle tasks
Earlier versions of RCU used the scheduling-clock tick to detect idleness
by checking for the idle task, but handled idleness differently for
CONFIG_NO_HZ=y. But there are now a number of uses of RCU read-side
critical sections in the idle task, for example, for tracing. A more
fine-grained detection of idleness is therefore required.
This commit presses the old dyntick-idle code into full-time service,
so that rcu_idle_enter(), previously known as rcu_enter_nohz(), is
always invoked at the beginning of an idle loop iteration. Similarly,
rcu_idle_exit(), previously known as rcu_exit_nohz(), is always invoked
at the end of an idle-loop iteration. This allows the idle task to
use RCU everywhere except between consecutive rcu_idle_enter() and
rcu_idle_exit() calls, in turn allowing architecture maintainers to
specify exactly where in the idle loop that RCU may be used.
Because some of the userspace upcall uses can result in what looks
to RCU like half of an interrupt, it is not possible to expect that
the irq_enter() and irq_exit() hooks will give exact counts. This
patch therefore expands the ->dynticks_nesting counter to 64 bits
and uses two separate bitfields to count process/idle transitions
and interrupt entry/exit transitions. It is presumed that userspace
upcalls do not happen in the idle loop or from usermode execution
(though usermode might do a system call that results in an upcall).
The counter is hard-reset on each process/idle transition, which
avoids the interrupt entry/exit error from accumulating. Overflow
is avoided by the 64-bitness of the ->dyntick_nesting counter.
This commit also adds warnings if a non-idle task asks RCU to enter
idle state (and these checks will need some adjustment before applying
Frederic's OS-jitter patches (http://lkml.org/lkml/2011/10/7/246).
In addition, validation of ->dynticks and ->dynticks_nesting is added.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-10-01 03:10:22 +08:00
|
|
|
*
|
2017-10-06 07:37:03 +08:00
|
|
|
* We crowbar the ->dynticks_nmi_nesting field to zero to allow for
|
|
|
|
* the possibility of usermode upcalls having messed up our count
|
|
|
|
* of interrupt nesting level during the prior busy period.
|
rcu: Track idleness independent of idle tasks
Earlier versions of RCU used the scheduling-clock tick to detect idleness
by checking for the idle task, but handled idleness differently for
CONFIG_NO_HZ=y. But there are now a number of uses of RCU read-side
critical sections in the idle task, for example, for tracing. A more
fine-grained detection of idleness is therefore required.
This commit presses the old dyntick-idle code into full-time service,
so that rcu_idle_enter(), previously known as rcu_enter_nohz(), is
always invoked at the beginning of an idle loop iteration. Similarly,
rcu_idle_exit(), previously known as rcu_exit_nohz(), is always invoked
at the end of an idle-loop iteration. This allows the idle task to
use RCU everywhere except between consecutive rcu_idle_enter() and
rcu_idle_exit() calls, in turn allowing architecture maintainers to
specify exactly where in the idle loop that RCU may be used.
Because some of the userspace upcall uses can result in what looks
to RCU like half of an interrupt, it is not possible to expect that
the irq_enter() and irq_exit() hooks will give exact counts. This
patch therefore expands the ->dynticks_nesting counter to 64 bits
and uses two separate bitfields to count process/idle transitions
and interrupt entry/exit transitions. It is presumed that userspace
upcalls do not happen in the idle loop or from usermode execution
(though usermode might do a system call that results in an upcall).
The counter is hard-reset on each process/idle transition, which
avoids the interrupt entry/exit error from accumulating. Overflow
is avoided by the 64-bitness of the ->dyntick_nesting counter.
This commit also adds warnings if a non-idle task asks RCU to enter
idle state (and these checks will need some adjustment before applying
Frederic's OS-jitter patches (http://lkml.org/lkml/2011/10/7/246).
In addition, validation of ->dynticks and ->dynticks_nesting is added.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-10-01 03:10:22 +08:00
|
|
|
*/
|
2017-10-06 07:37:03 +08:00
|
|
|
static void rcu_eqs_enter(bool user)
|
rcu: Track idleness independent of idle tasks
Earlier versions of RCU used the scheduling-clock tick to detect idleness
by checking for the idle task, but handled idleness differently for
CONFIG_NO_HZ=y. But there are now a number of uses of RCU read-side
critical sections in the idle task, for example, for tracing. A more
fine-grained detection of idleness is therefore required.
This commit presses the old dyntick-idle code into full-time service,
so that rcu_idle_enter(), previously known as rcu_enter_nohz(), is
always invoked at the beginning of an idle loop iteration. Similarly,
rcu_idle_exit(), previously known as rcu_exit_nohz(), is always invoked
at the end of an idle-loop iteration. This allows the idle task to
use RCU everywhere except between consecutive rcu_idle_enter() and
rcu_idle_exit() calls, in turn allowing architecture maintainers to
specify exactly where in the idle loop that RCU may be used.
Because some of the userspace upcall uses can result in what looks
to RCU like half of an interrupt, it is not possible to expect that
the irq_enter() and irq_exit() hooks will give exact counts. This
patch therefore expands the ->dynticks_nesting counter to 64 bits
and uses two separate bitfields to count process/idle transitions
and interrupt entry/exit transitions. It is presumed that userspace
upcalls do not happen in the idle loop or from usermode execution
(though usermode might do a system call that results in an upcall).
The counter is hard-reset on each process/idle transition, which
avoids the interrupt entry/exit error from accumulating. Overflow
is avoided by the 64-bitness of the ->dyntick_nesting counter.
This commit also adds warnings if a non-idle task asks RCU to enter
idle state (and these checks will need some adjustment before applying
Frederic's OS-jitter patches (http://lkml.org/lkml/2011/10/7/246).
In addition, validation of ->dynticks and ->dynticks_nesting is added.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-10-01 03:10:22 +08:00
|
|
|
{
|
2018-08-04 12:00:38 +08:00
|
|
|
struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
|
rcu: Break call_rcu() deadlock involving scheduler and perf
Dave Jones got the following lockdep splat:
> ======================================================
> [ INFO: possible circular locking dependency detected ]
> 3.12.0-rc3+ #92 Not tainted
> -------------------------------------------------------
> trinity-child2/15191 is trying to acquire lock:
> (&rdp->nocb_wq){......}, at: [<ffffffff8108ff43>] __wake_up+0x23/0x50
>
> but task is already holding lock:
> (&ctx->lock){-.-...}, at: [<ffffffff81154c19>] perf_event_exit_task+0x109/0x230
>
> which lock already depends on the new lock.
>
>
> the existing dependency chain (in reverse order) is:
>
> -> #3 (&ctx->lock){-.-...}:
> [<ffffffff810cc243>] lock_acquire+0x93/0x200
> [<ffffffff81733f90>] _raw_spin_lock+0x40/0x80
> [<ffffffff811500ff>] __perf_event_task_sched_out+0x2df/0x5e0
> [<ffffffff81091b83>] perf_event_task_sched_out+0x93/0xa0
> [<ffffffff81732052>] __schedule+0x1d2/0xa20
> [<ffffffff81732f30>] preempt_schedule_irq+0x50/0xb0
> [<ffffffff817352b6>] retint_kernel+0x26/0x30
> [<ffffffff813eed04>] tty_flip_buffer_push+0x34/0x50
> [<ffffffff813f0504>] pty_write+0x54/0x60
> [<ffffffff813e900d>] n_tty_write+0x32d/0x4e0
> [<ffffffff813e5838>] tty_write+0x158/0x2d0
> [<ffffffff811c4850>] vfs_write+0xc0/0x1f0
> [<ffffffff811c52cc>] SyS_write+0x4c/0xa0
> [<ffffffff8173d4e4>] tracesys+0xdd/0xe2
>
> -> #2 (&rq->lock){-.-.-.}:
> [<ffffffff810cc243>] lock_acquire+0x93/0x200
> [<ffffffff81733f90>] _raw_spin_lock+0x40/0x80
> [<ffffffff810980b2>] wake_up_new_task+0xc2/0x2e0
> [<ffffffff81054336>] do_fork+0x126/0x460
> [<ffffffff81054696>] kernel_thread+0x26/0x30
> [<ffffffff8171ff93>] rest_init+0x23/0x140
> [<ffffffff81ee1e4b>] start_kernel+0x3f6/0x403
> [<ffffffff81ee1571>] x86_64_start_reservations+0x2a/0x2c
> [<ffffffff81ee1664>] x86_64_start_kernel+0xf1/0xf4
>
> -> #1 (&p->pi_lock){-.-.-.}:
> [<ffffffff810cc243>] lock_acquire+0x93/0x200
> [<ffffffff8173419b>] _raw_spin_lock_irqsave+0x4b/0x90
> [<ffffffff810979d1>] try_to_wake_up+0x31/0x350
> [<ffffffff81097d62>] default_wake_function+0x12/0x20
> [<ffffffff81084af8>] autoremove_wake_function+0x18/0x40
> [<ffffffff8108ea38>] __wake_up_common+0x58/0x90
> [<ffffffff8108ff59>] __wake_up+0x39/0x50
> [<ffffffff8110d4f8>] __call_rcu_nocb_enqueue+0xa8/0xc0
> [<ffffffff81111450>] __call_rcu+0x140/0x820
> [<ffffffff81111b8d>] call_rcu+0x1d/0x20
> [<ffffffff81093697>] cpu_attach_domain+0x287/0x360
> [<ffffffff81099d7e>] build_sched_domains+0xe5e/0x10a0
> [<ffffffff81efa7fc>] sched_init_smp+0x3b7/0x47a
> [<ffffffff81ee1f4e>] kernel_init_freeable+0xf6/0x202
> [<ffffffff817200be>] kernel_init+0xe/0x190
> [<ffffffff8173d22c>] ret_from_fork+0x7c/0xb0
>
> -> #0 (&rdp->nocb_wq){......}:
> [<ffffffff810cb7ca>] __lock_acquire+0x191a/0x1be0
> [<ffffffff810cc243>] lock_acquire+0x93/0x200
> [<ffffffff8173419b>] _raw_spin_lock_irqsave+0x4b/0x90
> [<ffffffff8108ff43>] __wake_up+0x23/0x50
> [<ffffffff8110d4f8>] __call_rcu_nocb_enqueue+0xa8/0xc0
> [<ffffffff81111450>] __call_rcu+0x140/0x820
> [<ffffffff81111bb0>] kfree_call_rcu+0x20/0x30
> [<ffffffff81149abf>] put_ctx+0x4f/0x70
> [<ffffffff81154c3e>] perf_event_exit_task+0x12e/0x230
> [<ffffffff81056b8d>] do_exit+0x30d/0xcc0
> [<ffffffff8105893c>] do_group_exit+0x4c/0xc0
> [<ffffffff810589c4>] SyS_exit_group+0x14/0x20
> [<ffffffff8173d4e4>] tracesys+0xdd/0xe2
>
> other info that might help us debug this:
>
> Chain exists of:
> &rdp->nocb_wq --> &rq->lock --> &ctx->lock
>
> Possible unsafe locking scenario:
>
> CPU0 CPU1
> ---- ----
> lock(&ctx->lock);
> lock(&rq->lock);
> lock(&ctx->lock);
> lock(&rdp->nocb_wq);
>
> *** DEADLOCK ***
>
> 1 lock held by trinity-child2/15191:
> #0: (&ctx->lock){-.-...}, at: [<ffffffff81154c19>] perf_event_exit_task+0x109/0x230
>
> stack backtrace:
> CPU: 2 PID: 15191 Comm: trinity-child2 Not tainted 3.12.0-rc3+ #92
> ffffffff82565b70 ffff880070c2dbf8 ffffffff8172a363 ffffffff824edf40
> ffff880070c2dc38 ffffffff81726741 ffff880070c2dc90 ffff88022383b1c0
> ffff88022383aac0 0000000000000000 ffff88022383b188 ffff88022383b1c0
> Call Trace:
> [<ffffffff8172a363>] dump_stack+0x4e/0x82
> [<ffffffff81726741>] print_circular_bug+0x200/0x20f
> [<ffffffff810cb7ca>] __lock_acquire+0x191a/0x1be0
> [<ffffffff810c6439>] ? get_lock_stats+0x19/0x60
> [<ffffffff8100b2f4>] ? native_sched_clock+0x24/0x80
> [<ffffffff810cc243>] lock_acquire+0x93/0x200
> [<ffffffff8108ff43>] ? __wake_up+0x23/0x50
> [<ffffffff8173419b>] _raw_spin_lock_irqsave+0x4b/0x90
> [<ffffffff8108ff43>] ? __wake_up+0x23/0x50
> [<ffffffff8108ff43>] __wake_up+0x23/0x50
> [<ffffffff8110d4f8>] __call_rcu_nocb_enqueue+0xa8/0xc0
> [<ffffffff81111450>] __call_rcu+0x140/0x820
> [<ffffffff8109bc8f>] ? local_clock+0x3f/0x50
> [<ffffffff81111bb0>] kfree_call_rcu+0x20/0x30
> [<ffffffff81149abf>] put_ctx+0x4f/0x70
> [<ffffffff81154c3e>] perf_event_exit_task+0x12e/0x230
> [<ffffffff81056b8d>] do_exit+0x30d/0xcc0
> [<ffffffff810c9af5>] ? trace_hardirqs_on_caller+0x115/0x1e0
> [<ffffffff810c9bcd>] ? trace_hardirqs_on+0xd/0x10
> [<ffffffff8105893c>] do_group_exit+0x4c/0xc0
> [<ffffffff810589c4>] SyS_exit_group+0x14/0x20
> [<ffffffff8173d4e4>] tracesys+0xdd/0xe2
The underlying problem is that perf is invoking call_rcu() with the
scheduler locks held, but in NOCB mode, call_rcu() will with high
probability invoke the scheduler -- which just might want to use its
locks. The reason that call_rcu() needs to invoke the scheduler is
to wake up the corresponding rcuo callback-offload kthread, which
does the job of starting up a grace period and invoking the callbacks
afterwards.
One solution (championed on a related problem by Lai Jiangshan) is to
simply defer the wakeup to some point where scheduler locks are no longer
held. Since we don't want to unnecessarily incur the cost of such
deferral, the task before us is threefold:
1. Determine when it is likely that a relevant scheduler lock is held.
2. Defer the wakeup in such cases.
3. Ensure that all deferred wakeups eventually happen, preferably
sooner rather than later.
We use irqs_disabled_flags() as a proxy for relevant scheduler locks
being held. This works because the relevant locks are always acquired
with interrupts disabled. We may defer more often than needed, but that
is at least safe.
The wakeup deferral is tracked via a new field in the per-CPU and
per-RCU-flavor rcu_data structure, namely ->nocb_defer_wakeup.
This flag is checked by the RCU core processing. The __rcu_pending()
function now checks this flag, which causes rcu_check_callbacks()
to initiate RCU core processing at each scheduling-clock interrupt
where this flag is set. Of course this is not sufficient because
scheduling-clock interrupts are often turned off (the things we used to
be able to count on!). So the flags are also checked on entry to any
state that RCU considers to be idle, which includes both NO_HZ_IDLE idle
state and NO_HZ_FULL user-mode-execution state.
This approach should allow call_rcu() to be invoked regardless of what
locks you might be holding, the key word being "should".
Reported-by: Dave Jones <davej@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
2013-10-05 05:33:34 +08:00
|
|
|
|
2018-08-04 12:00:38 +08:00
|
|
|
WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
|
|
|
|
WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
|
2017-10-06 07:37:03 +08:00
|
|
|
WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
|
2018-08-04 12:00:38 +08:00
|
|
|
rdp->dynticks_nesting == 0);
|
|
|
|
if (rdp->dynticks_nesting != 1) {
|
|
|
|
rdp->dynticks_nesting--;
|
2017-10-06 07:37:03 +08:00
|
|
|
return;
|
rcu: Track idleness independent of idle tasks
Earlier versions of RCU used the scheduling-clock tick to detect idleness
by checking for the idle task, but handled idleness differently for
CONFIG_NO_HZ=y. But there are now a number of uses of RCU read-side
critical sections in the idle task, for example, for tracing. A more
fine-grained detection of idleness is therefore required.
This commit presses the old dyntick-idle code into full-time service,
so that rcu_idle_enter(), previously known as rcu_enter_nohz(), is
always invoked at the beginning of an idle loop iteration. Similarly,
rcu_idle_exit(), previously known as rcu_exit_nohz(), is always invoked
at the end of an idle-loop iteration. This allows the idle task to
use RCU everywhere except between consecutive rcu_idle_enter() and
rcu_idle_exit() calls, in turn allowing architecture maintainers to
specify exactly where in the idle loop that RCU may be used.
Because some of the userspace upcall uses can result in what looks
to RCU like half of an interrupt, it is not possible to expect that
the irq_enter() and irq_exit() hooks will give exact counts. This
patch therefore expands the ->dynticks_nesting counter to 64 bits
and uses two separate bitfields to count process/idle transitions
and interrupt entry/exit transitions. It is presumed that userspace
upcalls do not happen in the idle loop or from usermode execution
(though usermode might do a system call that results in an upcall).
The counter is hard-reset on each process/idle transition, which
avoids the interrupt entry/exit error from accumulating. Overflow
is avoided by the 64-bitness of the ->dyntick_nesting counter.
This commit also adds warnings if a non-idle task asks RCU to enter
idle state (and these checks will need some adjustment before applying
Frederic's OS-jitter patches (http://lkml.org/lkml/2011/10/7/246).
In addition, validation of ->dynticks and ->dynticks_nesting is added.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-10-01 03:10:22 +08:00
|
|
|
}
|
rcu: Break call_rcu() deadlock involving scheduler and perf
Dave Jones got the following lockdep splat:
> ======================================================
> [ INFO: possible circular locking dependency detected ]
> 3.12.0-rc3+ #92 Not tainted
> -------------------------------------------------------
> trinity-child2/15191 is trying to acquire lock:
> (&rdp->nocb_wq){......}, at: [<ffffffff8108ff43>] __wake_up+0x23/0x50
>
> but task is already holding lock:
> (&ctx->lock){-.-...}, at: [<ffffffff81154c19>] perf_event_exit_task+0x109/0x230
>
> which lock already depends on the new lock.
>
>
> the existing dependency chain (in reverse order) is:
>
> -> #3 (&ctx->lock){-.-...}:
> [<ffffffff810cc243>] lock_acquire+0x93/0x200
> [<ffffffff81733f90>] _raw_spin_lock+0x40/0x80
> [<ffffffff811500ff>] __perf_event_task_sched_out+0x2df/0x5e0
> [<ffffffff81091b83>] perf_event_task_sched_out+0x93/0xa0
> [<ffffffff81732052>] __schedule+0x1d2/0xa20
> [<ffffffff81732f30>] preempt_schedule_irq+0x50/0xb0
> [<ffffffff817352b6>] retint_kernel+0x26/0x30
> [<ffffffff813eed04>] tty_flip_buffer_push+0x34/0x50
> [<ffffffff813f0504>] pty_write+0x54/0x60
> [<ffffffff813e900d>] n_tty_write+0x32d/0x4e0
> [<ffffffff813e5838>] tty_write+0x158/0x2d0
> [<ffffffff811c4850>] vfs_write+0xc0/0x1f0
> [<ffffffff811c52cc>] SyS_write+0x4c/0xa0
> [<ffffffff8173d4e4>] tracesys+0xdd/0xe2
>
> -> #2 (&rq->lock){-.-.-.}:
> [<ffffffff810cc243>] lock_acquire+0x93/0x200
> [<ffffffff81733f90>] _raw_spin_lock+0x40/0x80
> [<ffffffff810980b2>] wake_up_new_task+0xc2/0x2e0
> [<ffffffff81054336>] do_fork+0x126/0x460
> [<ffffffff81054696>] kernel_thread+0x26/0x30
> [<ffffffff8171ff93>] rest_init+0x23/0x140
> [<ffffffff81ee1e4b>] start_kernel+0x3f6/0x403
> [<ffffffff81ee1571>] x86_64_start_reservations+0x2a/0x2c
> [<ffffffff81ee1664>] x86_64_start_kernel+0xf1/0xf4
>
> -> #1 (&p->pi_lock){-.-.-.}:
> [<ffffffff810cc243>] lock_acquire+0x93/0x200
> [<ffffffff8173419b>] _raw_spin_lock_irqsave+0x4b/0x90
> [<ffffffff810979d1>] try_to_wake_up+0x31/0x350
> [<ffffffff81097d62>] default_wake_function+0x12/0x20
> [<ffffffff81084af8>] autoremove_wake_function+0x18/0x40
> [<ffffffff8108ea38>] __wake_up_common+0x58/0x90
> [<ffffffff8108ff59>] __wake_up+0x39/0x50
> [<ffffffff8110d4f8>] __call_rcu_nocb_enqueue+0xa8/0xc0
> [<ffffffff81111450>] __call_rcu+0x140/0x820
> [<ffffffff81111b8d>] call_rcu+0x1d/0x20
> [<ffffffff81093697>] cpu_attach_domain+0x287/0x360
> [<ffffffff81099d7e>] build_sched_domains+0xe5e/0x10a0
> [<ffffffff81efa7fc>] sched_init_smp+0x3b7/0x47a
> [<ffffffff81ee1f4e>] kernel_init_freeable+0xf6/0x202
> [<ffffffff817200be>] kernel_init+0xe/0x190
> [<ffffffff8173d22c>] ret_from_fork+0x7c/0xb0
>
> -> #0 (&rdp->nocb_wq){......}:
> [<ffffffff810cb7ca>] __lock_acquire+0x191a/0x1be0
> [<ffffffff810cc243>] lock_acquire+0x93/0x200
> [<ffffffff8173419b>] _raw_spin_lock_irqsave+0x4b/0x90
> [<ffffffff8108ff43>] __wake_up+0x23/0x50
> [<ffffffff8110d4f8>] __call_rcu_nocb_enqueue+0xa8/0xc0
> [<ffffffff81111450>] __call_rcu+0x140/0x820
> [<ffffffff81111bb0>] kfree_call_rcu+0x20/0x30
> [<ffffffff81149abf>] put_ctx+0x4f/0x70
> [<ffffffff81154c3e>] perf_event_exit_task+0x12e/0x230
> [<ffffffff81056b8d>] do_exit+0x30d/0xcc0
> [<ffffffff8105893c>] do_group_exit+0x4c/0xc0
> [<ffffffff810589c4>] SyS_exit_group+0x14/0x20
> [<ffffffff8173d4e4>] tracesys+0xdd/0xe2
>
> other info that might help us debug this:
>
> Chain exists of:
> &rdp->nocb_wq --> &rq->lock --> &ctx->lock
>
> Possible unsafe locking scenario:
>
> CPU0 CPU1
> ---- ----
> lock(&ctx->lock);
> lock(&rq->lock);
> lock(&ctx->lock);
> lock(&rdp->nocb_wq);
>
> *** DEADLOCK ***
>
> 1 lock held by trinity-child2/15191:
> #0: (&ctx->lock){-.-...}, at: [<ffffffff81154c19>] perf_event_exit_task+0x109/0x230
>
> stack backtrace:
> CPU: 2 PID: 15191 Comm: trinity-child2 Not tainted 3.12.0-rc3+ #92
> ffffffff82565b70 ffff880070c2dbf8 ffffffff8172a363 ffffffff824edf40
> ffff880070c2dc38 ffffffff81726741 ffff880070c2dc90 ffff88022383b1c0
> ffff88022383aac0 0000000000000000 ffff88022383b188 ffff88022383b1c0
> Call Trace:
> [<ffffffff8172a363>] dump_stack+0x4e/0x82
> [<ffffffff81726741>] print_circular_bug+0x200/0x20f
> [<ffffffff810cb7ca>] __lock_acquire+0x191a/0x1be0
> [<ffffffff810c6439>] ? get_lock_stats+0x19/0x60
> [<ffffffff8100b2f4>] ? native_sched_clock+0x24/0x80
> [<ffffffff810cc243>] lock_acquire+0x93/0x200
> [<ffffffff8108ff43>] ? __wake_up+0x23/0x50
> [<ffffffff8173419b>] _raw_spin_lock_irqsave+0x4b/0x90
> [<ffffffff8108ff43>] ? __wake_up+0x23/0x50
> [<ffffffff8108ff43>] __wake_up+0x23/0x50
> [<ffffffff8110d4f8>] __call_rcu_nocb_enqueue+0xa8/0xc0
> [<ffffffff81111450>] __call_rcu+0x140/0x820
> [<ffffffff8109bc8f>] ? local_clock+0x3f/0x50
> [<ffffffff81111bb0>] kfree_call_rcu+0x20/0x30
> [<ffffffff81149abf>] put_ctx+0x4f/0x70
> [<ffffffff81154c3e>] perf_event_exit_task+0x12e/0x230
> [<ffffffff81056b8d>] do_exit+0x30d/0xcc0
> [<ffffffff810c9af5>] ? trace_hardirqs_on_caller+0x115/0x1e0
> [<ffffffff810c9bcd>] ? trace_hardirqs_on+0xd/0x10
> [<ffffffff8105893c>] do_group_exit+0x4c/0xc0
> [<ffffffff810589c4>] SyS_exit_group+0x14/0x20
> [<ffffffff8173d4e4>] tracesys+0xdd/0xe2
The underlying problem is that perf is invoking call_rcu() with the
scheduler locks held, but in NOCB mode, call_rcu() will with high
probability invoke the scheduler -- which just might want to use its
locks. The reason that call_rcu() needs to invoke the scheduler is
to wake up the corresponding rcuo callback-offload kthread, which
does the job of starting up a grace period and invoking the callbacks
afterwards.
One solution (championed on a related problem by Lai Jiangshan) is to
simply defer the wakeup to some point where scheduler locks are no longer
held. Since we don't want to unnecessarily incur the cost of such
deferral, the task before us is threefold:
1. Determine when it is likely that a relevant scheduler lock is held.
2. Defer the wakeup in such cases.
3. Ensure that all deferred wakeups eventually happen, preferably
sooner rather than later.
We use irqs_disabled_flags() as a proxy for relevant scheduler locks
being held. This works because the relevant locks are always acquired
with interrupts disabled. We may defer more often than needed, but that
is at least safe.
The wakeup deferral is tracked via a new field in the per-CPU and
per-RCU-flavor rcu_data structure, namely ->nocb_defer_wakeup.
This flag is checked by the RCU core processing. The __rcu_pending()
function now checks this flag, which causes rcu_check_callbacks()
to initiate RCU core processing at each scheduling-clock interrupt
where this flag is set. Of course this is not sufficient because
scheduling-clock interrupts are often turned off (the things we used to
be able to count on!). So the flags are also checked on entry to any
state that RCU considers to be idle, which includes both NO_HZ_IDLE idle
state and NO_HZ_FULL user-mode-execution state.
This approach should allow call_rcu() to be invoked regardless of what
locks you might be holding, the key word being "should".
Reported-by: Dave Jones <davej@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
2013-10-05 05:33:34 +08:00
|
|
|
|
2017-11-06 23:01:30 +08:00
|
|
|
lockdep_assert_irqs_disabled();
|
2018-08-04 12:00:38 +08:00
|
|
|
trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, rdp->dynticks);
|
2017-10-06 10:55:31 +08:00
|
|
|
WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
|
2018-07-05 06:35:00 +08:00
|
|
|
rdp = this_cpu_ptr(&rcu_data);
|
|
|
|
do_nocb_deferred_wakeup(rdp);
|
2014-10-23 06:03:43 +08:00
|
|
|
rcu_prepare_for_idle();
|
rcu: Defer reporting RCU-preempt quiescent states when disabled
This commit defers reporting of RCU-preempt quiescent states at
rcu_read_unlock_special() time when any of interrupts, softirq, or
preemption are disabled. These deferred quiescent states are reported
at a later RCU_SOFTIRQ, context switch, idle entry, or CPU-hotplug
offline operation. Of course, if another RCU read-side critical
section has started in the meantime, the reporting of the quiescent
state will be further deferred.
This also means that disabling preemption, interrupts, and/or
softirqs will act as an RCU-preempt read-side critical section.
This is enforced by checking preempt_count() as needed.
Some special cases must be handled on an ad-hoc basis, for example,
context switch is a quiescent state even though both the scheduler and
do_exit() disable preemption. In these cases, additional calls to
rcu_preempt_deferred_qs() override the preemption disabling. Similar
logic overrides disabled interrupts in rcu_preempt_check_callbacks()
because in this case the quiescent state happened just before the
corresponding scheduling-clock interrupt.
In theory, this change lifts a long-standing restriction that required
that if interrupts were disabled across a call to rcu_read_unlock()
that the matching rcu_read_lock() also be contained within that
interrupts-disabled region of code. Because the reporting of the
corresponding RCU-preempt quiescent state is now deferred until
after interrupts have been enabled, it is no longer possible for this
situation to result in deadlocks involving the scheduler's runqueue and
priority-inheritance locks. This may allow some code simplification that
might reduce interrupt latency a bit. Unfortunately, in practice this
would also defer deboosting a low-priority task that had been subjected
to RCU priority boosting, so real-time-response considerations might
well force this restriction to remain in place.
Because RCU-preempt grace periods are now blocked not only by RCU
read-side critical sections, but also by disabling of interrupts,
preemption, and softirqs, it will be possible to eliminate RCU-bh and
RCU-sched in favor of RCU-preempt in CONFIG_PREEMPT=y kernels. This may
require some additional plumbing to provide the network denial-of-service
guarantees that have been traditionally provided by RCU-bh. Once these
are in place, CONFIG_PREEMPT=n kernels will be able to fold RCU-bh
into RCU-sched. This would mean that all kernels would have but
one flavor of RCU, which would open the door to significant code
cleanup.
Moving to a single flavor of RCU would also have the beneficial effect
of reducing the NOCB kthreads by at least a factor of two.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Apply rcu_read_unlock_special() preempt_count() feedback
from Joel Fernandes. ]
[ paulmck: Adjust rcu_eqs_enter() call to rcu_preempt_deferred_qs() in
response to bug reports from kbuild test robot. ]
[ paulmck: Fix bug located by kbuild test robot involving recursion
via rcu_preempt_deferred_qs(). ]
2018-06-22 03:50:01 +08:00
|
|
|
rcu_preempt_deferred_qs(current);
|
2018-08-04 12:00:38 +08:00
|
|
|
WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
|
2017-10-04 07:51:47 +08:00
|
|
|
rcu_dynticks_eqs_enter();
|
2014-08-05 08:43:50 +08:00
|
|
|
rcu_dynticks_task_enter();
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
}
|
2012-06-29 02:20:21 +08:00
|
|
|
|
|
|
|
/**
|
|
|
|
* rcu_idle_enter - inform RCU that current CPU is entering idle
|
|
|
|
*
|
|
|
|
* Enter idle mode, in other words, -leave- the mode in which RCU
|
|
|
|
* read-side critical sections can occur. (Though RCU read-side
|
|
|
|
* critical sections can occur in irq handlers in idle, a possibility
|
|
|
|
* handled by irq_enter() and irq_exit().)
|
|
|
|
*
|
rcu: Add extended-quiescent-state testing advice
If you add or remove calls to rcu_idle_enter(), rcu_user_enter(),
rcu_irq_exit(), rcu_irq_exit_irqson(), rcu_idle_exit(), rcu_user_exit(),
rcu_irq_enter(), rcu_irq_enter_irqson(), rcu_nmi_enter(), or
rcu_nmi_exit(), you should run a full set of tests on a kernel built
with CONFIG_RCU_EQS_DEBUG=y.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-09-23 00:58:47 +08:00
|
|
|
* If you add or remove a call to rcu_idle_enter(), be sure to test with
|
|
|
|
* CONFIG_RCU_EQS_DEBUG=y.
|
2012-06-29 02:20:21 +08:00
|
|
|
*/
|
|
|
|
void rcu_idle_enter(void)
|
|
|
|
{
|
2017-11-06 23:01:30 +08:00
|
|
|
lockdep_assert_irqs_disabled();
|
2012-09-05 08:35:31 +08:00
|
|
|
rcu_eqs_enter(false);
|
2012-06-29 02:20:21 +08:00
|
|
|
}
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
|
2015-05-14 01:41:58 +08:00
|
|
|
#ifdef CONFIG_NO_HZ_FULL
|
2012-06-29 02:20:21 +08:00
|
|
|
/**
|
|
|
|
* rcu_user_enter - inform RCU that we are resuming userspace.
|
|
|
|
*
|
|
|
|
* Enter RCU idle mode right before resuming userspace. No use of RCU
|
|
|
|
* is permitted between this call and rcu_user_exit(). This way the
|
|
|
|
* CPU doesn't need to maintain the tick for RCU maintenance purposes
|
|
|
|
* when the CPU runs in userspace.
|
rcu: Add extended-quiescent-state testing advice
If you add or remove calls to rcu_idle_enter(), rcu_user_enter(),
rcu_irq_exit(), rcu_irq_exit_irqson(), rcu_idle_exit(), rcu_user_exit(),
rcu_irq_enter(), rcu_irq_enter_irqson(), rcu_nmi_enter(), or
rcu_nmi_exit(), you should run a full set of tests on a kernel built
with CONFIG_RCU_EQS_DEBUG=y.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-09-23 00:58:47 +08:00
|
|
|
*
|
|
|
|
* If you add or remove a call to rcu_user_enter(), be sure to test with
|
|
|
|
* CONFIG_RCU_EQS_DEBUG=y.
|
2012-06-29 02:20:21 +08:00
|
|
|
*/
|
|
|
|
void rcu_user_enter(void)
|
|
|
|
{
|
2017-11-06 23:01:30 +08:00
|
|
|
lockdep_assert_irqs_disabled();
|
2017-07-13 00:03:35 +08:00
|
|
|
rcu_eqs_enter(true);
|
2012-06-29 02:20:21 +08:00
|
|
|
}
|
2015-05-14 01:41:58 +08:00
|
|
|
#endif /* CONFIG_NO_HZ_FULL */
|
rcu: New rcu_user_enter_after_irq() and rcu_user_exit_after_irq() APIs
In some cases, it is necessary to enter or exit userspace-RCU-idle mode
from an interrupt handler, for example, if some other CPU sends this
CPU a resched IPI. In this case, the current CPU would enter the IPI
handler in userspace-RCU-idle mode, but would need to exit the IPI handler
after having exited that mode.
To allow this to work, this commit adds two new APIs to TREE_RCU:
- rcu_user_enter_after_irq(). This must be called from an interrupt between
rcu_irq_enter() and rcu_irq_exit(). After the irq calls rcu_irq_exit(),
the irq handler will return into an RCU extended quiescent state.
In theory, this interrupt is never a nested interrupt, but in practice
it might interrupt softirq, which looks to RCU like a nested interrupt.
- rcu_user_exit_after_irq(). This must be called from a non-nesting
interrupt, interrupting an RCU extended quiescent state, also
between rcu_irq_enter() and rcu_irq_exit(). After the irq calls
rcu_irq_exit(), the irq handler will return in an RCU non-quiescent
state.
[ Combined with "Allow calls to rcu_exit_user_irq from nesting irqs." ]
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2012-06-05 07:42:35 +08:00
|
|
|
|
rcu: Refactor rcu_{nmi,irq}_{enter,exit}()
When entering or exiting irq or NMI handlers, the current code uses
->dynticks_nmi_nesting to detect if it is in the outermost handler,
that is, the one interrupting or returning to an RCU-idle context (the
idle loop or nohz_full usermode execution). When entering the outermost
handler via an interrupt (as opposed to NMI), it is necessary to invoke
rcu_dynticks_task_exit() just before the CPU is marked non-idle from an
RCU perspective and to invoke rcu_cleanup_after_idle() just after the
CPU is marked non-idle. Similarly, when exiting the outermost handler
via an interrupt, it is necessary to invoke rcu_prepare_for_idle() just
before marking the CPU idle and to invoke rcu_dynticks_task_enter()
just after marking the CPU idle.
The decision to execute these four functions is currently taken in
rcu_irq_enter() and rcu_irq_exit() as follows:
rcu_irq_enter()
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter()
/* A conditional branch with ->dynticks */
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_irq_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter()
/* A conditional branch with ->dynticks */
rcu_nmi_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
This works, but the conditional branches in rcu_irq_enter() and
rcu_irq_exit() are redundant with those in rcu_nmi_enter() and
rcu_nmi_exit(), respectively. Redundant branches are not something
we want in the to/from-idle fastpaths, so this commit refactors
rcu_{nmi,irq}_{enter,exit}() so they use a common inlined function passed
a constant argument as follows:
rcu_irq_enter() inlining rcu_nmi_enter_common(irq=true)
/* A conditional branch with ->dynticks */
rcu_irq_exit() inlining rcu_nmi_exit_common(irq=true)
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter() inlining rcu_nmi_enter_common(irq=false)
/* A conditional branch with ->dynticks */
rcu_nmi_exit() inlining rcu_nmi_exit_common(irq=false)
/* A conditional branch with ->dynticks_nmi_nesting */
The combination of the constant function argument and the inlining allows
the compiler to discard the conditionals that previously controlled
execution of rcu_dynticks_task_exit(), rcu_cleanup_after_idle(),
rcu_prepare_for_idle(), and rcu_dynticks_task_enter(). This reduces both
the to-idle and from-idle path lengths by two conditional branches each,
and improves readability as well.
This commit also changes order of execution from this:
rcu_dynticks_task_exit();
rcu_dynticks_eqs_exit();
trace_rcu_dyntick();
rcu_cleanup_after_idle();
To this:
rcu_dynticks_task_exit();
rcu_dynticks_eqs_exit();
rcu_cleanup_after_idle();
trace_rcu_dyntick();
In other words, the calls to rcu_cleanup_after_idle() and
trace_rcu_dyntick() are reversed. This has no functional effect because
the real concern is whether a given call is before or after the call to
rcu_dynticks_eqs_exit(), and this patch does not change that. Before the
call to rcu_dynticks_eqs_exit(), RCU is not yet watching the current
CPU and after that call RCU is watching.
A similar switch in calling order happens on the idle-entry path, with
similar lack of effect for the same reasons.
Suggested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Applied Steven Rostedt feedback. ]
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2018-06-22 14:12:06 +08:00
|
|
|
/*
|
2017-10-03 12:56:20 +08:00
|
|
|
* If we are returning from the outermost NMI handler that interrupted an
|
2018-08-04 12:00:38 +08:00
|
|
|
* RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
|
2017-10-03 12:56:20 +08:00
|
|
|
* to let the RCU grace-period handling know that the CPU is back to
|
|
|
|
* being RCU-idle.
|
|
|
|
*
|
rcu: Refactor rcu_{nmi,irq}_{enter,exit}()
When entering or exiting irq or NMI handlers, the current code uses
->dynticks_nmi_nesting to detect if it is in the outermost handler,
that is, the one interrupting or returning to an RCU-idle context (the
idle loop or nohz_full usermode execution). When entering the outermost
handler via an interrupt (as opposed to NMI), it is necessary to invoke
rcu_dynticks_task_exit() just before the CPU is marked non-idle from an
RCU perspective and to invoke rcu_cleanup_after_idle() just after the
CPU is marked non-idle. Similarly, when exiting the outermost handler
via an interrupt, it is necessary to invoke rcu_prepare_for_idle() just
before marking the CPU idle and to invoke rcu_dynticks_task_enter()
just after marking the CPU idle.
The decision to execute these four functions is currently taken in
rcu_irq_enter() and rcu_irq_exit() as follows:
rcu_irq_enter()
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter()
/* A conditional branch with ->dynticks */
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_irq_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter()
/* A conditional branch with ->dynticks */
rcu_nmi_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
This works, but the conditional branches in rcu_irq_enter() and
rcu_irq_exit() are redundant with those in rcu_nmi_enter() and
rcu_nmi_exit(), respectively. Redundant branches are not something
we want in the to/from-idle fastpaths, so this commit refactors
rcu_{nmi,irq}_{enter,exit}() so they use a common inlined function passed
a constant argument as follows:
rcu_irq_enter() inlining rcu_nmi_enter_common(irq=true)
/* A conditional branch with ->dynticks */
rcu_irq_exit() inlining rcu_nmi_exit_common(irq=true)
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter() inlining rcu_nmi_enter_common(irq=false)
/* A conditional branch with ->dynticks */
rcu_nmi_exit() inlining rcu_nmi_exit_common(irq=false)
/* A conditional branch with ->dynticks_nmi_nesting */
The combination of the constant function argument and the inlining allows
the compiler to discard the conditionals that previously controlled
execution of rcu_dynticks_task_exit(), rcu_cleanup_after_idle(),
rcu_prepare_for_idle(), and rcu_dynticks_task_enter(). This reduces both
the to-idle and from-idle path lengths by two conditional branches each,
and improves readability as well.
This commit also changes order of execution from this:
rcu_dynticks_task_exit();
rcu_dynticks_eqs_exit();
trace_rcu_dyntick();
rcu_cleanup_after_idle();
To this:
rcu_dynticks_task_exit();
rcu_dynticks_eqs_exit();
rcu_cleanup_after_idle();
trace_rcu_dyntick();
In other words, the calls to rcu_cleanup_after_idle() and
trace_rcu_dyntick() are reversed. This has no functional effect because
the real concern is whether a given call is before or after the call to
rcu_dynticks_eqs_exit(), and this patch does not change that. Before the
call to rcu_dynticks_eqs_exit(), RCU is not yet watching the current
CPU and after that call RCU is watching.
A similar switch in calling order happens on the idle-entry path, with
similar lack of effect for the same reasons.
Suggested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Applied Steven Rostedt feedback. ]
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2018-06-22 14:12:06 +08:00
|
|
|
* If you add or remove a call to rcu_nmi_exit_common(), be sure to test
|
2017-10-03 12:56:20 +08:00
|
|
|
* with CONFIG_RCU_EQS_DEBUG=y.
|
|
|
|
*/
|
rcu: Refactor rcu_{nmi,irq}_{enter,exit}()
When entering or exiting irq or NMI handlers, the current code uses
->dynticks_nmi_nesting to detect if it is in the outermost handler,
that is, the one interrupting or returning to an RCU-idle context (the
idle loop or nohz_full usermode execution). When entering the outermost
handler via an interrupt (as opposed to NMI), it is necessary to invoke
rcu_dynticks_task_exit() just before the CPU is marked non-idle from an
RCU perspective and to invoke rcu_cleanup_after_idle() just after the
CPU is marked non-idle. Similarly, when exiting the outermost handler
via an interrupt, it is necessary to invoke rcu_prepare_for_idle() just
before marking the CPU idle and to invoke rcu_dynticks_task_enter()
just after marking the CPU idle.
The decision to execute these four functions is currently taken in
rcu_irq_enter() and rcu_irq_exit() as follows:
rcu_irq_enter()
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter()
/* A conditional branch with ->dynticks */
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_irq_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter()
/* A conditional branch with ->dynticks */
rcu_nmi_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
This works, but the conditional branches in rcu_irq_enter() and
rcu_irq_exit() are redundant with those in rcu_nmi_enter() and
rcu_nmi_exit(), respectively. Redundant branches are not something
we want in the to/from-idle fastpaths, so this commit refactors
rcu_{nmi,irq}_{enter,exit}() so they use a common inlined function passed
a constant argument as follows:
rcu_irq_enter() inlining rcu_nmi_enter_common(irq=true)
/* A conditional branch with ->dynticks */
rcu_irq_exit() inlining rcu_nmi_exit_common(irq=true)
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter() inlining rcu_nmi_enter_common(irq=false)
/* A conditional branch with ->dynticks */
rcu_nmi_exit() inlining rcu_nmi_exit_common(irq=false)
/* A conditional branch with ->dynticks_nmi_nesting */
The combination of the constant function argument and the inlining allows
the compiler to discard the conditionals that previously controlled
execution of rcu_dynticks_task_exit(), rcu_cleanup_after_idle(),
rcu_prepare_for_idle(), and rcu_dynticks_task_enter(). This reduces both
the to-idle and from-idle path lengths by two conditional branches each,
and improves readability as well.
This commit also changes order of execution from this:
rcu_dynticks_task_exit();
rcu_dynticks_eqs_exit();
trace_rcu_dyntick();
rcu_cleanup_after_idle();
To this:
rcu_dynticks_task_exit();
rcu_dynticks_eqs_exit();
rcu_cleanup_after_idle();
trace_rcu_dyntick();
In other words, the calls to rcu_cleanup_after_idle() and
trace_rcu_dyntick() are reversed. This has no functional effect because
the real concern is whether a given call is before or after the call to
rcu_dynticks_eqs_exit(), and this patch does not change that. Before the
call to rcu_dynticks_eqs_exit(), RCU is not yet watching the current
CPU and after that call RCU is watching.
A similar switch in calling order happens on the idle-entry path, with
similar lack of effect for the same reasons.
Suggested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Applied Steven Rostedt feedback. ]
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2018-06-22 14:12:06 +08:00
|
|
|
static __always_inline void rcu_nmi_exit_common(bool irq)
|
2017-10-03 12:56:20 +08:00
|
|
|
{
|
2018-08-04 12:00:38 +08:00
|
|
|
struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
|
2017-10-03 12:56:20 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
|
|
|
|
* (We are exiting an NMI handler, so RCU better be paying attention
|
|
|
|
* to us!)
|
|
|
|
*/
|
2018-08-04 12:00:38 +08:00
|
|
|
WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
|
2017-10-03 12:56:20 +08:00
|
|
|
WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the nesting level is not 1, the CPU wasn't RCU-idle, so
|
|
|
|
* leave it in non-RCU-idle state.
|
|
|
|
*/
|
2018-08-04 12:00:38 +08:00
|
|
|
if (rdp->dynticks_nmi_nesting != 1) {
|
2018-08-04 12:00:38 +08:00
|
|
|
trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, rdp->dynticks);
|
2018-08-04 12:00:38 +08:00
|
|
|
WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
|
|
|
|
rdp->dynticks_nmi_nesting - 2);
|
2017-10-03 12:56:20 +08:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
|
2018-08-04 12:00:38 +08:00
|
|
|
trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, rdp->dynticks);
|
2018-08-04 12:00:38 +08:00
|
|
|
WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
|
rcu: Refactor rcu_{nmi,irq}_{enter,exit}()
When entering or exiting irq or NMI handlers, the current code uses
->dynticks_nmi_nesting to detect if it is in the outermost handler,
that is, the one interrupting or returning to an RCU-idle context (the
idle loop or nohz_full usermode execution). When entering the outermost
handler via an interrupt (as opposed to NMI), it is necessary to invoke
rcu_dynticks_task_exit() just before the CPU is marked non-idle from an
RCU perspective and to invoke rcu_cleanup_after_idle() just after the
CPU is marked non-idle. Similarly, when exiting the outermost handler
via an interrupt, it is necessary to invoke rcu_prepare_for_idle() just
before marking the CPU idle and to invoke rcu_dynticks_task_enter()
just after marking the CPU idle.
The decision to execute these four functions is currently taken in
rcu_irq_enter() and rcu_irq_exit() as follows:
rcu_irq_enter()
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter()
/* A conditional branch with ->dynticks */
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_irq_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter()
/* A conditional branch with ->dynticks */
rcu_nmi_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
This works, but the conditional branches in rcu_irq_enter() and
rcu_irq_exit() are redundant with those in rcu_nmi_enter() and
rcu_nmi_exit(), respectively. Redundant branches are not something
we want in the to/from-idle fastpaths, so this commit refactors
rcu_{nmi,irq}_{enter,exit}() so they use a common inlined function passed
a constant argument as follows:
rcu_irq_enter() inlining rcu_nmi_enter_common(irq=true)
/* A conditional branch with ->dynticks */
rcu_irq_exit() inlining rcu_nmi_exit_common(irq=true)
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter() inlining rcu_nmi_enter_common(irq=false)
/* A conditional branch with ->dynticks */
rcu_nmi_exit() inlining rcu_nmi_exit_common(irq=false)
/* A conditional branch with ->dynticks_nmi_nesting */
The combination of the constant function argument and the inlining allows
the compiler to discard the conditionals that previously controlled
execution of rcu_dynticks_task_exit(), rcu_cleanup_after_idle(),
rcu_prepare_for_idle(), and rcu_dynticks_task_enter(). This reduces both
the to-idle and from-idle path lengths by two conditional branches each,
and improves readability as well.
This commit also changes order of execution from this:
rcu_dynticks_task_exit();
rcu_dynticks_eqs_exit();
trace_rcu_dyntick();
rcu_cleanup_after_idle();
To this:
rcu_dynticks_task_exit();
rcu_dynticks_eqs_exit();
rcu_cleanup_after_idle();
trace_rcu_dyntick();
In other words, the calls to rcu_cleanup_after_idle() and
trace_rcu_dyntick() are reversed. This has no functional effect because
the real concern is whether a given call is before or after the call to
rcu_dynticks_eqs_exit(), and this patch does not change that. Before the
call to rcu_dynticks_eqs_exit(), RCU is not yet watching the current
CPU and after that call RCU is watching.
A similar switch in calling order happens on the idle-entry path, with
similar lack of effect for the same reasons.
Suggested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Applied Steven Rostedt feedback. ]
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2018-06-22 14:12:06 +08:00
|
|
|
|
|
|
|
if (irq)
|
|
|
|
rcu_prepare_for_idle();
|
|
|
|
|
2017-10-03 12:56:20 +08:00
|
|
|
rcu_dynticks_eqs_enter();
|
rcu: Refactor rcu_{nmi,irq}_{enter,exit}()
When entering or exiting irq or NMI handlers, the current code uses
->dynticks_nmi_nesting to detect if it is in the outermost handler,
that is, the one interrupting or returning to an RCU-idle context (the
idle loop or nohz_full usermode execution). When entering the outermost
handler via an interrupt (as opposed to NMI), it is necessary to invoke
rcu_dynticks_task_exit() just before the CPU is marked non-idle from an
RCU perspective and to invoke rcu_cleanup_after_idle() just after the
CPU is marked non-idle. Similarly, when exiting the outermost handler
via an interrupt, it is necessary to invoke rcu_prepare_for_idle() just
before marking the CPU idle and to invoke rcu_dynticks_task_enter()
just after marking the CPU idle.
The decision to execute these four functions is currently taken in
rcu_irq_enter() and rcu_irq_exit() as follows:
rcu_irq_enter()
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter()
/* A conditional branch with ->dynticks */
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_irq_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter()
/* A conditional branch with ->dynticks */
rcu_nmi_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
This works, but the conditional branches in rcu_irq_enter() and
rcu_irq_exit() are redundant with those in rcu_nmi_enter() and
rcu_nmi_exit(), respectively. Redundant branches are not something
we want in the to/from-idle fastpaths, so this commit refactors
rcu_{nmi,irq}_{enter,exit}() so they use a common inlined function passed
a constant argument as follows:
rcu_irq_enter() inlining rcu_nmi_enter_common(irq=true)
/* A conditional branch with ->dynticks */
rcu_irq_exit() inlining rcu_nmi_exit_common(irq=true)
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter() inlining rcu_nmi_enter_common(irq=false)
/* A conditional branch with ->dynticks */
rcu_nmi_exit() inlining rcu_nmi_exit_common(irq=false)
/* A conditional branch with ->dynticks_nmi_nesting */
The combination of the constant function argument and the inlining allows
the compiler to discard the conditionals that previously controlled
execution of rcu_dynticks_task_exit(), rcu_cleanup_after_idle(),
rcu_prepare_for_idle(), and rcu_dynticks_task_enter(). This reduces both
the to-idle and from-idle path lengths by two conditional branches each,
and improves readability as well.
This commit also changes order of execution from this:
rcu_dynticks_task_exit();
rcu_dynticks_eqs_exit();
trace_rcu_dyntick();
rcu_cleanup_after_idle();
To this:
rcu_dynticks_task_exit();
rcu_dynticks_eqs_exit();
rcu_cleanup_after_idle();
trace_rcu_dyntick();
In other words, the calls to rcu_cleanup_after_idle() and
trace_rcu_dyntick() are reversed. This has no functional effect because
the real concern is whether a given call is before or after the call to
rcu_dynticks_eqs_exit(), and this patch does not change that. Before the
call to rcu_dynticks_eqs_exit(), RCU is not yet watching the current
CPU and after that call RCU is watching.
A similar switch in calling order happens on the idle-entry path, with
similar lack of effect for the same reasons.
Suggested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Applied Steven Rostedt feedback. ]
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2018-06-22 14:12:06 +08:00
|
|
|
|
|
|
|
if (irq)
|
|
|
|
rcu_dynticks_task_enter();
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* rcu_nmi_exit - inform RCU of exit from NMI context
|
|
|
|
* @irq: Is this call from rcu_irq_exit?
|
|
|
|
*
|
|
|
|
* If you add or remove a call to rcu_nmi_exit(), be sure to test
|
|
|
|
* with CONFIG_RCU_EQS_DEBUG=y.
|
|
|
|
*/
|
|
|
|
void rcu_nmi_exit(void)
|
|
|
|
{
|
|
|
|
rcu_nmi_exit_common(false);
|
2017-10-03 12:56:20 +08:00
|
|
|
}
|
|
|
|
|
rcu: Track idleness independent of idle tasks
Earlier versions of RCU used the scheduling-clock tick to detect idleness
by checking for the idle task, but handled idleness differently for
CONFIG_NO_HZ=y. But there are now a number of uses of RCU read-side
critical sections in the idle task, for example, for tracing. A more
fine-grained detection of idleness is therefore required.
This commit presses the old dyntick-idle code into full-time service,
so that rcu_idle_enter(), previously known as rcu_enter_nohz(), is
always invoked at the beginning of an idle loop iteration. Similarly,
rcu_idle_exit(), previously known as rcu_exit_nohz(), is always invoked
at the end of an idle-loop iteration. This allows the idle task to
use RCU everywhere except between consecutive rcu_idle_enter() and
rcu_idle_exit() calls, in turn allowing architecture maintainers to
specify exactly where in the idle loop that RCU may be used.
Because some of the userspace upcall uses can result in what looks
to RCU like half of an interrupt, it is not possible to expect that
the irq_enter() and irq_exit() hooks will give exact counts. This
patch therefore expands the ->dynticks_nesting counter to 64 bits
and uses two separate bitfields to count process/idle transitions
and interrupt entry/exit transitions. It is presumed that userspace
upcalls do not happen in the idle loop or from usermode execution
(though usermode might do a system call that results in an upcall).
The counter is hard-reset on each process/idle transition, which
avoids the interrupt entry/exit error from accumulating. Overflow
is avoided by the 64-bitness of the ->dyntick_nesting counter.
This commit also adds warnings if a non-idle task asks RCU to enter
idle state (and these checks will need some adjustment before applying
Frederic's OS-jitter patches (http://lkml.org/lkml/2011/10/7/246).
In addition, validation of ->dynticks and ->dynticks_nesting is added.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-10-01 03:10:22 +08:00
|
|
|
/**
|
|
|
|
* rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
|
|
|
|
*
|
|
|
|
* Exit from an interrupt handler, which might possibly result in entering
|
|
|
|
* idle mode, in other words, leaving the mode in which read-side critical
|
2015-10-31 15:59:01 +08:00
|
|
|
* sections can occur. The caller must have disabled interrupts.
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
*
|
rcu: Track idleness independent of idle tasks
Earlier versions of RCU used the scheduling-clock tick to detect idleness
by checking for the idle task, but handled idleness differently for
CONFIG_NO_HZ=y. But there are now a number of uses of RCU read-side
critical sections in the idle task, for example, for tracing. A more
fine-grained detection of idleness is therefore required.
This commit presses the old dyntick-idle code into full-time service,
so that rcu_idle_enter(), previously known as rcu_enter_nohz(), is
always invoked at the beginning of an idle loop iteration. Similarly,
rcu_idle_exit(), previously known as rcu_exit_nohz(), is always invoked
at the end of an idle-loop iteration. This allows the idle task to
use RCU everywhere except between consecutive rcu_idle_enter() and
rcu_idle_exit() calls, in turn allowing architecture maintainers to
specify exactly where in the idle loop that RCU may be used.
Because some of the userspace upcall uses can result in what looks
to RCU like half of an interrupt, it is not possible to expect that
the irq_enter() and irq_exit() hooks will give exact counts. This
patch therefore expands the ->dynticks_nesting counter to 64 bits
and uses two separate bitfields to count process/idle transitions
and interrupt entry/exit transitions. It is presumed that userspace
upcalls do not happen in the idle loop or from usermode execution
(though usermode might do a system call that results in an upcall).
The counter is hard-reset on each process/idle transition, which
avoids the interrupt entry/exit error from accumulating. Overflow
is avoided by the 64-bitness of the ->dyntick_nesting counter.
This commit also adds warnings if a non-idle task asks RCU to enter
idle state (and these checks will need some adjustment before applying
Frederic's OS-jitter patches (http://lkml.org/lkml/2011/10/7/246).
In addition, validation of ->dynticks and ->dynticks_nesting is added.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-10-01 03:10:22 +08:00
|
|
|
* This code assumes that the idle loop never does anything that might
|
|
|
|
* result in unbalanced calls to irq_enter() and irq_exit(). If your
|
2017-10-04 01:42:22 +08:00
|
|
|
* architecture's idle loop violates this assumption, RCU will give you what
|
|
|
|
* you deserve, good and hard. But very infrequently and irreproducibly.
|
rcu: Track idleness independent of idle tasks
Earlier versions of RCU used the scheduling-clock tick to detect idleness
by checking for the idle task, but handled idleness differently for
CONFIG_NO_HZ=y. But there are now a number of uses of RCU read-side
critical sections in the idle task, for example, for tracing. A more
fine-grained detection of idleness is therefore required.
This commit presses the old dyntick-idle code into full-time service,
so that rcu_idle_enter(), previously known as rcu_enter_nohz(), is
always invoked at the beginning of an idle loop iteration. Similarly,
rcu_idle_exit(), previously known as rcu_exit_nohz(), is always invoked
at the end of an idle-loop iteration. This allows the idle task to
use RCU everywhere except between consecutive rcu_idle_enter() and
rcu_idle_exit() calls, in turn allowing architecture maintainers to
specify exactly where in the idle loop that RCU may be used.
Because some of the userspace upcall uses can result in what looks
to RCU like half of an interrupt, it is not possible to expect that
the irq_enter() and irq_exit() hooks will give exact counts. This
patch therefore expands the ->dynticks_nesting counter to 64 bits
and uses two separate bitfields to count process/idle transitions
and interrupt entry/exit transitions. It is presumed that userspace
upcalls do not happen in the idle loop or from usermode execution
(though usermode might do a system call that results in an upcall).
The counter is hard-reset on each process/idle transition, which
avoids the interrupt entry/exit error from accumulating. Overflow
is avoided by the 64-bitness of the ->dyntick_nesting counter.
This commit also adds warnings if a non-idle task asks RCU to enter
idle state (and these checks will need some adjustment before applying
Frederic's OS-jitter patches (http://lkml.org/lkml/2011/10/7/246).
In addition, validation of ->dynticks and ->dynticks_nesting is added.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-10-01 03:10:22 +08:00
|
|
|
*
|
|
|
|
* Use things like work queues to work around this limitation.
|
|
|
|
*
|
|
|
|
* You have been warned.
|
rcu: Add extended-quiescent-state testing advice
If you add or remove calls to rcu_idle_enter(), rcu_user_enter(),
rcu_irq_exit(), rcu_irq_exit_irqson(), rcu_idle_exit(), rcu_user_exit(),
rcu_irq_enter(), rcu_irq_enter_irqson(), rcu_nmi_enter(), or
rcu_nmi_exit(), you should run a full set of tests on a kernel built
with CONFIG_RCU_EQS_DEBUG=y.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-09-23 00:58:47 +08:00
|
|
|
*
|
|
|
|
* If you add or remove a call to rcu_irq_exit(), be sure to test with
|
|
|
|
* CONFIG_RCU_EQS_DEBUG=y.
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
*/
|
rcu: Track idleness independent of idle tasks
Earlier versions of RCU used the scheduling-clock tick to detect idleness
by checking for the idle task, but handled idleness differently for
CONFIG_NO_HZ=y. But there are now a number of uses of RCU read-side
critical sections in the idle task, for example, for tracing. A more
fine-grained detection of idleness is therefore required.
This commit presses the old dyntick-idle code into full-time service,
so that rcu_idle_enter(), previously known as rcu_enter_nohz(), is
always invoked at the beginning of an idle loop iteration. Similarly,
rcu_idle_exit(), previously known as rcu_exit_nohz(), is always invoked
at the end of an idle-loop iteration. This allows the idle task to
use RCU everywhere except between consecutive rcu_idle_enter() and
rcu_idle_exit() calls, in turn allowing architecture maintainers to
specify exactly where in the idle loop that RCU may be used.
Because some of the userspace upcall uses can result in what looks
to RCU like half of an interrupt, it is not possible to expect that
the irq_enter() and irq_exit() hooks will give exact counts. This
patch therefore expands the ->dynticks_nesting counter to 64 bits
and uses two separate bitfields to count process/idle transitions
and interrupt entry/exit transitions. It is presumed that userspace
upcalls do not happen in the idle loop or from usermode execution
(though usermode might do a system call that results in an upcall).
The counter is hard-reset on each process/idle transition, which
avoids the interrupt entry/exit error from accumulating. Overflow
is avoided by the 64-bitness of the ->dyntick_nesting counter.
This commit also adds warnings if a non-idle task asks RCU to enter
idle state (and these checks will need some adjustment before applying
Frederic's OS-jitter patches (http://lkml.org/lkml/2011/10/7/246).
In addition, validation of ->dynticks and ->dynticks_nesting is added.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-10-01 03:10:22 +08:00
|
|
|
void rcu_irq_exit(void)
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
{
|
2017-11-06 23:01:30 +08:00
|
|
|
lockdep_assert_irqs_disabled();
|
rcu: Refactor rcu_{nmi,irq}_{enter,exit}()
When entering or exiting irq or NMI handlers, the current code uses
->dynticks_nmi_nesting to detect if it is in the outermost handler,
that is, the one interrupting or returning to an RCU-idle context (the
idle loop or nohz_full usermode execution). When entering the outermost
handler via an interrupt (as opposed to NMI), it is necessary to invoke
rcu_dynticks_task_exit() just before the CPU is marked non-idle from an
RCU perspective and to invoke rcu_cleanup_after_idle() just after the
CPU is marked non-idle. Similarly, when exiting the outermost handler
via an interrupt, it is necessary to invoke rcu_prepare_for_idle() just
before marking the CPU idle and to invoke rcu_dynticks_task_enter()
just after marking the CPU idle.
The decision to execute these four functions is currently taken in
rcu_irq_enter() and rcu_irq_exit() as follows:
rcu_irq_enter()
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter()
/* A conditional branch with ->dynticks */
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_irq_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter()
/* A conditional branch with ->dynticks */
rcu_nmi_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
This works, but the conditional branches in rcu_irq_enter() and
rcu_irq_exit() are redundant with those in rcu_nmi_enter() and
rcu_nmi_exit(), respectively. Redundant branches are not something
we want in the to/from-idle fastpaths, so this commit refactors
rcu_{nmi,irq}_{enter,exit}() so they use a common inlined function passed
a constant argument as follows:
rcu_irq_enter() inlining rcu_nmi_enter_common(irq=true)
/* A conditional branch with ->dynticks */
rcu_irq_exit() inlining rcu_nmi_exit_common(irq=true)
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter() inlining rcu_nmi_enter_common(irq=false)
/* A conditional branch with ->dynticks */
rcu_nmi_exit() inlining rcu_nmi_exit_common(irq=false)
/* A conditional branch with ->dynticks_nmi_nesting */
The combination of the constant function argument and the inlining allows
the compiler to discard the conditionals that previously controlled
execution of rcu_dynticks_task_exit(), rcu_cleanup_after_idle(),
rcu_prepare_for_idle(), and rcu_dynticks_task_enter(). This reduces both
the to-idle and from-idle path lengths by two conditional branches each,
and improves readability as well.
This commit also changes order of execution from this:
rcu_dynticks_task_exit();
rcu_dynticks_eqs_exit();
trace_rcu_dyntick();
rcu_cleanup_after_idle();
To this:
rcu_dynticks_task_exit();
rcu_dynticks_eqs_exit();
rcu_cleanup_after_idle();
trace_rcu_dyntick();
In other words, the calls to rcu_cleanup_after_idle() and
trace_rcu_dyntick() are reversed. This has no functional effect because
the real concern is whether a given call is before or after the call to
rcu_dynticks_eqs_exit(), and this patch does not change that. Before the
call to rcu_dynticks_eqs_exit(), RCU is not yet watching the current
CPU and after that call RCU is watching.
A similar switch in calling order happens on the idle-entry path, with
similar lack of effect for the same reasons.
Suggested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Applied Steven Rostedt feedback. ]
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2018-06-22 14:12:06 +08:00
|
|
|
rcu_nmi_exit_common(true);
|
2015-10-31 15:59:01 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Wrapper for rcu_irq_exit() where interrupts are enabled.
|
rcu: Add extended-quiescent-state testing advice
If you add or remove calls to rcu_idle_enter(), rcu_user_enter(),
rcu_irq_exit(), rcu_irq_exit_irqson(), rcu_idle_exit(), rcu_user_exit(),
rcu_irq_enter(), rcu_irq_enter_irqson(), rcu_nmi_enter(), or
rcu_nmi_exit(), you should run a full set of tests on a kernel built
with CONFIG_RCU_EQS_DEBUG=y.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-09-23 00:58:47 +08:00
|
|
|
*
|
|
|
|
* If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
|
|
|
|
* with CONFIG_RCU_EQS_DEBUG=y.
|
2015-10-31 15:59:01 +08:00
|
|
|
*/
|
|
|
|
void rcu_irq_exit_irqson(void)
|
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
local_irq_save(flags);
|
|
|
|
rcu_irq_exit();
|
rcu: Track idleness independent of idle tasks
Earlier versions of RCU used the scheduling-clock tick to detect idleness
by checking for the idle task, but handled idleness differently for
CONFIG_NO_HZ=y. But there are now a number of uses of RCU read-side
critical sections in the idle task, for example, for tracing. A more
fine-grained detection of idleness is therefore required.
This commit presses the old dyntick-idle code into full-time service,
so that rcu_idle_enter(), previously known as rcu_enter_nohz(), is
always invoked at the beginning of an idle loop iteration. Similarly,
rcu_idle_exit(), previously known as rcu_exit_nohz(), is always invoked
at the end of an idle-loop iteration. This allows the idle task to
use RCU everywhere except between consecutive rcu_idle_enter() and
rcu_idle_exit() calls, in turn allowing architecture maintainers to
specify exactly where in the idle loop that RCU may be used.
Because some of the userspace upcall uses can result in what looks
to RCU like half of an interrupt, it is not possible to expect that
the irq_enter() and irq_exit() hooks will give exact counts. This
patch therefore expands the ->dynticks_nesting counter to 64 bits
and uses two separate bitfields to count process/idle transitions
and interrupt entry/exit transitions. It is presumed that userspace
upcalls do not happen in the idle loop or from usermode execution
(though usermode might do a system call that results in an upcall).
The counter is hard-reset on each process/idle transition, which
avoids the interrupt entry/exit error from accumulating. Overflow
is avoided by the 64-bitness of the ->dyntick_nesting counter.
This commit also adds warnings if a non-idle task asks RCU to enter
idle state (and these checks will need some adjustment before applying
Frederic's OS-jitter patches (http://lkml.org/lkml/2011/10/7/246).
In addition, validation of ->dynticks and ->dynticks_nesting is added.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-10-01 03:10:22 +08:00
|
|
|
local_irq_restore(flags);
|
|
|
|
}
|
|
|
|
|
2012-06-29 02:20:21 +08:00
|
|
|
/*
|
|
|
|
* Exit an RCU extended quiescent state, which can be either the
|
|
|
|
* idle loop or adaptive-tickless usermode execution.
|
2017-10-04 05:43:40 +08:00
|
|
|
*
|
|
|
|
* We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
|
|
|
|
* allow for the possibility of usermode upcalls messing up our count of
|
|
|
|
* interrupt nesting level during the busy period that is just now starting.
|
rcu: Track idleness independent of idle tasks
Earlier versions of RCU used the scheduling-clock tick to detect idleness
by checking for the idle task, but handled idleness differently for
CONFIG_NO_HZ=y. But there are now a number of uses of RCU read-side
critical sections in the idle task, for example, for tracing. A more
fine-grained detection of idleness is therefore required.
This commit presses the old dyntick-idle code into full-time service,
so that rcu_idle_enter(), previously known as rcu_enter_nohz(), is
always invoked at the beginning of an idle loop iteration. Similarly,
rcu_idle_exit(), previously known as rcu_exit_nohz(), is always invoked
at the end of an idle-loop iteration. This allows the idle task to
use RCU everywhere except between consecutive rcu_idle_enter() and
rcu_idle_exit() calls, in turn allowing architecture maintainers to
specify exactly where in the idle loop that RCU may be used.
Because some of the userspace upcall uses can result in what looks
to RCU like half of an interrupt, it is not possible to expect that
the irq_enter() and irq_exit() hooks will give exact counts. This
patch therefore expands the ->dynticks_nesting counter to 64 bits
and uses two separate bitfields to count process/idle transitions
and interrupt entry/exit transitions. It is presumed that userspace
upcalls do not happen in the idle loop or from usermode execution
(though usermode might do a system call that results in an upcall).
The counter is hard-reset on each process/idle transition, which
avoids the interrupt entry/exit error from accumulating. Overflow
is avoided by the 64-bitness of the ->dyntick_nesting counter.
This commit also adds warnings if a non-idle task asks RCU to enter
idle state (and these checks will need some adjustment before applying
Frederic's OS-jitter patches (http://lkml.org/lkml/2011/10/7/246).
In addition, validation of ->dynticks and ->dynticks_nesting is added.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-10-01 03:10:22 +08:00
|
|
|
*/
|
2012-06-29 02:20:21 +08:00
|
|
|
static void rcu_eqs_exit(bool user)
|
rcu: Track idleness independent of idle tasks
Earlier versions of RCU used the scheduling-clock tick to detect idleness
by checking for the idle task, but handled idleness differently for
CONFIG_NO_HZ=y. But there are now a number of uses of RCU read-side
critical sections in the idle task, for example, for tracing. A more
fine-grained detection of idleness is therefore required.
This commit presses the old dyntick-idle code into full-time service,
so that rcu_idle_enter(), previously known as rcu_enter_nohz(), is
always invoked at the beginning of an idle loop iteration. Similarly,
rcu_idle_exit(), previously known as rcu_exit_nohz(), is always invoked
at the end of an idle-loop iteration. This allows the idle task to
use RCU everywhere except between consecutive rcu_idle_enter() and
rcu_idle_exit() calls, in turn allowing architecture maintainers to
specify exactly where in the idle loop that RCU may be used.
Because some of the userspace upcall uses can result in what looks
to RCU like half of an interrupt, it is not possible to expect that
the irq_enter() and irq_exit() hooks will give exact counts. This
patch therefore expands the ->dynticks_nesting counter to 64 bits
and uses two separate bitfields to count process/idle transitions
and interrupt entry/exit transitions. It is presumed that userspace
upcalls do not happen in the idle loop or from usermode execution
(though usermode might do a system call that results in an upcall).
The counter is hard-reset on each process/idle transition, which
avoids the interrupt entry/exit error from accumulating. Overflow
is avoided by the 64-bitness of the ->dyntick_nesting counter.
This commit also adds warnings if a non-idle task asks RCU to enter
idle state (and these checks will need some adjustment before applying
Frederic's OS-jitter patches (http://lkml.org/lkml/2011/10/7/246).
In addition, validation of ->dynticks and ->dynticks_nesting is added.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-10-01 03:10:22 +08:00
|
|
|
{
|
2018-08-04 12:00:38 +08:00
|
|
|
struct rcu_data *rdp;
|
2017-10-05 06:55:16 +08:00
|
|
|
long oldval;
|
rcu: Track idleness independent of idle tasks
Earlier versions of RCU used the scheduling-clock tick to detect idleness
by checking for the idle task, but handled idleness differently for
CONFIG_NO_HZ=y. But there are now a number of uses of RCU read-side
critical sections in the idle task, for example, for tracing. A more
fine-grained detection of idleness is therefore required.
This commit presses the old dyntick-idle code into full-time service,
so that rcu_idle_enter(), previously known as rcu_enter_nohz(), is
always invoked at the beginning of an idle loop iteration. Similarly,
rcu_idle_exit(), previously known as rcu_exit_nohz(), is always invoked
at the end of an idle-loop iteration. This allows the idle task to
use RCU everywhere except between consecutive rcu_idle_enter() and
rcu_idle_exit() calls, in turn allowing architecture maintainers to
specify exactly where in the idle loop that RCU may be used.
Because some of the userspace upcall uses can result in what looks
to RCU like half of an interrupt, it is not possible to expect that
the irq_enter() and irq_exit() hooks will give exact counts. This
patch therefore expands the ->dynticks_nesting counter to 64 bits
and uses two separate bitfields to count process/idle transitions
and interrupt entry/exit transitions. It is presumed that userspace
upcalls do not happen in the idle loop or from usermode execution
(though usermode might do a system call that results in an upcall).
The counter is hard-reset on each process/idle transition, which
avoids the interrupt entry/exit error from accumulating. Overflow
is avoided by the 64-bitness of the ->dyntick_nesting counter.
This commit also adds warnings if a non-idle task asks RCU to enter
idle state (and these checks will need some adjustment before applying
Frederic's OS-jitter patches (http://lkml.org/lkml/2011/10/7/246).
In addition, validation of ->dynticks and ->dynticks_nesting is added.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-10-01 03:10:22 +08:00
|
|
|
|
2017-11-06 23:01:30 +08:00
|
|
|
lockdep_assert_irqs_disabled();
|
2018-08-04 12:00:38 +08:00
|
|
|
rdp = this_cpu_ptr(&rcu_data);
|
|
|
|
oldval = rdp->dynticks_nesting;
|
2015-05-06 14:04:22 +08:00
|
|
|
WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
|
2017-10-04 05:43:40 +08:00
|
|
|
if (oldval) {
|
2018-08-04 12:00:38 +08:00
|
|
|
rdp->dynticks_nesting++;
|
2017-10-06 07:56:26 +08:00
|
|
|
return;
|
2013-10-05 09:48:55 +08:00
|
|
|
}
|
2017-10-06 07:56:26 +08:00
|
|
|
rcu_dynticks_task_exit();
|
|
|
|
rcu_dynticks_eqs_exit();
|
|
|
|
rcu_cleanup_after_idle();
|
2018-08-04 12:00:38 +08:00
|
|
|
trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, rdp->dynticks);
|
2017-10-06 10:55:31 +08:00
|
|
|
WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
|
2018-08-04 12:00:38 +08:00
|
|
|
WRITE_ONCE(rdp->dynticks_nesting, 1);
|
|
|
|
WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
|
|
|
|
WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
|
rcu: Track idleness independent of idle tasks
Earlier versions of RCU used the scheduling-clock tick to detect idleness
by checking for the idle task, but handled idleness differently for
CONFIG_NO_HZ=y. But there are now a number of uses of RCU read-side
critical sections in the idle task, for example, for tracing. A more
fine-grained detection of idleness is therefore required.
This commit presses the old dyntick-idle code into full-time service,
so that rcu_idle_enter(), previously known as rcu_enter_nohz(), is
always invoked at the beginning of an idle loop iteration. Similarly,
rcu_idle_exit(), previously known as rcu_exit_nohz(), is always invoked
at the end of an idle-loop iteration. This allows the idle task to
use RCU everywhere except between consecutive rcu_idle_enter() and
rcu_idle_exit() calls, in turn allowing architecture maintainers to
specify exactly where in the idle loop that RCU may be used.
Because some of the userspace upcall uses can result in what looks
to RCU like half of an interrupt, it is not possible to expect that
the irq_enter() and irq_exit() hooks will give exact counts. This
patch therefore expands the ->dynticks_nesting counter to 64 bits
and uses two separate bitfields to count process/idle transitions
and interrupt entry/exit transitions. It is presumed that userspace
upcalls do not happen in the idle loop or from usermode execution
(though usermode might do a system call that results in an upcall).
The counter is hard-reset on each process/idle transition, which
avoids the interrupt entry/exit error from accumulating. Overflow
is avoided by the 64-bitness of the ->dyntick_nesting counter.
This commit also adds warnings if a non-idle task asks RCU to enter
idle state (and these checks will need some adjustment before applying
Frederic's OS-jitter patches (http://lkml.org/lkml/2011/10/7/246).
In addition, validation of ->dynticks and ->dynticks_nesting is added.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-10-01 03:10:22 +08:00
|
|
|
}
|
2012-06-29 02:20:21 +08:00
|
|
|
|
|
|
|
/**
|
|
|
|
* rcu_idle_exit - inform RCU that current CPU is leaving idle
|
|
|
|
*
|
|
|
|
* Exit idle mode, in other words, -enter- the mode in which RCU
|
|
|
|
* read-side critical sections can occur.
|
|
|
|
*
|
rcu: Add extended-quiescent-state testing advice
If you add or remove calls to rcu_idle_enter(), rcu_user_enter(),
rcu_irq_exit(), rcu_irq_exit_irqson(), rcu_idle_exit(), rcu_user_exit(),
rcu_irq_enter(), rcu_irq_enter_irqson(), rcu_nmi_enter(), or
rcu_nmi_exit(), you should run a full set of tests on a kernel built
with CONFIG_RCU_EQS_DEBUG=y.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-09-23 00:58:47 +08:00
|
|
|
* If you add or remove a call to rcu_idle_exit(), be sure to test with
|
|
|
|
* CONFIG_RCU_EQS_DEBUG=y.
|
2012-06-29 02:20:21 +08:00
|
|
|
*/
|
|
|
|
void rcu_idle_exit(void)
|
|
|
|
{
|
2012-07-12 02:26:31 +08:00
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
local_irq_save(flags);
|
2012-09-05 08:35:31 +08:00
|
|
|
rcu_eqs_exit(false);
|
2012-07-12 02:26:31 +08:00
|
|
|
local_irq_restore(flags);
|
2012-06-29 02:20:21 +08:00
|
|
|
}
|
rcu: Track idleness independent of idle tasks
Earlier versions of RCU used the scheduling-clock tick to detect idleness
by checking for the idle task, but handled idleness differently for
CONFIG_NO_HZ=y. But there are now a number of uses of RCU read-side
critical sections in the idle task, for example, for tracing. A more
fine-grained detection of idleness is therefore required.
This commit presses the old dyntick-idle code into full-time service,
so that rcu_idle_enter(), previously known as rcu_enter_nohz(), is
always invoked at the beginning of an idle loop iteration. Similarly,
rcu_idle_exit(), previously known as rcu_exit_nohz(), is always invoked
at the end of an idle-loop iteration. This allows the idle task to
use RCU everywhere except between consecutive rcu_idle_enter() and
rcu_idle_exit() calls, in turn allowing architecture maintainers to
specify exactly where in the idle loop that RCU may be used.
Because some of the userspace upcall uses can result in what looks
to RCU like half of an interrupt, it is not possible to expect that
the irq_enter() and irq_exit() hooks will give exact counts. This
patch therefore expands the ->dynticks_nesting counter to 64 bits
and uses two separate bitfields to count process/idle transitions
and interrupt entry/exit transitions. It is presumed that userspace
upcalls do not happen in the idle loop or from usermode execution
(though usermode might do a system call that results in an upcall).
The counter is hard-reset on each process/idle transition, which
avoids the interrupt entry/exit error from accumulating. Overflow
is avoided by the 64-bitness of the ->dyntick_nesting counter.
This commit also adds warnings if a non-idle task asks RCU to enter
idle state (and these checks will need some adjustment before applying
Frederic's OS-jitter patches (http://lkml.org/lkml/2011/10/7/246).
In addition, validation of ->dynticks and ->dynticks_nesting is added.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-10-01 03:10:22 +08:00
|
|
|
|
2015-05-14 01:41:58 +08:00
|
|
|
#ifdef CONFIG_NO_HZ_FULL
|
2012-06-29 02:20:21 +08:00
|
|
|
/**
|
|
|
|
* rcu_user_exit - inform RCU that we are exiting userspace.
|
|
|
|
*
|
|
|
|
* Exit RCU idle mode while entering the kernel because it can
|
|
|
|
* run a RCU read side critical section anytime.
|
rcu: Add extended-quiescent-state testing advice
If you add or remove calls to rcu_idle_enter(), rcu_user_enter(),
rcu_irq_exit(), rcu_irq_exit_irqson(), rcu_idle_exit(), rcu_user_exit(),
rcu_irq_enter(), rcu_irq_enter_irqson(), rcu_nmi_enter(), or
rcu_nmi_exit(), you should run a full set of tests on a kernel built
with CONFIG_RCU_EQS_DEBUG=y.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-09-23 00:58:47 +08:00
|
|
|
*
|
|
|
|
* If you add or remove a call to rcu_user_exit(), be sure to test with
|
|
|
|
* CONFIG_RCU_EQS_DEBUG=y.
|
2012-06-29 02:20:21 +08:00
|
|
|
*/
|
|
|
|
void rcu_user_exit(void)
|
|
|
|
{
|
2012-11-28 02:33:25 +08:00
|
|
|
rcu_eqs_exit(1);
|
2012-06-29 02:20:21 +08:00
|
|
|
}
|
2015-05-14 01:41:58 +08:00
|
|
|
#endif /* CONFIG_NO_HZ_FULL */
|
rcu: New rcu_user_enter_after_irq() and rcu_user_exit_after_irq() APIs
In some cases, it is necessary to enter or exit userspace-RCU-idle mode
from an interrupt handler, for example, if some other CPU sends this
CPU a resched IPI. In this case, the current CPU would enter the IPI
handler in userspace-RCU-idle mode, but would need to exit the IPI handler
after having exited that mode.
To allow this to work, this commit adds two new APIs to TREE_RCU:
- rcu_user_enter_after_irq(). This must be called from an interrupt between
rcu_irq_enter() and rcu_irq_exit(). After the irq calls rcu_irq_exit(),
the irq handler will return into an RCU extended quiescent state.
In theory, this interrupt is never a nested interrupt, but in practice
it might interrupt softirq, which looks to RCU like a nested interrupt.
- rcu_user_exit_after_irq(). This must be called from a non-nesting
interrupt, interrupting an RCU extended quiescent state, also
between rcu_irq_enter() and rcu_irq_exit(). After the irq calls
rcu_irq_exit(), the irq handler will return in an RCU non-quiescent
state.
[ Combined with "Allow calls to rcu_exit_user_irq from nesting irqs." ]
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2012-06-05 07:42:35 +08:00
|
|
|
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
/**
|
rcu: Refactor rcu_{nmi,irq}_{enter,exit}()
When entering or exiting irq or NMI handlers, the current code uses
->dynticks_nmi_nesting to detect if it is in the outermost handler,
that is, the one interrupting or returning to an RCU-idle context (the
idle loop or nohz_full usermode execution). When entering the outermost
handler via an interrupt (as opposed to NMI), it is necessary to invoke
rcu_dynticks_task_exit() just before the CPU is marked non-idle from an
RCU perspective and to invoke rcu_cleanup_after_idle() just after the
CPU is marked non-idle. Similarly, when exiting the outermost handler
via an interrupt, it is necessary to invoke rcu_prepare_for_idle() just
before marking the CPU idle and to invoke rcu_dynticks_task_enter()
just after marking the CPU idle.
The decision to execute these four functions is currently taken in
rcu_irq_enter() and rcu_irq_exit() as follows:
rcu_irq_enter()
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter()
/* A conditional branch with ->dynticks */
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_irq_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter()
/* A conditional branch with ->dynticks */
rcu_nmi_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
This works, but the conditional branches in rcu_irq_enter() and
rcu_irq_exit() are redundant with those in rcu_nmi_enter() and
rcu_nmi_exit(), respectively. Redundant branches are not something
we want in the to/from-idle fastpaths, so this commit refactors
rcu_{nmi,irq}_{enter,exit}() so they use a common inlined function passed
a constant argument as follows:
rcu_irq_enter() inlining rcu_nmi_enter_common(irq=true)
/* A conditional branch with ->dynticks */
rcu_irq_exit() inlining rcu_nmi_exit_common(irq=true)
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter() inlining rcu_nmi_enter_common(irq=false)
/* A conditional branch with ->dynticks */
rcu_nmi_exit() inlining rcu_nmi_exit_common(irq=false)
/* A conditional branch with ->dynticks_nmi_nesting */
The combination of the constant function argument and the inlining allows
the compiler to discard the conditionals that previously controlled
execution of rcu_dynticks_task_exit(), rcu_cleanup_after_idle(),
rcu_prepare_for_idle(), and rcu_dynticks_task_enter(). This reduces both
the to-idle and from-idle path lengths by two conditional branches each,
and improves readability as well.
This commit also changes order of execution from this:
rcu_dynticks_task_exit();
rcu_dynticks_eqs_exit();
trace_rcu_dyntick();
rcu_cleanup_after_idle();
To this:
rcu_dynticks_task_exit();
rcu_dynticks_eqs_exit();
rcu_cleanup_after_idle();
trace_rcu_dyntick();
In other words, the calls to rcu_cleanup_after_idle() and
trace_rcu_dyntick() are reversed. This has no functional effect because
the real concern is whether a given call is before or after the call to
rcu_dynticks_eqs_exit(), and this patch does not change that. Before the
call to rcu_dynticks_eqs_exit(), RCU is not yet watching the current
CPU and after that call RCU is watching.
A similar switch in calling order happens on the idle-entry path, with
similar lack of effect for the same reasons.
Suggested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Applied Steven Rostedt feedback. ]
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2018-06-22 14:12:06 +08:00
|
|
|
* rcu_nmi_enter_common - inform RCU of entry to NMI context
|
|
|
|
* @irq: Is this call from rcu_irq_enter?
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
*
|
2018-08-04 12:00:38 +08:00
|
|
|
* If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
|
2018-08-04 12:00:38 +08:00
|
|
|
* rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
|
rcu: Make rcu_nmi_enter() handle nesting
The x86 architecture has multiple types of NMI-like interrupts: real
NMIs, machine checks, and, for some values of NMI-like, debugging
and breakpoint interrupts. These interrupts can nest inside each
other. Andy Lutomirski is adding RCU support to these interrupts,
so rcu_nmi_enter() and rcu_nmi_exit() must now correctly handle nesting.
This commit therefore introduces nesting, using a clever NMI-coordination
algorithm suggested by Andy. The trick is to atomically increment
->dynticks (if needed) before manipulating ->dynticks_nmi_nesting on entry
(and, accordingly, after on exit). In addition, ->dynticks_nmi_nesting
is incremented by one if ->dynticks was incremented and by two otherwise.
This means that when rcu_nmi_exit() sees ->dynticks_nmi_nesting equal
to one, it knows that ->dynticks must be atomically incremented.
This NMI-coordination algorithms has been validated by the following
Promela model:
------------------------------------------------------------------------
/*
* Promela model for Andy Lutomirski's suggested change to rcu_nmi_enter()
* that allows nesting.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can access it online at
* http://www.gnu.org/licenses/gpl-2.0.html.
*
* Copyright IBM Corporation, 2014
*
* Author: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
*/
byte dynticks_nmi_nesting = 0;
byte dynticks = 0;
/*
* Promela verision of rcu_nmi_enter().
*/
inline rcu_nmi_enter()
{
byte incby;
byte tmp;
incby = BUSY_INCBY;
assert(dynticks_nmi_nesting >= 0);
if
:: (dynticks & 1) == 0 ->
atomic {
dynticks = dynticks + 1;
}
assert((dynticks & 1) == 1);
incby = 1;
:: else ->
skip;
fi;
tmp = dynticks_nmi_nesting;
tmp = tmp + incby;
dynticks_nmi_nesting = tmp;
assert(dynticks_nmi_nesting >= 1);
}
/*
* Promela verision of rcu_nmi_exit().
*/
inline rcu_nmi_exit()
{
byte tmp;
assert(dynticks_nmi_nesting > 0);
assert((dynticks & 1) != 0);
if
:: dynticks_nmi_nesting != 1 ->
tmp = dynticks_nmi_nesting;
tmp = tmp - BUSY_INCBY;
dynticks_nmi_nesting = tmp;
:: else ->
dynticks_nmi_nesting = 0;
atomic {
dynticks = dynticks + 1;
}
assert((dynticks & 1) == 0);
fi;
}
/*
* Base-level NMI runs non-atomically. Crudely emulates process-level
* dynticks-idle entry/exit.
*/
proctype base_NMI()
{
byte busy;
busy = 0;
do
:: /* Emulate base-level dynticks and not. */
if
:: 1 -> atomic {
dynticks = dynticks + 1;
}
busy = 1;
:: 1 -> skip;
fi;
/* Verify that we only sometimes have base-level dynticks. */
if
:: busy == 0 -> skip;
:: busy == 1 -> skip;
fi;
/* Model RCU's NMI entry and exit actions. */
rcu_nmi_enter();
assert((dynticks & 1) == 1);
rcu_nmi_exit();
/* Emulated re-entering base-level dynticks and not. */
if
:: !busy -> skip;
:: busy ->
atomic {
dynticks = dynticks + 1;
}
busy = 0;
fi;
/* We had better now be in dyntick-idle mode. */
assert((dynticks & 1) == 0);
od;
}
/*
* Nested NMI runs atomically to emulate interrupting base_level().
*/
proctype nested_NMI()
{
do
:: /*
* Use an atomic section to model a nested NMI. This is
* guaranteed to interleave into base_NMI() between a pair
* of base_NMI() statements, just as a nested NMI would.
*/
atomic {
/* Verify that we only sometimes are in dynticks. */
if
:: (dynticks & 1) == 0 -> skip;
:: (dynticks & 1) == 1 -> skip;
fi;
/* Model RCU's NMI entry and exit actions. */
rcu_nmi_enter();
assert((dynticks & 1) == 1);
rcu_nmi_exit();
}
od;
}
init {
run base_NMI();
run nested_NMI();
}
------------------------------------------------------------------------
The following script can be used to run this model if placed in
rcu_nmi.spin:
------------------------------------------------------------------------
if ! spin -a rcu_nmi.spin
then
echo Spin errors!!!
exit 1
fi
if ! cc -DSAFETY -o pan pan.c
then
echo Compilation errors!!!
exit 1
fi
./pan -m100000
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
2014-11-22 06:45:12 +08:00
|
|
|
* that the CPU is active. This implementation permits nested NMIs, as
|
|
|
|
* long as the nesting level does not overflow an int. (You will probably
|
|
|
|
* run out of stack space first.)
|
rcu: Add extended-quiescent-state testing advice
If you add or remove calls to rcu_idle_enter(), rcu_user_enter(),
rcu_irq_exit(), rcu_irq_exit_irqson(), rcu_idle_exit(), rcu_user_exit(),
rcu_irq_enter(), rcu_irq_enter_irqson(), rcu_nmi_enter(), or
rcu_nmi_exit(), you should run a full set of tests on a kernel built
with CONFIG_RCU_EQS_DEBUG=y.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-09-23 00:58:47 +08:00
|
|
|
*
|
rcu: Refactor rcu_{nmi,irq}_{enter,exit}()
When entering or exiting irq or NMI handlers, the current code uses
->dynticks_nmi_nesting to detect if it is in the outermost handler,
that is, the one interrupting or returning to an RCU-idle context (the
idle loop or nohz_full usermode execution). When entering the outermost
handler via an interrupt (as opposed to NMI), it is necessary to invoke
rcu_dynticks_task_exit() just before the CPU is marked non-idle from an
RCU perspective and to invoke rcu_cleanup_after_idle() just after the
CPU is marked non-idle. Similarly, when exiting the outermost handler
via an interrupt, it is necessary to invoke rcu_prepare_for_idle() just
before marking the CPU idle and to invoke rcu_dynticks_task_enter()
just after marking the CPU idle.
The decision to execute these four functions is currently taken in
rcu_irq_enter() and rcu_irq_exit() as follows:
rcu_irq_enter()
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter()
/* A conditional branch with ->dynticks */
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_irq_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter()
/* A conditional branch with ->dynticks */
rcu_nmi_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
This works, but the conditional branches in rcu_irq_enter() and
rcu_irq_exit() are redundant with those in rcu_nmi_enter() and
rcu_nmi_exit(), respectively. Redundant branches are not something
we want in the to/from-idle fastpaths, so this commit refactors
rcu_{nmi,irq}_{enter,exit}() so they use a common inlined function passed
a constant argument as follows:
rcu_irq_enter() inlining rcu_nmi_enter_common(irq=true)
/* A conditional branch with ->dynticks */
rcu_irq_exit() inlining rcu_nmi_exit_common(irq=true)
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter() inlining rcu_nmi_enter_common(irq=false)
/* A conditional branch with ->dynticks */
rcu_nmi_exit() inlining rcu_nmi_exit_common(irq=false)
/* A conditional branch with ->dynticks_nmi_nesting */
The combination of the constant function argument and the inlining allows
the compiler to discard the conditionals that previously controlled
execution of rcu_dynticks_task_exit(), rcu_cleanup_after_idle(),
rcu_prepare_for_idle(), and rcu_dynticks_task_enter(). This reduces both
the to-idle and from-idle path lengths by two conditional branches each,
and improves readability as well.
This commit also changes order of execution from this:
rcu_dynticks_task_exit();
rcu_dynticks_eqs_exit();
trace_rcu_dyntick();
rcu_cleanup_after_idle();
To this:
rcu_dynticks_task_exit();
rcu_dynticks_eqs_exit();
rcu_cleanup_after_idle();
trace_rcu_dyntick();
In other words, the calls to rcu_cleanup_after_idle() and
trace_rcu_dyntick() are reversed. This has no functional effect because
the real concern is whether a given call is before or after the call to
rcu_dynticks_eqs_exit(), and this patch does not change that. Before the
call to rcu_dynticks_eqs_exit(), RCU is not yet watching the current
CPU and after that call RCU is watching.
A similar switch in calling order happens on the idle-entry path, with
similar lack of effect for the same reasons.
Suggested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Applied Steven Rostedt feedback. ]
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2018-06-22 14:12:06 +08:00
|
|
|
* If you add or remove a call to rcu_nmi_enter_common(), be sure to test
|
rcu: Add extended-quiescent-state testing advice
If you add or remove calls to rcu_idle_enter(), rcu_user_enter(),
rcu_irq_exit(), rcu_irq_exit_irqson(), rcu_idle_exit(), rcu_user_exit(),
rcu_irq_enter(), rcu_irq_enter_irqson(), rcu_nmi_enter(), or
rcu_nmi_exit(), you should run a full set of tests on a kernel built
with CONFIG_RCU_EQS_DEBUG=y.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-09-23 00:58:47 +08:00
|
|
|
* with CONFIG_RCU_EQS_DEBUG=y.
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
*/
|
rcu: Refactor rcu_{nmi,irq}_{enter,exit}()
When entering or exiting irq or NMI handlers, the current code uses
->dynticks_nmi_nesting to detect if it is in the outermost handler,
that is, the one interrupting or returning to an RCU-idle context (the
idle loop or nohz_full usermode execution). When entering the outermost
handler via an interrupt (as opposed to NMI), it is necessary to invoke
rcu_dynticks_task_exit() just before the CPU is marked non-idle from an
RCU perspective and to invoke rcu_cleanup_after_idle() just after the
CPU is marked non-idle. Similarly, when exiting the outermost handler
via an interrupt, it is necessary to invoke rcu_prepare_for_idle() just
before marking the CPU idle and to invoke rcu_dynticks_task_enter()
just after marking the CPU idle.
The decision to execute these four functions is currently taken in
rcu_irq_enter() and rcu_irq_exit() as follows:
rcu_irq_enter()
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter()
/* A conditional branch with ->dynticks */
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_irq_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter()
/* A conditional branch with ->dynticks */
rcu_nmi_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
This works, but the conditional branches in rcu_irq_enter() and
rcu_irq_exit() are redundant with those in rcu_nmi_enter() and
rcu_nmi_exit(), respectively. Redundant branches are not something
we want in the to/from-idle fastpaths, so this commit refactors
rcu_{nmi,irq}_{enter,exit}() so they use a common inlined function passed
a constant argument as follows:
rcu_irq_enter() inlining rcu_nmi_enter_common(irq=true)
/* A conditional branch with ->dynticks */
rcu_irq_exit() inlining rcu_nmi_exit_common(irq=true)
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter() inlining rcu_nmi_enter_common(irq=false)
/* A conditional branch with ->dynticks */
rcu_nmi_exit() inlining rcu_nmi_exit_common(irq=false)
/* A conditional branch with ->dynticks_nmi_nesting */
The combination of the constant function argument and the inlining allows
the compiler to discard the conditionals that previously controlled
execution of rcu_dynticks_task_exit(), rcu_cleanup_after_idle(),
rcu_prepare_for_idle(), and rcu_dynticks_task_enter(). This reduces both
the to-idle and from-idle path lengths by two conditional branches each,
and improves readability as well.
This commit also changes order of execution from this:
rcu_dynticks_task_exit();
rcu_dynticks_eqs_exit();
trace_rcu_dyntick();
rcu_cleanup_after_idle();
To this:
rcu_dynticks_task_exit();
rcu_dynticks_eqs_exit();
rcu_cleanup_after_idle();
trace_rcu_dyntick();
In other words, the calls to rcu_cleanup_after_idle() and
trace_rcu_dyntick() are reversed. This has no functional effect because
the real concern is whether a given call is before or after the call to
rcu_dynticks_eqs_exit(), and this patch does not change that. Before the
call to rcu_dynticks_eqs_exit(), RCU is not yet watching the current
CPU and after that call RCU is watching.
A similar switch in calling order happens on the idle-entry path, with
similar lack of effect for the same reasons.
Suggested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Applied Steven Rostedt feedback. ]
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2018-06-22 14:12:06 +08:00
|
|
|
static __always_inline void rcu_nmi_enter_common(bool irq)
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
{
|
2018-08-04 12:00:38 +08:00
|
|
|
struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
|
2017-10-05 06:55:16 +08:00
|
|
|
long incby = 2;
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
|
rcu: Make rcu_nmi_enter() handle nesting
The x86 architecture has multiple types of NMI-like interrupts: real
NMIs, machine checks, and, for some values of NMI-like, debugging
and breakpoint interrupts. These interrupts can nest inside each
other. Andy Lutomirski is adding RCU support to these interrupts,
so rcu_nmi_enter() and rcu_nmi_exit() must now correctly handle nesting.
This commit therefore introduces nesting, using a clever NMI-coordination
algorithm suggested by Andy. The trick is to atomically increment
->dynticks (if needed) before manipulating ->dynticks_nmi_nesting on entry
(and, accordingly, after on exit). In addition, ->dynticks_nmi_nesting
is incremented by one if ->dynticks was incremented and by two otherwise.
This means that when rcu_nmi_exit() sees ->dynticks_nmi_nesting equal
to one, it knows that ->dynticks must be atomically incremented.
This NMI-coordination algorithms has been validated by the following
Promela model:
------------------------------------------------------------------------
/*
* Promela model for Andy Lutomirski's suggested change to rcu_nmi_enter()
* that allows nesting.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can access it online at
* http://www.gnu.org/licenses/gpl-2.0.html.
*
* Copyright IBM Corporation, 2014
*
* Author: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
*/
byte dynticks_nmi_nesting = 0;
byte dynticks = 0;
/*
* Promela verision of rcu_nmi_enter().
*/
inline rcu_nmi_enter()
{
byte incby;
byte tmp;
incby = BUSY_INCBY;
assert(dynticks_nmi_nesting >= 0);
if
:: (dynticks & 1) == 0 ->
atomic {
dynticks = dynticks + 1;
}
assert((dynticks & 1) == 1);
incby = 1;
:: else ->
skip;
fi;
tmp = dynticks_nmi_nesting;
tmp = tmp + incby;
dynticks_nmi_nesting = tmp;
assert(dynticks_nmi_nesting >= 1);
}
/*
* Promela verision of rcu_nmi_exit().
*/
inline rcu_nmi_exit()
{
byte tmp;
assert(dynticks_nmi_nesting > 0);
assert((dynticks & 1) != 0);
if
:: dynticks_nmi_nesting != 1 ->
tmp = dynticks_nmi_nesting;
tmp = tmp - BUSY_INCBY;
dynticks_nmi_nesting = tmp;
:: else ->
dynticks_nmi_nesting = 0;
atomic {
dynticks = dynticks + 1;
}
assert((dynticks & 1) == 0);
fi;
}
/*
* Base-level NMI runs non-atomically. Crudely emulates process-level
* dynticks-idle entry/exit.
*/
proctype base_NMI()
{
byte busy;
busy = 0;
do
:: /* Emulate base-level dynticks and not. */
if
:: 1 -> atomic {
dynticks = dynticks + 1;
}
busy = 1;
:: 1 -> skip;
fi;
/* Verify that we only sometimes have base-level dynticks. */
if
:: busy == 0 -> skip;
:: busy == 1 -> skip;
fi;
/* Model RCU's NMI entry and exit actions. */
rcu_nmi_enter();
assert((dynticks & 1) == 1);
rcu_nmi_exit();
/* Emulated re-entering base-level dynticks and not. */
if
:: !busy -> skip;
:: busy ->
atomic {
dynticks = dynticks + 1;
}
busy = 0;
fi;
/* We had better now be in dyntick-idle mode. */
assert((dynticks & 1) == 0);
od;
}
/*
* Nested NMI runs atomically to emulate interrupting base_level().
*/
proctype nested_NMI()
{
do
:: /*
* Use an atomic section to model a nested NMI. This is
* guaranteed to interleave into base_NMI() between a pair
* of base_NMI() statements, just as a nested NMI would.
*/
atomic {
/* Verify that we only sometimes are in dynticks. */
if
:: (dynticks & 1) == 0 -> skip;
:: (dynticks & 1) == 1 -> skip;
fi;
/* Model RCU's NMI entry and exit actions. */
rcu_nmi_enter();
assert((dynticks & 1) == 1);
rcu_nmi_exit();
}
od;
}
init {
run base_NMI();
run nested_NMI();
}
------------------------------------------------------------------------
The following script can be used to run this model if placed in
rcu_nmi.spin:
------------------------------------------------------------------------
if ! spin -a rcu_nmi.spin
then
echo Spin errors!!!
exit 1
fi
if ! cc -DSAFETY -o pan pan.c
then
echo Compilation errors!!!
exit 1
fi
./pan -m100000
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
2014-11-22 06:45:12 +08:00
|
|
|
/* Complain about underflow. */
|
2018-08-04 12:00:38 +08:00
|
|
|
WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
|
rcu: Make rcu_nmi_enter() handle nesting
The x86 architecture has multiple types of NMI-like interrupts: real
NMIs, machine checks, and, for some values of NMI-like, debugging
and breakpoint interrupts. These interrupts can nest inside each
other. Andy Lutomirski is adding RCU support to these interrupts,
so rcu_nmi_enter() and rcu_nmi_exit() must now correctly handle nesting.
This commit therefore introduces nesting, using a clever NMI-coordination
algorithm suggested by Andy. The trick is to atomically increment
->dynticks (if needed) before manipulating ->dynticks_nmi_nesting on entry
(and, accordingly, after on exit). In addition, ->dynticks_nmi_nesting
is incremented by one if ->dynticks was incremented and by two otherwise.
This means that when rcu_nmi_exit() sees ->dynticks_nmi_nesting equal
to one, it knows that ->dynticks must be atomically incremented.
This NMI-coordination algorithms has been validated by the following
Promela model:
------------------------------------------------------------------------
/*
* Promela model for Andy Lutomirski's suggested change to rcu_nmi_enter()
* that allows nesting.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can access it online at
* http://www.gnu.org/licenses/gpl-2.0.html.
*
* Copyright IBM Corporation, 2014
*
* Author: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
*/
byte dynticks_nmi_nesting = 0;
byte dynticks = 0;
/*
* Promela verision of rcu_nmi_enter().
*/
inline rcu_nmi_enter()
{
byte incby;
byte tmp;
incby = BUSY_INCBY;
assert(dynticks_nmi_nesting >= 0);
if
:: (dynticks & 1) == 0 ->
atomic {
dynticks = dynticks + 1;
}
assert((dynticks & 1) == 1);
incby = 1;
:: else ->
skip;
fi;
tmp = dynticks_nmi_nesting;
tmp = tmp + incby;
dynticks_nmi_nesting = tmp;
assert(dynticks_nmi_nesting >= 1);
}
/*
* Promela verision of rcu_nmi_exit().
*/
inline rcu_nmi_exit()
{
byte tmp;
assert(dynticks_nmi_nesting > 0);
assert((dynticks & 1) != 0);
if
:: dynticks_nmi_nesting != 1 ->
tmp = dynticks_nmi_nesting;
tmp = tmp - BUSY_INCBY;
dynticks_nmi_nesting = tmp;
:: else ->
dynticks_nmi_nesting = 0;
atomic {
dynticks = dynticks + 1;
}
assert((dynticks & 1) == 0);
fi;
}
/*
* Base-level NMI runs non-atomically. Crudely emulates process-level
* dynticks-idle entry/exit.
*/
proctype base_NMI()
{
byte busy;
busy = 0;
do
:: /* Emulate base-level dynticks and not. */
if
:: 1 -> atomic {
dynticks = dynticks + 1;
}
busy = 1;
:: 1 -> skip;
fi;
/* Verify that we only sometimes have base-level dynticks. */
if
:: busy == 0 -> skip;
:: busy == 1 -> skip;
fi;
/* Model RCU's NMI entry and exit actions. */
rcu_nmi_enter();
assert((dynticks & 1) == 1);
rcu_nmi_exit();
/* Emulated re-entering base-level dynticks and not. */
if
:: !busy -> skip;
:: busy ->
atomic {
dynticks = dynticks + 1;
}
busy = 0;
fi;
/* We had better now be in dyntick-idle mode. */
assert((dynticks & 1) == 0);
od;
}
/*
* Nested NMI runs atomically to emulate interrupting base_level().
*/
proctype nested_NMI()
{
do
:: /*
* Use an atomic section to model a nested NMI. This is
* guaranteed to interleave into base_NMI() between a pair
* of base_NMI() statements, just as a nested NMI would.
*/
atomic {
/* Verify that we only sometimes are in dynticks. */
if
:: (dynticks & 1) == 0 -> skip;
:: (dynticks & 1) == 1 -> skip;
fi;
/* Model RCU's NMI entry and exit actions. */
rcu_nmi_enter();
assert((dynticks & 1) == 1);
rcu_nmi_exit();
}
od;
}
init {
run base_NMI();
run nested_NMI();
}
------------------------------------------------------------------------
The following script can be used to run this model if placed in
rcu_nmi.spin:
------------------------------------------------------------------------
if ! spin -a rcu_nmi.spin
then
echo Spin errors!!!
exit 1
fi
if ! cc -DSAFETY -o pan pan.c
then
echo Compilation errors!!!
exit 1
fi
./pan -m100000
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
2014-11-22 06:45:12 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* If idle from RCU viewpoint, atomically increment ->dynticks
|
|
|
|
* to mark non-idle and increment ->dynticks_nmi_nesting by one.
|
|
|
|
* Otherwise, increment ->dynticks_nmi_nesting by two. This means
|
|
|
|
* if ->dynticks_nmi_nesting is equal to one, we are guaranteed
|
|
|
|
* to be in the outermost NMI handler that interrupted an RCU-idle
|
|
|
|
* period (observation due to Andy Lutomirski).
|
|
|
|
*/
|
2016-11-03 08:25:06 +08:00
|
|
|
if (rcu_dynticks_curr_cpu_in_eqs()) {
|
rcu: Refactor rcu_{nmi,irq}_{enter,exit}()
When entering or exiting irq or NMI handlers, the current code uses
->dynticks_nmi_nesting to detect if it is in the outermost handler,
that is, the one interrupting or returning to an RCU-idle context (the
idle loop or nohz_full usermode execution). When entering the outermost
handler via an interrupt (as opposed to NMI), it is necessary to invoke
rcu_dynticks_task_exit() just before the CPU is marked non-idle from an
RCU perspective and to invoke rcu_cleanup_after_idle() just after the
CPU is marked non-idle. Similarly, when exiting the outermost handler
via an interrupt, it is necessary to invoke rcu_prepare_for_idle() just
before marking the CPU idle and to invoke rcu_dynticks_task_enter()
just after marking the CPU idle.
The decision to execute these four functions is currently taken in
rcu_irq_enter() and rcu_irq_exit() as follows:
rcu_irq_enter()
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter()
/* A conditional branch with ->dynticks */
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_irq_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter()
/* A conditional branch with ->dynticks */
rcu_nmi_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
This works, but the conditional branches in rcu_irq_enter() and
rcu_irq_exit() are redundant with those in rcu_nmi_enter() and
rcu_nmi_exit(), respectively. Redundant branches are not something
we want in the to/from-idle fastpaths, so this commit refactors
rcu_{nmi,irq}_{enter,exit}() so they use a common inlined function passed
a constant argument as follows:
rcu_irq_enter() inlining rcu_nmi_enter_common(irq=true)
/* A conditional branch with ->dynticks */
rcu_irq_exit() inlining rcu_nmi_exit_common(irq=true)
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter() inlining rcu_nmi_enter_common(irq=false)
/* A conditional branch with ->dynticks */
rcu_nmi_exit() inlining rcu_nmi_exit_common(irq=false)
/* A conditional branch with ->dynticks_nmi_nesting */
The combination of the constant function argument and the inlining allows
the compiler to discard the conditionals that previously controlled
execution of rcu_dynticks_task_exit(), rcu_cleanup_after_idle(),
rcu_prepare_for_idle(), and rcu_dynticks_task_enter(). This reduces both
the to-idle and from-idle path lengths by two conditional branches each,
and improves readability as well.
This commit also changes order of execution from this:
rcu_dynticks_task_exit();
rcu_dynticks_eqs_exit();
trace_rcu_dyntick();
rcu_cleanup_after_idle();
To this:
rcu_dynticks_task_exit();
rcu_dynticks_eqs_exit();
rcu_cleanup_after_idle();
trace_rcu_dyntick();
In other words, the calls to rcu_cleanup_after_idle() and
trace_rcu_dyntick() are reversed. This has no functional effect because
the real concern is whether a given call is before or after the call to
rcu_dynticks_eqs_exit(), and this patch does not change that. Before the
call to rcu_dynticks_eqs_exit(), RCU is not yet watching the current
CPU and after that call RCU is watching.
A similar switch in calling order happens on the idle-entry path, with
similar lack of effect for the same reasons.
Suggested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Applied Steven Rostedt feedback. ]
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2018-06-22 14:12:06 +08:00
|
|
|
|
|
|
|
if (irq)
|
|
|
|
rcu_dynticks_task_exit();
|
|
|
|
|
2016-11-03 05:23:30 +08:00
|
|
|
rcu_dynticks_eqs_exit();
|
rcu: Refactor rcu_{nmi,irq}_{enter,exit}()
When entering or exiting irq or NMI handlers, the current code uses
->dynticks_nmi_nesting to detect if it is in the outermost handler,
that is, the one interrupting or returning to an RCU-idle context (the
idle loop or nohz_full usermode execution). When entering the outermost
handler via an interrupt (as opposed to NMI), it is necessary to invoke
rcu_dynticks_task_exit() just before the CPU is marked non-idle from an
RCU perspective and to invoke rcu_cleanup_after_idle() just after the
CPU is marked non-idle. Similarly, when exiting the outermost handler
via an interrupt, it is necessary to invoke rcu_prepare_for_idle() just
before marking the CPU idle and to invoke rcu_dynticks_task_enter()
just after marking the CPU idle.
The decision to execute these four functions is currently taken in
rcu_irq_enter() and rcu_irq_exit() as follows:
rcu_irq_enter()
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter()
/* A conditional branch with ->dynticks */
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_irq_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter()
/* A conditional branch with ->dynticks */
rcu_nmi_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
This works, but the conditional branches in rcu_irq_enter() and
rcu_irq_exit() are redundant with those in rcu_nmi_enter() and
rcu_nmi_exit(), respectively. Redundant branches are not something
we want in the to/from-idle fastpaths, so this commit refactors
rcu_{nmi,irq}_{enter,exit}() so they use a common inlined function passed
a constant argument as follows:
rcu_irq_enter() inlining rcu_nmi_enter_common(irq=true)
/* A conditional branch with ->dynticks */
rcu_irq_exit() inlining rcu_nmi_exit_common(irq=true)
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter() inlining rcu_nmi_enter_common(irq=false)
/* A conditional branch with ->dynticks */
rcu_nmi_exit() inlining rcu_nmi_exit_common(irq=false)
/* A conditional branch with ->dynticks_nmi_nesting */
The combination of the constant function argument and the inlining allows
the compiler to discard the conditionals that previously controlled
execution of rcu_dynticks_task_exit(), rcu_cleanup_after_idle(),
rcu_prepare_for_idle(), and rcu_dynticks_task_enter(). This reduces both
the to-idle and from-idle path lengths by two conditional branches each,
and improves readability as well.
This commit also changes order of execution from this:
rcu_dynticks_task_exit();
rcu_dynticks_eqs_exit();
trace_rcu_dyntick();
rcu_cleanup_after_idle();
To this:
rcu_dynticks_task_exit();
rcu_dynticks_eqs_exit();
rcu_cleanup_after_idle();
trace_rcu_dyntick();
In other words, the calls to rcu_cleanup_after_idle() and
trace_rcu_dyntick() are reversed. This has no functional effect because
the real concern is whether a given call is before or after the call to
rcu_dynticks_eqs_exit(), and this patch does not change that. Before the
call to rcu_dynticks_eqs_exit(), RCU is not yet watching the current
CPU and after that call RCU is watching.
A similar switch in calling order happens on the idle-entry path, with
similar lack of effect for the same reasons.
Suggested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Applied Steven Rostedt feedback. ]
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2018-06-22 14:12:06 +08:00
|
|
|
|
|
|
|
if (irq)
|
|
|
|
rcu_cleanup_after_idle();
|
|
|
|
|
rcu: Make rcu_nmi_enter() handle nesting
The x86 architecture has multiple types of NMI-like interrupts: real
NMIs, machine checks, and, for some values of NMI-like, debugging
and breakpoint interrupts. These interrupts can nest inside each
other. Andy Lutomirski is adding RCU support to these interrupts,
so rcu_nmi_enter() and rcu_nmi_exit() must now correctly handle nesting.
This commit therefore introduces nesting, using a clever NMI-coordination
algorithm suggested by Andy. The trick is to atomically increment
->dynticks (if needed) before manipulating ->dynticks_nmi_nesting on entry
(and, accordingly, after on exit). In addition, ->dynticks_nmi_nesting
is incremented by one if ->dynticks was incremented and by two otherwise.
This means that when rcu_nmi_exit() sees ->dynticks_nmi_nesting equal
to one, it knows that ->dynticks must be atomically incremented.
This NMI-coordination algorithms has been validated by the following
Promela model:
------------------------------------------------------------------------
/*
* Promela model for Andy Lutomirski's suggested change to rcu_nmi_enter()
* that allows nesting.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can access it online at
* http://www.gnu.org/licenses/gpl-2.0.html.
*
* Copyright IBM Corporation, 2014
*
* Author: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
*/
byte dynticks_nmi_nesting = 0;
byte dynticks = 0;
/*
* Promela verision of rcu_nmi_enter().
*/
inline rcu_nmi_enter()
{
byte incby;
byte tmp;
incby = BUSY_INCBY;
assert(dynticks_nmi_nesting >= 0);
if
:: (dynticks & 1) == 0 ->
atomic {
dynticks = dynticks + 1;
}
assert((dynticks & 1) == 1);
incby = 1;
:: else ->
skip;
fi;
tmp = dynticks_nmi_nesting;
tmp = tmp + incby;
dynticks_nmi_nesting = tmp;
assert(dynticks_nmi_nesting >= 1);
}
/*
* Promela verision of rcu_nmi_exit().
*/
inline rcu_nmi_exit()
{
byte tmp;
assert(dynticks_nmi_nesting > 0);
assert((dynticks & 1) != 0);
if
:: dynticks_nmi_nesting != 1 ->
tmp = dynticks_nmi_nesting;
tmp = tmp - BUSY_INCBY;
dynticks_nmi_nesting = tmp;
:: else ->
dynticks_nmi_nesting = 0;
atomic {
dynticks = dynticks + 1;
}
assert((dynticks & 1) == 0);
fi;
}
/*
* Base-level NMI runs non-atomically. Crudely emulates process-level
* dynticks-idle entry/exit.
*/
proctype base_NMI()
{
byte busy;
busy = 0;
do
:: /* Emulate base-level dynticks and not. */
if
:: 1 -> atomic {
dynticks = dynticks + 1;
}
busy = 1;
:: 1 -> skip;
fi;
/* Verify that we only sometimes have base-level dynticks. */
if
:: busy == 0 -> skip;
:: busy == 1 -> skip;
fi;
/* Model RCU's NMI entry and exit actions. */
rcu_nmi_enter();
assert((dynticks & 1) == 1);
rcu_nmi_exit();
/* Emulated re-entering base-level dynticks and not. */
if
:: !busy -> skip;
:: busy ->
atomic {
dynticks = dynticks + 1;
}
busy = 0;
fi;
/* We had better now be in dyntick-idle mode. */
assert((dynticks & 1) == 0);
od;
}
/*
* Nested NMI runs atomically to emulate interrupting base_level().
*/
proctype nested_NMI()
{
do
:: /*
* Use an atomic section to model a nested NMI. This is
* guaranteed to interleave into base_NMI() between a pair
* of base_NMI() statements, just as a nested NMI would.
*/
atomic {
/* Verify that we only sometimes are in dynticks. */
if
:: (dynticks & 1) == 0 -> skip;
:: (dynticks & 1) == 1 -> skip;
fi;
/* Model RCU's NMI entry and exit actions. */
rcu_nmi_enter();
assert((dynticks & 1) == 1);
rcu_nmi_exit();
}
od;
}
init {
run base_NMI();
run nested_NMI();
}
------------------------------------------------------------------------
The following script can be used to run this model if placed in
rcu_nmi.spin:
------------------------------------------------------------------------
if ! spin -a rcu_nmi.spin
then
echo Spin errors!!!
exit 1
fi
if ! cc -DSAFETY -o pan pan.c
then
echo Compilation errors!!!
exit 1
fi
./pan -m100000
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
2014-11-22 06:45:12 +08:00
|
|
|
incby = 1;
|
|
|
|
}
|
2017-10-05 03:29:01 +08:00
|
|
|
trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
|
2018-08-04 12:00:38 +08:00
|
|
|
rdp->dynticks_nmi_nesting,
|
2018-08-04 12:00:38 +08:00
|
|
|
rdp->dynticks_nmi_nesting + incby, rdp->dynticks);
|
2018-08-04 12:00:38 +08:00
|
|
|
WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
|
|
|
|
rdp->dynticks_nmi_nesting + incby);
|
rcu: Make rcu_nmi_enter() handle nesting
The x86 architecture has multiple types of NMI-like interrupts: real
NMIs, machine checks, and, for some values of NMI-like, debugging
and breakpoint interrupts. These interrupts can nest inside each
other. Andy Lutomirski is adding RCU support to these interrupts,
so rcu_nmi_enter() and rcu_nmi_exit() must now correctly handle nesting.
This commit therefore introduces nesting, using a clever NMI-coordination
algorithm suggested by Andy. The trick is to atomically increment
->dynticks (if needed) before manipulating ->dynticks_nmi_nesting on entry
(and, accordingly, after on exit). In addition, ->dynticks_nmi_nesting
is incremented by one if ->dynticks was incremented and by two otherwise.
This means that when rcu_nmi_exit() sees ->dynticks_nmi_nesting equal
to one, it knows that ->dynticks must be atomically incremented.
This NMI-coordination algorithms has been validated by the following
Promela model:
------------------------------------------------------------------------
/*
* Promela model for Andy Lutomirski's suggested change to rcu_nmi_enter()
* that allows nesting.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can access it online at
* http://www.gnu.org/licenses/gpl-2.0.html.
*
* Copyright IBM Corporation, 2014
*
* Author: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
*/
byte dynticks_nmi_nesting = 0;
byte dynticks = 0;
/*
* Promela verision of rcu_nmi_enter().
*/
inline rcu_nmi_enter()
{
byte incby;
byte tmp;
incby = BUSY_INCBY;
assert(dynticks_nmi_nesting >= 0);
if
:: (dynticks & 1) == 0 ->
atomic {
dynticks = dynticks + 1;
}
assert((dynticks & 1) == 1);
incby = 1;
:: else ->
skip;
fi;
tmp = dynticks_nmi_nesting;
tmp = tmp + incby;
dynticks_nmi_nesting = tmp;
assert(dynticks_nmi_nesting >= 1);
}
/*
* Promela verision of rcu_nmi_exit().
*/
inline rcu_nmi_exit()
{
byte tmp;
assert(dynticks_nmi_nesting > 0);
assert((dynticks & 1) != 0);
if
:: dynticks_nmi_nesting != 1 ->
tmp = dynticks_nmi_nesting;
tmp = tmp - BUSY_INCBY;
dynticks_nmi_nesting = tmp;
:: else ->
dynticks_nmi_nesting = 0;
atomic {
dynticks = dynticks + 1;
}
assert((dynticks & 1) == 0);
fi;
}
/*
* Base-level NMI runs non-atomically. Crudely emulates process-level
* dynticks-idle entry/exit.
*/
proctype base_NMI()
{
byte busy;
busy = 0;
do
:: /* Emulate base-level dynticks and not. */
if
:: 1 -> atomic {
dynticks = dynticks + 1;
}
busy = 1;
:: 1 -> skip;
fi;
/* Verify that we only sometimes have base-level dynticks. */
if
:: busy == 0 -> skip;
:: busy == 1 -> skip;
fi;
/* Model RCU's NMI entry and exit actions. */
rcu_nmi_enter();
assert((dynticks & 1) == 1);
rcu_nmi_exit();
/* Emulated re-entering base-level dynticks and not. */
if
:: !busy -> skip;
:: busy ->
atomic {
dynticks = dynticks + 1;
}
busy = 0;
fi;
/* We had better now be in dyntick-idle mode. */
assert((dynticks & 1) == 0);
od;
}
/*
* Nested NMI runs atomically to emulate interrupting base_level().
*/
proctype nested_NMI()
{
do
:: /*
* Use an atomic section to model a nested NMI. This is
* guaranteed to interleave into base_NMI() between a pair
* of base_NMI() statements, just as a nested NMI would.
*/
atomic {
/* Verify that we only sometimes are in dynticks. */
if
:: (dynticks & 1) == 0 -> skip;
:: (dynticks & 1) == 1 -> skip;
fi;
/* Model RCU's NMI entry and exit actions. */
rcu_nmi_enter();
assert((dynticks & 1) == 1);
rcu_nmi_exit();
}
od;
}
init {
run base_NMI();
run nested_NMI();
}
------------------------------------------------------------------------
The following script can be used to run this model if placed in
rcu_nmi.spin:
------------------------------------------------------------------------
if ! spin -a rcu_nmi.spin
then
echo Spin errors!!!
exit 1
fi
if ! cc -DSAFETY -o pan pan.c
then
echo Compilation errors!!!
exit 1
fi
./pan -m100000
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
2014-11-22 06:45:12 +08:00
|
|
|
barrier();
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
}
|
|
|
|
|
rcu: Refactor rcu_{nmi,irq}_{enter,exit}()
When entering or exiting irq or NMI handlers, the current code uses
->dynticks_nmi_nesting to detect if it is in the outermost handler,
that is, the one interrupting or returning to an RCU-idle context (the
idle loop or nohz_full usermode execution). When entering the outermost
handler via an interrupt (as opposed to NMI), it is necessary to invoke
rcu_dynticks_task_exit() just before the CPU is marked non-idle from an
RCU perspective and to invoke rcu_cleanup_after_idle() just after the
CPU is marked non-idle. Similarly, when exiting the outermost handler
via an interrupt, it is necessary to invoke rcu_prepare_for_idle() just
before marking the CPU idle and to invoke rcu_dynticks_task_enter()
just after marking the CPU idle.
The decision to execute these four functions is currently taken in
rcu_irq_enter() and rcu_irq_exit() as follows:
rcu_irq_enter()
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter()
/* A conditional branch with ->dynticks */
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_irq_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter()
/* A conditional branch with ->dynticks */
rcu_nmi_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
This works, but the conditional branches in rcu_irq_enter() and
rcu_irq_exit() are redundant with those in rcu_nmi_enter() and
rcu_nmi_exit(), respectively. Redundant branches are not something
we want in the to/from-idle fastpaths, so this commit refactors
rcu_{nmi,irq}_{enter,exit}() so they use a common inlined function passed
a constant argument as follows:
rcu_irq_enter() inlining rcu_nmi_enter_common(irq=true)
/* A conditional branch with ->dynticks */
rcu_irq_exit() inlining rcu_nmi_exit_common(irq=true)
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter() inlining rcu_nmi_enter_common(irq=false)
/* A conditional branch with ->dynticks */
rcu_nmi_exit() inlining rcu_nmi_exit_common(irq=false)
/* A conditional branch with ->dynticks_nmi_nesting */
The combination of the constant function argument and the inlining allows
the compiler to discard the conditionals that previously controlled
execution of rcu_dynticks_task_exit(), rcu_cleanup_after_idle(),
rcu_prepare_for_idle(), and rcu_dynticks_task_enter(). This reduces both
the to-idle and from-idle path lengths by two conditional branches each,
and improves readability as well.
This commit also changes order of execution from this:
rcu_dynticks_task_exit();
rcu_dynticks_eqs_exit();
trace_rcu_dyntick();
rcu_cleanup_after_idle();
To this:
rcu_dynticks_task_exit();
rcu_dynticks_eqs_exit();
rcu_cleanup_after_idle();
trace_rcu_dyntick();
In other words, the calls to rcu_cleanup_after_idle() and
trace_rcu_dyntick() are reversed. This has no functional effect because
the real concern is whether a given call is before or after the call to
rcu_dynticks_eqs_exit(), and this patch does not change that. Before the
call to rcu_dynticks_eqs_exit(), RCU is not yet watching the current
CPU and after that call RCU is watching.
A similar switch in calling order happens on the idle-entry path, with
similar lack of effect for the same reasons.
Suggested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Applied Steven Rostedt feedback. ]
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2018-06-22 14:12:06 +08:00
|
|
|
/**
|
|
|
|
* rcu_nmi_enter - inform RCU of entry to NMI context
|
|
|
|
*/
|
|
|
|
void rcu_nmi_enter(void)
|
|
|
|
{
|
|
|
|
rcu_nmi_enter_common(false);
|
|
|
|
}
|
|
|
|
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
/**
|
rcu: Track idleness independent of idle tasks
Earlier versions of RCU used the scheduling-clock tick to detect idleness
by checking for the idle task, but handled idleness differently for
CONFIG_NO_HZ=y. But there are now a number of uses of RCU read-side
critical sections in the idle task, for example, for tracing. A more
fine-grained detection of idleness is therefore required.
This commit presses the old dyntick-idle code into full-time service,
so that rcu_idle_enter(), previously known as rcu_enter_nohz(), is
always invoked at the beginning of an idle loop iteration. Similarly,
rcu_idle_exit(), previously known as rcu_exit_nohz(), is always invoked
at the end of an idle-loop iteration. This allows the idle task to
use RCU everywhere except between consecutive rcu_idle_enter() and
rcu_idle_exit() calls, in turn allowing architecture maintainers to
specify exactly where in the idle loop that RCU may be used.
Because some of the userspace upcall uses can result in what looks
to RCU like half of an interrupt, it is not possible to expect that
the irq_enter() and irq_exit() hooks will give exact counts. This
patch therefore expands the ->dynticks_nesting counter to 64 bits
and uses two separate bitfields to count process/idle transitions
and interrupt entry/exit transitions. It is presumed that userspace
upcalls do not happen in the idle loop or from usermode execution
(though usermode might do a system call that results in an upcall).
The counter is hard-reset on each process/idle transition, which
avoids the interrupt entry/exit error from accumulating. Overflow
is avoided by the 64-bitness of the ->dyntick_nesting counter.
This commit also adds warnings if a non-idle task asks RCU to enter
idle state (and these checks will need some adjustment before applying
Frederic's OS-jitter patches (http://lkml.org/lkml/2011/10/7/246).
In addition, validation of ->dynticks and ->dynticks_nesting is added.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-10-01 03:10:22 +08:00
|
|
|
* rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
*
|
rcu: Track idleness independent of idle tasks
Earlier versions of RCU used the scheduling-clock tick to detect idleness
by checking for the idle task, but handled idleness differently for
CONFIG_NO_HZ=y. But there are now a number of uses of RCU read-side
critical sections in the idle task, for example, for tracing. A more
fine-grained detection of idleness is therefore required.
This commit presses the old dyntick-idle code into full-time service,
so that rcu_idle_enter(), previously known as rcu_enter_nohz(), is
always invoked at the beginning of an idle loop iteration. Similarly,
rcu_idle_exit(), previously known as rcu_exit_nohz(), is always invoked
at the end of an idle-loop iteration. This allows the idle task to
use RCU everywhere except between consecutive rcu_idle_enter() and
rcu_idle_exit() calls, in turn allowing architecture maintainers to
specify exactly where in the idle loop that RCU may be used.
Because some of the userspace upcall uses can result in what looks
to RCU like half of an interrupt, it is not possible to expect that
the irq_enter() and irq_exit() hooks will give exact counts. This
patch therefore expands the ->dynticks_nesting counter to 64 bits
and uses two separate bitfields to count process/idle transitions
and interrupt entry/exit transitions. It is presumed that userspace
upcalls do not happen in the idle loop or from usermode execution
(though usermode might do a system call that results in an upcall).
The counter is hard-reset on each process/idle transition, which
avoids the interrupt entry/exit error from accumulating. Overflow
is avoided by the 64-bitness of the ->dyntick_nesting counter.
This commit also adds warnings if a non-idle task asks RCU to enter
idle state (and these checks will need some adjustment before applying
Frederic's OS-jitter patches (http://lkml.org/lkml/2011/10/7/246).
In addition, validation of ->dynticks and ->dynticks_nesting is added.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-10-01 03:10:22 +08:00
|
|
|
* Enter an interrupt handler, which might possibly result in exiting
|
|
|
|
* idle mode, in other words, entering the mode in which read-side critical
|
2015-10-31 15:59:01 +08:00
|
|
|
* sections can occur. The caller must have disabled interrupts.
|
rcu: Add extended-quiescent-state testing advice
If you add or remove calls to rcu_idle_enter(), rcu_user_enter(),
rcu_irq_exit(), rcu_irq_exit_irqson(), rcu_idle_exit(), rcu_user_exit(),
rcu_irq_enter(), rcu_irq_enter_irqson(), rcu_nmi_enter(), or
rcu_nmi_exit(), you should run a full set of tests on a kernel built
with CONFIG_RCU_EQS_DEBUG=y.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-09-23 00:58:47 +08:00
|
|
|
*
|
rcu: Track idleness independent of idle tasks
Earlier versions of RCU used the scheduling-clock tick to detect idleness
by checking for the idle task, but handled idleness differently for
CONFIG_NO_HZ=y. But there are now a number of uses of RCU read-side
critical sections in the idle task, for example, for tracing. A more
fine-grained detection of idleness is therefore required.
This commit presses the old dyntick-idle code into full-time service,
so that rcu_idle_enter(), previously known as rcu_enter_nohz(), is
always invoked at the beginning of an idle loop iteration. Similarly,
rcu_idle_exit(), previously known as rcu_exit_nohz(), is always invoked
at the end of an idle-loop iteration. This allows the idle task to
use RCU everywhere except between consecutive rcu_idle_enter() and
rcu_idle_exit() calls, in turn allowing architecture maintainers to
specify exactly where in the idle loop that RCU may be used.
Because some of the userspace upcall uses can result in what looks
to RCU like half of an interrupt, it is not possible to expect that
the irq_enter() and irq_exit() hooks will give exact counts. This
patch therefore expands the ->dynticks_nesting counter to 64 bits
and uses two separate bitfields to count process/idle transitions
and interrupt entry/exit transitions. It is presumed that userspace
upcalls do not happen in the idle loop or from usermode execution
(though usermode might do a system call that results in an upcall).
The counter is hard-reset on each process/idle transition, which
avoids the interrupt entry/exit error from accumulating. Overflow
is avoided by the 64-bitness of the ->dyntick_nesting counter.
This commit also adds warnings if a non-idle task asks RCU to enter
idle state (and these checks will need some adjustment before applying
Frederic's OS-jitter patches (http://lkml.org/lkml/2011/10/7/246).
In addition, validation of ->dynticks and ->dynticks_nesting is added.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-10-01 03:10:22 +08:00
|
|
|
* Note that the Linux kernel is fully capable of entering an interrupt
|
2017-10-04 01:42:22 +08:00
|
|
|
* handler that it never exits, for example when doing upcalls to user mode!
|
|
|
|
* This code assumes that the idle loop never does upcalls to user mode.
|
|
|
|
* If your architecture's idle loop does do upcalls to user mode (or does
|
|
|
|
* anything else that results in unbalanced calls to the irq_enter() and
|
|
|
|
* irq_exit() functions), RCU will give you what you deserve, good and hard.
|
|
|
|
* But very infrequently and irreproducibly.
|
rcu: Track idleness independent of idle tasks
Earlier versions of RCU used the scheduling-clock tick to detect idleness
by checking for the idle task, but handled idleness differently for
CONFIG_NO_HZ=y. But there are now a number of uses of RCU read-side
critical sections in the idle task, for example, for tracing. A more
fine-grained detection of idleness is therefore required.
This commit presses the old dyntick-idle code into full-time service,
so that rcu_idle_enter(), previously known as rcu_enter_nohz(), is
always invoked at the beginning of an idle loop iteration. Similarly,
rcu_idle_exit(), previously known as rcu_exit_nohz(), is always invoked
at the end of an idle-loop iteration. This allows the idle task to
use RCU everywhere except between consecutive rcu_idle_enter() and
rcu_idle_exit() calls, in turn allowing architecture maintainers to
specify exactly where in the idle loop that RCU may be used.
Because some of the userspace upcall uses can result in what looks
to RCU like half of an interrupt, it is not possible to expect that
the irq_enter() and irq_exit() hooks will give exact counts. This
patch therefore expands the ->dynticks_nesting counter to 64 bits
and uses two separate bitfields to count process/idle transitions
and interrupt entry/exit transitions. It is presumed that userspace
upcalls do not happen in the idle loop or from usermode execution
(though usermode might do a system call that results in an upcall).
The counter is hard-reset on each process/idle transition, which
avoids the interrupt entry/exit error from accumulating. Overflow
is avoided by the 64-bitness of the ->dyntick_nesting counter.
This commit also adds warnings if a non-idle task asks RCU to enter
idle state (and these checks will need some adjustment before applying
Frederic's OS-jitter patches (http://lkml.org/lkml/2011/10/7/246).
In addition, validation of ->dynticks and ->dynticks_nesting is added.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-10-01 03:10:22 +08:00
|
|
|
*
|
|
|
|
* Use things like work queues to work around this limitation.
|
|
|
|
*
|
|
|
|
* You have been warned.
|
rcu: Add extended-quiescent-state testing advice
If you add or remove calls to rcu_idle_enter(), rcu_user_enter(),
rcu_irq_exit(), rcu_irq_exit_irqson(), rcu_idle_exit(), rcu_user_exit(),
rcu_irq_enter(), rcu_irq_enter_irqson(), rcu_nmi_enter(), or
rcu_nmi_exit(), you should run a full set of tests on a kernel built
with CONFIG_RCU_EQS_DEBUG=y.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-09-23 00:58:47 +08:00
|
|
|
*
|
|
|
|
* If you add or remove a call to rcu_irq_enter(), be sure to test with
|
|
|
|
* CONFIG_RCU_EQS_DEBUG=y.
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
*/
|
rcu: Track idleness independent of idle tasks
Earlier versions of RCU used the scheduling-clock tick to detect idleness
by checking for the idle task, but handled idleness differently for
CONFIG_NO_HZ=y. But there are now a number of uses of RCU read-side
critical sections in the idle task, for example, for tracing. A more
fine-grained detection of idleness is therefore required.
This commit presses the old dyntick-idle code into full-time service,
so that rcu_idle_enter(), previously known as rcu_enter_nohz(), is
always invoked at the beginning of an idle loop iteration. Similarly,
rcu_idle_exit(), previously known as rcu_exit_nohz(), is always invoked
at the end of an idle-loop iteration. This allows the idle task to
use RCU everywhere except between consecutive rcu_idle_enter() and
rcu_idle_exit() calls, in turn allowing architecture maintainers to
specify exactly where in the idle loop that RCU may be used.
Because some of the userspace upcall uses can result in what looks
to RCU like half of an interrupt, it is not possible to expect that
the irq_enter() and irq_exit() hooks will give exact counts. This
patch therefore expands the ->dynticks_nesting counter to 64 bits
and uses two separate bitfields to count process/idle transitions
and interrupt entry/exit transitions. It is presumed that userspace
upcalls do not happen in the idle loop or from usermode execution
(though usermode might do a system call that results in an upcall).
The counter is hard-reset on each process/idle transition, which
avoids the interrupt entry/exit error from accumulating. Overflow
is avoided by the 64-bitness of the ->dyntick_nesting counter.
This commit also adds warnings if a non-idle task asks RCU to enter
idle state (and these checks will need some adjustment before applying
Frederic's OS-jitter patches (http://lkml.org/lkml/2011/10/7/246).
In addition, validation of ->dynticks and ->dynticks_nesting is added.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-10-01 03:10:22 +08:00
|
|
|
void rcu_irq_enter(void)
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
{
|
2017-11-06 23:01:30 +08:00
|
|
|
lockdep_assert_irqs_disabled();
|
rcu: Refactor rcu_{nmi,irq}_{enter,exit}()
When entering or exiting irq or NMI handlers, the current code uses
->dynticks_nmi_nesting to detect if it is in the outermost handler,
that is, the one interrupting or returning to an RCU-idle context (the
idle loop or nohz_full usermode execution). When entering the outermost
handler via an interrupt (as opposed to NMI), it is necessary to invoke
rcu_dynticks_task_exit() just before the CPU is marked non-idle from an
RCU perspective and to invoke rcu_cleanup_after_idle() just after the
CPU is marked non-idle. Similarly, when exiting the outermost handler
via an interrupt, it is necessary to invoke rcu_prepare_for_idle() just
before marking the CPU idle and to invoke rcu_dynticks_task_enter()
just after marking the CPU idle.
The decision to execute these four functions is currently taken in
rcu_irq_enter() and rcu_irq_exit() as follows:
rcu_irq_enter()
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter()
/* A conditional branch with ->dynticks */
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_irq_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter()
/* A conditional branch with ->dynticks */
rcu_nmi_exit()
/* A conditional branch with ->dynticks_nmi_nesting */
This works, but the conditional branches in rcu_irq_enter() and
rcu_irq_exit() are redundant with those in rcu_nmi_enter() and
rcu_nmi_exit(), respectively. Redundant branches are not something
we want in the to/from-idle fastpaths, so this commit refactors
rcu_{nmi,irq}_{enter,exit}() so they use a common inlined function passed
a constant argument as follows:
rcu_irq_enter() inlining rcu_nmi_enter_common(irq=true)
/* A conditional branch with ->dynticks */
rcu_irq_exit() inlining rcu_nmi_exit_common(irq=true)
/* A conditional branch with ->dynticks_nmi_nesting */
rcu_nmi_enter() inlining rcu_nmi_enter_common(irq=false)
/* A conditional branch with ->dynticks */
rcu_nmi_exit() inlining rcu_nmi_exit_common(irq=false)
/* A conditional branch with ->dynticks_nmi_nesting */
The combination of the constant function argument and the inlining allows
the compiler to discard the conditionals that previously controlled
execution of rcu_dynticks_task_exit(), rcu_cleanup_after_idle(),
rcu_prepare_for_idle(), and rcu_dynticks_task_enter(). This reduces both
the to-idle and from-idle path lengths by two conditional branches each,
and improves readability as well.
This commit also changes order of execution from this:
rcu_dynticks_task_exit();
rcu_dynticks_eqs_exit();
trace_rcu_dyntick();
rcu_cleanup_after_idle();
To this:
rcu_dynticks_task_exit();
rcu_dynticks_eqs_exit();
rcu_cleanup_after_idle();
trace_rcu_dyntick();
In other words, the calls to rcu_cleanup_after_idle() and
trace_rcu_dyntick() are reversed. This has no functional effect because
the real concern is whether a given call is before or after the call to
rcu_dynticks_eqs_exit(), and this patch does not change that. Before the
call to rcu_dynticks_eqs_exit(), RCU is not yet watching the current
CPU and after that call RCU is watching.
A similar switch in calling order happens on the idle-entry path, with
similar lack of effect for the same reasons.
Suggested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Applied Steven Rostedt feedback. ]
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2018-06-22 14:12:06 +08:00
|
|
|
rcu_nmi_enter_common(true);
|
2015-10-31 15:59:01 +08:00
|
|
|
}
|
rcu: Make rcu_nmi_enter() handle nesting
The x86 architecture has multiple types of NMI-like interrupts: real
NMIs, machine checks, and, for some values of NMI-like, debugging
and breakpoint interrupts. These interrupts can nest inside each
other. Andy Lutomirski is adding RCU support to these interrupts,
so rcu_nmi_enter() and rcu_nmi_exit() must now correctly handle nesting.
This commit therefore introduces nesting, using a clever NMI-coordination
algorithm suggested by Andy. The trick is to atomically increment
->dynticks (if needed) before manipulating ->dynticks_nmi_nesting on entry
(and, accordingly, after on exit). In addition, ->dynticks_nmi_nesting
is incremented by one if ->dynticks was incremented and by two otherwise.
This means that when rcu_nmi_exit() sees ->dynticks_nmi_nesting equal
to one, it knows that ->dynticks must be atomically incremented.
This NMI-coordination algorithms has been validated by the following
Promela model:
------------------------------------------------------------------------
/*
* Promela model for Andy Lutomirski's suggested change to rcu_nmi_enter()
* that allows nesting.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can access it online at
* http://www.gnu.org/licenses/gpl-2.0.html.
*
* Copyright IBM Corporation, 2014
*
* Author: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
*/
byte dynticks_nmi_nesting = 0;
byte dynticks = 0;
/*
* Promela verision of rcu_nmi_enter().
*/
inline rcu_nmi_enter()
{
byte incby;
byte tmp;
incby = BUSY_INCBY;
assert(dynticks_nmi_nesting >= 0);
if
:: (dynticks & 1) == 0 ->
atomic {
dynticks = dynticks + 1;
}
assert((dynticks & 1) == 1);
incby = 1;
:: else ->
skip;
fi;
tmp = dynticks_nmi_nesting;
tmp = tmp + incby;
dynticks_nmi_nesting = tmp;
assert(dynticks_nmi_nesting >= 1);
}
/*
* Promela verision of rcu_nmi_exit().
*/
inline rcu_nmi_exit()
{
byte tmp;
assert(dynticks_nmi_nesting > 0);
assert((dynticks & 1) != 0);
if
:: dynticks_nmi_nesting != 1 ->
tmp = dynticks_nmi_nesting;
tmp = tmp - BUSY_INCBY;
dynticks_nmi_nesting = tmp;
:: else ->
dynticks_nmi_nesting = 0;
atomic {
dynticks = dynticks + 1;
}
assert((dynticks & 1) == 0);
fi;
}
/*
* Base-level NMI runs non-atomically. Crudely emulates process-level
* dynticks-idle entry/exit.
*/
proctype base_NMI()
{
byte busy;
busy = 0;
do
:: /* Emulate base-level dynticks and not. */
if
:: 1 -> atomic {
dynticks = dynticks + 1;
}
busy = 1;
:: 1 -> skip;
fi;
/* Verify that we only sometimes have base-level dynticks. */
if
:: busy == 0 -> skip;
:: busy == 1 -> skip;
fi;
/* Model RCU's NMI entry and exit actions. */
rcu_nmi_enter();
assert((dynticks & 1) == 1);
rcu_nmi_exit();
/* Emulated re-entering base-level dynticks and not. */
if
:: !busy -> skip;
:: busy ->
atomic {
dynticks = dynticks + 1;
}
busy = 0;
fi;
/* We had better now be in dyntick-idle mode. */
assert((dynticks & 1) == 0);
od;
}
/*
* Nested NMI runs atomically to emulate interrupting base_level().
*/
proctype nested_NMI()
{
do
:: /*
* Use an atomic section to model a nested NMI. This is
* guaranteed to interleave into base_NMI() between a pair
* of base_NMI() statements, just as a nested NMI would.
*/
atomic {
/* Verify that we only sometimes are in dynticks. */
if
:: (dynticks & 1) == 0 -> skip;
:: (dynticks & 1) == 1 -> skip;
fi;
/* Model RCU's NMI entry and exit actions. */
rcu_nmi_enter();
assert((dynticks & 1) == 1);
rcu_nmi_exit();
}
od;
}
init {
run base_NMI();
run nested_NMI();
}
------------------------------------------------------------------------
The following script can be used to run this model if placed in
rcu_nmi.spin:
------------------------------------------------------------------------
if ! spin -a rcu_nmi.spin
then
echo Spin errors!!!
exit 1
fi
if ! cc -DSAFETY -o pan pan.c
then
echo Compilation errors!!!
exit 1
fi
./pan -m100000
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
2014-11-22 06:45:12 +08:00
|
|
|
|
2015-10-31 15:59:01 +08:00
|
|
|
/*
|
|
|
|
* Wrapper for rcu_irq_enter() where interrupts are enabled.
|
rcu: Add extended-quiescent-state testing advice
If you add or remove calls to rcu_idle_enter(), rcu_user_enter(),
rcu_irq_exit(), rcu_irq_exit_irqson(), rcu_idle_exit(), rcu_user_exit(),
rcu_irq_enter(), rcu_irq_enter_irqson(), rcu_nmi_enter(), or
rcu_nmi_exit(), you should run a full set of tests on a kernel built
with CONFIG_RCU_EQS_DEBUG=y.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-09-23 00:58:47 +08:00
|
|
|
*
|
|
|
|
* If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
|
|
|
|
* with CONFIG_RCU_EQS_DEBUG=y.
|
2015-10-31 15:59:01 +08:00
|
|
|
*/
|
|
|
|
void rcu_irq_enter_irqson(void)
|
|
|
|
{
|
|
|
|
unsigned long flags;
|
rcu: Make rcu_nmi_enter() handle nesting
The x86 architecture has multiple types of NMI-like interrupts: real
NMIs, machine checks, and, for some values of NMI-like, debugging
and breakpoint interrupts. These interrupts can nest inside each
other. Andy Lutomirski is adding RCU support to these interrupts,
so rcu_nmi_enter() and rcu_nmi_exit() must now correctly handle nesting.
This commit therefore introduces nesting, using a clever NMI-coordination
algorithm suggested by Andy. The trick is to atomically increment
->dynticks (if needed) before manipulating ->dynticks_nmi_nesting on entry
(and, accordingly, after on exit). In addition, ->dynticks_nmi_nesting
is incremented by one if ->dynticks was incremented and by two otherwise.
This means that when rcu_nmi_exit() sees ->dynticks_nmi_nesting equal
to one, it knows that ->dynticks must be atomically incremented.
This NMI-coordination algorithms has been validated by the following
Promela model:
------------------------------------------------------------------------
/*
* Promela model for Andy Lutomirski's suggested change to rcu_nmi_enter()
* that allows nesting.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can access it online at
* http://www.gnu.org/licenses/gpl-2.0.html.
*
* Copyright IBM Corporation, 2014
*
* Author: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
*/
byte dynticks_nmi_nesting = 0;
byte dynticks = 0;
/*
* Promela verision of rcu_nmi_enter().
*/
inline rcu_nmi_enter()
{
byte incby;
byte tmp;
incby = BUSY_INCBY;
assert(dynticks_nmi_nesting >= 0);
if
:: (dynticks & 1) == 0 ->
atomic {
dynticks = dynticks + 1;
}
assert((dynticks & 1) == 1);
incby = 1;
:: else ->
skip;
fi;
tmp = dynticks_nmi_nesting;
tmp = tmp + incby;
dynticks_nmi_nesting = tmp;
assert(dynticks_nmi_nesting >= 1);
}
/*
* Promela verision of rcu_nmi_exit().
*/
inline rcu_nmi_exit()
{
byte tmp;
assert(dynticks_nmi_nesting > 0);
assert((dynticks & 1) != 0);
if
:: dynticks_nmi_nesting != 1 ->
tmp = dynticks_nmi_nesting;
tmp = tmp - BUSY_INCBY;
dynticks_nmi_nesting = tmp;
:: else ->
dynticks_nmi_nesting = 0;
atomic {
dynticks = dynticks + 1;
}
assert((dynticks & 1) == 0);
fi;
}
/*
* Base-level NMI runs non-atomically. Crudely emulates process-level
* dynticks-idle entry/exit.
*/
proctype base_NMI()
{
byte busy;
busy = 0;
do
:: /* Emulate base-level dynticks and not. */
if
:: 1 -> atomic {
dynticks = dynticks + 1;
}
busy = 1;
:: 1 -> skip;
fi;
/* Verify that we only sometimes have base-level dynticks. */
if
:: busy == 0 -> skip;
:: busy == 1 -> skip;
fi;
/* Model RCU's NMI entry and exit actions. */
rcu_nmi_enter();
assert((dynticks & 1) == 1);
rcu_nmi_exit();
/* Emulated re-entering base-level dynticks and not. */
if
:: !busy -> skip;
:: busy ->
atomic {
dynticks = dynticks + 1;
}
busy = 0;
fi;
/* We had better now be in dyntick-idle mode. */
assert((dynticks & 1) == 0);
od;
}
/*
* Nested NMI runs atomically to emulate interrupting base_level().
*/
proctype nested_NMI()
{
do
:: /*
* Use an atomic section to model a nested NMI. This is
* guaranteed to interleave into base_NMI() between a pair
* of base_NMI() statements, just as a nested NMI would.
*/
atomic {
/* Verify that we only sometimes are in dynticks. */
if
:: (dynticks & 1) == 0 -> skip;
:: (dynticks & 1) == 1 -> skip;
fi;
/* Model RCU's NMI entry and exit actions. */
rcu_nmi_enter();
assert((dynticks & 1) == 1);
rcu_nmi_exit();
}
od;
}
init {
run base_NMI();
run nested_NMI();
}
------------------------------------------------------------------------
The following script can be used to run this model if placed in
rcu_nmi.spin:
------------------------------------------------------------------------
if ! spin -a rcu_nmi.spin
then
echo Spin errors!!!
exit 1
fi
if ! cc -DSAFETY -o pan pan.c
then
echo Compilation errors!!!
exit 1
fi
./pan -m100000
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
2014-11-22 06:45:12 +08:00
|
|
|
|
2015-10-31 15:59:01 +08:00
|
|
|
local_irq_save(flags);
|
|
|
|
rcu_irq_enter();
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
local_irq_restore(flags);
|
|
|
|
}
|
|
|
|
|
2013-09-14 08:20:11 +08:00
|
|
|
/**
|
|
|
|
* rcu_is_watching - see if RCU thinks that the current CPU is idle
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
*
|
2017-05-04 02:06:05 +08:00
|
|
|
* Return true if RCU is watching the running CPU, which means that this
|
|
|
|
* CPU can safely enter RCU read-side critical sections. In other words,
|
|
|
|
* if the current CPU is in its idle loop and is neither in an interrupt
|
2011-10-04 02:38:52 +08:00
|
|
|
* or NMI handler, return true.
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
*/
|
2013-11-05 09:27:36 +08:00
|
|
|
bool notrace rcu_is_watching(void)
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
{
|
2014-07-09 06:26:11 +08:00
|
|
|
bool ret;
|
2011-10-04 02:38:52 +08:00
|
|
|
|
2015-06-17 01:35:18 +08:00
|
|
|
preempt_disable_notrace();
|
2017-05-04 02:06:05 +08:00
|
|
|
ret = !rcu_dynticks_curr_cpu_in_eqs();
|
2015-06-17 01:35:18 +08:00
|
|
|
preempt_enable_notrace();
|
2011-10-04 02:38:52 +08:00
|
|
|
return ret;
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
}
|
2013-09-14 08:20:11 +08:00
|
|
|
EXPORT_SYMBOL_GPL(rcu_is_watching);
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
|
2017-04-12 06:50:41 +08:00
|
|
|
/*
|
|
|
|
* If a holdout task is actually running, request an urgent quiescent
|
|
|
|
* state from its CPU. This is unsynchronized, so migrations can cause
|
|
|
|
* the request to go to the wrong CPU. Which is OK, all that will happen
|
|
|
|
* is that the CPU's next context switch will be a bit slower and next
|
|
|
|
* time around this task will generate another request.
|
|
|
|
*/
|
|
|
|
void rcu_request_urgent_qs_task(struct task_struct *t)
|
|
|
|
{
|
|
|
|
int cpu;
|
|
|
|
|
|
|
|
barrier();
|
|
|
|
cpu = task_cpu(t);
|
|
|
|
if (!task_curr(t))
|
|
|
|
return; /* This task is not running on that CPU. */
|
2018-08-04 12:00:38 +08:00
|
|
|
smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
|
2017-04-12 06:50:41 +08:00
|
|
|
}
|
|
|
|
|
2012-05-23 13:10:24 +08:00
|
|
|
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
|
2012-01-24 04:41:26 +08:00
|
|
|
|
|
|
|
/*
|
2018-05-16 01:14:34 +08:00
|
|
|
* Is the current CPU online as far as RCU is concerned?
|
2012-01-31 09:02:47 +08:00
|
|
|
*
|
2018-05-16 01:14:34 +08:00
|
|
|
* Disable preemption to avoid false positives that could otherwise
|
|
|
|
* happen due to the current CPU number being sampled, this task being
|
|
|
|
* preempted, its old CPU being taken offline, resuming on some other CPU,
|
2018-07-08 09:12:26 +08:00
|
|
|
* then determining that its old CPU is now offline.
|
2012-01-24 04:41:26 +08:00
|
|
|
*
|
2018-05-16 01:14:34 +08:00
|
|
|
* Disable checking if in an NMI handler because we cannot safely
|
|
|
|
* report errors from NMI handlers anyway. In addition, it is OK to use
|
|
|
|
* RCU on an offline processor during initial boot, hence the check for
|
|
|
|
* rcu_scheduler_fully_active.
|
2012-01-24 04:41:26 +08:00
|
|
|
*/
|
|
|
|
bool rcu_lockdep_current_cpu_online(void)
|
|
|
|
{
|
2012-01-31 09:02:47 +08:00
|
|
|
struct rcu_data *rdp;
|
|
|
|
struct rcu_node *rnp;
|
2018-07-05 06:35:00 +08:00
|
|
|
bool ret = false;
|
2012-01-24 04:41:26 +08:00
|
|
|
|
2018-05-16 01:14:34 +08:00
|
|
|
if (in_nmi() || !rcu_scheduler_fully_active)
|
2013-10-11 02:08:33 +08:00
|
|
|
return true;
|
2012-01-24 04:41:26 +08:00
|
|
|
preempt_disable();
|
2018-07-05 06:35:00 +08:00
|
|
|
rdp = this_cpu_ptr(&rcu_data);
|
|
|
|
rnp = rdp->mynode;
|
|
|
|
if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
|
|
|
|
ret = true;
|
2012-01-24 04:41:26 +08:00
|
|
|
preempt_enable();
|
2018-07-05 06:35:00 +08:00
|
|
|
return ret;
|
2012-01-24 04:41:26 +08:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
|
|
|
|
|
2012-05-23 13:10:24 +08:00
|
|
|
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
|
rcu: Track idleness independent of idle tasks
Earlier versions of RCU used the scheduling-clock tick to detect idleness
by checking for the idle task, but handled idleness differently for
CONFIG_NO_HZ=y. But there are now a number of uses of RCU read-side
critical sections in the idle task, for example, for tracing. A more
fine-grained detection of idleness is therefore required.
This commit presses the old dyntick-idle code into full-time service,
so that rcu_idle_enter(), previously known as rcu_enter_nohz(), is
always invoked at the beginning of an idle loop iteration. Similarly,
rcu_idle_exit(), previously known as rcu_exit_nohz(), is always invoked
at the end of an idle-loop iteration. This allows the idle task to
use RCU everywhere except between consecutive rcu_idle_enter() and
rcu_idle_exit() calls, in turn allowing architecture maintainers to
specify exactly where in the idle loop that RCU may be used.
Because some of the userspace upcall uses can result in what looks
to RCU like half of an interrupt, it is not possible to expect that
the irq_enter() and irq_exit() hooks will give exact counts. This
patch therefore expands the ->dynticks_nesting counter to 64 bits
and uses two separate bitfields to count process/idle transitions
and interrupt entry/exit transitions. It is presumed that userspace
upcalls do not happen in the idle loop or from usermode execution
(though usermode might do a system call that results in an upcall).
The counter is hard-reset on each process/idle transition, which
avoids the interrupt entry/exit error from accumulating. Overflow
is avoided by the 64-bitness of the ->dyntick_nesting counter.
This commit also adds warnings if a non-idle task asks RCU to enter
idle state (and these checks will need some adjustment before applying
Frederic's OS-jitter patches (http://lkml.org/lkml/2011/10/7/246).
In addition, validation of ->dynticks and ->dynticks_nesting is added.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-10-01 03:10:22 +08:00
|
|
|
|
2017-08-18 08:05:59 +08:00
|
|
|
/*
|
|
|
|
* We are reporting a quiescent state on behalf of some other CPU, so
|
|
|
|
* it is our responsibility to check for and handle potential overflow
|
2018-04-28 09:06:08 +08:00
|
|
|
* of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
|
2017-08-18 08:05:59 +08:00
|
|
|
* After all, the CPU might be in deep idle state, and thus executing no
|
|
|
|
* code whatsoever.
|
|
|
|
*/
|
|
|
|
static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
|
|
|
|
{
|
2018-01-17 22:24:30 +08:00
|
|
|
raw_lockdep_assert_held_rcu_node(rnp);
|
2018-04-28 09:06:08 +08:00
|
|
|
if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
|
|
|
|
rnp->gp_seq))
|
2017-08-18 08:05:59 +08:00
|
|
|
WRITE_ONCE(rdp->gpwrap, true);
|
2018-04-29 05:15:40 +08:00
|
|
|
if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
|
|
|
|
rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
|
2017-08-18 08:05:59 +08:00
|
|
|
}
|
|
|
|
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
/*
|
|
|
|
* Snapshot the specified CPU's dynticks counter so that we can later
|
|
|
|
* credit them with an implicit quiescent state. Return 1 if this CPU
|
2009-09-24 00:50:42 +08:00
|
|
|
* is in dynticks idle mode, which is an extended quiescent state.
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
*/
|
2017-05-12 02:26:22 +08:00
|
|
|
static int dyntick_save_progress_counter(struct rcu_data *rdp)
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
{
|
2018-08-04 12:00:38 +08:00
|
|
|
rdp->dynticks_snap = rcu_dynticks_snap(rdp);
|
2016-11-03 08:25:06 +08:00
|
|
|
if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
|
2018-07-05 05:45:00 +08:00
|
|
|
trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
|
2017-08-18 08:05:59 +08:00
|
|
|
rcu_gpnum_ovf(rdp->mynode, rdp);
|
2015-12-14 00:57:10 +08:00
|
|
|
return 1;
|
2014-03-18 00:33:28 +08:00
|
|
|
}
|
2015-12-14 00:57:10 +08:00
|
|
|
return 0;
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
}
|
|
|
|
|
2017-08-18 08:05:59 +08:00
|
|
|
/*
|
|
|
|
* Handler for the irq_work request posted when a grace period has
|
|
|
|
* gone on for too long, but not yet long enough for an RCU CPU
|
|
|
|
* stall warning. Set state appropriately, but just complain if
|
|
|
|
* there is unexpected state on entry.
|
|
|
|
*/
|
|
|
|
static void rcu_iw_handler(struct irq_work *iwp)
|
|
|
|
{
|
|
|
|
struct rcu_data *rdp;
|
|
|
|
struct rcu_node *rnp;
|
|
|
|
|
|
|
|
rdp = container_of(iwp, struct rcu_data, rcu_iw);
|
|
|
|
rnp = rdp->mynode;
|
|
|
|
raw_spin_lock_rcu_node(rnp);
|
|
|
|
if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) {
|
2018-04-29 05:15:40 +08:00
|
|
|
rdp->rcu_iw_gp_seq = rnp->gp_seq;
|
2017-08-18 08:05:59 +08:00
|
|
|
rdp->rcu_iw_pending = false;
|
|
|
|
}
|
|
|
|
raw_spin_unlock_rcu_node(rnp);
|
|
|
|
}
|
|
|
|
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
/*
|
|
|
|
* Return true if the specified CPU has passed through a quiescent
|
|
|
|
* state by virtue of being in or having passed through an dynticks
|
|
|
|
* idle state since the last call to dyntick_save_progress_counter()
|
2012-08-02 05:29:20 +08:00
|
|
|
* for this same CPU, or by virtue of having been offline.
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
*/
|
2017-05-12 02:26:22 +08:00
|
|
|
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
{
|
2016-12-01 03:21:21 +08:00
|
|
|
unsigned long jtsq;
|
2017-01-28 05:17:02 +08:00
|
|
|
bool *rnhqp;
|
2017-01-28 06:17:50 +08:00
|
|
|
bool *ruqp;
|
2017-08-18 08:05:59 +08:00
|
|
|
struct rcu_node *rnp = rdp->mynode;
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* If the CPU passed through or entered a dynticks idle phase with
|
|
|
|
* no active irq/NMI handlers, then we can safely pretend that the CPU
|
|
|
|
* already acknowledged the request to pass through a quiescent
|
|
|
|
* state. Either way, that CPU cannot possibly be in an RCU
|
|
|
|
* read-side critical section that started before the beginning
|
|
|
|
* of the current RCU grace period.
|
|
|
|
*/
|
2018-08-04 12:00:38 +08:00
|
|
|
if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
|
2018-07-05 05:45:00 +08:00
|
|
|
trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
|
2017-08-18 08:05:59 +08:00
|
|
|
rcu_gpnum_ovf(rnp, rdp);
|
2016-12-01 03:21:21 +08:00
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2018-05-16 07:23:23 +08:00
|
|
|
/* If waiting too long on an offline CPU, complain. */
|
|
|
|
if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
|
2018-07-05 05:45:00 +08:00
|
|
|
time_after(jiffies, rcu_state.gp_start + HZ)) {
|
2018-05-16 07:23:23 +08:00
|
|
|
bool onl;
|
|
|
|
struct rcu_node *rnp1;
|
|
|
|
|
|
|
|
WARN_ON(1); /* Offline CPUs are supposed to report QS! */
|
|
|
|
pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
|
|
|
|
__func__, rnp->grplo, rnp->grphi, rnp->level,
|
|
|
|
(long)rnp->gp_seq, (long)rnp->completedqs);
|
|
|
|
for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
|
|
|
|
pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
|
|
|
|
__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
|
|
|
|
onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
|
|
|
|
pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
|
|
|
|
__func__, rdp->cpu, ".o"[onl],
|
|
|
|
(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
|
|
|
|
(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
|
|
|
|
return 1; /* Break things loose after complaining. */
|
|
|
|
}
|
|
|
|
|
2013-04-13 07:19:10 +08:00
|
|
|
/*
|
2014-06-21 07:49:01 +08:00
|
|
|
* A CPU running for an extended time within the kernel can
|
rcu: Compute jiffies_till_sched_qs from other kernel parameters
The jiffies_till_sched_qs value used to determine how old a grace period
must be before RCU enlists the help of the scheduler to force a quiescent
state on the holdout CPU. Currently, this defaults to HZ/10 regardless of
system size and may be set only at boot time. This can be a problem for
very large systems, because if the values of the jiffies_till_first_fqs
and jiffies_till_next_fqs kernel parameters are left at their defaults,
they are calculated to increase as the number of CPUs actually configured
on the system increases. Thus, on a sufficiently large system, RCU would
enlist the help of the scheduler before the grace-period kthread had a
chance to scan for idle CPUs, which wastes CPU time.
This commit therefore allows jiffies_till_sched_qs to be set, if desired,
but if left as default, computes is as jiffies_till_first_fqs plus twice
jiffies_till_next_fqs, thus allowing three force-quiescent-state scans
for idle CPUs. This scales with the number of CPUs, providing sensible
default values.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-26 02:25:23 +08:00
|
|
|
* delay RCU grace periods: (1) At age jiffies_to_sched_qs,
|
|
|
|
* set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
|
2018-07-11 23:09:28 +08:00
|
|
|
* both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
|
|
|
|
* unsynchronized assignments to the per-CPU rcu_need_heavy_qs
|
|
|
|
* variable are safe because the assignments are repeated if this
|
|
|
|
* CPU failed to pass through a quiescent state. This code
|
rcu: Compute jiffies_till_sched_qs from other kernel parameters
The jiffies_till_sched_qs value used to determine how old a grace period
must be before RCU enlists the help of the scheduler to force a quiescent
state on the holdout CPU. Currently, this defaults to HZ/10 regardless of
system size and may be set only at boot time. This can be a problem for
very large systems, because if the values of the jiffies_till_first_fqs
and jiffies_till_next_fqs kernel parameters are left at their defaults,
they are calculated to increase as the number of CPUs actually configured
on the system increases. Thus, on a sufficiently large system, RCU would
enlist the help of the scheduler before the grace-period kthread had a
chance to scan for idle CPUs, which wastes CPU time.
This commit therefore allows jiffies_till_sched_qs to be set, if desired,
but if left as default, computes is as jiffies_till_first_fqs plus twice
jiffies_till_next_fqs, thus allowing three force-quiescent-state scans
for idle CPUs. This scales with the number of CPUs, providing sensible
default values.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-26 02:25:23 +08:00
|
|
|
* also checks .jiffies_resched in case jiffies_to_sched_qs
|
2018-07-11 23:09:28 +08:00
|
|
|
* is set way high.
|
2013-09-24 04:57:18 +08:00
|
|
|
*/
|
rcu: Compute jiffies_till_sched_qs from other kernel parameters
The jiffies_till_sched_qs value used to determine how old a grace period
must be before RCU enlists the help of the scheduler to force a quiescent
state on the holdout CPU. Currently, this defaults to HZ/10 regardless of
system size and may be set only at boot time. This can be a problem for
very large systems, because if the values of the jiffies_till_first_fqs
and jiffies_till_next_fqs kernel parameters are left at their defaults,
they are calculated to increase as the number of CPUs actually configured
on the system increases. Thus, on a sufficiently large system, RCU would
enlist the help of the scheduler before the grace-period kthread had a
chance to scan for idle CPUs, which wastes CPU time.
This commit therefore allows jiffies_till_sched_qs to be set, if desired,
but if left as default, computes is as jiffies_till_first_fqs plus twice
jiffies_till_next_fqs, thus allowing three force-quiescent-state scans
for idle CPUs. This scales with the number of CPUs, providing sensible
default values.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-26 02:25:23 +08:00
|
|
|
jtsq = READ_ONCE(jiffies_to_sched_qs);
|
2018-08-04 12:00:38 +08:00
|
|
|
ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
|
|
|
|
rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
|
2017-01-28 05:17:02 +08:00
|
|
|
if (!READ_ONCE(*rnhqp) &&
|
2018-07-11 23:09:28 +08:00
|
|
|
(time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
|
2018-07-05 05:45:00 +08:00
|
|
|
time_after(jiffies, rcu_state.jiffies_resched))) {
|
2017-01-28 05:17:02 +08:00
|
|
|
WRITE_ONCE(*rnhqp, true);
|
2017-01-28 06:17:50 +08:00
|
|
|
/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
|
|
|
|
smp_store_release(ruqp, true);
|
2018-07-11 23:09:28 +08:00
|
|
|
} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
|
|
|
|
WRITE_ONCE(*ruqp, true);
|
2013-09-24 04:57:18 +08:00
|
|
|
}
|
|
|
|
|
2016-12-02 03:31:31 +08:00
|
|
|
/*
|
2018-07-26 02:49:47 +08:00
|
|
|
* NO_HZ_FULL CPUs can run in-kernel without rcu_check_callbacks!
|
|
|
|
* The above code handles this, but only for straight cond_resched().
|
|
|
|
* And some in-kernel loops check need_resched() before calling
|
|
|
|
* cond_resched(), which defeats the above code for CPUs that are
|
|
|
|
* running in-kernel with scheduling-clock interrupts disabled.
|
|
|
|
* So hit them over the head with the resched_cpu() hammer!
|
2016-12-02 03:31:31 +08:00
|
|
|
*/
|
2018-07-26 02:49:47 +08:00
|
|
|
if (tick_nohz_full_cpu(rdp->cpu) &&
|
|
|
|
time_after(jiffies,
|
|
|
|
READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) {
|
2016-12-02 03:31:31 +08:00
|
|
|
resched_cpu(rdp->cpu);
|
2018-07-26 02:49:47 +08:00
|
|
|
WRITE_ONCE(rdp->last_fqs_resched, jiffies);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If more than halfway to RCU CPU stall-warning time, invoke
|
|
|
|
* resched_cpu() more frequently to try to loosen things up a bit.
|
|
|
|
* Also check to see if the CPU is getting hammered with interrupts,
|
|
|
|
* but only once per grace period, just to keep the IPIs down to
|
|
|
|
* a dull roar.
|
|
|
|
*/
|
|
|
|
if (time_after(jiffies, rcu_state.jiffies_resched)) {
|
|
|
|
if (time_after(jiffies,
|
|
|
|
READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
|
|
|
|
resched_cpu(rdp->cpu);
|
|
|
|
WRITE_ONCE(rdp->last_fqs_resched, jiffies);
|
|
|
|
}
|
2017-08-18 08:05:59 +08:00
|
|
|
if (IS_ENABLED(CONFIG_IRQ_WORK) &&
|
2018-04-29 05:15:40 +08:00
|
|
|
!rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
|
2017-08-18 08:05:59 +08:00
|
|
|
(rnp->ffmask & rdp->grpmask)) {
|
|
|
|
init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
|
|
|
|
rdp->rcu_iw_pending = true;
|
2018-04-29 05:15:40 +08:00
|
|
|
rdp->rcu_iw_gp_seq = rnp->gp_seq;
|
2017-08-18 08:05:59 +08:00
|
|
|
irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
|
|
|
|
}
|
|
|
|
}
|
2015-12-12 05:48:43 +08:00
|
|
|
|
2012-08-02 05:29:20 +08:00
|
|
|
return 0;
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
}
|
|
|
|
|
2018-07-04 08:22:34 +08:00
|
|
|
static void record_gp_stall_check_time(void)
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
{
|
2013-12-05 10:42:03 +08:00
|
|
|
unsigned long j = jiffies;
|
2013-09-24 04:57:18 +08:00
|
|
|
unsigned long j1;
|
rcu: Reject memory-order-induced stall-warning false positives
If a system is idle from an RCU perspective for longer than specified
by CONFIG_RCU_CPU_STALL_TIMEOUT, and if one CPU starts a grace period
just as a second checks for CPU stalls, and if this second CPU happens
to see the old value of rsp->jiffies_stall, it will incorrectly report a
CPU stall. This is quite rare, but apparently occurs deterministically
on systems with about 6TB of memory.
This commit therefore orders accesses to the data used to determine
whether or not a CPU stall is in progress. Grace-period initialization
and cleanup first increments rsp->completed to mark the end of the
previous grace period, then records the current jiffies in rsp->gp_start,
then records the jiffies at which a stall can be expected to occur in
rsp->jiffies_stall, and finally increments rsp->gpnum to mark the start
of the new grace period. Now, this ordering by itself does not prevent
false positives. For example, if grace-period initialization was delayed
between recording rsp->gp_start and rsp->jiffies_stall, the CPU stall
warning code might still see an old value of rsp->jiffies_stall.
Therefore, this commit also orders the CPU stall warning accesses as
well, loading rsp->gpnum and jiffies, then rsp->jiffies_stall, then
rsp->gp_start, and finally rsp->completed. This ordering means that
the false-positive scenario in the previous paragraph would result
in rsp->completed being greater than or equal to rsp->gpnum, which is
never valid for a CPU stall, allowing the false positive to be rejected.
Furthermore, any fetch that gets an old value of rsp->jiffies_stall
must also get an old value of rsp->gpnum, which will again be rejected
by the comparison of rsp->gpnum and rsp->completed. Situations where
rsp->gp_start is later than rsp->jiffies_stall are also rejected, as
are situations where jiffies is less than rsp->jiffies_stall.
Although use of unsynchronized accesses means that there are likely
still some false-positive scenarios (synchronization has proven to be
a very bad idea on large systems), this should get rid of a large class
of these scenarios.
Reported-by: Fabian Herschel <fabian.herschel@suse.com>
Reported-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Tested-by: Jochen Striepe <jochen@tolot.escape.de>
2013-09-05 01:51:13 +08:00
|
|
|
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_state.gp_start = j;
|
2013-09-24 04:57:18 +08:00
|
|
|
j1 = rcu_jiffies_till_stall_check();
|
2018-05-02 06:05:45 +08:00
|
|
|
/* Record ->gp_start before ->jiffies_stall. */
|
2018-07-04 08:22:34 +08:00
|
|
|
smp_store_release(&rcu_state.jiffies_stall, j + j1); /* ^^^ */
|
|
|
|
rcu_state.jiffies_resched = j + j1 / 2;
|
|
|
|
rcu_state.n_force_qs_gpstart = READ_ONCE(rcu_state.n_force_qs);
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
}
|
|
|
|
|
2015-11-18 06:39:26 +08:00
|
|
|
/*
|
|
|
|
* Convert a ->gp_state value to a character string.
|
|
|
|
*/
|
|
|
|
static const char *gp_state_getname(short gs)
|
|
|
|
{
|
|
|
|
if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
|
|
|
|
return "???";
|
|
|
|
return gp_state_names[gs];
|
|
|
|
}
|
|
|
|
|
2014-12-18 00:35:02 +08:00
|
|
|
/*
|
|
|
|
* Complain about starvation of grace-period kthread.
|
|
|
|
*/
|
2018-07-04 08:22:34 +08:00
|
|
|
static void rcu_check_gp_kthread_starvation(void)
|
2014-12-18 00:35:02 +08:00
|
|
|
{
|
2018-07-05 09:25:59 +08:00
|
|
|
struct task_struct *gpk = rcu_state.gp_kthread;
|
2014-12-18 00:35:02 +08:00
|
|
|
unsigned long j;
|
|
|
|
|
2018-07-05 09:25:59 +08:00
|
|
|
j = jiffies - READ_ONCE(rcu_state.gp_activity);
|
|
|
|
if (j > 2 * HZ) {
|
2018-04-28 04:32:28 +08:00
|
|
|
pr_err("%s kthread starved for %ld jiffies! g%ld f%#x %s(%d) ->state=%#lx ->cpu=%d\n",
|
2018-07-05 09:25:59 +08:00
|
|
|
rcu_state.name, j,
|
|
|
|
(long)rcu_seq_current(&rcu_state.gp_seq),
|
|
|
|
rcu_state.gp_flags,
|
|
|
|
gp_state_getname(rcu_state.gp_state), rcu_state.gp_state,
|
|
|
|
gpk ? gpk->state : ~0, gpk ? task_cpu(gpk) : -1);
|
|
|
|
if (gpk) {
|
2018-01-12 04:08:20 +08:00
|
|
|
pr_err("RCU grace-period kthread stack dump:\n");
|
2018-07-05 09:25:59 +08:00
|
|
|
sched_show_task(gpk);
|
|
|
|
wake_up_process(gpk);
|
2016-01-01 00:48:36 +08:00
|
|
|
}
|
2015-10-02 01:38:16 +08:00
|
|
|
}
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
}
|
|
|
|
|
2012-09-20 07:58:38 +08:00
|
|
|
/*
|
2016-11-29 21:49:06 +08:00
|
|
|
* Dump stacks of all tasks running on stalled CPUs. First try using
|
|
|
|
* NMIs, but fall back to manual remote stack tracing on architectures
|
|
|
|
* that don't support NMI-based stack dumps. The NMI-triggered stack
|
|
|
|
* traces are more accurate because they are printed by the target CPU.
|
2012-09-20 07:58:38 +08:00
|
|
|
*/
|
2018-07-04 08:22:34 +08:00
|
|
|
static void rcu_dump_cpu_stacks(void)
|
2012-09-20 07:58:38 +08:00
|
|
|
{
|
|
|
|
int cpu;
|
|
|
|
unsigned long flags;
|
|
|
|
struct rcu_node *rnp;
|
|
|
|
|
2018-07-05 05:33:59 +08:00
|
|
|
rcu_for_each_leaf_node(rnp) {
|
2015-10-09 06:36:54 +08:00
|
|
|
raw_spin_lock_irqsave_rcu_node(rnp, flags);
|
2016-11-29 21:49:06 +08:00
|
|
|
for_each_leaf_node_possible_cpu(rnp, cpu)
|
|
|
|
if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
|
|
|
|
if (!trigger_single_cpu_backtrace(cpu))
|
rcu: Correctly handle sparse possible cpus
In many cases in the RCU tree code, we iterate over the set of cpus for
a leaf node described by rcu_node::grplo and rcu_node::grphi, checking
per-cpu data for each cpu in this range. However, if the set of possible
cpus is sparse, some cpus described in this range are not possible, and
thus no per-cpu region will have been allocated (or initialised) for
them by the generic percpu code.
Erroneous accesses to a per-cpu area for these !possible cpus may fault
or may hit other data depending on the addressed generated when the
erroneous per cpu offset is applied. In practice, both cases have been
observed on arm64 hardware (the former being silent, but detectable with
additional patches).
To avoid issues resulting from this, we must iterate over the set of
*possible* cpus for a given leaf node. This patch add a new helper,
for_each_leaf_node_possible_cpu, to enable this. As iteration is often
intertwined with rcu_node local bitmask manipulation, a new
leaf_node_cpu_bit helper is added to make this simpler and more
consistent. The RCU tree code is made to use both of these where
appropriate.
Without this patch, running reboot at a shell can result in an oops
like:
[ 3369.075979] Unable to handle kernel paging request at virtual address ffffff8008b21b4c
[ 3369.083881] pgd = ffffffc3ecdda000
[ 3369.087270] [ffffff8008b21b4c] *pgd=00000083eca48003, *pud=00000083eca48003, *pmd=0000000000000000
[ 3369.096222] Internal error: Oops: 96000007 [#1] PREEMPT SMP
[ 3369.101781] Modules linked in:
[ 3369.104825] CPU: 2 PID: 1817 Comm: NetworkManager Tainted: G W 4.6.0+ #3
[ 3369.121239] task: ffffffc0fa13e000 ti: ffffffc3eb940000 task.ti: ffffffc3eb940000
[ 3369.128708] PC is at sync_rcu_exp_select_cpus+0x188/0x510
[ 3369.134094] LR is at sync_rcu_exp_select_cpus+0x104/0x510
[ 3369.139479] pc : [<ffffff80081109a8>] lr : [<ffffff8008110924>] pstate: 200001c5
[ 3369.146860] sp : ffffffc3eb9435a0
[ 3369.150162] x29: ffffffc3eb9435a0 x28: ffffff8008be4f88
[ 3369.155465] x27: ffffff8008b66c80 x26: ffffffc3eceb2600
[ 3369.160767] x25: 0000000000000001 x24: ffffff8008be4f88
[ 3369.166070] x23: ffffff8008b51c3c x22: ffffff8008b66c80
[ 3369.171371] x21: 0000000000000001 x20: ffffff8008b21b40
[ 3369.176673] x19: ffffff8008b66c80 x18: 0000000000000000
[ 3369.181975] x17: 0000007fa951a010 x16: ffffff80086a30f0
[ 3369.187278] x15: 0000007fa9505590 x14: 0000000000000000
[ 3369.192580] x13: ffffff8008b51000 x12: ffffffc3eb940000
[ 3369.197882] x11: 0000000000000006 x10: ffffff8008b51b78
[ 3369.203184] x9 : 0000000000000001 x8 : ffffff8008be4000
[ 3369.208486] x7 : ffffff8008b21b40 x6 : 0000000000001003
[ 3369.213788] x5 : 0000000000000000 x4 : ffffff8008b27280
[ 3369.219090] x3 : ffffff8008b21b4c x2 : 0000000000000001
[ 3369.224406] x1 : 0000000000000001 x0 : 0000000000000140
...
[ 3369.972257] [<ffffff80081109a8>] sync_rcu_exp_select_cpus+0x188/0x510
[ 3369.978685] [<ffffff80081128b4>] synchronize_rcu_expedited+0x64/0xa8
[ 3369.985026] [<ffffff80086b987c>] synchronize_net+0x24/0x30
[ 3369.990499] [<ffffff80086ddb54>] dev_deactivate_many+0x28c/0x298
[ 3369.996493] [<ffffff80086b6bb8>] __dev_close_many+0x60/0xd0
[ 3370.002052] [<ffffff80086b6d48>] __dev_close+0x28/0x40
[ 3370.007178] [<ffffff80086bf62c>] __dev_change_flags+0x8c/0x158
[ 3370.012999] [<ffffff80086bf718>] dev_change_flags+0x20/0x60
[ 3370.018558] [<ffffff80086cf7f0>] do_setlink+0x288/0x918
[ 3370.023771] [<ffffff80086d0798>] rtnl_newlink+0x398/0x6a8
[ 3370.029158] [<ffffff80086cee84>] rtnetlink_rcv_msg+0xe4/0x220
[ 3370.034891] [<ffffff80086e274c>] netlink_rcv_skb+0xc4/0xf8
[ 3370.040364] [<ffffff80086ced8c>] rtnetlink_rcv+0x2c/0x40
[ 3370.045663] [<ffffff80086e1fe8>] netlink_unicast+0x160/0x238
[ 3370.051309] [<ffffff80086e24b8>] netlink_sendmsg+0x2f0/0x358
[ 3370.056956] [<ffffff80086a0070>] sock_sendmsg+0x18/0x30
[ 3370.062168] [<ffffff80086a21cc>] ___sys_sendmsg+0x26c/0x280
[ 3370.067728] [<ffffff80086a30ac>] __sys_sendmsg+0x44/0x88
[ 3370.073027] [<ffffff80086a3100>] SyS_sendmsg+0x10/0x20
[ 3370.078153] [<ffffff8008085e70>] el0_svc_naked+0x24/0x28
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reported-by: Dennis Chen <dennis.chen@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Steve Capper <steve.capper@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2016-06-03 22:20:04 +08:00
|
|
|
dump_cpu_task(cpu);
|
2015-12-29 12:18:47 +08:00
|
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
2012-09-20 07:58:38 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-01-04 12:29:57 +08:00
|
|
|
/*
|
|
|
|
* If too much time has passed in the current grace period, and if
|
|
|
|
* so configured, go kick the relevant kthreads.
|
|
|
|
*/
|
2018-07-04 08:22:34 +08:00
|
|
|
static void rcu_stall_kick_kthreads(void)
|
2016-01-04 12:29:57 +08:00
|
|
|
{
|
|
|
|
unsigned long j;
|
|
|
|
|
|
|
|
if (!rcu_kick_kthreads)
|
|
|
|
return;
|
2018-07-05 15:02:29 +08:00
|
|
|
j = READ_ONCE(rcu_state.jiffies_kick_kthreads);
|
|
|
|
if (time_after(jiffies, j) && rcu_state.gp_kthread &&
|
|
|
|
(rcu_gp_in_progress() || READ_ONCE(rcu_state.gp_flags))) {
|
|
|
|
WARN_ONCE(1, "Kicking %s grace-period kthread\n",
|
|
|
|
rcu_state.name);
|
2016-02-18 03:54:28 +08:00
|
|
|
rcu_ftrace_dump(DUMP_ALL);
|
2018-07-05 15:02:29 +08:00
|
|
|
wake_up_process(rcu_state.gp_kthread);
|
|
|
|
WRITE_ONCE(rcu_state.jiffies_kick_kthreads, j + HZ);
|
2016-01-04 12:29:57 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-05-18 02:33:17 +08:00
|
|
|
static void panic_on_rcu_stall(void)
|
2016-06-03 00:51:41 +08:00
|
|
|
{
|
|
|
|
if (sysctl_panic_on_rcu_stall)
|
|
|
|
panic("RCU Stall\n");
|
|
|
|
}
|
|
|
|
|
2018-07-04 08:22:34 +08:00
|
|
|
static void print_other_cpu_stall(unsigned long gp_seq)
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
{
|
|
|
|
int cpu;
|
|
|
|
unsigned long flags;
|
2014-12-12 02:20:59 +08:00
|
|
|
unsigned long gpa;
|
|
|
|
unsigned long j;
|
2012-05-09 23:45:12 +08:00
|
|
|
int ndetected = 0;
|
2018-07-04 08:22:34 +08:00
|
|
|
struct rcu_node *rnp = rcu_get_root();
|
2012-09-22 07:35:25 +08:00
|
|
|
long totqlen = 0;
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
|
2016-01-04 12:29:57 +08:00
|
|
|
/* Kick and suppress, if so configured. */
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_stall_kick_kthreads();
|
2016-01-04 12:29:57 +08:00
|
|
|
if (rcu_cpu_stall_suppress)
|
|
|
|
return;
|
|
|
|
|
2010-08-10 05:23:03 +08:00
|
|
|
/*
|
|
|
|
* OK, time to rat on our buddy...
|
|
|
|
* See Documentation/RCU/stallwarn.txt for info on how to debug
|
|
|
|
* RCU CPU stall warnings.
|
|
|
|
*/
|
2018-07-05 15:02:29 +08:00
|
|
|
pr_err("INFO: %s detected stalls on CPUs/tasks:", rcu_state.name);
|
2012-01-17 05:29:10 +08:00
|
|
|
print_cpu_stall_info_begin();
|
2018-07-05 05:33:59 +08:00
|
|
|
rcu_for_each_leaf_node(rnp) {
|
2015-10-09 06:36:54 +08:00
|
|
|
raw_spin_lock_irqsave_rcu_node(rnp, flags);
|
2011-08-14 04:31:47 +08:00
|
|
|
ndetected += rcu_print_task_stall(rnp);
|
2012-08-11 07:55:59 +08:00
|
|
|
if (rnp->qsmask != 0) {
|
rcu: Correctly handle sparse possible cpus
In many cases in the RCU tree code, we iterate over the set of cpus for
a leaf node described by rcu_node::grplo and rcu_node::grphi, checking
per-cpu data for each cpu in this range. However, if the set of possible
cpus is sparse, some cpus described in this range are not possible, and
thus no per-cpu region will have been allocated (or initialised) for
them by the generic percpu code.
Erroneous accesses to a per-cpu area for these !possible cpus may fault
or may hit other data depending on the addressed generated when the
erroneous per cpu offset is applied. In practice, both cases have been
observed on arm64 hardware (the former being silent, but detectable with
additional patches).
To avoid issues resulting from this, we must iterate over the set of
*possible* cpus for a given leaf node. This patch add a new helper,
for_each_leaf_node_possible_cpu, to enable this. As iteration is often
intertwined with rcu_node local bitmask manipulation, a new
leaf_node_cpu_bit helper is added to make this simpler and more
consistent. The RCU tree code is made to use both of these where
appropriate.
Without this patch, running reboot at a shell can result in an oops
like:
[ 3369.075979] Unable to handle kernel paging request at virtual address ffffff8008b21b4c
[ 3369.083881] pgd = ffffffc3ecdda000
[ 3369.087270] [ffffff8008b21b4c] *pgd=00000083eca48003, *pud=00000083eca48003, *pmd=0000000000000000
[ 3369.096222] Internal error: Oops: 96000007 [#1] PREEMPT SMP
[ 3369.101781] Modules linked in:
[ 3369.104825] CPU: 2 PID: 1817 Comm: NetworkManager Tainted: G W 4.6.0+ #3
[ 3369.121239] task: ffffffc0fa13e000 ti: ffffffc3eb940000 task.ti: ffffffc3eb940000
[ 3369.128708] PC is at sync_rcu_exp_select_cpus+0x188/0x510
[ 3369.134094] LR is at sync_rcu_exp_select_cpus+0x104/0x510
[ 3369.139479] pc : [<ffffff80081109a8>] lr : [<ffffff8008110924>] pstate: 200001c5
[ 3369.146860] sp : ffffffc3eb9435a0
[ 3369.150162] x29: ffffffc3eb9435a0 x28: ffffff8008be4f88
[ 3369.155465] x27: ffffff8008b66c80 x26: ffffffc3eceb2600
[ 3369.160767] x25: 0000000000000001 x24: ffffff8008be4f88
[ 3369.166070] x23: ffffff8008b51c3c x22: ffffff8008b66c80
[ 3369.171371] x21: 0000000000000001 x20: ffffff8008b21b40
[ 3369.176673] x19: ffffff8008b66c80 x18: 0000000000000000
[ 3369.181975] x17: 0000007fa951a010 x16: ffffff80086a30f0
[ 3369.187278] x15: 0000007fa9505590 x14: 0000000000000000
[ 3369.192580] x13: ffffff8008b51000 x12: ffffffc3eb940000
[ 3369.197882] x11: 0000000000000006 x10: ffffff8008b51b78
[ 3369.203184] x9 : 0000000000000001 x8 : ffffff8008be4000
[ 3369.208486] x7 : ffffff8008b21b40 x6 : 0000000000001003
[ 3369.213788] x5 : 0000000000000000 x4 : ffffff8008b27280
[ 3369.219090] x3 : ffffff8008b21b4c x2 : 0000000000000001
[ 3369.224406] x1 : 0000000000000001 x0 : 0000000000000140
...
[ 3369.972257] [<ffffff80081109a8>] sync_rcu_exp_select_cpus+0x188/0x510
[ 3369.978685] [<ffffff80081128b4>] synchronize_rcu_expedited+0x64/0xa8
[ 3369.985026] [<ffffff80086b987c>] synchronize_net+0x24/0x30
[ 3369.990499] [<ffffff80086ddb54>] dev_deactivate_many+0x28c/0x298
[ 3369.996493] [<ffffff80086b6bb8>] __dev_close_many+0x60/0xd0
[ 3370.002052] [<ffffff80086b6d48>] __dev_close+0x28/0x40
[ 3370.007178] [<ffffff80086bf62c>] __dev_change_flags+0x8c/0x158
[ 3370.012999] [<ffffff80086bf718>] dev_change_flags+0x20/0x60
[ 3370.018558] [<ffffff80086cf7f0>] do_setlink+0x288/0x918
[ 3370.023771] [<ffffff80086d0798>] rtnl_newlink+0x398/0x6a8
[ 3370.029158] [<ffffff80086cee84>] rtnetlink_rcv_msg+0xe4/0x220
[ 3370.034891] [<ffffff80086e274c>] netlink_rcv_skb+0xc4/0xf8
[ 3370.040364] [<ffffff80086ced8c>] rtnetlink_rcv+0x2c/0x40
[ 3370.045663] [<ffffff80086e1fe8>] netlink_unicast+0x160/0x238
[ 3370.051309] [<ffffff80086e24b8>] netlink_sendmsg+0x2f0/0x358
[ 3370.056956] [<ffffff80086a0070>] sock_sendmsg+0x18/0x30
[ 3370.062168] [<ffffff80086a21cc>] ___sys_sendmsg+0x26c/0x280
[ 3370.067728] [<ffffff80086a30ac>] __sys_sendmsg+0x44/0x88
[ 3370.073027] [<ffffff80086a3100>] SyS_sendmsg+0x10/0x20
[ 3370.078153] [<ffffff8008085e70>] el0_svc_naked+0x24/0x28
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reported-by: Dennis Chen <dennis.chen@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Steve Capper <steve.capper@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2016-06-03 22:20:04 +08:00
|
|
|
for_each_leaf_node_possible_cpu(rnp, cpu)
|
|
|
|
if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
|
2018-07-04 08:22:34 +08:00
|
|
|
print_cpu_stall_info(cpu);
|
2012-08-11 07:55:59 +08:00
|
|
|
ndetected++;
|
|
|
|
}
|
|
|
|
}
|
2015-12-29 12:18:47 +08:00
|
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
}
|
2012-01-17 05:29:10 +08:00
|
|
|
|
|
|
|
print_cpu_stall_info_end();
|
2012-09-22 07:35:25 +08:00
|
|
|
for_each_possible_cpu(cpu)
|
2018-07-04 06:37:16 +08:00
|
|
|
totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(&rcu_data,
|
srcu: Abstract multi-tail callback list handling
RCU has only one multi-tail callback list, which is implemented via
the nxtlist, nxttail, nxtcompleted, qlen_lazy, and qlen fields in the
rcu_data structure, and whose operations are open-code throughout the
Tree RCU implementation. This has been more or less OK in the past,
but upcoming callback-list optimizations in SRCU could really use
a multi-tail callback list there as well.
This commit therefore abstracts the multi-tail callback list handling
into a new kernel/rcu/rcu_segcblist.h file, and uses this new API.
The simple head-and-tail pointer callback list is also abstracted and
applied everywhere except for the NOCB callback-offload lists. (Yes,
the plan is to apply them there as well, but this commit is already
bigger than would be good.)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-02-09 04:36:42 +08:00
|
|
|
cpu)->cblist);
|
2018-05-01 04:09:17 +08:00
|
|
|
pr_cont("(detected by %d, t=%ld jiffies, g=%ld, q=%lu)\n",
|
2018-07-05 15:02:29 +08:00
|
|
|
smp_processor_id(), (long)(jiffies - rcu_state.gp_start),
|
|
|
|
(long)rcu_seq_current(&rcu_state.gp_seq), totqlen);
|
2014-12-12 02:20:59 +08:00
|
|
|
if (ndetected) {
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_dump_cpu_stacks();
|
2016-11-09 16:57:13 +08:00
|
|
|
|
|
|
|
/* Complain about tasks blocking the grace period. */
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_print_detail_task_stall();
|
2014-12-12 02:20:59 +08:00
|
|
|
} else {
|
2018-07-05 15:02:29 +08:00
|
|
|
if (rcu_seq_current(&rcu_state.gp_seq) != gp_seq) {
|
2014-12-12 02:20:59 +08:00
|
|
|
pr_err("INFO: Stall ended before state dump start\n");
|
|
|
|
} else {
|
|
|
|
j = jiffies;
|
2018-07-05 15:02:29 +08:00
|
|
|
gpa = READ_ONCE(rcu_state.gp_activity);
|
2015-01-23 06:32:06 +08:00
|
|
|
pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
|
2018-07-05 15:02:29 +08:00
|
|
|
rcu_state.name, j - gpa, j, gpa,
|
rcu: Compute jiffies_till_sched_qs from other kernel parameters
The jiffies_till_sched_qs value used to determine how old a grace period
must be before RCU enlists the help of the scheduler to force a quiescent
state on the holdout CPU. Currently, this defaults to HZ/10 regardless of
system size and may be set only at boot time. This can be a problem for
very large systems, because if the values of the jiffies_till_first_fqs
and jiffies_till_next_fqs kernel parameters are left at their defaults,
they are calculated to increase as the number of CPUs actually configured
on the system increases. Thus, on a sufficiently large system, RCU would
enlist the help of the scheduler before the grace-period kthread had a
chance to scan for idle CPUs, which wastes CPU time.
This commit therefore allows jiffies_till_sched_qs to be set, if desired,
but if left as default, computes is as jiffies_till_first_fqs plus twice
jiffies_till_next_fqs, thus allowing three force-quiescent-state scans
for idle CPUs. This scales with the number of CPUs, providing sensible
default values.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-26 02:25:23 +08:00
|
|
|
READ_ONCE(jiffies_till_next_fqs),
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_get_root()->qsmask);
|
2014-12-12 02:20:59 +08:00
|
|
|
/* In this case, the current CPU might be at fault. */
|
|
|
|
sched_show_task(current);
|
|
|
|
}
|
|
|
|
}
|
2018-04-10 02:04:46 +08:00
|
|
|
/* Rewrite if needed in case of slow consoles. */
|
2018-07-05 15:02:29 +08:00
|
|
|
if (ULONG_CMP_GE(jiffies, READ_ONCE(rcu_state.jiffies_stall)))
|
|
|
|
WRITE_ONCE(rcu_state.jiffies_stall,
|
2018-04-10 02:04:46 +08:00
|
|
|
jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
|
2009-08-02 17:28:21 +08:00
|
|
|
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_check_gp_kthread_starvation();
|
2014-12-18 00:35:02 +08:00
|
|
|
|
2016-06-03 00:51:41 +08:00
|
|
|
panic_on_rcu_stall();
|
|
|
|
|
2018-07-04 08:22:34 +08:00
|
|
|
force_quiescent_state(); /* Kick them all. */
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
}
|
|
|
|
|
2018-07-04 08:22:34 +08:00
|
|
|
static void print_cpu_stall(void)
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
{
|
2012-09-22 07:35:25 +08:00
|
|
|
int cpu;
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
unsigned long flags;
|
2018-07-04 06:37:16 +08:00
|
|
|
struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
|
2018-07-04 08:22:34 +08:00
|
|
|
struct rcu_node *rnp = rcu_get_root();
|
2012-09-22 07:35:25 +08:00
|
|
|
long totqlen = 0;
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
|
2016-01-04 12:29:57 +08:00
|
|
|
/* Kick and suppress, if so configured. */
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_stall_kick_kthreads();
|
2016-01-04 12:29:57 +08:00
|
|
|
if (rcu_cpu_stall_suppress)
|
|
|
|
return;
|
|
|
|
|
2010-08-10 05:23:03 +08:00
|
|
|
/*
|
|
|
|
* OK, time to rat on ourselves...
|
|
|
|
* See Documentation/RCU/stallwarn.txt for info on how to debug
|
|
|
|
* RCU CPU stall warnings.
|
|
|
|
*/
|
2018-07-05 15:02:29 +08:00
|
|
|
pr_err("INFO: %s self-detected stall on CPU", rcu_state.name);
|
2012-01-17 05:29:10 +08:00
|
|
|
print_cpu_stall_info_begin();
|
2017-08-18 08:05:59 +08:00
|
|
|
raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags);
|
2018-07-04 08:22:34 +08:00
|
|
|
print_cpu_stall_info(smp_processor_id());
|
2017-08-18 08:05:59 +08:00
|
|
|
raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags);
|
2012-01-17 05:29:10 +08:00
|
|
|
print_cpu_stall_info_end();
|
2012-09-22 07:35:25 +08:00
|
|
|
for_each_possible_cpu(cpu)
|
2018-07-04 06:37:16 +08:00
|
|
|
totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(&rcu_data,
|
srcu: Abstract multi-tail callback list handling
RCU has only one multi-tail callback list, which is implemented via
the nxtlist, nxttail, nxtcompleted, qlen_lazy, and qlen fields in the
rcu_data structure, and whose operations are open-code throughout the
Tree RCU implementation. This has been more or less OK in the past,
but upcoming callback-list optimizations in SRCU could really use
a multi-tail callback list there as well.
This commit therefore abstracts the multi-tail callback list handling
into a new kernel/rcu/rcu_segcblist.h file, and uses this new API.
The simple head-and-tail pointer callback list is also abstracted and
applied everywhere except for the NOCB callback-offload lists. (Yes,
the plan is to apply them there as well, but this commit is already
bigger than would be good.)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-02-09 04:36:42 +08:00
|
|
|
cpu)->cblist);
|
2018-05-01 04:09:17 +08:00
|
|
|
pr_cont(" (t=%lu jiffies g=%ld q=%lu)\n",
|
2018-07-05 15:02:29 +08:00
|
|
|
jiffies - rcu_state.gp_start,
|
|
|
|
(long)rcu_seq_current(&rcu_state.gp_seq), totqlen);
|
2014-12-18 00:35:02 +08:00
|
|
|
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_check_gp_kthread_starvation();
|
2014-12-18 00:35:02 +08:00
|
|
|
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_dump_cpu_stacks();
|
2009-08-02 17:28:21 +08:00
|
|
|
|
2015-10-09 06:36:54 +08:00
|
|
|
raw_spin_lock_irqsave_rcu_node(rnp, flags);
|
2018-04-10 02:04:46 +08:00
|
|
|
/* Rewrite if needed in case of slow consoles. */
|
2018-07-05 15:02:29 +08:00
|
|
|
if (ULONG_CMP_GE(jiffies, READ_ONCE(rcu_state.jiffies_stall)))
|
|
|
|
WRITE_ONCE(rcu_state.jiffies_stall,
|
2015-03-04 06:57:58 +08:00
|
|
|
jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
|
2015-12-29 12:18:47 +08:00
|
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
2009-08-02 17:28:21 +08:00
|
|
|
|
2016-06-03 00:51:41 +08:00
|
|
|
panic_on_rcu_stall();
|
|
|
|
|
2013-09-17 15:30:55 +08:00
|
|
|
/*
|
|
|
|
* Attempt to revive the RCU machinery by forcing a context switch.
|
|
|
|
*
|
|
|
|
* A context switch would normally allow the RCU state machine to make
|
|
|
|
* progress and it could be we're stuck in kernel space without context
|
|
|
|
* switches for an entirely unreasonable amount of time.
|
|
|
|
*/
|
2018-07-27 04:44:00 +08:00
|
|
|
set_tsk_need_resched(current);
|
|
|
|
set_preempt_need_resched();
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
}
|
|
|
|
|
2018-07-04 08:22:34 +08:00
|
|
|
static void check_cpu_stall(struct rcu_data *rdp)
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
{
|
2018-05-01 04:09:17 +08:00
|
|
|
unsigned long gs1;
|
|
|
|
unsigned long gs2;
|
rcu: Reject memory-order-induced stall-warning false positives
If a system is idle from an RCU perspective for longer than specified
by CONFIG_RCU_CPU_STALL_TIMEOUT, and if one CPU starts a grace period
just as a second checks for CPU stalls, and if this second CPU happens
to see the old value of rsp->jiffies_stall, it will incorrectly report a
CPU stall. This is quite rare, but apparently occurs deterministically
on systems with about 6TB of memory.
This commit therefore orders accesses to the data used to determine
whether or not a CPU stall is in progress. Grace-period initialization
and cleanup first increments rsp->completed to mark the end of the
previous grace period, then records the current jiffies in rsp->gp_start,
then records the jiffies at which a stall can be expected to occur in
rsp->jiffies_stall, and finally increments rsp->gpnum to mark the start
of the new grace period. Now, this ordering by itself does not prevent
false positives. For example, if grace-period initialization was delayed
between recording rsp->gp_start and rsp->jiffies_stall, the CPU stall
warning code might still see an old value of rsp->jiffies_stall.
Therefore, this commit also orders the CPU stall warning accesses as
well, loading rsp->gpnum and jiffies, then rsp->jiffies_stall, then
rsp->gp_start, and finally rsp->completed. This ordering means that
the false-positive scenario in the previous paragraph would result
in rsp->completed being greater than or equal to rsp->gpnum, which is
never valid for a CPU stall, allowing the false positive to be rejected.
Furthermore, any fetch that gets an old value of rsp->jiffies_stall
must also get an old value of rsp->gpnum, which will again be rejected
by the comparison of rsp->gpnum and rsp->completed. Situations where
rsp->gp_start is later than rsp->jiffies_stall are also rejected, as
are situations where jiffies is less than rsp->jiffies_stall.
Although use of unsynchronized accesses means that there are likely
still some false-positive scenarios (synchronization has proven to be
a very bad idea on large systems), this should get rid of a large class
of these scenarios.
Reported-by: Fabian Herschel <fabian.herschel@suse.com>
Reported-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Tested-by: Jochen Striepe <jochen@tolot.escape.de>
2013-09-05 01:51:13 +08:00
|
|
|
unsigned long gps;
|
2011-05-03 14:40:04 +08:00
|
|
|
unsigned long j;
|
2018-04-10 02:04:46 +08:00
|
|
|
unsigned long jn;
|
2011-05-03 14:40:04 +08:00
|
|
|
unsigned long js;
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
struct rcu_node *rnp;
|
|
|
|
|
2016-01-04 12:29:57 +08:00
|
|
|
if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
|
2018-07-04 08:22:34 +08:00
|
|
|
!rcu_gp_in_progress())
|
2010-04-16 01:12:40 +08:00
|
|
|
return;
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_stall_kick_kthreads();
|
2013-12-05 10:42:03 +08:00
|
|
|
j = jiffies;
|
rcu: Reject memory-order-induced stall-warning false positives
If a system is idle from an RCU perspective for longer than specified
by CONFIG_RCU_CPU_STALL_TIMEOUT, and if one CPU starts a grace period
just as a second checks for CPU stalls, and if this second CPU happens
to see the old value of rsp->jiffies_stall, it will incorrectly report a
CPU stall. This is quite rare, but apparently occurs deterministically
on systems with about 6TB of memory.
This commit therefore orders accesses to the data used to determine
whether or not a CPU stall is in progress. Grace-period initialization
and cleanup first increments rsp->completed to mark the end of the
previous grace period, then records the current jiffies in rsp->gp_start,
then records the jiffies at which a stall can be expected to occur in
rsp->jiffies_stall, and finally increments rsp->gpnum to mark the start
of the new grace period. Now, this ordering by itself does not prevent
false positives. For example, if grace-period initialization was delayed
between recording rsp->gp_start and rsp->jiffies_stall, the CPU stall
warning code might still see an old value of rsp->jiffies_stall.
Therefore, this commit also orders the CPU stall warning accesses as
well, loading rsp->gpnum and jiffies, then rsp->jiffies_stall, then
rsp->gp_start, and finally rsp->completed. This ordering means that
the false-positive scenario in the previous paragraph would result
in rsp->completed being greater than or equal to rsp->gpnum, which is
never valid for a CPU stall, allowing the false positive to be rejected.
Furthermore, any fetch that gets an old value of rsp->jiffies_stall
must also get an old value of rsp->gpnum, which will again be rejected
by the comparison of rsp->gpnum and rsp->completed. Situations where
rsp->gp_start is later than rsp->jiffies_stall are also rejected, as
are situations where jiffies is less than rsp->jiffies_stall.
Although use of unsynchronized accesses means that there are likely
still some false-positive scenarios (synchronization has proven to be
a very bad idea on large systems), this should get rid of a large class
of these scenarios.
Reported-by: Fabian Herschel <fabian.herschel@suse.com>
Reported-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Tested-by: Jochen Striepe <jochen@tolot.escape.de>
2013-09-05 01:51:13 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Lots of memory barriers to reject false positives.
|
|
|
|
*
|
2018-07-05 15:02:29 +08:00
|
|
|
* The idea is to pick up rcu_state.gp_seq, then
|
|
|
|
* rcu_state.jiffies_stall, then rcu_state.gp_start, and finally
|
|
|
|
* another copy of rcu_state.gp_seq. These values are updated in
|
|
|
|
* the opposite order with memory barriers (or equivalent) during
|
|
|
|
* grace-period initialization and cleanup. Now, a false positive
|
|
|
|
* can occur if we get an new value of rcu_state.gp_start and a old
|
|
|
|
* value of rcu_state.jiffies_stall. But given the memory barriers,
|
|
|
|
* the only way that this can happen is if one grace period ends
|
|
|
|
* and another starts between these two fetches. This is detected
|
|
|
|
* by comparing the second fetch of rcu_state.gp_seq with the
|
|
|
|
* previous fetch from rcu_state.gp_seq.
|
rcu: Reject memory-order-induced stall-warning false positives
If a system is idle from an RCU perspective for longer than specified
by CONFIG_RCU_CPU_STALL_TIMEOUT, and if one CPU starts a grace period
just as a second checks for CPU stalls, and if this second CPU happens
to see the old value of rsp->jiffies_stall, it will incorrectly report a
CPU stall. This is quite rare, but apparently occurs deterministically
on systems with about 6TB of memory.
This commit therefore orders accesses to the data used to determine
whether or not a CPU stall is in progress. Grace-period initialization
and cleanup first increments rsp->completed to mark the end of the
previous grace period, then records the current jiffies in rsp->gp_start,
then records the jiffies at which a stall can be expected to occur in
rsp->jiffies_stall, and finally increments rsp->gpnum to mark the start
of the new grace period. Now, this ordering by itself does not prevent
false positives. For example, if grace-period initialization was delayed
between recording rsp->gp_start and rsp->jiffies_stall, the CPU stall
warning code might still see an old value of rsp->jiffies_stall.
Therefore, this commit also orders the CPU stall warning accesses as
well, loading rsp->gpnum and jiffies, then rsp->jiffies_stall, then
rsp->gp_start, and finally rsp->completed. This ordering means that
the false-positive scenario in the previous paragraph would result
in rsp->completed being greater than or equal to rsp->gpnum, which is
never valid for a CPU stall, allowing the false positive to be rejected.
Furthermore, any fetch that gets an old value of rsp->jiffies_stall
must also get an old value of rsp->gpnum, which will again be rejected
by the comparison of rsp->gpnum and rsp->completed. Situations where
rsp->gp_start is later than rsp->jiffies_stall are also rejected, as
are situations where jiffies is less than rsp->jiffies_stall.
Although use of unsynchronized accesses means that there are likely
still some false-positive scenarios (synchronization has proven to be
a very bad idea on large systems), this should get rid of a large class
of these scenarios.
Reported-by: Fabian Herschel <fabian.herschel@suse.com>
Reported-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Tested-by: Jochen Striepe <jochen@tolot.escape.de>
2013-09-05 01:51:13 +08:00
|
|
|
*
|
2018-07-05 15:02:29 +08:00
|
|
|
* Given this check, comparisons of jiffies, rcu_state.jiffies_stall,
|
|
|
|
* and rcu_state.gp_start suffice to forestall false positives.
|
rcu: Reject memory-order-induced stall-warning false positives
If a system is idle from an RCU perspective for longer than specified
by CONFIG_RCU_CPU_STALL_TIMEOUT, and if one CPU starts a grace period
just as a second checks for CPU stalls, and if this second CPU happens
to see the old value of rsp->jiffies_stall, it will incorrectly report a
CPU stall. This is quite rare, but apparently occurs deterministically
on systems with about 6TB of memory.
This commit therefore orders accesses to the data used to determine
whether or not a CPU stall is in progress. Grace-period initialization
and cleanup first increments rsp->completed to mark the end of the
previous grace period, then records the current jiffies in rsp->gp_start,
then records the jiffies at which a stall can be expected to occur in
rsp->jiffies_stall, and finally increments rsp->gpnum to mark the start
of the new grace period. Now, this ordering by itself does not prevent
false positives. For example, if grace-period initialization was delayed
between recording rsp->gp_start and rsp->jiffies_stall, the CPU stall
warning code might still see an old value of rsp->jiffies_stall.
Therefore, this commit also orders the CPU stall warning accesses as
well, loading rsp->gpnum and jiffies, then rsp->jiffies_stall, then
rsp->gp_start, and finally rsp->completed. This ordering means that
the false-positive scenario in the previous paragraph would result
in rsp->completed being greater than or equal to rsp->gpnum, which is
never valid for a CPU stall, allowing the false positive to be rejected.
Furthermore, any fetch that gets an old value of rsp->jiffies_stall
must also get an old value of rsp->gpnum, which will again be rejected
by the comparison of rsp->gpnum and rsp->completed. Situations where
rsp->gp_start is later than rsp->jiffies_stall are also rejected, as
are situations where jiffies is less than rsp->jiffies_stall.
Although use of unsynchronized accesses means that there are likely
still some false-positive scenarios (synchronization has proven to be
a very bad idea on large systems), this should get rid of a large class
of these scenarios.
Reported-by: Fabian Herschel <fabian.herschel@suse.com>
Reported-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Tested-by: Jochen Striepe <jochen@tolot.escape.de>
2013-09-05 01:51:13 +08:00
|
|
|
*/
|
2018-07-05 15:02:29 +08:00
|
|
|
gs1 = READ_ONCE(rcu_state.gp_seq);
|
2018-05-01 04:09:17 +08:00
|
|
|
smp_rmb(); /* Pick up ->gp_seq first... */
|
2018-07-05 15:02:29 +08:00
|
|
|
js = READ_ONCE(rcu_state.jiffies_stall);
|
rcu: Reject memory-order-induced stall-warning false positives
If a system is idle from an RCU perspective for longer than specified
by CONFIG_RCU_CPU_STALL_TIMEOUT, and if one CPU starts a grace period
just as a second checks for CPU stalls, and if this second CPU happens
to see the old value of rsp->jiffies_stall, it will incorrectly report a
CPU stall. This is quite rare, but apparently occurs deterministically
on systems with about 6TB of memory.
This commit therefore orders accesses to the data used to determine
whether or not a CPU stall is in progress. Grace-period initialization
and cleanup first increments rsp->completed to mark the end of the
previous grace period, then records the current jiffies in rsp->gp_start,
then records the jiffies at which a stall can be expected to occur in
rsp->jiffies_stall, and finally increments rsp->gpnum to mark the start
of the new grace period. Now, this ordering by itself does not prevent
false positives. For example, if grace-period initialization was delayed
between recording rsp->gp_start and rsp->jiffies_stall, the CPU stall
warning code might still see an old value of rsp->jiffies_stall.
Therefore, this commit also orders the CPU stall warning accesses as
well, loading rsp->gpnum and jiffies, then rsp->jiffies_stall, then
rsp->gp_start, and finally rsp->completed. This ordering means that
the false-positive scenario in the previous paragraph would result
in rsp->completed being greater than or equal to rsp->gpnum, which is
never valid for a CPU stall, allowing the false positive to be rejected.
Furthermore, any fetch that gets an old value of rsp->jiffies_stall
must also get an old value of rsp->gpnum, which will again be rejected
by the comparison of rsp->gpnum and rsp->completed. Situations where
rsp->gp_start is later than rsp->jiffies_stall are also rejected, as
are situations where jiffies is less than rsp->jiffies_stall.
Although use of unsynchronized accesses means that there are likely
still some false-positive scenarios (synchronization has proven to be
a very bad idea on large systems), this should get rid of a large class
of these scenarios.
Reported-by: Fabian Herschel <fabian.herschel@suse.com>
Reported-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Tested-by: Jochen Striepe <jochen@tolot.escape.de>
2013-09-05 01:51:13 +08:00
|
|
|
smp_rmb(); /* ...then ->jiffies_stall before the rest... */
|
2018-07-05 15:02:29 +08:00
|
|
|
gps = READ_ONCE(rcu_state.gp_start);
|
2018-05-01 04:09:17 +08:00
|
|
|
smp_rmb(); /* ...and finally ->gp_start before ->gp_seq again. */
|
2018-07-05 15:02:29 +08:00
|
|
|
gs2 = READ_ONCE(rcu_state.gp_seq);
|
2018-05-01 04:09:17 +08:00
|
|
|
if (gs1 != gs2 ||
|
rcu: Reject memory-order-induced stall-warning false positives
If a system is idle from an RCU perspective for longer than specified
by CONFIG_RCU_CPU_STALL_TIMEOUT, and if one CPU starts a grace period
just as a second checks for CPU stalls, and if this second CPU happens
to see the old value of rsp->jiffies_stall, it will incorrectly report a
CPU stall. This is quite rare, but apparently occurs deterministically
on systems with about 6TB of memory.
This commit therefore orders accesses to the data used to determine
whether or not a CPU stall is in progress. Grace-period initialization
and cleanup first increments rsp->completed to mark the end of the
previous grace period, then records the current jiffies in rsp->gp_start,
then records the jiffies at which a stall can be expected to occur in
rsp->jiffies_stall, and finally increments rsp->gpnum to mark the start
of the new grace period. Now, this ordering by itself does not prevent
false positives. For example, if grace-period initialization was delayed
between recording rsp->gp_start and rsp->jiffies_stall, the CPU stall
warning code might still see an old value of rsp->jiffies_stall.
Therefore, this commit also orders the CPU stall warning accesses as
well, loading rsp->gpnum and jiffies, then rsp->jiffies_stall, then
rsp->gp_start, and finally rsp->completed. This ordering means that
the false-positive scenario in the previous paragraph would result
in rsp->completed being greater than or equal to rsp->gpnum, which is
never valid for a CPU stall, allowing the false positive to be rejected.
Furthermore, any fetch that gets an old value of rsp->jiffies_stall
must also get an old value of rsp->gpnum, which will again be rejected
by the comparison of rsp->gpnum and rsp->completed. Situations where
rsp->gp_start is later than rsp->jiffies_stall are also rejected, as
are situations where jiffies is less than rsp->jiffies_stall.
Although use of unsynchronized accesses means that there are likely
still some false-positive scenarios (synchronization has proven to be
a very bad idea on large systems), this should get rid of a large class
of these scenarios.
Reported-by: Fabian Herschel <fabian.herschel@suse.com>
Reported-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Tested-by: Jochen Striepe <jochen@tolot.escape.de>
2013-09-05 01:51:13 +08:00
|
|
|
ULONG_CMP_LT(j, js) ||
|
|
|
|
ULONG_CMP_GE(gps, js))
|
|
|
|
return; /* No stall or GP completed since entering function. */
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
rnp = rdp->mynode;
|
2018-04-10 02:04:46 +08:00
|
|
|
jn = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
|
2018-07-04 08:22:34 +08:00
|
|
|
if (rcu_gp_in_progress() &&
|
2018-04-10 02:04:46 +08:00
|
|
|
(READ_ONCE(rnp->qsmask) & rdp->grpmask) &&
|
2018-07-05 15:02:29 +08:00
|
|
|
cmpxchg(&rcu_state.jiffies_stall, js, jn) == js) {
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
|
|
|
|
/* We haven't checked in, so go dump stack. */
|
2018-07-04 08:22:34 +08:00
|
|
|
print_cpu_stall();
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
|
2018-07-04 08:22:34 +08:00
|
|
|
} else if (rcu_gp_in_progress() &&
|
2018-04-10 02:04:46 +08:00
|
|
|
ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY) &&
|
2018-07-05 15:02:29 +08:00
|
|
|
cmpxchg(&rcu_state.jiffies_stall, js, jn) == js) {
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
|
2011-05-03 14:40:04 +08:00
|
|
|
/* They had a few time units to dump stack, so complain. */
|
2018-07-04 08:22:34 +08:00
|
|
|
print_other_cpu_stall(gs2);
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-08-11 05:28:53 +08:00
|
|
|
/**
|
|
|
|
* rcu_cpu_stall_reset - prevent further stall warnings in current grace period
|
|
|
|
*
|
|
|
|
* Set the stall-warning timeout way off into the future, thus preventing
|
|
|
|
* any RCU CPU stall-warning messages from appearing in the current set of
|
|
|
|
* RCU grace periods.
|
|
|
|
*
|
|
|
|
* The caller must disable hard irqs.
|
|
|
|
*/
|
|
|
|
void rcu_cpu_stall_reset(void)
|
|
|
|
{
|
2018-07-05 06:35:00 +08:00
|
|
|
WRITE_ONCE(rcu_state.jiffies_stall, jiffies + ULONG_MAX / 2);
|
2010-08-11 05:28:53 +08:00
|
|
|
}
|
|
|
|
|
2018-04-13 02:24:09 +08:00
|
|
|
/* Trace-event wrapper function for trace_rcu_future_grace_period. */
|
|
|
|
static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
|
2018-05-21 12:42:18 +08:00
|
|
|
unsigned long gp_seq_req, const char *s)
|
2012-12-31 07:21:01 +08:00
|
|
|
{
|
2018-07-05 05:45:00 +08:00
|
|
|
trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req,
|
2018-05-02 04:08:46 +08:00
|
|
|
rnp->level, rnp->grplo, rnp->grphi, s);
|
2012-12-31 07:21:01 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2018-05-21 12:42:18 +08:00
|
|
|
* rcu_start_this_gp - Request the start of a particular grace period
|
2018-05-23 14:38:14 +08:00
|
|
|
* @rnp_start: The leaf node of the CPU from which to start.
|
2018-05-21 12:42:18 +08:00
|
|
|
* @rdp: The rcu_data corresponding to the CPU from which to start.
|
|
|
|
* @gp_seq_req: The gp_seq of the grace period to start.
|
|
|
|
*
|
2018-04-13 02:24:09 +08:00
|
|
|
* Start the specified grace period, as needed to handle newly arrived
|
2012-12-31 07:21:01 +08:00
|
|
|
* callbacks. The required future grace periods are recorded in each
|
2018-05-02 01:26:57 +08:00
|
|
|
* rcu_node structure's ->gp_seq_needed field. Returns true if there
|
rcu: Make callers awaken grace-period kthread
The rcu_start_gp_advanced() function currently uses irq_work_queue()
to defer wakeups of the RCU grace-period kthread. This deferring
is necessary to avoid RCU-scheduler deadlocks involving the rcu_node
structure's lock, meaning that RCU cannot call any of the scheduler's
wake-up functions while holding one of these locks.
Unfortunately, the second and subsequent calls to irq_work_queue() are
ignored, and the first call will be ignored (aside from queuing the work
item) if the scheduler-clock tick is turned off. This is OK for many
uses, especially those where irq_work_queue() is called from an interrupt
or softirq handler, because in those cases the scheduler-clock-tick state
will be re-evaluated, which will turn the scheduler-clock tick back on.
On the next tick, any deferred work will then be processed.
However, this strategy does not always work for RCU, which can be invoked
at process level from idle CPUs. In this case, the tick might never
be turned back on, indefinitely defering a grace-period start request.
Note that the RCU CPU stall detector cannot see this condition, because
there is no RCU grace period in progress. Therefore, we can (and do!)
see long tens-of-seconds stalls in grace-period handling. In theory,
we could see a full grace-period hang, but rcutorture testing to date
has seen only the tens-of-seconds stalls. Event tracing demonstrates
that irq_work_queue() is being called repeatedly to no effect during
these stalls: The "newreq" event appears repeatedly from a task that is
not one of the grace-period kthreads.
In theory, irq_work_queue() might be fixed to avoid this sort of issue,
but RCU's requirements are unusual and it is quite straightforward to pass
wake-up responsibility up through RCU's call chain, so that the wakeup
happens when the offending locks are released.
This commit therefore makes this change. The rcu_start_gp_advanced(),
rcu_start_future_gp(), rcu_accelerate_cbs(), rcu_advance_cbs(),
__note_gp_changes(), and rcu_start_gp() functions now return a boolean
which indicates when a wake-up is needed. A new rcu_gp_kthread_wake()
does the wakeup when it is necessary and safe to do so: No self-wakes,
no wake-ups if the ->gp_flags field indicates there is no need (as in
someone else did the wake-up before we got around to it), and no wake-ups
before the grace-period kthread has been created.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2014-03-12 04:02:16 +08:00
|
|
|
* is reason to awaken the grace-period kthread.
|
2012-12-31 07:21:01 +08:00
|
|
|
*
|
2018-04-13 01:45:06 +08:00
|
|
|
* The caller must hold the specified rcu_node structure's ->lock, which
|
|
|
|
* is why the caller is responsible for waking the grace-period kthread.
|
2018-05-21 12:42:18 +08:00
|
|
|
*
|
|
|
|
* Returns true if the GP thread needs to be awakened else false.
|
2012-12-31 07:21:01 +08:00
|
|
|
*/
|
2018-05-23 14:38:14 +08:00
|
|
|
static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
|
2018-05-21 12:42:18 +08:00
|
|
|
unsigned long gp_seq_req)
|
2012-12-31 07:21:01 +08:00
|
|
|
{
|
rcu: Make callers awaken grace-period kthread
The rcu_start_gp_advanced() function currently uses irq_work_queue()
to defer wakeups of the RCU grace-period kthread. This deferring
is necessary to avoid RCU-scheduler deadlocks involving the rcu_node
structure's lock, meaning that RCU cannot call any of the scheduler's
wake-up functions while holding one of these locks.
Unfortunately, the second and subsequent calls to irq_work_queue() are
ignored, and the first call will be ignored (aside from queuing the work
item) if the scheduler-clock tick is turned off. This is OK for many
uses, especially those where irq_work_queue() is called from an interrupt
or softirq handler, because in those cases the scheduler-clock-tick state
will be re-evaluated, which will turn the scheduler-clock tick back on.
On the next tick, any deferred work will then be processed.
However, this strategy does not always work for RCU, which can be invoked
at process level from idle CPUs. In this case, the tick might never
be turned back on, indefinitely defering a grace-period start request.
Note that the RCU CPU stall detector cannot see this condition, because
there is no RCU grace period in progress. Therefore, we can (and do!)
see long tens-of-seconds stalls in grace-period handling. In theory,
we could see a full grace-period hang, but rcutorture testing to date
has seen only the tens-of-seconds stalls. Event tracing demonstrates
that irq_work_queue() is being called repeatedly to no effect during
these stalls: The "newreq" event appears repeatedly from a task that is
not one of the grace-period kthreads.
In theory, irq_work_queue() might be fixed to avoid this sort of issue,
but RCU's requirements are unusual and it is quite straightforward to pass
wake-up responsibility up through RCU's call chain, so that the wakeup
happens when the offending locks are released.
This commit therefore makes this change. The rcu_start_gp_advanced(),
rcu_start_future_gp(), rcu_accelerate_cbs(), rcu_advance_cbs(),
__note_gp_changes(), and rcu_start_gp() functions now return a boolean
which indicates when a wake-up is needed. A new rcu_gp_kthread_wake()
does the wakeup when it is necessary and safe to do so: No self-wakes,
no wake-ups if the ->gp_flags field indicates there is no need (as in
someone else did the wake-up before we got around to it), and no wake-ups
before the grace-period kthread has been created.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2014-03-12 04:02:16 +08:00
|
|
|
bool ret = false;
|
2018-05-23 14:38:14 +08:00
|
|
|
struct rcu_node *rnp;
|
2012-12-31 07:21:01 +08:00
|
|
|
|
|
|
|
/*
|
2018-04-13 02:50:41 +08:00
|
|
|
* Use funnel locking to either acquire the root rcu_node
|
|
|
|
* structure's lock or bail out if the need for this grace period
|
2018-05-23 14:38:14 +08:00
|
|
|
* has already been recorded -- or if that grace period has in
|
|
|
|
* fact already started. If there is already a grace period in
|
|
|
|
* progress in a non-leaf node, no recording is needed because the
|
|
|
|
* end of the grace period will scan the leaf rcu_node structures.
|
|
|
|
* Note that rnp_start->lock must not be released.
|
2012-12-31 07:21:01 +08:00
|
|
|
*/
|
2018-05-23 14:38:14 +08:00
|
|
|
raw_lockdep_assert_held_rcu_node(rnp_start);
|
|
|
|
trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
|
|
|
|
for (rnp = rnp_start; 1; rnp = rnp->parent) {
|
|
|
|
if (rnp != rnp_start)
|
|
|
|
raw_spin_lock_rcu_node(rnp);
|
|
|
|
if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
|
|
|
|
rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
|
|
|
|
(rnp != rnp_start &&
|
|
|
|
rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
|
|
|
|
trace_rcu_this_gp(rnp, rdp, gp_seq_req,
|
2018-05-21 12:42:18 +08:00
|
|
|
TPS("Prestarted"));
|
2018-04-13 02:50:41 +08:00
|
|
|
goto unlock_out;
|
|
|
|
}
|
2018-05-23 14:38:14 +08:00
|
|
|
rnp->gp_seq_needed = gp_seq_req;
|
2018-05-23 14:38:15 +08:00
|
|
|
if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
|
2018-05-12 22:42:20 +08:00
|
|
|
/*
|
2018-05-23 14:38:15 +08:00
|
|
|
* We just marked the leaf or internal node, and a
|
|
|
|
* grace period is in progress, which means that
|
|
|
|
* rcu_gp_cleanup() will see the marking. Bail to
|
|
|
|
* reduce contention.
|
2018-05-12 22:42:20 +08:00
|
|
|
*/
|
2018-05-23 14:38:14 +08:00
|
|
|
trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
|
2018-05-21 12:42:18 +08:00
|
|
|
TPS("Startedleaf"));
|
2018-05-12 22:42:20 +08:00
|
|
|
goto unlock_out;
|
|
|
|
}
|
2018-05-23 14:38:14 +08:00
|
|
|
if (rnp != rnp_start && rnp->parent != NULL)
|
|
|
|
raw_spin_unlock_rcu_node(rnp);
|
|
|
|
if (!rnp->parent)
|
2018-04-13 02:50:41 +08:00
|
|
|
break; /* At root, and perhaps also leaf. */
|
2012-12-31 07:21:01 +08:00
|
|
|
}
|
|
|
|
|
2018-04-13 02:50:41 +08:00
|
|
|
/* If GP already in progress, just leave, otherwise start one. */
|
2018-07-04 08:22:34 +08:00
|
|
|
if (rcu_gp_in_progress()) {
|
2018-05-23 14:38:14 +08:00
|
|
|
trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
|
2012-12-31 07:21:01 +08:00
|
|
|
goto unlock_out;
|
|
|
|
}
|
2018-05-23 14:38:14 +08:00
|
|
|
trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
|
2018-07-06 06:47:01 +08:00
|
|
|
WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
|
|
|
|
rcu_state.gp_req_activity = jiffies;
|
|
|
|
if (!rcu_state.gp_kthread) {
|
2018-05-23 14:38:14 +08:00
|
|
|
trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
|
2018-04-13 02:50:41 +08:00
|
|
|
goto unlock_out;
|
2012-12-31 07:21:01 +08:00
|
|
|
}
|
2018-07-06 06:47:01 +08:00
|
|
|
trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq"));
|
2018-04-13 02:50:41 +08:00
|
|
|
ret = true; /* Caller must wake GP kthread. */
|
2012-12-31 07:21:01 +08:00
|
|
|
unlock_out:
|
2018-05-02 02:07:23 +08:00
|
|
|
/* Push furthest requested GP to leaf node and rcu_data structure. */
|
2018-05-23 14:38:14 +08:00
|
|
|
if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
|
|
|
|
rnp_start->gp_seq_needed = rnp->gp_seq_needed;
|
|
|
|
rdp->gp_seq_needed = rnp->gp_seq_needed;
|
2018-05-02 02:07:23 +08:00
|
|
|
}
|
2018-05-23 14:38:14 +08:00
|
|
|
if (rnp != rnp_start)
|
|
|
|
raw_spin_unlock_rcu_node(rnp);
|
rcu: Make callers awaken grace-period kthread
The rcu_start_gp_advanced() function currently uses irq_work_queue()
to defer wakeups of the RCU grace-period kthread. This deferring
is necessary to avoid RCU-scheduler deadlocks involving the rcu_node
structure's lock, meaning that RCU cannot call any of the scheduler's
wake-up functions while holding one of these locks.
Unfortunately, the second and subsequent calls to irq_work_queue() are
ignored, and the first call will be ignored (aside from queuing the work
item) if the scheduler-clock tick is turned off. This is OK for many
uses, especially those where irq_work_queue() is called from an interrupt
or softirq handler, because in those cases the scheduler-clock-tick state
will be re-evaluated, which will turn the scheduler-clock tick back on.
On the next tick, any deferred work will then be processed.
However, this strategy does not always work for RCU, which can be invoked
at process level from idle CPUs. In this case, the tick might never
be turned back on, indefinitely defering a grace-period start request.
Note that the RCU CPU stall detector cannot see this condition, because
there is no RCU grace period in progress. Therefore, we can (and do!)
see long tens-of-seconds stalls in grace-period handling. In theory,
we could see a full grace-period hang, but rcutorture testing to date
has seen only the tens-of-seconds stalls. Event tracing demonstrates
that irq_work_queue() is being called repeatedly to no effect during
these stalls: The "newreq" event appears repeatedly from a task that is
not one of the grace-period kthreads.
In theory, irq_work_queue() might be fixed to avoid this sort of issue,
but RCU's requirements are unusual and it is quite straightforward to pass
wake-up responsibility up through RCU's call chain, so that the wakeup
happens when the offending locks are released.
This commit therefore makes this change. The rcu_start_gp_advanced(),
rcu_start_future_gp(), rcu_accelerate_cbs(), rcu_advance_cbs(),
__note_gp_changes(), and rcu_start_gp() functions now return a boolean
which indicates when a wake-up is needed. A new rcu_gp_kthread_wake()
does the wakeup when it is necessary and safe to do so: No self-wakes,
no wake-ups if the ->gp_flags field indicates there is no need (as in
someone else did the wake-up before we got around to it), and no wake-ups
before the grace-period kthread has been created.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2014-03-12 04:02:16 +08:00
|
|
|
return ret;
|
2012-12-31 07:21:01 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Clean up any old requests for the just-ended grace period. Also return
|
2017-02-09 06:58:41 +08:00
|
|
|
* whether any additional grace periods have been requested.
|
2012-12-31 07:21:01 +08:00
|
|
|
*/
|
2018-07-04 08:22:34 +08:00
|
|
|
static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
|
2012-12-31 07:21:01 +08:00
|
|
|
{
|
2018-04-12 22:20:30 +08:00
|
|
|
bool needmore;
|
2018-07-04 06:37:16 +08:00
|
|
|
struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
|
2012-12-31 07:21:01 +08:00
|
|
|
|
2018-05-02 01:26:57 +08:00
|
|
|
needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
|
|
|
|
if (!needmore)
|
|
|
|
rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
|
2018-05-21 12:42:18 +08:00
|
|
|
trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
|
2018-04-13 02:24:09 +08:00
|
|
|
needmore ? TPS("CleanupMore") : TPS("Cleanup"));
|
2012-12-31 07:21:01 +08:00
|
|
|
return needmore;
|
|
|
|
}
|
|
|
|
|
rcu: Make callers awaken grace-period kthread
The rcu_start_gp_advanced() function currently uses irq_work_queue()
to defer wakeups of the RCU grace-period kthread. This deferring
is necessary to avoid RCU-scheduler deadlocks involving the rcu_node
structure's lock, meaning that RCU cannot call any of the scheduler's
wake-up functions while holding one of these locks.
Unfortunately, the second and subsequent calls to irq_work_queue() are
ignored, and the first call will be ignored (aside from queuing the work
item) if the scheduler-clock tick is turned off. This is OK for many
uses, especially those where irq_work_queue() is called from an interrupt
or softirq handler, because in those cases the scheduler-clock-tick state
will be re-evaluated, which will turn the scheduler-clock tick back on.
On the next tick, any deferred work will then be processed.
However, this strategy does not always work for RCU, which can be invoked
at process level from idle CPUs. In this case, the tick might never
be turned back on, indefinitely defering a grace-period start request.
Note that the RCU CPU stall detector cannot see this condition, because
there is no RCU grace period in progress. Therefore, we can (and do!)
see long tens-of-seconds stalls in grace-period handling. In theory,
we could see a full grace-period hang, but rcutorture testing to date
has seen only the tens-of-seconds stalls. Event tracing demonstrates
that irq_work_queue() is being called repeatedly to no effect during
these stalls: The "newreq" event appears repeatedly from a task that is
not one of the grace-period kthreads.
In theory, irq_work_queue() might be fixed to avoid this sort of issue,
but RCU's requirements are unusual and it is quite straightforward to pass
wake-up responsibility up through RCU's call chain, so that the wakeup
happens when the offending locks are released.
This commit therefore makes this change. The rcu_start_gp_advanced(),
rcu_start_future_gp(), rcu_accelerate_cbs(), rcu_advance_cbs(),
__note_gp_changes(), and rcu_start_gp() functions now return a boolean
which indicates when a wake-up is needed. A new rcu_gp_kthread_wake()
does the wakeup when it is necessary and safe to do so: No self-wakes,
no wake-ups if the ->gp_flags field indicates there is no need (as in
someone else did the wake-up before we got around to it), and no wake-ups
before the grace-period kthread has been created.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2014-03-12 04:02:16 +08:00
|
|
|
/*
|
2018-07-08 09:12:26 +08:00
|
|
|
* Awaken the grace-period kthread. Don't do a self-awaken, and don't
|
|
|
|
* bother awakening when there is nothing for the grace-period kthread
|
|
|
|
* to do (as in several CPUs raced to awaken, and we lost), and finally
|
|
|
|
* don't try to awaken a kthread that has not yet been created.
|
rcu: Make callers awaken grace-period kthread
The rcu_start_gp_advanced() function currently uses irq_work_queue()
to defer wakeups of the RCU grace-period kthread. This deferring
is necessary to avoid RCU-scheduler deadlocks involving the rcu_node
structure's lock, meaning that RCU cannot call any of the scheduler's
wake-up functions while holding one of these locks.
Unfortunately, the second and subsequent calls to irq_work_queue() are
ignored, and the first call will be ignored (aside from queuing the work
item) if the scheduler-clock tick is turned off. This is OK for many
uses, especially those where irq_work_queue() is called from an interrupt
or softirq handler, because in those cases the scheduler-clock-tick state
will be re-evaluated, which will turn the scheduler-clock tick back on.
On the next tick, any deferred work will then be processed.
However, this strategy does not always work for RCU, which can be invoked
at process level from idle CPUs. In this case, the tick might never
be turned back on, indefinitely defering a grace-period start request.
Note that the RCU CPU stall detector cannot see this condition, because
there is no RCU grace period in progress. Therefore, we can (and do!)
see long tens-of-seconds stalls in grace-period handling. In theory,
we could see a full grace-period hang, but rcutorture testing to date
has seen only the tens-of-seconds stalls. Event tracing demonstrates
that irq_work_queue() is being called repeatedly to no effect during
these stalls: The "newreq" event appears repeatedly from a task that is
not one of the grace-period kthreads.
In theory, irq_work_queue() might be fixed to avoid this sort of issue,
but RCU's requirements are unusual and it is quite straightforward to pass
wake-up responsibility up through RCU's call chain, so that the wakeup
happens when the offending locks are released.
This commit therefore makes this change. The rcu_start_gp_advanced(),
rcu_start_future_gp(), rcu_accelerate_cbs(), rcu_advance_cbs(),
__note_gp_changes(), and rcu_start_gp() functions now return a boolean
which indicates when a wake-up is needed. A new rcu_gp_kthread_wake()
does the wakeup when it is necessary and safe to do so: No self-wakes,
no wake-ups if the ->gp_flags field indicates there is no need (as in
someone else did the wake-up before we got around to it), and no wake-ups
before the grace-period kthread has been created.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2014-03-12 04:02:16 +08:00
|
|
|
*/
|
2018-07-04 08:22:34 +08:00
|
|
|
static void rcu_gp_kthread_wake(void)
|
rcu: Make callers awaken grace-period kthread
The rcu_start_gp_advanced() function currently uses irq_work_queue()
to defer wakeups of the RCU grace-period kthread. This deferring
is necessary to avoid RCU-scheduler deadlocks involving the rcu_node
structure's lock, meaning that RCU cannot call any of the scheduler's
wake-up functions while holding one of these locks.
Unfortunately, the second and subsequent calls to irq_work_queue() are
ignored, and the first call will be ignored (aside from queuing the work
item) if the scheduler-clock tick is turned off. This is OK for many
uses, especially those where irq_work_queue() is called from an interrupt
or softirq handler, because in those cases the scheduler-clock-tick state
will be re-evaluated, which will turn the scheduler-clock tick back on.
On the next tick, any deferred work will then be processed.
However, this strategy does not always work for RCU, which can be invoked
at process level from idle CPUs. In this case, the tick might never
be turned back on, indefinitely defering a grace-period start request.
Note that the RCU CPU stall detector cannot see this condition, because
there is no RCU grace period in progress. Therefore, we can (and do!)
see long tens-of-seconds stalls in grace-period handling. In theory,
we could see a full grace-period hang, but rcutorture testing to date
has seen only the tens-of-seconds stalls. Event tracing demonstrates
that irq_work_queue() is being called repeatedly to no effect during
these stalls: The "newreq" event appears repeatedly from a task that is
not one of the grace-period kthreads.
In theory, irq_work_queue() might be fixed to avoid this sort of issue,
but RCU's requirements are unusual and it is quite straightforward to pass
wake-up responsibility up through RCU's call chain, so that the wakeup
happens when the offending locks are released.
This commit therefore makes this change. The rcu_start_gp_advanced(),
rcu_start_future_gp(), rcu_accelerate_cbs(), rcu_advance_cbs(),
__note_gp_changes(), and rcu_start_gp() functions now return a boolean
which indicates when a wake-up is needed. A new rcu_gp_kthread_wake()
does the wakeup when it is necessary and safe to do so: No self-wakes,
no wake-ups if the ->gp_flags field indicates there is no need (as in
someone else did the wake-up before we got around to it), and no wake-ups
before the grace-period kthread has been created.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2014-03-12 04:02:16 +08:00
|
|
|
{
|
2018-07-04 08:22:34 +08:00
|
|
|
if (current == rcu_state.gp_kthread ||
|
|
|
|
!READ_ONCE(rcu_state.gp_flags) ||
|
|
|
|
!rcu_state.gp_kthread)
|
rcu: Make callers awaken grace-period kthread
The rcu_start_gp_advanced() function currently uses irq_work_queue()
to defer wakeups of the RCU grace-period kthread. This deferring
is necessary to avoid RCU-scheduler deadlocks involving the rcu_node
structure's lock, meaning that RCU cannot call any of the scheduler's
wake-up functions while holding one of these locks.
Unfortunately, the second and subsequent calls to irq_work_queue() are
ignored, and the first call will be ignored (aside from queuing the work
item) if the scheduler-clock tick is turned off. This is OK for many
uses, especially those where irq_work_queue() is called from an interrupt
or softirq handler, because in those cases the scheduler-clock-tick state
will be re-evaluated, which will turn the scheduler-clock tick back on.
On the next tick, any deferred work will then be processed.
However, this strategy does not always work for RCU, which can be invoked
at process level from idle CPUs. In this case, the tick might never
be turned back on, indefinitely defering a grace-period start request.
Note that the RCU CPU stall detector cannot see this condition, because
there is no RCU grace period in progress. Therefore, we can (and do!)
see long tens-of-seconds stalls in grace-period handling. In theory,
we could see a full grace-period hang, but rcutorture testing to date
has seen only the tens-of-seconds stalls. Event tracing demonstrates
that irq_work_queue() is being called repeatedly to no effect during
these stalls: The "newreq" event appears repeatedly from a task that is
not one of the grace-period kthreads.
In theory, irq_work_queue() might be fixed to avoid this sort of issue,
but RCU's requirements are unusual and it is quite straightforward to pass
wake-up responsibility up through RCU's call chain, so that the wakeup
happens when the offending locks are released.
This commit therefore makes this change. The rcu_start_gp_advanced(),
rcu_start_future_gp(), rcu_accelerate_cbs(), rcu_advance_cbs(),
__note_gp_changes(), and rcu_start_gp() functions now return a boolean
which indicates when a wake-up is needed. A new rcu_gp_kthread_wake()
does the wakeup when it is necessary and safe to do so: No self-wakes,
no wake-ups if the ->gp_flags field indicates there is no need (as in
someone else did the wake-up before we got around to it), and no wake-ups
before the grace-period kthread has been created.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2014-03-12 04:02:16 +08:00
|
|
|
return;
|
2018-07-04 08:22:34 +08:00
|
|
|
swake_up_one(&rcu_state.gp_wq);
|
rcu: Make callers awaken grace-period kthread
The rcu_start_gp_advanced() function currently uses irq_work_queue()
to defer wakeups of the RCU grace-period kthread. This deferring
is necessary to avoid RCU-scheduler deadlocks involving the rcu_node
structure's lock, meaning that RCU cannot call any of the scheduler's
wake-up functions while holding one of these locks.
Unfortunately, the second and subsequent calls to irq_work_queue() are
ignored, and the first call will be ignored (aside from queuing the work
item) if the scheduler-clock tick is turned off. This is OK for many
uses, especially those where irq_work_queue() is called from an interrupt
or softirq handler, because in those cases the scheduler-clock-tick state
will be re-evaluated, which will turn the scheduler-clock tick back on.
On the next tick, any deferred work will then be processed.
However, this strategy does not always work for RCU, which can be invoked
at process level from idle CPUs. In this case, the tick might never
be turned back on, indefinitely defering a grace-period start request.
Note that the RCU CPU stall detector cannot see this condition, because
there is no RCU grace period in progress. Therefore, we can (and do!)
see long tens-of-seconds stalls in grace-period handling. In theory,
we could see a full grace-period hang, but rcutorture testing to date
has seen only the tens-of-seconds stalls. Event tracing demonstrates
that irq_work_queue() is being called repeatedly to no effect during
these stalls: The "newreq" event appears repeatedly from a task that is
not one of the grace-period kthreads.
In theory, irq_work_queue() might be fixed to avoid this sort of issue,
but RCU's requirements are unusual and it is quite straightforward to pass
wake-up responsibility up through RCU's call chain, so that the wakeup
happens when the offending locks are released.
This commit therefore makes this change. The rcu_start_gp_advanced(),
rcu_start_future_gp(), rcu_accelerate_cbs(), rcu_advance_cbs(),
__note_gp_changes(), and rcu_start_gp() functions now return a boolean
which indicates when a wake-up is needed. A new rcu_gp_kthread_wake()
does the wakeup when it is necessary and safe to do so: No self-wakes,
no wake-ups if the ->gp_flags field indicates there is no need (as in
someone else did the wake-up before we got around to it), and no wake-ups
before the grace-period kthread has been created.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2014-03-12 04:02:16 +08:00
|
|
|
}
|
|
|
|
|
2012-12-04 05:52:00 +08:00
|
|
|
/*
|
2018-05-01 01:57:36 +08:00
|
|
|
* If there is room, assign a ->gp_seq number to any callbacks on this
|
|
|
|
* CPU that have not already been assigned. Also accelerate any callbacks
|
|
|
|
* that were previously assigned a ->gp_seq number that has since proven
|
|
|
|
* to be too conservative, which can happen if callbacks get assigned a
|
|
|
|
* ->gp_seq number while RCU is idle, but with reference to a non-root
|
|
|
|
* rcu_node structure. This function is idempotent, so it does not hurt
|
|
|
|
* to call it repeatedly. Returns an flag saying that we should awaken
|
|
|
|
* the RCU grace-period kthread.
|
2012-12-04 05:52:00 +08:00
|
|
|
*
|
|
|
|
* The caller must hold rnp->lock with interrupts disabled.
|
|
|
|
*/
|
2018-07-04 08:22:34 +08:00
|
|
|
static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
|
2012-12-04 05:52:00 +08:00
|
|
|
{
|
2018-05-21 12:42:18 +08:00
|
|
|
unsigned long gp_seq_req;
|
srcu: Abstract multi-tail callback list handling
RCU has only one multi-tail callback list, which is implemented via
the nxtlist, nxttail, nxtcompleted, qlen_lazy, and qlen fields in the
rcu_data structure, and whose operations are open-code throughout the
Tree RCU implementation. This has been more or less OK in the past,
but upcoming callback-list optimizations in SRCU could really use
a multi-tail callback list there as well.
This commit therefore abstracts the multi-tail callback list handling
into a new kernel/rcu/rcu_segcblist.h file, and uses this new API.
The simple head-and-tail pointer callback list is also abstracted and
applied everywhere except for the NOCB callback-offload lists. (Yes,
the plan is to apply them there as well, but this commit is already
bigger than would be good.)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-02-09 04:36:42 +08:00
|
|
|
bool ret = false;
|
2012-12-04 05:52:00 +08:00
|
|
|
|
2018-01-17 22:24:30 +08:00
|
|
|
raw_lockdep_assert_held_rcu_node(rnp);
|
2017-04-29 03:32:15 +08:00
|
|
|
|
srcu: Abstract multi-tail callback list handling
RCU has only one multi-tail callback list, which is implemented via
the nxtlist, nxttail, nxtcompleted, qlen_lazy, and qlen fields in the
rcu_data structure, and whose operations are open-code throughout the
Tree RCU implementation. This has been more or less OK in the past,
but upcoming callback-list optimizations in SRCU could really use
a multi-tail callback list there as well.
This commit therefore abstracts the multi-tail callback list handling
into a new kernel/rcu/rcu_segcblist.h file, and uses this new API.
The simple head-and-tail pointer callback list is also abstracted and
applied everywhere except for the NOCB callback-offload lists. (Yes,
the plan is to apply them there as well, but this commit is already
bigger than would be good.)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-02-09 04:36:42 +08:00
|
|
|
/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
|
|
|
|
if (!rcu_segcblist_pend_cbs(&rdp->cblist))
|
rcu: Make callers awaken grace-period kthread
The rcu_start_gp_advanced() function currently uses irq_work_queue()
to defer wakeups of the RCU grace-period kthread. This deferring
is necessary to avoid RCU-scheduler deadlocks involving the rcu_node
structure's lock, meaning that RCU cannot call any of the scheduler's
wake-up functions while holding one of these locks.
Unfortunately, the second and subsequent calls to irq_work_queue() are
ignored, and the first call will be ignored (aside from queuing the work
item) if the scheduler-clock tick is turned off. This is OK for many
uses, especially those where irq_work_queue() is called from an interrupt
or softirq handler, because in those cases the scheduler-clock-tick state
will be re-evaluated, which will turn the scheduler-clock tick back on.
On the next tick, any deferred work will then be processed.
However, this strategy does not always work for RCU, which can be invoked
at process level from idle CPUs. In this case, the tick might never
be turned back on, indefinitely defering a grace-period start request.
Note that the RCU CPU stall detector cannot see this condition, because
there is no RCU grace period in progress. Therefore, we can (and do!)
see long tens-of-seconds stalls in grace-period handling. In theory,
we could see a full grace-period hang, but rcutorture testing to date
has seen only the tens-of-seconds stalls. Event tracing demonstrates
that irq_work_queue() is being called repeatedly to no effect during
these stalls: The "newreq" event appears repeatedly from a task that is
not one of the grace-period kthreads.
In theory, irq_work_queue() might be fixed to avoid this sort of issue,
but RCU's requirements are unusual and it is quite straightforward to pass
wake-up responsibility up through RCU's call chain, so that the wakeup
happens when the offending locks are released.
This commit therefore makes this change. The rcu_start_gp_advanced(),
rcu_start_future_gp(), rcu_accelerate_cbs(), rcu_advance_cbs(),
__note_gp_changes(), and rcu_start_gp() functions now return a boolean
which indicates when a wake-up is needed. A new rcu_gp_kthread_wake()
does the wakeup when it is necessary and safe to do so: No self-wakes,
no wake-ups if the ->gp_flags field indicates there is no need (as in
someone else did the wake-up before we got around to it), and no wake-ups
before the grace-period kthread has been created.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2014-03-12 04:02:16 +08:00
|
|
|
return false;
|
2012-12-04 05:52:00 +08:00
|
|
|
|
|
|
|
/*
|
srcu: Abstract multi-tail callback list handling
RCU has only one multi-tail callback list, which is implemented via
the nxtlist, nxttail, nxtcompleted, qlen_lazy, and qlen fields in the
rcu_data structure, and whose operations are open-code throughout the
Tree RCU implementation. This has been more or less OK in the past,
but upcoming callback-list optimizations in SRCU could really use
a multi-tail callback list there as well.
This commit therefore abstracts the multi-tail callback list handling
into a new kernel/rcu/rcu_segcblist.h file, and uses this new API.
The simple head-and-tail pointer callback list is also abstracted and
applied everywhere except for the NOCB callback-offload lists. (Yes,
the plan is to apply them there as well, but this commit is already
bigger than would be good.)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-02-09 04:36:42 +08:00
|
|
|
* Callbacks are often registered with incomplete grace-period
|
|
|
|
* information. Something about the fact that getting exact
|
|
|
|
* information requires acquiring a global lock... RCU therefore
|
|
|
|
* makes a conservative estimate of the grace period number at which
|
|
|
|
* a given callback will become ready to invoke. The following
|
|
|
|
* code checks this estimate and improves it when possible, thus
|
|
|
|
* accelerating callback invocation to an earlier grace-period
|
|
|
|
* number.
|
2012-12-04 05:52:00 +08:00
|
|
|
*/
|
2018-07-06 06:47:01 +08:00
|
|
|
gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
|
2018-05-21 12:42:18 +08:00
|
|
|
if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
|
|
|
|
ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
|
2012-11-28 08:55:44 +08:00
|
|
|
|
|
|
|
/* Trace depending on how much we were able to accelerate. */
|
srcu: Abstract multi-tail callback list handling
RCU has only one multi-tail callback list, which is implemented via
the nxtlist, nxttail, nxtcompleted, qlen_lazy, and qlen fields in the
rcu_data structure, and whose operations are open-code throughout the
Tree RCU implementation. This has been more or less OK in the past,
but upcoming callback-list optimizations in SRCU could really use
a multi-tail callback list there as well.
This commit therefore abstracts the multi-tail callback list handling
into a new kernel/rcu/rcu_segcblist.h file, and uses this new API.
The simple head-and-tail pointer callback list is also abstracted and
applied everywhere except for the NOCB callback-offload lists. (Yes,
the plan is to apply them there as well, but this commit is already
bigger than would be good.)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-02-09 04:36:42 +08:00
|
|
|
if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
|
2018-07-06 06:47:01 +08:00
|
|
|
trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB"));
|
2012-11-28 08:55:44 +08:00
|
|
|
else
|
2018-07-06 06:47:01 +08:00
|
|
|
trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB"));
|
rcu: Make callers awaken grace-period kthread
The rcu_start_gp_advanced() function currently uses irq_work_queue()
to defer wakeups of the RCU grace-period kthread. This deferring
is necessary to avoid RCU-scheduler deadlocks involving the rcu_node
structure's lock, meaning that RCU cannot call any of the scheduler's
wake-up functions while holding one of these locks.
Unfortunately, the second and subsequent calls to irq_work_queue() are
ignored, and the first call will be ignored (aside from queuing the work
item) if the scheduler-clock tick is turned off. This is OK for many
uses, especially those where irq_work_queue() is called from an interrupt
or softirq handler, because in those cases the scheduler-clock-tick state
will be re-evaluated, which will turn the scheduler-clock tick back on.
On the next tick, any deferred work will then be processed.
However, this strategy does not always work for RCU, which can be invoked
at process level from idle CPUs. In this case, the tick might never
be turned back on, indefinitely defering a grace-period start request.
Note that the RCU CPU stall detector cannot see this condition, because
there is no RCU grace period in progress. Therefore, we can (and do!)
see long tens-of-seconds stalls in grace-period handling. In theory,
we could see a full grace-period hang, but rcutorture testing to date
has seen only the tens-of-seconds stalls. Event tracing demonstrates
that irq_work_queue() is being called repeatedly to no effect during
these stalls: The "newreq" event appears repeatedly from a task that is
not one of the grace-period kthreads.
In theory, irq_work_queue() might be fixed to avoid this sort of issue,
but RCU's requirements are unusual and it is quite straightforward to pass
wake-up responsibility up through RCU's call chain, so that the wakeup
happens when the offending locks are released.
This commit therefore makes this change. The rcu_start_gp_advanced(),
rcu_start_future_gp(), rcu_accelerate_cbs(), rcu_advance_cbs(),
__note_gp_changes(), and rcu_start_gp() functions now return a boolean
which indicates when a wake-up is needed. A new rcu_gp_kthread_wake()
does the wakeup when it is necessary and safe to do so: No self-wakes,
no wake-ups if the ->gp_flags field indicates there is no need (as in
someone else did the wake-up before we got around to it), and no wake-ups
before the grace-period kthread has been created.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2014-03-12 04:02:16 +08:00
|
|
|
return ret;
|
2012-12-04 05:52:00 +08:00
|
|
|
}
|
|
|
|
|
2018-05-02 07:29:47 +08:00
|
|
|
/*
|
|
|
|
* Similar to rcu_accelerate_cbs(), but does not require that the leaf
|
|
|
|
* rcu_node structure's ->lock be held. It consults the cached value
|
|
|
|
* of ->gp_seq_needed in the rcu_data structure, and if that indicates
|
|
|
|
* that a new grace-period request be made, invokes rcu_accelerate_cbs()
|
|
|
|
* while holding the leaf rcu_node structure's ->lock.
|
|
|
|
*/
|
2018-07-04 08:22:34 +08:00
|
|
|
static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
|
2018-05-02 07:29:47 +08:00
|
|
|
struct rcu_data *rdp)
|
|
|
|
{
|
|
|
|
unsigned long c;
|
|
|
|
bool needwake;
|
|
|
|
|
|
|
|
lockdep_assert_irqs_disabled();
|
2018-07-04 08:22:34 +08:00
|
|
|
c = rcu_seq_snap(&rcu_state.gp_seq);
|
2018-05-02 07:29:47 +08:00
|
|
|
if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
|
|
|
|
/* Old request still live, so mark recent callbacks. */
|
|
|
|
(void)rcu_segcblist_accelerate(&rdp->cblist, c);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
|
2018-07-04 08:22:34 +08:00
|
|
|
needwake = rcu_accelerate_cbs(rnp, rdp);
|
2018-05-02 07:29:47 +08:00
|
|
|
raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
|
|
|
|
if (needwake)
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_gp_kthread_wake();
|
2018-05-02 07:29:47 +08:00
|
|
|
}
|
|
|
|
|
2012-12-04 05:52:00 +08:00
|
|
|
/*
|
|
|
|
* Move any callbacks whose grace period has completed to the
|
|
|
|
* RCU_DONE_TAIL sublist, then compact the remaining sublists and
|
2018-05-01 01:57:36 +08:00
|
|
|
* assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
|
2012-12-04 05:52:00 +08:00
|
|
|
* sublist. This function is idempotent, so it does not hurt to
|
|
|
|
* invoke it repeatedly. As long as it is not invoked -too- often...
|
rcu: Make callers awaken grace-period kthread
The rcu_start_gp_advanced() function currently uses irq_work_queue()
to defer wakeups of the RCU grace-period kthread. This deferring
is necessary to avoid RCU-scheduler deadlocks involving the rcu_node
structure's lock, meaning that RCU cannot call any of the scheduler's
wake-up functions while holding one of these locks.
Unfortunately, the second and subsequent calls to irq_work_queue() are
ignored, and the first call will be ignored (aside from queuing the work
item) if the scheduler-clock tick is turned off. This is OK for many
uses, especially those where irq_work_queue() is called from an interrupt
or softirq handler, because in those cases the scheduler-clock-tick state
will be re-evaluated, which will turn the scheduler-clock tick back on.
On the next tick, any deferred work will then be processed.
However, this strategy does not always work for RCU, which can be invoked
at process level from idle CPUs. In this case, the tick might never
be turned back on, indefinitely defering a grace-period start request.
Note that the RCU CPU stall detector cannot see this condition, because
there is no RCU grace period in progress. Therefore, we can (and do!)
see long tens-of-seconds stalls in grace-period handling. In theory,
we could see a full grace-period hang, but rcutorture testing to date
has seen only the tens-of-seconds stalls. Event tracing demonstrates
that irq_work_queue() is being called repeatedly to no effect during
these stalls: The "newreq" event appears repeatedly from a task that is
not one of the grace-period kthreads.
In theory, irq_work_queue() might be fixed to avoid this sort of issue,
but RCU's requirements are unusual and it is quite straightforward to pass
wake-up responsibility up through RCU's call chain, so that the wakeup
happens when the offending locks are released.
This commit therefore makes this change. The rcu_start_gp_advanced(),
rcu_start_future_gp(), rcu_accelerate_cbs(), rcu_advance_cbs(),
__note_gp_changes(), and rcu_start_gp() functions now return a boolean
which indicates when a wake-up is needed. A new rcu_gp_kthread_wake()
does the wakeup when it is necessary and safe to do so: No self-wakes,
no wake-ups if the ->gp_flags field indicates there is no need (as in
someone else did the wake-up before we got around to it), and no wake-ups
before the grace-period kthread has been created.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2014-03-12 04:02:16 +08:00
|
|
|
* Returns true if the RCU grace-period kthread needs to be awakened.
|
2012-12-04 05:52:00 +08:00
|
|
|
*
|
|
|
|
* The caller must hold rnp->lock with interrupts disabled.
|
|
|
|
*/
|
2018-07-04 08:22:34 +08:00
|
|
|
static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
|
2012-12-04 05:52:00 +08:00
|
|
|
{
|
2018-01-17 22:24:30 +08:00
|
|
|
raw_lockdep_assert_held_rcu_node(rnp);
|
2017-04-29 03:32:15 +08:00
|
|
|
|
srcu: Abstract multi-tail callback list handling
RCU has only one multi-tail callback list, which is implemented via
the nxtlist, nxttail, nxtcompleted, qlen_lazy, and qlen fields in the
rcu_data structure, and whose operations are open-code throughout the
Tree RCU implementation. This has been more or less OK in the past,
but upcoming callback-list optimizations in SRCU could really use
a multi-tail callback list there as well.
This commit therefore abstracts the multi-tail callback list handling
into a new kernel/rcu/rcu_segcblist.h file, and uses this new API.
The simple head-and-tail pointer callback list is also abstracted and
applied everywhere except for the NOCB callback-offload lists. (Yes,
the plan is to apply them there as well, but this commit is already
bigger than would be good.)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-02-09 04:36:42 +08:00
|
|
|
/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
|
|
|
|
if (!rcu_segcblist_pend_cbs(&rdp->cblist))
|
rcu: Make callers awaken grace-period kthread
The rcu_start_gp_advanced() function currently uses irq_work_queue()
to defer wakeups of the RCU grace-period kthread. This deferring
is necessary to avoid RCU-scheduler deadlocks involving the rcu_node
structure's lock, meaning that RCU cannot call any of the scheduler's
wake-up functions while holding one of these locks.
Unfortunately, the second and subsequent calls to irq_work_queue() are
ignored, and the first call will be ignored (aside from queuing the work
item) if the scheduler-clock tick is turned off. This is OK for many
uses, especially those where irq_work_queue() is called from an interrupt
or softirq handler, because in those cases the scheduler-clock-tick state
will be re-evaluated, which will turn the scheduler-clock tick back on.
On the next tick, any deferred work will then be processed.
However, this strategy does not always work for RCU, which can be invoked
at process level from idle CPUs. In this case, the tick might never
be turned back on, indefinitely defering a grace-period start request.
Note that the RCU CPU stall detector cannot see this condition, because
there is no RCU grace period in progress. Therefore, we can (and do!)
see long tens-of-seconds stalls in grace-period handling. In theory,
we could see a full grace-period hang, but rcutorture testing to date
has seen only the tens-of-seconds stalls. Event tracing demonstrates
that irq_work_queue() is being called repeatedly to no effect during
these stalls: The "newreq" event appears repeatedly from a task that is
not one of the grace-period kthreads.
In theory, irq_work_queue() might be fixed to avoid this sort of issue,
but RCU's requirements are unusual and it is quite straightforward to pass
wake-up responsibility up through RCU's call chain, so that the wakeup
happens when the offending locks are released.
This commit therefore makes this change. The rcu_start_gp_advanced(),
rcu_start_future_gp(), rcu_accelerate_cbs(), rcu_advance_cbs(),
__note_gp_changes(), and rcu_start_gp() functions now return a boolean
which indicates when a wake-up is needed. A new rcu_gp_kthread_wake()
does the wakeup when it is necessary and safe to do so: No self-wakes,
no wake-ups if the ->gp_flags field indicates there is no need (as in
someone else did the wake-up before we got around to it), and no wake-ups
before the grace-period kthread has been created.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2014-03-12 04:02:16 +08:00
|
|
|
return false;
|
2012-12-04 05:52:00 +08:00
|
|
|
|
|
|
|
/*
|
2018-05-01 01:57:36 +08:00
|
|
|
* Find all callbacks whose ->gp_seq numbers indicate that they
|
2012-12-04 05:52:00 +08:00
|
|
|
* are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
|
|
|
|
*/
|
2018-05-01 01:57:36 +08:00
|
|
|
rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
|
2012-12-04 05:52:00 +08:00
|
|
|
|
|
|
|
/* Classify any remaining callbacks. */
|
2018-07-04 08:22:34 +08:00
|
|
|
return rcu_accelerate_cbs(rnp, rdp);
|
2012-12-04 05:52:00 +08:00
|
|
|
}
|
|
|
|
|
2009-11-03 05:52:28 +08:00
|
|
|
/*
|
2013-03-20 02:53:31 +08:00
|
|
|
* Update CPU-local rcu_data state to record the beginnings and ends of
|
|
|
|
* grace periods. The caller must hold the ->lock of the leaf rcu_node
|
|
|
|
* structure corresponding to the current CPU, and must have irqs disabled.
|
rcu: Make callers awaken grace-period kthread
The rcu_start_gp_advanced() function currently uses irq_work_queue()
to defer wakeups of the RCU grace-period kthread. This deferring
is necessary to avoid RCU-scheduler deadlocks involving the rcu_node
structure's lock, meaning that RCU cannot call any of the scheduler's
wake-up functions while holding one of these locks.
Unfortunately, the second and subsequent calls to irq_work_queue() are
ignored, and the first call will be ignored (aside from queuing the work
item) if the scheduler-clock tick is turned off. This is OK for many
uses, especially those where irq_work_queue() is called from an interrupt
or softirq handler, because in those cases the scheduler-clock-tick state
will be re-evaluated, which will turn the scheduler-clock tick back on.
On the next tick, any deferred work will then be processed.
However, this strategy does not always work for RCU, which can be invoked
at process level from idle CPUs. In this case, the tick might never
be turned back on, indefinitely defering a grace-period start request.
Note that the RCU CPU stall detector cannot see this condition, because
there is no RCU grace period in progress. Therefore, we can (and do!)
see long tens-of-seconds stalls in grace-period handling. In theory,
we could see a full grace-period hang, but rcutorture testing to date
has seen only the tens-of-seconds stalls. Event tracing demonstrates
that irq_work_queue() is being called repeatedly to no effect during
these stalls: The "newreq" event appears repeatedly from a task that is
not one of the grace-period kthreads.
In theory, irq_work_queue() might be fixed to avoid this sort of issue,
but RCU's requirements are unusual and it is quite straightforward to pass
wake-up responsibility up through RCU's call chain, so that the wakeup
happens when the offending locks are released.
This commit therefore makes this change. The rcu_start_gp_advanced(),
rcu_start_future_gp(), rcu_accelerate_cbs(), rcu_advance_cbs(),
__note_gp_changes(), and rcu_start_gp() functions now return a boolean
which indicates when a wake-up is needed. A new rcu_gp_kthread_wake()
does the wakeup when it is necessary and safe to do so: No self-wakes,
no wake-ups if the ->gp_flags field indicates there is no need (as in
someone else did the wake-up before we got around to it), and no wake-ups
before the grace-period kthread has been created.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2014-03-12 04:02:16 +08:00
|
|
|
* Returns true if the grace-period kthread needs to be awakened.
|
2009-11-03 05:52:28 +08:00
|
|
|
*/
|
2018-07-04 08:22:34 +08:00
|
|
|
static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
|
2009-11-03 05:52:28 +08:00
|
|
|
{
|
rcu: Make callers awaken grace-period kthread
The rcu_start_gp_advanced() function currently uses irq_work_queue()
to defer wakeups of the RCU grace-period kthread. This deferring
is necessary to avoid RCU-scheduler deadlocks involving the rcu_node
structure's lock, meaning that RCU cannot call any of the scheduler's
wake-up functions while holding one of these locks.
Unfortunately, the second and subsequent calls to irq_work_queue() are
ignored, and the first call will be ignored (aside from queuing the work
item) if the scheduler-clock tick is turned off. This is OK for many
uses, especially those where irq_work_queue() is called from an interrupt
or softirq handler, because in those cases the scheduler-clock-tick state
will be re-evaluated, which will turn the scheduler-clock tick back on.
On the next tick, any deferred work will then be processed.
However, this strategy does not always work for RCU, which can be invoked
at process level from idle CPUs. In this case, the tick might never
be turned back on, indefinitely defering a grace-period start request.
Note that the RCU CPU stall detector cannot see this condition, because
there is no RCU grace period in progress. Therefore, we can (and do!)
see long tens-of-seconds stalls in grace-period handling. In theory,
we could see a full grace-period hang, but rcutorture testing to date
has seen only the tens-of-seconds stalls. Event tracing demonstrates
that irq_work_queue() is being called repeatedly to no effect during
these stalls: The "newreq" event appears repeatedly from a task that is
not one of the grace-period kthreads.
In theory, irq_work_queue() might be fixed to avoid this sort of issue,
but RCU's requirements are unusual and it is quite straightforward to pass
wake-up responsibility up through RCU's call chain, so that the wakeup
happens when the offending locks are released.
This commit therefore makes this change. The rcu_start_gp_advanced(),
rcu_start_future_gp(), rcu_accelerate_cbs(), rcu_advance_cbs(),
__note_gp_changes(), and rcu_start_gp() functions now return a boolean
which indicates when a wake-up is needed. A new rcu_gp_kthread_wake()
does the wakeup when it is necessary and safe to do so: No self-wakes,
no wake-ups if the ->gp_flags field indicates there is no need (as in
someone else did the wake-up before we got around to it), and no wake-ups
before the grace-period kthread has been created.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2014-03-12 04:02:16 +08:00
|
|
|
bool ret;
|
2016-07-29 00:39:11 +08:00
|
|
|
bool need_gp;
|
rcu: Make callers awaken grace-period kthread
The rcu_start_gp_advanced() function currently uses irq_work_queue()
to defer wakeups of the RCU grace-period kthread. This deferring
is necessary to avoid RCU-scheduler deadlocks involving the rcu_node
structure's lock, meaning that RCU cannot call any of the scheduler's
wake-up functions while holding one of these locks.
Unfortunately, the second and subsequent calls to irq_work_queue() are
ignored, and the first call will be ignored (aside from queuing the work
item) if the scheduler-clock tick is turned off. This is OK for many
uses, especially those where irq_work_queue() is called from an interrupt
or softirq handler, because in those cases the scheduler-clock-tick state
will be re-evaluated, which will turn the scheduler-clock tick back on.
On the next tick, any deferred work will then be processed.
However, this strategy does not always work for RCU, which can be invoked
at process level from idle CPUs. In this case, the tick might never
be turned back on, indefinitely defering a grace-period start request.
Note that the RCU CPU stall detector cannot see this condition, because
there is no RCU grace period in progress. Therefore, we can (and do!)
see long tens-of-seconds stalls in grace-period handling. In theory,
we could see a full grace-period hang, but rcutorture testing to date
has seen only the tens-of-seconds stalls. Event tracing demonstrates
that irq_work_queue() is being called repeatedly to no effect during
these stalls: The "newreq" event appears repeatedly from a task that is
not one of the grace-period kthreads.
In theory, irq_work_queue() might be fixed to avoid this sort of issue,
but RCU's requirements are unusual and it is quite straightforward to pass
wake-up responsibility up through RCU's call chain, so that the wakeup
happens when the offending locks are released.
This commit therefore makes this change. The rcu_start_gp_advanced(),
rcu_start_future_gp(), rcu_accelerate_cbs(), rcu_advance_cbs(),
__note_gp_changes(), and rcu_start_gp() functions now return a boolean
which indicates when a wake-up is needed. A new rcu_gp_kthread_wake()
does the wakeup when it is necessary and safe to do so: No self-wakes,
no wake-ups if the ->gp_flags field indicates there is no need (as in
someone else did the wake-up before we got around to it), and no wake-ups
before the grace-period kthread has been created.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2014-03-12 04:02:16 +08:00
|
|
|
|
2018-01-17 22:24:30 +08:00
|
|
|
raw_lockdep_assert_held_rcu_node(rnp);
|
2017-04-29 03:32:15 +08:00
|
|
|
|
2018-04-28 07:01:46 +08:00
|
|
|
if (rdp->gp_seq == rnp->gp_seq)
|
|
|
|
return false; /* Nothing to do. */
|
2009-11-03 05:52:28 +08:00
|
|
|
|
2018-04-28 07:01:46 +08:00
|
|
|
/* Handle the ends of any preceding grace periods first. */
|
|
|
|
if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
|
|
|
|
unlikely(READ_ONCE(rdp->gpwrap))) {
|
2018-07-04 08:22:34 +08:00
|
|
|
ret = rcu_advance_cbs(rnp, rdp); /* Advance callbacks. */
|
2018-07-06 06:47:01 +08:00
|
|
|
trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
|
2018-04-28 07:01:46 +08:00
|
|
|
} else {
|
2018-07-04 08:22:34 +08:00
|
|
|
ret = rcu_accelerate_cbs(rnp, rdp); /* Recent callbacks. */
|
2009-11-03 05:52:28 +08:00
|
|
|
}
|
2013-03-20 01:53:14 +08:00
|
|
|
|
2018-04-28 07:01:46 +08:00
|
|
|
/* Now handle the beginnings of any new-to-this-CPU grace periods. */
|
|
|
|
if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
|
|
|
|
unlikely(READ_ONCE(rdp->gpwrap))) {
|
2013-03-20 01:08:37 +08:00
|
|
|
/*
|
|
|
|
* If the current grace period is waiting for this CPU,
|
|
|
|
* set up to detect a quiescent state, otherwise don't
|
|
|
|
* go looking for one.
|
|
|
|
*/
|
2018-07-06 06:47:01 +08:00
|
|
|
trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
|
2016-07-29 00:39:11 +08:00
|
|
|
need_gp = !!(rnp->qsmask & rdp->grpmask);
|
|
|
|
rdp->cpu_no_qs.b.norm = need_gp;
|
|
|
|
rdp->core_needs_qs = need_gp;
|
2013-03-20 01:08:37 +08:00
|
|
|
zero_cpu_stall_ticks(rdp);
|
|
|
|
}
|
2018-04-28 07:01:46 +08:00
|
|
|
rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
|
2018-05-16 07:47:30 +08:00
|
|
|
if (ULONG_CMP_GE(rnp->gp_seq_needed, rdp->gp_seq_needed) || rdp->gpwrap)
|
|
|
|
rdp->gp_seq_needed = rnp->gp_seq_needed;
|
|
|
|
WRITE_ONCE(rdp->gpwrap, false);
|
|
|
|
rcu_gpnum_ovf(rnp, rdp);
|
rcu: Make callers awaken grace-period kthread
The rcu_start_gp_advanced() function currently uses irq_work_queue()
to defer wakeups of the RCU grace-period kthread. This deferring
is necessary to avoid RCU-scheduler deadlocks involving the rcu_node
structure's lock, meaning that RCU cannot call any of the scheduler's
wake-up functions while holding one of these locks.
Unfortunately, the second and subsequent calls to irq_work_queue() are
ignored, and the first call will be ignored (aside from queuing the work
item) if the scheduler-clock tick is turned off. This is OK for many
uses, especially those where irq_work_queue() is called from an interrupt
or softirq handler, because in those cases the scheduler-clock-tick state
will be re-evaluated, which will turn the scheduler-clock tick back on.
On the next tick, any deferred work will then be processed.
However, this strategy does not always work for RCU, which can be invoked
at process level from idle CPUs. In this case, the tick might never
be turned back on, indefinitely defering a grace-period start request.
Note that the RCU CPU stall detector cannot see this condition, because
there is no RCU grace period in progress. Therefore, we can (and do!)
see long tens-of-seconds stalls in grace-period handling. In theory,
we could see a full grace-period hang, but rcutorture testing to date
has seen only the tens-of-seconds stalls. Event tracing demonstrates
that irq_work_queue() is being called repeatedly to no effect during
these stalls: The "newreq" event appears repeatedly from a task that is
not one of the grace-period kthreads.
In theory, irq_work_queue() might be fixed to avoid this sort of issue,
but RCU's requirements are unusual and it is quite straightforward to pass
wake-up responsibility up through RCU's call chain, so that the wakeup
happens when the offending locks are released.
This commit therefore makes this change. The rcu_start_gp_advanced(),
rcu_start_future_gp(), rcu_accelerate_cbs(), rcu_advance_cbs(),
__note_gp_changes(), and rcu_start_gp() functions now return a boolean
which indicates when a wake-up is needed. A new rcu_gp_kthread_wake()
does the wakeup when it is necessary and safe to do so: No self-wakes,
no wake-ups if the ->gp_flags field indicates there is no need (as in
someone else did the wake-up before we got around to it), and no wake-ups
before the grace-period kthread has been created.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2014-03-12 04:02:16 +08:00
|
|
|
return ret;
|
2013-03-20 01:08:37 +08:00
|
|
|
}
|
|
|
|
|
2018-07-04 08:22:34 +08:00
|
|
|
static void note_gp_changes(struct rcu_data *rdp)
|
2013-03-20 01:08:37 +08:00
|
|
|
{
|
|
|
|
unsigned long flags;
|
rcu: Make callers awaken grace-period kthread
The rcu_start_gp_advanced() function currently uses irq_work_queue()
to defer wakeups of the RCU grace-period kthread. This deferring
is necessary to avoid RCU-scheduler deadlocks involving the rcu_node
structure's lock, meaning that RCU cannot call any of the scheduler's
wake-up functions while holding one of these locks.
Unfortunately, the second and subsequent calls to irq_work_queue() are
ignored, and the first call will be ignored (aside from queuing the work
item) if the scheduler-clock tick is turned off. This is OK for many
uses, especially those where irq_work_queue() is called from an interrupt
or softirq handler, because in those cases the scheduler-clock-tick state
will be re-evaluated, which will turn the scheduler-clock tick back on.
On the next tick, any deferred work will then be processed.
However, this strategy does not always work for RCU, which can be invoked
at process level from idle CPUs. In this case, the tick might never
be turned back on, indefinitely defering a grace-period start request.
Note that the RCU CPU stall detector cannot see this condition, because
there is no RCU grace period in progress. Therefore, we can (and do!)
see long tens-of-seconds stalls in grace-period handling. In theory,
we could see a full grace-period hang, but rcutorture testing to date
has seen only the tens-of-seconds stalls. Event tracing demonstrates
that irq_work_queue() is being called repeatedly to no effect during
these stalls: The "newreq" event appears repeatedly from a task that is
not one of the grace-period kthreads.
In theory, irq_work_queue() might be fixed to avoid this sort of issue,
but RCU's requirements are unusual and it is quite straightforward to pass
wake-up responsibility up through RCU's call chain, so that the wakeup
happens when the offending locks are released.
This commit therefore makes this change. The rcu_start_gp_advanced(),
rcu_start_future_gp(), rcu_accelerate_cbs(), rcu_advance_cbs(),
__note_gp_changes(), and rcu_start_gp() functions now return a boolean
which indicates when a wake-up is needed. A new rcu_gp_kthread_wake()
does the wakeup when it is necessary and safe to do so: No self-wakes,
no wake-ups if the ->gp_flags field indicates there is no need (as in
someone else did the wake-up before we got around to it), and no wake-ups
before the grace-period kthread has been created.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2014-03-12 04:02:16 +08:00
|
|
|
bool needwake;
|
2013-03-20 01:08:37 +08:00
|
|
|
struct rcu_node *rnp;
|
|
|
|
|
|
|
|
local_irq_save(flags);
|
|
|
|
rnp = rdp->mynode;
|
2018-04-28 07:01:46 +08:00
|
|
|
if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
|
2015-03-04 06:57:58 +08:00
|
|
|
!unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
|
2015-10-08 18:24:23 +08:00
|
|
|
!raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
|
2013-03-20 01:08:37 +08:00
|
|
|
local_irq_restore(flags);
|
|
|
|
return;
|
|
|
|
}
|
2018-07-04 08:22:34 +08:00
|
|
|
needwake = __note_gp_changes(rnp, rdp);
|
2015-12-29 12:18:47 +08:00
|
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
rcu: Make callers awaken grace-period kthread
The rcu_start_gp_advanced() function currently uses irq_work_queue()
to defer wakeups of the RCU grace-period kthread. This deferring
is necessary to avoid RCU-scheduler deadlocks involving the rcu_node
structure's lock, meaning that RCU cannot call any of the scheduler's
wake-up functions while holding one of these locks.
Unfortunately, the second and subsequent calls to irq_work_queue() are
ignored, and the first call will be ignored (aside from queuing the work
item) if the scheduler-clock tick is turned off. This is OK for many
uses, especially those where irq_work_queue() is called from an interrupt
or softirq handler, because in those cases the scheduler-clock-tick state
will be re-evaluated, which will turn the scheduler-clock tick back on.
On the next tick, any deferred work will then be processed.
However, this strategy does not always work for RCU, which can be invoked
at process level from idle CPUs. In this case, the tick might never
be turned back on, indefinitely defering a grace-period start request.
Note that the RCU CPU stall detector cannot see this condition, because
there is no RCU grace period in progress. Therefore, we can (and do!)
see long tens-of-seconds stalls in grace-period handling. In theory,
we could see a full grace-period hang, but rcutorture testing to date
has seen only the tens-of-seconds stalls. Event tracing demonstrates
that irq_work_queue() is being called repeatedly to no effect during
these stalls: The "newreq" event appears repeatedly from a task that is
not one of the grace-period kthreads.
In theory, irq_work_queue() might be fixed to avoid this sort of issue,
but RCU's requirements are unusual and it is quite straightforward to pass
wake-up responsibility up through RCU's call chain, so that the wakeup
happens when the offending locks are released.
This commit therefore makes this change. The rcu_start_gp_advanced(),
rcu_start_future_gp(), rcu_accelerate_cbs(), rcu_advance_cbs(),
__note_gp_changes(), and rcu_start_gp() functions now return a boolean
which indicates when a wake-up is needed. A new rcu_gp_kthread_wake()
does the wakeup when it is necessary and safe to do so: No self-wakes,
no wake-ups if the ->gp_flags field indicates there is no need (as in
someone else did the wake-up before we got around to it), and no wake-ups
before the grace-period kthread has been created.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2014-03-12 04:02:16 +08:00
|
|
|
if (needwake)
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_gp_kthread_wake();
|
2013-03-20 01:08:37 +08:00
|
|
|
}
|
|
|
|
|
2018-07-04 08:22:34 +08:00
|
|
|
static void rcu_gp_slow(int delay)
|
2015-03-11 09:33:20 +08:00
|
|
|
{
|
|
|
|
if (delay > 0 &&
|
2018-07-04 08:22:34 +08:00
|
|
|
!(rcu_seq_ctr(rcu_state.gp_seq) %
|
2018-04-27 06:30:28 +08:00
|
|
|
(rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
|
2015-03-11 09:33:20 +08:00
|
|
|
schedule_timeout_uninterruptible(delay);
|
|
|
|
}
|
|
|
|
|
2012-06-19 09:36:08 +08:00
|
|
|
/*
|
2015-11-08 15:35:00 +08:00
|
|
|
* Initialize a new grace period. Return false if no grace period required.
|
2012-06-19 09:36:08 +08:00
|
|
|
*/
|
2018-07-04 08:22:34 +08:00
|
|
|
static bool rcu_gp_init(void)
|
2012-06-19 09:36:08 +08:00
|
|
|
{
|
rcu: Fix grace-period hangs from mid-init task resume
Without special fail-safe quiescent-state-propagation checks, grace-period
hangs can result from the following scenario:
1. A task running on a given CPU is preempted in its RCU read-side
critical section.
2. That CPU goes offline, and there are now no online CPUs
corresponding to that CPU's leaf rcu_node structure.
3. The rcu_gp_init() function does the first phase of grace-period
initialization, and sets the aforementioned leaf rcu_node
structure's ->qsmaskinit field to all zeroes. Because there
is a blocked task, it does not propagate the zeroing of either
->qsmaskinit or ->qsmaskinitnext up the rcu_node tree.
4. The task resumes on some other CPU and exits its critical section.
There is no grace period in progress, so the resulting quiescent
state is not reported up the tree.
5. The rcu_gp_init() function does the second phase of grace-period
initialization, which results in the leaf rcu_node structure
being initialized to expect no further quiescent states, but
with that structure's parent expecting a quiescent-state report.
The parent will never receive a quiescent state from this leaf
rcu_node structure, so the grace period will hang, resulting in
RCU CPU stall warnings.
It would be good to get rid of the special fail-safe quiescent-state
propagation checks. This commit therefore checks the leaf rcu_node
structure's ->wait_blkd_tasks field during grace-period initialization.
If this flag is set, the rcu_report_qs_rnp() is invoked to immediately
report the possible quiescent state. While in the neighborhood, this
commit also report quiescent states for any CPUs that went offline between
the two phases of grace-period initialization, thus reducing grace-period
delays and hopefully eventually allowing removal of offline-CPU checks
from the force-quiescent-state code path.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-05-08 00:34:17 +08:00
|
|
|
unsigned long flags;
|
rcu: Process offlining and onlining only at grace-period start
Races between CPU hotplug and grace periods can be difficult to resolve,
so the ->onoff_mutex is used to exclude the two events. Unfortunately,
this means that it is impossible for an outgoing CPU to perform the
last bits of its offlining from its last pass through the idle loop,
because sleeplocks cannot be acquired in that context.
This commit avoids these problems by buffering online and offline events
in a new ->qsmaskinitnext field in the leaf rcu_node structures. When a
grace period starts, the events accumulated in this mask are applied to
the ->qsmaskinit field, and, if needed, up the rcu_node tree. The special
case of all CPUs corresponding to a given leaf rcu_node structure being
offline while there are still elements in that structure's ->blkd_tasks
list is handled using a new ->wait_blkd_tasks field. In this case,
propagating the offline bits up the tree is deferred until the beginning
of the grace period after all of the tasks have exited their RCU read-side
critical sections and removed themselves from the list, at which point
the ->wait_blkd_tasks flag is cleared. If one of that leaf rcu_node
structure's CPUs comes back online before the list empties, then the
->wait_blkd_tasks flag is simply cleared.
This of course means that RCU's notion of which CPUs are offline can be
out of date. This is OK because RCU need only wait on CPUs that were
online at the time that the grace period started. In addition, RCU's
force-quiescent-state actions will handle the case where a CPU goes
offline after the grace period starts.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2015-01-24 13:52:37 +08:00
|
|
|
unsigned long oldmask;
|
rcu: Fix grace-period hangs from mid-init task resume
Without special fail-safe quiescent-state-propagation checks, grace-period
hangs can result from the following scenario:
1. A task running on a given CPU is preempted in its RCU read-side
critical section.
2. That CPU goes offline, and there are now no online CPUs
corresponding to that CPU's leaf rcu_node structure.
3. The rcu_gp_init() function does the first phase of grace-period
initialization, and sets the aforementioned leaf rcu_node
structure's ->qsmaskinit field to all zeroes. Because there
is a blocked task, it does not propagate the zeroing of either
->qsmaskinit or ->qsmaskinitnext up the rcu_node tree.
4. The task resumes on some other CPU and exits its critical section.
There is no grace period in progress, so the resulting quiescent
state is not reported up the tree.
5. The rcu_gp_init() function does the second phase of grace-period
initialization, which results in the leaf rcu_node structure
being initialized to expect no further quiescent states, but
with that structure's parent expecting a quiescent-state report.
The parent will never receive a quiescent state from this leaf
rcu_node structure, so the grace period will hang, resulting in
RCU CPU stall warnings.
It would be good to get rid of the special fail-safe quiescent-state
propagation checks. This commit therefore checks the leaf rcu_node
structure's ->wait_blkd_tasks field during grace-period initialization.
If this flag is set, the rcu_report_qs_rnp() is invoked to immediately
report the possible quiescent state. While in the neighborhood, this
commit also report quiescent states for any CPUs that went offline between
the two phases of grace-period initialization, thus reducing grace-period
delays and hopefully eventually allowing removal of offline-CPU checks
from the force-quiescent-state code path.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-05-08 00:34:17 +08:00
|
|
|
unsigned long mask;
|
2012-06-19 09:36:08 +08:00
|
|
|
struct rcu_data *rdp;
|
2018-07-04 08:22:34 +08:00
|
|
|
struct rcu_node *rnp = rcu_get_root();
|
2012-06-19 09:36:08 +08:00
|
|
|
|
2018-07-06 06:47:01 +08:00
|
|
|
WRITE_ONCE(rcu_state.gp_activity, jiffies);
|
2015-10-08 18:24:23 +08:00
|
|
|
raw_spin_lock_irq_rcu_node(rnp);
|
2018-07-06 06:47:01 +08:00
|
|
|
if (!READ_ONCE(rcu_state.gp_flags)) {
|
2013-08-09 09:27:52 +08:00
|
|
|
/* Spurious wakeup, tell caller to go back to sleep. */
|
2015-12-29 12:18:47 +08:00
|
|
|
raw_spin_unlock_irq_rcu_node(rnp);
|
2015-11-08 15:35:00 +08:00
|
|
|
return false;
|
2013-08-09 09:27:52 +08:00
|
|
|
}
|
2018-07-06 06:47:01 +08:00
|
|
|
WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
|
2012-06-19 09:36:08 +08:00
|
|
|
|
2018-07-04 08:22:34 +08:00
|
|
|
if (WARN_ON_ONCE(rcu_gp_in_progress())) {
|
2013-08-09 09:27:52 +08:00
|
|
|
/*
|
|
|
|
* Grace period already in progress, don't start another.
|
|
|
|
* Not supposed to be able to happen.
|
|
|
|
*/
|
2015-12-29 12:18:47 +08:00
|
|
|
raw_spin_unlock_irq_rcu_node(rnp);
|
2015-11-08 15:35:00 +08:00
|
|
|
return false;
|
2012-06-23 02:08:41 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Advance to a new grace period and initialize state. */
|
2018-07-04 08:22:34 +08:00
|
|
|
record_gp_stall_check_time();
|
2018-05-02 05:34:08 +08:00
|
|
|
/* Record GP times before starting GP, hence rcu_seq_start(). */
|
2018-07-06 06:47:01 +08:00
|
|
|
rcu_seq_start(&rcu_state.gp_seq);
|
|
|
|
trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
|
2015-12-29 12:18:47 +08:00
|
|
|
raw_spin_unlock_irq_rcu_node(rnp);
|
2012-06-23 02:08:41 +08:00
|
|
|
|
rcu: Process offlining and onlining only at grace-period start
Races between CPU hotplug and grace periods can be difficult to resolve,
so the ->onoff_mutex is used to exclude the two events. Unfortunately,
this means that it is impossible for an outgoing CPU to perform the
last bits of its offlining from its last pass through the idle loop,
because sleeplocks cannot be acquired in that context.
This commit avoids these problems by buffering online and offline events
in a new ->qsmaskinitnext field in the leaf rcu_node structures. When a
grace period starts, the events accumulated in this mask are applied to
the ->qsmaskinit field, and, if needed, up the rcu_node tree. The special
case of all CPUs corresponding to a given leaf rcu_node structure being
offline while there are still elements in that structure's ->blkd_tasks
list is handled using a new ->wait_blkd_tasks field. In this case,
propagating the offline bits up the tree is deferred until the beginning
of the grace period after all of the tasks have exited their RCU read-side
critical sections and removed themselves from the list, at which point
the ->wait_blkd_tasks flag is cleared. If one of that leaf rcu_node
structure's CPUs comes back online before the list empties, then the
->wait_blkd_tasks flag is simply cleared.
This of course means that RCU's notion of which CPUs are offline can be
out of date. This is OK because RCU need only wait on CPUs that were
online at the time that the grace period started. In addition, RCU's
force-quiescent-state actions will handle the case where a CPU goes
offline after the grace period starts.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2015-01-24 13:52:37 +08:00
|
|
|
/*
|
|
|
|
* Apply per-leaf buffered online and offline operations to the
|
|
|
|
* rcu_node tree. Note that this new grace period need not wait
|
|
|
|
* for subsequent online CPUs, and that quiescent-state forcing
|
|
|
|
* will handle subsequent offline CPUs.
|
|
|
|
*/
|
2018-07-06 06:47:01 +08:00
|
|
|
rcu_state.gp_state = RCU_GP_ONOFF;
|
2018-07-05 05:33:59 +08:00
|
|
|
rcu_for_each_leaf_node(rnp) {
|
2018-08-16 00:05:29 +08:00
|
|
|
raw_spin_lock(&rcu_state.ofl_lock);
|
2015-10-08 18:24:23 +08:00
|
|
|
raw_spin_lock_irq_rcu_node(rnp);
|
rcu: Process offlining and onlining only at grace-period start
Races between CPU hotplug and grace periods can be difficult to resolve,
so the ->onoff_mutex is used to exclude the two events. Unfortunately,
this means that it is impossible for an outgoing CPU to perform the
last bits of its offlining from its last pass through the idle loop,
because sleeplocks cannot be acquired in that context.
This commit avoids these problems by buffering online and offline events
in a new ->qsmaskinitnext field in the leaf rcu_node structures. When a
grace period starts, the events accumulated in this mask are applied to
the ->qsmaskinit field, and, if needed, up the rcu_node tree. The special
case of all CPUs corresponding to a given leaf rcu_node structure being
offline while there are still elements in that structure's ->blkd_tasks
list is handled using a new ->wait_blkd_tasks field. In this case,
propagating the offline bits up the tree is deferred until the beginning
of the grace period after all of the tasks have exited their RCU read-side
critical sections and removed themselves from the list, at which point
the ->wait_blkd_tasks flag is cleared. If one of that leaf rcu_node
structure's CPUs comes back online before the list empties, then the
->wait_blkd_tasks flag is simply cleared.
This of course means that RCU's notion of which CPUs are offline can be
out of date. This is OK because RCU need only wait on CPUs that were
online at the time that the grace period started. In addition, RCU's
force-quiescent-state actions will handle the case where a CPU goes
offline after the grace period starts.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2015-01-24 13:52:37 +08:00
|
|
|
if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
|
|
|
|
!rnp->wait_blkd_tasks) {
|
|
|
|
/* Nothing to do on this leaf rcu_node structure. */
|
2015-12-29 12:18:47 +08:00
|
|
|
raw_spin_unlock_irq_rcu_node(rnp);
|
2018-08-16 00:05:29 +08:00
|
|
|
raw_spin_unlock(&rcu_state.ofl_lock);
|
rcu: Process offlining and onlining only at grace-period start
Races between CPU hotplug and grace periods can be difficult to resolve,
so the ->onoff_mutex is used to exclude the two events. Unfortunately,
this means that it is impossible for an outgoing CPU to perform the
last bits of its offlining from its last pass through the idle loop,
because sleeplocks cannot be acquired in that context.
This commit avoids these problems by buffering online and offline events
in a new ->qsmaskinitnext field in the leaf rcu_node structures. When a
grace period starts, the events accumulated in this mask are applied to
the ->qsmaskinit field, and, if needed, up the rcu_node tree. The special
case of all CPUs corresponding to a given leaf rcu_node structure being
offline while there are still elements in that structure's ->blkd_tasks
list is handled using a new ->wait_blkd_tasks field. In this case,
propagating the offline bits up the tree is deferred until the beginning
of the grace period after all of the tasks have exited their RCU read-side
critical sections and removed themselves from the list, at which point
the ->wait_blkd_tasks flag is cleared. If one of that leaf rcu_node
structure's CPUs comes back online before the list empties, then the
->wait_blkd_tasks flag is simply cleared.
This of course means that RCU's notion of which CPUs are offline can be
out of date. This is OK because RCU need only wait on CPUs that were
online at the time that the grace period started. In addition, RCU's
force-quiescent-state actions will handle the case where a CPU goes
offline after the grace period starts.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2015-01-24 13:52:37 +08:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Record old state, apply changes to ->qsmaskinit field. */
|
|
|
|
oldmask = rnp->qsmaskinit;
|
|
|
|
rnp->qsmaskinit = rnp->qsmaskinitnext;
|
|
|
|
|
|
|
|
/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
|
|
|
|
if (!oldmask != !rnp->qsmaskinit) {
|
rcu: Clean up handling of tasks blocked across full-rcu_node offline
Commit 0aa04b055e71 ("rcu: Process offlining and onlining only at
grace-period start") deferred handling of CPU-hotplug events until the
start of the next grace period, but consider the following sequence
of events:
1. A task is preempted within an RCU-preempt read-side critical
section.
2. The CPU that this task was running on goes offline, along with all
other CPUs sharing the corresponding leaf rcu_node structure.
3. The task resumes execution.
4. One of those CPUs comes back online before a new grace period starts.
In step 2, the code in the next rcu_gp_init() invocation will (correctly)
defer removing the leaf rcu_node structure from the upper-level bitmasks,
and will (correctly) set that structure's ->wait_blkd_tasks field. During
the ensuing interval, RCU will (correctly) track the tasks preempted on
that structure because they must block any subsequent grace period.
In step 3, the code in rcu_read_unlock_special() will (correctly) remove
the task from the leaf rcu_node structure. From this point forward, RCU
need not pay attention to this structure, at least not until one of the
corresponding CPUs comes back online.
In step 4, the code in the next rcu_gp_init() invocation will
(incorrectly) invoke rcu_init_new_rnp(). This is incorrect because
the corresponding rcu_cleanup_dead_rnp() was never invoked. This is
nevertheless harmless because the upper-level bits are still set.
So, no harm, no foul, right?
At least, all is well until a little further into rcu_gp_init()
invocation, which will notice that there are no longer any tasks blocked
on the leaf rcu_node structure, conclude that there is no longer anything
left over from step 2's offline operation, and will therefore invoke
rcu_cleanup_dead_rnp(). But this invocation of rcu_cleanup_dead_rnp()
is for the beginning of the earlier offline interval, and the previous
invocation of rcu_init_new_rnp() is for the end of that same interval.
That is right, they are invoked out of order.
That cannot be good, can it?
It turns out that this is not a (correctness!) problem because
rcu_cleanup_dead_rnp() checks to see if any of the corresponding CPUs
are online, and refuses to do anything if so. In other words, in the
case where rcu_init_new_rnp() and rcu_cleanup_dead_rnp() execute out of
order, they both have no effect.
But this is at best an accident waiting to happen.
This commit therefore adds logic to rcu_gp_init() so that
rcu_init_new_rnp() and rcu_cleanup_dead_rnp() are always invoked in
order, and so that neither are invoked at all in cases where RCU had to
pay attention to the leaf rcu_node structure during the entire time that
all corresponding CPUs were offline.
And, while in the area, this commit reduces confusion by using formal
parameters rather than local variables that just happen to have the same
value at that particular point in the code.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-05-03 03:49:21 +08:00
|
|
|
if (!oldmask) { /* First online CPU for rcu_node. */
|
|
|
|
if (!rnp->wait_blkd_tasks) /* Ever offline? */
|
|
|
|
rcu_init_new_rnp(rnp);
|
|
|
|
} else if (rcu_preempt_has_tasks(rnp)) {
|
|
|
|
rnp->wait_blkd_tasks = true; /* blocked tasks */
|
|
|
|
} else { /* Last offline CPU and can propagate. */
|
rcu: Process offlining and onlining only at grace-period start
Races between CPU hotplug and grace periods can be difficult to resolve,
so the ->onoff_mutex is used to exclude the two events. Unfortunately,
this means that it is impossible for an outgoing CPU to perform the
last bits of its offlining from its last pass through the idle loop,
because sleeplocks cannot be acquired in that context.
This commit avoids these problems by buffering online and offline events
in a new ->qsmaskinitnext field in the leaf rcu_node structures. When a
grace period starts, the events accumulated in this mask are applied to
the ->qsmaskinit field, and, if needed, up the rcu_node tree. The special
case of all CPUs corresponding to a given leaf rcu_node structure being
offline while there are still elements in that structure's ->blkd_tasks
list is handled using a new ->wait_blkd_tasks field. In this case,
propagating the offline bits up the tree is deferred until the beginning
of the grace period after all of the tasks have exited their RCU read-side
critical sections and removed themselves from the list, at which point
the ->wait_blkd_tasks flag is cleared. If one of that leaf rcu_node
structure's CPUs comes back online before the list empties, then the
->wait_blkd_tasks flag is simply cleared.
This of course means that RCU's notion of which CPUs are offline can be
out of date. This is OK because RCU need only wait on CPUs that were
online at the time that the grace period started. In addition, RCU's
force-quiescent-state actions will handle the case where a CPU goes
offline after the grace period starts.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2015-01-24 13:52:37 +08:00
|
|
|
rcu_cleanup_dead_rnp(rnp);
|
rcu: Clean up handling of tasks blocked across full-rcu_node offline
Commit 0aa04b055e71 ("rcu: Process offlining and onlining only at
grace-period start") deferred handling of CPU-hotplug events until the
start of the next grace period, but consider the following sequence
of events:
1. A task is preempted within an RCU-preempt read-side critical
section.
2. The CPU that this task was running on goes offline, along with all
other CPUs sharing the corresponding leaf rcu_node structure.
3. The task resumes execution.
4. One of those CPUs comes back online before a new grace period starts.
In step 2, the code in the next rcu_gp_init() invocation will (correctly)
defer removing the leaf rcu_node structure from the upper-level bitmasks,
and will (correctly) set that structure's ->wait_blkd_tasks field. During
the ensuing interval, RCU will (correctly) track the tasks preempted on
that structure because they must block any subsequent grace period.
In step 3, the code in rcu_read_unlock_special() will (correctly) remove
the task from the leaf rcu_node structure. From this point forward, RCU
need not pay attention to this structure, at least not until one of the
corresponding CPUs comes back online.
In step 4, the code in the next rcu_gp_init() invocation will
(incorrectly) invoke rcu_init_new_rnp(). This is incorrect because
the corresponding rcu_cleanup_dead_rnp() was never invoked. This is
nevertheless harmless because the upper-level bits are still set.
So, no harm, no foul, right?
At least, all is well until a little further into rcu_gp_init()
invocation, which will notice that there are no longer any tasks blocked
on the leaf rcu_node structure, conclude that there is no longer anything
left over from step 2's offline operation, and will therefore invoke
rcu_cleanup_dead_rnp(). But this invocation of rcu_cleanup_dead_rnp()
is for the beginning of the earlier offline interval, and the previous
invocation of rcu_init_new_rnp() is for the end of that same interval.
That is right, they are invoked out of order.
That cannot be good, can it?
It turns out that this is not a (correctness!) problem because
rcu_cleanup_dead_rnp() checks to see if any of the corresponding CPUs
are online, and refuses to do anything if so. In other words, in the
case where rcu_init_new_rnp() and rcu_cleanup_dead_rnp() execute out of
order, they both have no effect.
But this is at best an accident waiting to happen.
This commit therefore adds logic to rcu_gp_init() so that
rcu_init_new_rnp() and rcu_cleanup_dead_rnp() are always invoked in
order, and so that neither are invoked at all in cases where RCU had to
pay attention to the leaf rcu_node structure during the entire time that
all corresponding CPUs were offline.
And, while in the area, this commit reduces confusion by using formal
parameters rather than local variables that just happen to have the same
value at that particular point in the code.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-05-03 03:49:21 +08:00
|
|
|
}
|
rcu: Process offlining and onlining only at grace-period start
Races between CPU hotplug and grace periods can be difficult to resolve,
so the ->onoff_mutex is used to exclude the two events. Unfortunately,
this means that it is impossible for an outgoing CPU to perform the
last bits of its offlining from its last pass through the idle loop,
because sleeplocks cannot be acquired in that context.
This commit avoids these problems by buffering online and offline events
in a new ->qsmaskinitnext field in the leaf rcu_node structures. When a
grace period starts, the events accumulated in this mask are applied to
the ->qsmaskinit field, and, if needed, up the rcu_node tree. The special
case of all CPUs corresponding to a given leaf rcu_node structure being
offline while there are still elements in that structure's ->blkd_tasks
list is handled using a new ->wait_blkd_tasks field. In this case,
propagating the offline bits up the tree is deferred until the beginning
of the grace period after all of the tasks have exited their RCU read-side
critical sections and removed themselves from the list, at which point
the ->wait_blkd_tasks flag is cleared. If one of that leaf rcu_node
structure's CPUs comes back online before the list empties, then the
->wait_blkd_tasks flag is simply cleared.
This of course means that RCU's notion of which CPUs are offline can be
out of date. This is OK because RCU need only wait on CPUs that were
online at the time that the grace period started. In addition, RCU's
force-quiescent-state actions will handle the case where a CPU goes
offline after the grace period starts.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2015-01-24 13:52:37 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If all waited-on tasks from prior grace period are
|
|
|
|
* done, and if all this rcu_node structure's CPUs are
|
|
|
|
* still offline, propagate up the rcu_node tree and
|
|
|
|
* clear ->wait_blkd_tasks. Otherwise, if one of this
|
|
|
|
* rcu_node structure's CPUs has since come back online,
|
rcu: Clean up handling of tasks blocked across full-rcu_node offline
Commit 0aa04b055e71 ("rcu: Process offlining and onlining only at
grace-period start") deferred handling of CPU-hotplug events until the
start of the next grace period, but consider the following sequence
of events:
1. A task is preempted within an RCU-preempt read-side critical
section.
2. The CPU that this task was running on goes offline, along with all
other CPUs sharing the corresponding leaf rcu_node structure.
3. The task resumes execution.
4. One of those CPUs comes back online before a new grace period starts.
In step 2, the code in the next rcu_gp_init() invocation will (correctly)
defer removing the leaf rcu_node structure from the upper-level bitmasks,
and will (correctly) set that structure's ->wait_blkd_tasks field. During
the ensuing interval, RCU will (correctly) track the tasks preempted on
that structure because they must block any subsequent grace period.
In step 3, the code in rcu_read_unlock_special() will (correctly) remove
the task from the leaf rcu_node structure. From this point forward, RCU
need not pay attention to this structure, at least not until one of the
corresponding CPUs comes back online.
In step 4, the code in the next rcu_gp_init() invocation will
(incorrectly) invoke rcu_init_new_rnp(). This is incorrect because
the corresponding rcu_cleanup_dead_rnp() was never invoked. This is
nevertheless harmless because the upper-level bits are still set.
So, no harm, no foul, right?
At least, all is well until a little further into rcu_gp_init()
invocation, which will notice that there are no longer any tasks blocked
on the leaf rcu_node structure, conclude that there is no longer anything
left over from step 2's offline operation, and will therefore invoke
rcu_cleanup_dead_rnp(). But this invocation of rcu_cleanup_dead_rnp()
is for the beginning of the earlier offline interval, and the previous
invocation of rcu_init_new_rnp() is for the end of that same interval.
That is right, they are invoked out of order.
That cannot be good, can it?
It turns out that this is not a (correctness!) problem because
rcu_cleanup_dead_rnp() checks to see if any of the corresponding CPUs
are online, and refuses to do anything if so. In other words, in the
case where rcu_init_new_rnp() and rcu_cleanup_dead_rnp() execute out of
order, they both have no effect.
But this is at best an accident waiting to happen.
This commit therefore adds logic to rcu_gp_init() so that
rcu_init_new_rnp() and rcu_cleanup_dead_rnp() are always invoked in
order, and so that neither are invoked at all in cases where RCU had to
pay attention to the leaf rcu_node structure during the entire time that
all corresponding CPUs were offline.
And, while in the area, this commit reduces confusion by using formal
parameters rather than local variables that just happen to have the same
value at that particular point in the code.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-05-03 03:49:21 +08:00
|
|
|
* simply clear ->wait_blkd_tasks.
|
rcu: Process offlining and onlining only at grace-period start
Races between CPU hotplug and grace periods can be difficult to resolve,
so the ->onoff_mutex is used to exclude the two events. Unfortunately,
this means that it is impossible for an outgoing CPU to perform the
last bits of its offlining from its last pass through the idle loop,
because sleeplocks cannot be acquired in that context.
This commit avoids these problems by buffering online and offline events
in a new ->qsmaskinitnext field in the leaf rcu_node structures. When a
grace period starts, the events accumulated in this mask are applied to
the ->qsmaskinit field, and, if needed, up the rcu_node tree. The special
case of all CPUs corresponding to a given leaf rcu_node structure being
offline while there are still elements in that structure's ->blkd_tasks
list is handled using a new ->wait_blkd_tasks field. In this case,
propagating the offline bits up the tree is deferred until the beginning
of the grace period after all of the tasks have exited their RCU read-side
critical sections and removed themselves from the list, at which point
the ->wait_blkd_tasks flag is cleared. If one of that leaf rcu_node
structure's CPUs comes back online before the list empties, then the
->wait_blkd_tasks flag is simply cleared.
This of course means that RCU's notion of which CPUs are offline can be
out of date. This is OK because RCU need only wait on CPUs that were
online at the time that the grace period started. In addition, RCU's
force-quiescent-state actions will handle the case where a CPU goes
offline after the grace period starts.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2015-01-24 13:52:37 +08:00
|
|
|
*/
|
|
|
|
if (rnp->wait_blkd_tasks &&
|
rcu: Clean up handling of tasks blocked across full-rcu_node offline
Commit 0aa04b055e71 ("rcu: Process offlining and onlining only at
grace-period start") deferred handling of CPU-hotplug events until the
start of the next grace period, but consider the following sequence
of events:
1. A task is preempted within an RCU-preempt read-side critical
section.
2. The CPU that this task was running on goes offline, along with all
other CPUs sharing the corresponding leaf rcu_node structure.
3. The task resumes execution.
4. One of those CPUs comes back online before a new grace period starts.
In step 2, the code in the next rcu_gp_init() invocation will (correctly)
defer removing the leaf rcu_node structure from the upper-level bitmasks,
and will (correctly) set that structure's ->wait_blkd_tasks field. During
the ensuing interval, RCU will (correctly) track the tasks preempted on
that structure because they must block any subsequent grace period.
In step 3, the code in rcu_read_unlock_special() will (correctly) remove
the task from the leaf rcu_node structure. From this point forward, RCU
need not pay attention to this structure, at least not until one of the
corresponding CPUs comes back online.
In step 4, the code in the next rcu_gp_init() invocation will
(incorrectly) invoke rcu_init_new_rnp(). This is incorrect because
the corresponding rcu_cleanup_dead_rnp() was never invoked. This is
nevertheless harmless because the upper-level bits are still set.
So, no harm, no foul, right?
At least, all is well until a little further into rcu_gp_init()
invocation, which will notice that there are no longer any tasks blocked
on the leaf rcu_node structure, conclude that there is no longer anything
left over from step 2's offline operation, and will therefore invoke
rcu_cleanup_dead_rnp(). But this invocation of rcu_cleanup_dead_rnp()
is for the beginning of the earlier offline interval, and the previous
invocation of rcu_init_new_rnp() is for the end of that same interval.
That is right, they are invoked out of order.
That cannot be good, can it?
It turns out that this is not a (correctness!) problem because
rcu_cleanup_dead_rnp() checks to see if any of the corresponding CPUs
are online, and refuses to do anything if so. In other words, in the
case where rcu_init_new_rnp() and rcu_cleanup_dead_rnp() execute out of
order, they both have no effect.
But this is at best an accident waiting to happen.
This commit therefore adds logic to rcu_gp_init() so that
rcu_init_new_rnp() and rcu_cleanup_dead_rnp() are always invoked in
order, and so that neither are invoked at all in cases where RCU had to
pay attention to the leaf rcu_node structure during the entire time that
all corresponding CPUs were offline.
And, while in the area, this commit reduces confusion by using formal
parameters rather than local variables that just happen to have the same
value at that particular point in the code.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-05-03 03:49:21 +08:00
|
|
|
(!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
|
rcu: Process offlining and onlining only at grace-period start
Races between CPU hotplug and grace periods can be difficult to resolve,
so the ->onoff_mutex is used to exclude the two events. Unfortunately,
this means that it is impossible for an outgoing CPU to perform the
last bits of its offlining from its last pass through the idle loop,
because sleeplocks cannot be acquired in that context.
This commit avoids these problems by buffering online and offline events
in a new ->qsmaskinitnext field in the leaf rcu_node structures. When a
grace period starts, the events accumulated in this mask are applied to
the ->qsmaskinit field, and, if needed, up the rcu_node tree. The special
case of all CPUs corresponding to a given leaf rcu_node structure being
offline while there are still elements in that structure's ->blkd_tasks
list is handled using a new ->wait_blkd_tasks field. In this case,
propagating the offline bits up the tree is deferred until the beginning
of the grace period after all of the tasks have exited their RCU read-side
critical sections and removed themselves from the list, at which point
the ->wait_blkd_tasks flag is cleared. If one of that leaf rcu_node
structure's CPUs comes back online before the list empties, then the
->wait_blkd_tasks flag is simply cleared.
This of course means that RCU's notion of which CPUs are offline can be
out of date. This is OK because RCU need only wait on CPUs that were
online at the time that the grace period started. In addition, RCU's
force-quiescent-state actions will handle the case where a CPU goes
offline after the grace period starts.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2015-01-24 13:52:37 +08:00
|
|
|
rnp->wait_blkd_tasks = false;
|
rcu: Clean up handling of tasks blocked across full-rcu_node offline
Commit 0aa04b055e71 ("rcu: Process offlining and onlining only at
grace-period start") deferred handling of CPU-hotplug events until the
start of the next grace period, but consider the following sequence
of events:
1. A task is preempted within an RCU-preempt read-side critical
section.
2. The CPU that this task was running on goes offline, along with all
other CPUs sharing the corresponding leaf rcu_node structure.
3. The task resumes execution.
4. One of those CPUs comes back online before a new grace period starts.
In step 2, the code in the next rcu_gp_init() invocation will (correctly)
defer removing the leaf rcu_node structure from the upper-level bitmasks,
and will (correctly) set that structure's ->wait_blkd_tasks field. During
the ensuing interval, RCU will (correctly) track the tasks preempted on
that structure because they must block any subsequent grace period.
In step 3, the code in rcu_read_unlock_special() will (correctly) remove
the task from the leaf rcu_node structure. From this point forward, RCU
need not pay attention to this structure, at least not until one of the
corresponding CPUs comes back online.
In step 4, the code in the next rcu_gp_init() invocation will
(incorrectly) invoke rcu_init_new_rnp(). This is incorrect because
the corresponding rcu_cleanup_dead_rnp() was never invoked. This is
nevertheless harmless because the upper-level bits are still set.
So, no harm, no foul, right?
At least, all is well until a little further into rcu_gp_init()
invocation, which will notice that there are no longer any tasks blocked
on the leaf rcu_node structure, conclude that there is no longer anything
left over from step 2's offline operation, and will therefore invoke
rcu_cleanup_dead_rnp(). But this invocation of rcu_cleanup_dead_rnp()
is for the beginning of the earlier offline interval, and the previous
invocation of rcu_init_new_rnp() is for the end of that same interval.
That is right, they are invoked out of order.
That cannot be good, can it?
It turns out that this is not a (correctness!) problem because
rcu_cleanup_dead_rnp() checks to see if any of the corresponding CPUs
are online, and refuses to do anything if so. In other words, in the
case where rcu_init_new_rnp() and rcu_cleanup_dead_rnp() execute out of
order, they both have no effect.
But this is at best an accident waiting to happen.
This commit therefore adds logic to rcu_gp_init() so that
rcu_init_new_rnp() and rcu_cleanup_dead_rnp() are always invoked in
order, and so that neither are invoked at all in cases where RCU had to
pay attention to the leaf rcu_node structure during the entire time that
all corresponding CPUs were offline.
And, while in the area, this commit reduces confusion by using formal
parameters rather than local variables that just happen to have the same
value at that particular point in the code.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-05-03 03:49:21 +08:00
|
|
|
if (!rnp->qsmaskinit)
|
|
|
|
rcu_cleanup_dead_rnp(rnp);
|
rcu: Process offlining and onlining only at grace-period start
Races between CPU hotplug and grace periods can be difficult to resolve,
so the ->onoff_mutex is used to exclude the two events. Unfortunately,
this means that it is impossible for an outgoing CPU to perform the
last bits of its offlining from its last pass through the idle loop,
because sleeplocks cannot be acquired in that context.
This commit avoids these problems by buffering online and offline events
in a new ->qsmaskinitnext field in the leaf rcu_node structures. When a
grace period starts, the events accumulated in this mask are applied to
the ->qsmaskinit field, and, if needed, up the rcu_node tree. The special
case of all CPUs corresponding to a given leaf rcu_node structure being
offline while there are still elements in that structure's ->blkd_tasks
list is handled using a new ->wait_blkd_tasks field. In this case,
propagating the offline bits up the tree is deferred until the beginning
of the grace period after all of the tasks have exited their RCU read-side
critical sections and removed themselves from the list, at which point
the ->wait_blkd_tasks flag is cleared. If one of that leaf rcu_node
structure's CPUs comes back online before the list empties, then the
->wait_blkd_tasks flag is simply cleared.
This of course means that RCU's notion of which CPUs are offline can be
out of date. This is OK because RCU need only wait on CPUs that were
online at the time that the grace period started. In addition, RCU's
force-quiescent-state actions will handle the case where a CPU goes
offline after the grace period starts.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2015-01-24 13:52:37 +08:00
|
|
|
}
|
|
|
|
|
2015-12-29 12:18:47 +08:00
|
|
|
raw_spin_unlock_irq_rcu_node(rnp);
|
2018-08-16 00:05:29 +08:00
|
|
|
raw_spin_unlock(&rcu_state.ofl_lock);
|
rcu: Process offlining and onlining only at grace-period start
Races between CPU hotplug and grace periods can be difficult to resolve,
so the ->onoff_mutex is used to exclude the two events. Unfortunately,
this means that it is impossible for an outgoing CPU to perform the
last bits of its offlining from its last pass through the idle loop,
because sleeplocks cannot be acquired in that context.
This commit avoids these problems by buffering online and offline events
in a new ->qsmaskinitnext field in the leaf rcu_node structures. When a
grace period starts, the events accumulated in this mask are applied to
the ->qsmaskinit field, and, if needed, up the rcu_node tree. The special
case of all CPUs corresponding to a given leaf rcu_node structure being
offline while there are still elements in that structure's ->blkd_tasks
list is handled using a new ->wait_blkd_tasks field. In this case,
propagating the offline bits up the tree is deferred until the beginning
of the grace period after all of the tasks have exited their RCU read-side
critical sections and removed themselves from the list, at which point
the ->wait_blkd_tasks flag is cleared. If one of that leaf rcu_node
structure's CPUs comes back online before the list empties, then the
->wait_blkd_tasks flag is simply cleared.
This of course means that RCU's notion of which CPUs are offline can be
out of date. This is OK because RCU need only wait on CPUs that were
online at the time that the grace period started. In addition, RCU's
force-quiescent-state actions will handle the case where a CPU goes
offline after the grace period starts.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2015-01-24 13:52:37 +08:00
|
|
|
}
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
|
2012-06-23 02:08:41 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Set the quiescent-state-needed bits in all the rcu_node
|
2018-07-06 06:47:01 +08:00
|
|
|
* structures for all currently online CPUs in breadth-first
|
|
|
|
* order, starting from the root rcu_node structure, relying on the
|
|
|
|
* layout of the tree within the rcu_state.node[] array. Note that
|
|
|
|
* other CPUs will access only the leaves of the hierarchy, thus
|
|
|
|
* seeing that no grace period is in progress, at least until the
|
|
|
|
* corresponding leaf node has been initialized.
|
2012-06-23 02:08:41 +08:00
|
|
|
*
|
|
|
|
* The grace period cannot complete until the initialization
|
|
|
|
* process finishes, because this kthread handles both.
|
|
|
|
*/
|
2018-07-06 06:47:01 +08:00
|
|
|
rcu_state.gp_state = RCU_GP_INIT;
|
2018-07-05 05:33:59 +08:00
|
|
|
rcu_for_each_node_breadth_first(rnp) {
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_gp_slow(gp_init_delay);
|
rcu: Fix grace-period hangs from mid-init task resume
Without special fail-safe quiescent-state-propagation checks, grace-period
hangs can result from the following scenario:
1. A task running on a given CPU is preempted in its RCU read-side
critical section.
2. That CPU goes offline, and there are now no online CPUs
corresponding to that CPU's leaf rcu_node structure.
3. The rcu_gp_init() function does the first phase of grace-period
initialization, and sets the aforementioned leaf rcu_node
structure's ->qsmaskinit field to all zeroes. Because there
is a blocked task, it does not propagate the zeroing of either
->qsmaskinit or ->qsmaskinitnext up the rcu_node tree.
4. The task resumes on some other CPU and exits its critical section.
There is no grace period in progress, so the resulting quiescent
state is not reported up the tree.
5. The rcu_gp_init() function does the second phase of grace-period
initialization, which results in the leaf rcu_node structure
being initialized to expect no further quiescent states, but
with that structure's parent expecting a quiescent-state report.
The parent will never receive a quiescent state from this leaf
rcu_node structure, so the grace period will hang, resulting in
RCU CPU stall warnings.
It would be good to get rid of the special fail-safe quiescent-state
propagation checks. This commit therefore checks the leaf rcu_node
structure's ->wait_blkd_tasks field during grace-period initialization.
If this flag is set, the rcu_report_qs_rnp() is invoked to immediately
report the possible quiescent state. While in the neighborhood, this
commit also report quiescent states for any CPUs that went offline between
the two phases of grace-period initialization, thus reducing grace-period
delays and hopefully eventually allowing removal of offline-CPU checks
from the force-quiescent-state code path.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-05-08 00:34:17 +08:00
|
|
|
raw_spin_lock_irqsave_rcu_node(rnp, flags);
|
2018-07-04 06:37:16 +08:00
|
|
|
rdp = this_cpu_ptr(&rcu_data);
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_preempt_check_blocked_tasks(rnp);
|
2012-06-23 02:08:41 +08:00
|
|
|
rnp->qsmask = rnp->qsmaskinit;
|
2018-07-06 06:47:01 +08:00
|
|
|
WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
|
2012-06-23 02:08:41 +08:00
|
|
|
if (rnp == rdp->mynode)
|
2018-07-04 08:22:34 +08:00
|
|
|
(void)__note_gp_changes(rnp, rdp);
|
2012-06-23 02:08:41 +08:00
|
|
|
rcu_preempt_boost_start_gp(rnp);
|
2018-07-06 06:47:01 +08:00
|
|
|
trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
|
2012-06-23 02:08:41 +08:00
|
|
|
rnp->level, rnp->grplo,
|
|
|
|
rnp->grphi, rnp->qsmask);
|
rcu: Fix grace-period hangs from mid-init task resume
Without special fail-safe quiescent-state-propagation checks, grace-period
hangs can result from the following scenario:
1. A task running on a given CPU is preempted in its RCU read-side
critical section.
2. That CPU goes offline, and there are now no online CPUs
corresponding to that CPU's leaf rcu_node structure.
3. The rcu_gp_init() function does the first phase of grace-period
initialization, and sets the aforementioned leaf rcu_node
structure's ->qsmaskinit field to all zeroes. Because there
is a blocked task, it does not propagate the zeroing of either
->qsmaskinit or ->qsmaskinitnext up the rcu_node tree.
4. The task resumes on some other CPU and exits its critical section.
There is no grace period in progress, so the resulting quiescent
state is not reported up the tree.
5. The rcu_gp_init() function does the second phase of grace-period
initialization, which results in the leaf rcu_node structure
being initialized to expect no further quiescent states, but
with that structure's parent expecting a quiescent-state report.
The parent will never receive a quiescent state from this leaf
rcu_node structure, so the grace period will hang, resulting in
RCU CPU stall warnings.
It would be good to get rid of the special fail-safe quiescent-state
propagation checks. This commit therefore checks the leaf rcu_node
structure's ->wait_blkd_tasks field during grace-period initialization.
If this flag is set, the rcu_report_qs_rnp() is invoked to immediately
report the possible quiescent state. While in the neighborhood, this
commit also report quiescent states for any CPUs that went offline between
the two phases of grace-period initialization, thus reducing grace-period
delays and hopefully eventually allowing removal of offline-CPU checks
from the force-quiescent-state code path.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-05-08 00:34:17 +08:00
|
|
|
/* Quiescent states for tasks on any now-offline CPUs. */
|
|
|
|
mask = rnp->qsmask & ~rnp->qsmaskinitnext;
|
2018-05-16 07:23:23 +08:00
|
|
|
rnp->rcu_gp_init_mask = mask;
|
rcu: Fix grace-period hangs from mid-init task resume
Without special fail-safe quiescent-state-propagation checks, grace-period
hangs can result from the following scenario:
1. A task running on a given CPU is preempted in its RCU read-side
critical section.
2. That CPU goes offline, and there are now no online CPUs
corresponding to that CPU's leaf rcu_node structure.
3. The rcu_gp_init() function does the first phase of grace-period
initialization, and sets the aforementioned leaf rcu_node
structure's ->qsmaskinit field to all zeroes. Because there
is a blocked task, it does not propagate the zeroing of either
->qsmaskinit or ->qsmaskinitnext up the rcu_node tree.
4. The task resumes on some other CPU and exits its critical section.
There is no grace period in progress, so the resulting quiescent
state is not reported up the tree.
5. The rcu_gp_init() function does the second phase of grace-period
initialization, which results in the leaf rcu_node structure
being initialized to expect no further quiescent states, but
with that structure's parent expecting a quiescent-state report.
The parent will never receive a quiescent state from this leaf
rcu_node structure, so the grace period will hang, resulting in
RCU CPU stall warnings.
It would be good to get rid of the special fail-safe quiescent-state
propagation checks. This commit therefore checks the leaf rcu_node
structure's ->wait_blkd_tasks field during grace-period initialization.
If this flag is set, the rcu_report_qs_rnp() is invoked to immediately
report the possible quiescent state. While in the neighborhood, this
commit also report quiescent states for any CPUs that went offline between
the two phases of grace-period initialization, thus reducing grace-period
delays and hopefully eventually allowing removal of offline-CPU checks
from the force-quiescent-state code path.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-05-08 00:34:17 +08:00
|
|
|
if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
|
rcu: Fix grace-period hangs from mid-init task resume
Without special fail-safe quiescent-state-propagation checks, grace-period
hangs can result from the following scenario:
1. A task running on a given CPU is preempted in its RCU read-side
critical section.
2. That CPU goes offline, and there are now no online CPUs
corresponding to that CPU's leaf rcu_node structure.
3. The rcu_gp_init() function does the first phase of grace-period
initialization, and sets the aforementioned leaf rcu_node
structure's ->qsmaskinit field to all zeroes. Because there
is a blocked task, it does not propagate the zeroing of either
->qsmaskinit or ->qsmaskinitnext up the rcu_node tree.
4. The task resumes on some other CPU and exits its critical section.
There is no grace period in progress, so the resulting quiescent
state is not reported up the tree.
5. The rcu_gp_init() function does the second phase of grace-period
initialization, which results in the leaf rcu_node structure
being initialized to expect no further quiescent states, but
with that structure's parent expecting a quiescent-state report.
The parent will never receive a quiescent state from this leaf
rcu_node structure, so the grace period will hang, resulting in
RCU CPU stall warnings.
It would be good to get rid of the special fail-safe quiescent-state
propagation checks. This commit therefore checks the leaf rcu_node
structure's ->wait_blkd_tasks field during grace-period initialization.
If this flag is set, the rcu_report_qs_rnp() is invoked to immediately
report the possible quiescent state. While in the neighborhood, this
commit also report quiescent states for any CPUs that went offline between
the two phases of grace-period initialization, thus reducing grace-period
delays and hopefully eventually allowing removal of offline-CPU checks
from the force-quiescent-state code path.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-05-08 00:34:17 +08:00
|
|
|
else
|
|
|
|
raw_spin_unlock_irq_rcu_node(rnp);
|
2018-03-03 08:35:27 +08:00
|
|
|
cond_resched_tasks_rcu_qs();
|
2018-07-06 06:47:01 +08:00
|
|
|
WRITE_ONCE(rcu_state.gp_activity, jiffies);
|
2012-06-23 02:08:41 +08:00
|
|
|
}
|
2012-06-19 09:36:08 +08:00
|
|
|
|
2015-11-08 15:35:00 +08:00
|
|
|
return true;
|
2012-06-23 02:08:41 +08:00
|
|
|
}
|
2012-06-19 09:36:08 +08:00
|
|
|
|
2015-07-02 04:50:28 +08:00
|
|
|
/*
|
2018-06-12 16:34:52 +08:00
|
|
|
* Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
|
2017-06-21 05:45:47 +08:00
|
|
|
* time.
|
2015-07-02 04:50:28 +08:00
|
|
|
*/
|
2018-07-04 08:22:34 +08:00
|
|
|
static bool rcu_gp_fqs_check_wake(int *gfp)
|
2015-07-02 04:50:28 +08:00
|
|
|
{
|
2018-07-04 08:22:34 +08:00
|
|
|
struct rcu_node *rnp = rcu_get_root();
|
2015-07-02 04:50:28 +08:00
|
|
|
|
|
|
|
/* Someone like call_rcu() requested a force-quiescent-state scan. */
|
2018-07-04 08:22:34 +08:00
|
|
|
*gfp = READ_ONCE(rcu_state.gp_flags);
|
2015-07-02 04:50:28 +08:00
|
|
|
if (*gfp & RCU_GP_FLAG_FQS)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
/* The current grace period has completed. */
|
|
|
|
if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
|
|
|
|
return true;
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2012-06-23 08:06:26 +08:00
|
|
|
/*
|
|
|
|
* Do one round of quiescent-state forcing.
|
|
|
|
*/
|
2018-07-04 08:22:34 +08:00
|
|
|
static void rcu_gp_fqs(bool first_time)
|
2012-06-23 08:06:26 +08:00
|
|
|
{
|
2018-07-04 08:22:34 +08:00
|
|
|
struct rcu_node *rnp = rcu_get_root();
|
2012-06-23 08:06:26 +08:00
|
|
|
|
2018-07-06 06:47:01 +08:00
|
|
|
WRITE_ONCE(rcu_state.gp_activity, jiffies);
|
|
|
|
rcu_state.n_force_qs++;
|
2015-09-10 03:09:49 +08:00
|
|
|
if (first_time) {
|
2012-06-23 08:06:26 +08:00
|
|
|
/* Collect dyntick-idle snapshots. */
|
2018-07-04 08:22:34 +08:00
|
|
|
force_qs_rnp(dyntick_save_progress_counter);
|
2012-06-23 08:06:26 +08:00
|
|
|
} else {
|
|
|
|
/* Handle dyntick-idle and offline CPUs. */
|
2018-07-04 08:22:34 +08:00
|
|
|
force_qs_rnp(rcu_implicit_dynticks_qs);
|
2012-06-23 08:06:26 +08:00
|
|
|
}
|
|
|
|
/* Clear flag to prevent immediate re-entry. */
|
2018-07-06 06:47:01 +08:00
|
|
|
if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
|
2015-10-08 18:24:23 +08:00
|
|
|
raw_spin_lock_irq_rcu_node(rnp);
|
2018-07-06 06:47:01 +08:00
|
|
|
WRITE_ONCE(rcu_state.gp_flags,
|
|
|
|
READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
|
2015-12-29 12:18:47 +08:00
|
|
|
raw_spin_unlock_irq_rcu_node(rnp);
|
2012-06-23 08:06:26 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-07-06 09:23:23 +08:00
|
|
|
/*
|
|
|
|
* Loop doing repeated quiescent-state forcing until the grace period ends.
|
|
|
|
*/
|
|
|
|
static void rcu_gp_fqs_loop(void)
|
|
|
|
{
|
|
|
|
bool first_gp_fqs;
|
|
|
|
int gf;
|
|
|
|
unsigned long j;
|
|
|
|
int ret;
|
|
|
|
struct rcu_node *rnp = rcu_get_root();
|
|
|
|
|
|
|
|
first_gp_fqs = true;
|
rcu: Compute jiffies_till_sched_qs from other kernel parameters
The jiffies_till_sched_qs value used to determine how old a grace period
must be before RCU enlists the help of the scheduler to force a quiescent
state on the holdout CPU. Currently, this defaults to HZ/10 regardless of
system size and may be set only at boot time. This can be a problem for
very large systems, because if the values of the jiffies_till_first_fqs
and jiffies_till_next_fqs kernel parameters are left at their defaults,
they are calculated to increase as the number of CPUs actually configured
on the system increases. Thus, on a sufficiently large system, RCU would
enlist the help of the scheduler before the grace-period kthread had a
chance to scan for idle CPUs, which wastes CPU time.
This commit therefore allows jiffies_till_sched_qs to be set, if desired,
but if left as default, computes is as jiffies_till_first_fqs plus twice
jiffies_till_next_fqs, thus allowing three force-quiescent-state scans
for idle CPUs. This scales with the number of CPUs, providing sensible
default values.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-26 02:25:23 +08:00
|
|
|
j = READ_ONCE(jiffies_till_first_fqs);
|
2018-07-06 09:23:23 +08:00
|
|
|
ret = 0;
|
|
|
|
for (;;) {
|
|
|
|
if (!ret) {
|
|
|
|
rcu_state.jiffies_force_qs = jiffies + j;
|
|
|
|
WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
|
|
|
|
jiffies + 3 * j);
|
|
|
|
}
|
|
|
|
trace_rcu_grace_period(rcu_state.name,
|
|
|
|
READ_ONCE(rcu_state.gp_seq),
|
|
|
|
TPS("fqswait"));
|
|
|
|
rcu_state.gp_state = RCU_GP_WAIT_FQS;
|
|
|
|
ret = swait_event_idle_timeout_exclusive(
|
|
|
|
rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
|
|
|
|
rcu_state.gp_state = RCU_GP_DOING_FQS;
|
|
|
|
/* Locking provides needed memory barriers. */
|
|
|
|
/* If grace period done, leave loop. */
|
|
|
|
if (!READ_ONCE(rnp->qsmask) &&
|
|
|
|
!rcu_preempt_blocked_readers_cgp(rnp))
|
|
|
|
break;
|
|
|
|
/* If time for quiescent-state forcing, do it. */
|
|
|
|
if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) ||
|
|
|
|
(gf & RCU_GP_FLAG_FQS)) {
|
|
|
|
trace_rcu_grace_period(rcu_state.name,
|
|
|
|
READ_ONCE(rcu_state.gp_seq),
|
|
|
|
TPS("fqsstart"));
|
|
|
|
rcu_gp_fqs(first_gp_fqs);
|
|
|
|
first_gp_fqs = false;
|
|
|
|
trace_rcu_grace_period(rcu_state.name,
|
|
|
|
READ_ONCE(rcu_state.gp_seq),
|
|
|
|
TPS("fqsend"));
|
|
|
|
cond_resched_tasks_rcu_qs();
|
|
|
|
WRITE_ONCE(rcu_state.gp_activity, jiffies);
|
|
|
|
ret = 0; /* Force full wait till next FQS. */
|
rcu: Compute jiffies_till_sched_qs from other kernel parameters
The jiffies_till_sched_qs value used to determine how old a grace period
must be before RCU enlists the help of the scheduler to force a quiescent
state on the holdout CPU. Currently, this defaults to HZ/10 regardless of
system size and may be set only at boot time. This can be a problem for
very large systems, because if the values of the jiffies_till_first_fqs
and jiffies_till_next_fqs kernel parameters are left at their defaults,
they are calculated to increase as the number of CPUs actually configured
on the system increases. Thus, on a sufficiently large system, RCU would
enlist the help of the scheduler before the grace-period kthread had a
chance to scan for idle CPUs, which wastes CPU time.
This commit therefore allows jiffies_till_sched_qs to be set, if desired,
but if left as default, computes is as jiffies_till_first_fqs plus twice
jiffies_till_next_fqs, thus allowing three force-quiescent-state scans
for idle CPUs. This scales with the number of CPUs, providing sensible
default values.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-26 02:25:23 +08:00
|
|
|
j = READ_ONCE(jiffies_till_next_fqs);
|
2018-07-06 09:23:23 +08:00
|
|
|
} else {
|
|
|
|
/* Deal with stray signal. */
|
|
|
|
cond_resched_tasks_rcu_qs();
|
|
|
|
WRITE_ONCE(rcu_state.gp_activity, jiffies);
|
|
|
|
WARN_ON(signal_pending(current));
|
|
|
|
trace_rcu_grace_period(rcu_state.name,
|
|
|
|
READ_ONCE(rcu_state.gp_seq),
|
|
|
|
TPS("fqswaitsig"));
|
|
|
|
ret = 1; /* Keep old FQS timing. */
|
|
|
|
j = jiffies;
|
|
|
|
if (time_after(jiffies, rcu_state.jiffies_force_qs))
|
|
|
|
j = 1;
|
|
|
|
else
|
|
|
|
j = rcu_state.jiffies_force_qs - j;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-06-23 02:08:41 +08:00
|
|
|
/*
|
|
|
|
* Clean up after the old grace period.
|
|
|
|
*/
|
2018-07-04 08:22:34 +08:00
|
|
|
static void rcu_gp_cleanup(void)
|
2012-06-23 02:08:41 +08:00
|
|
|
{
|
|
|
|
unsigned long gp_duration;
|
rcu: Make callers awaken grace-period kthread
The rcu_start_gp_advanced() function currently uses irq_work_queue()
to defer wakeups of the RCU grace-period kthread. This deferring
is necessary to avoid RCU-scheduler deadlocks involving the rcu_node
structure's lock, meaning that RCU cannot call any of the scheduler's
wake-up functions while holding one of these locks.
Unfortunately, the second and subsequent calls to irq_work_queue() are
ignored, and the first call will be ignored (aside from queuing the work
item) if the scheduler-clock tick is turned off. This is OK for many
uses, especially those where irq_work_queue() is called from an interrupt
or softirq handler, because in those cases the scheduler-clock-tick state
will be re-evaluated, which will turn the scheduler-clock tick back on.
On the next tick, any deferred work will then be processed.
However, this strategy does not always work for RCU, which can be invoked
at process level from idle CPUs. In this case, the tick might never
be turned back on, indefinitely defering a grace-period start request.
Note that the RCU CPU stall detector cannot see this condition, because
there is no RCU grace period in progress. Therefore, we can (and do!)
see long tens-of-seconds stalls in grace-period handling. In theory,
we could see a full grace-period hang, but rcutorture testing to date
has seen only the tens-of-seconds stalls. Event tracing demonstrates
that irq_work_queue() is being called repeatedly to no effect during
these stalls: The "newreq" event appears repeatedly from a task that is
not one of the grace-period kthreads.
In theory, irq_work_queue() might be fixed to avoid this sort of issue,
but RCU's requirements are unusual and it is quite straightforward to pass
wake-up responsibility up through RCU's call chain, so that the wakeup
happens when the offending locks are released.
This commit therefore makes this change. The rcu_start_gp_advanced(),
rcu_start_future_gp(), rcu_accelerate_cbs(), rcu_advance_cbs(),
__note_gp_changes(), and rcu_start_gp() functions now return a boolean
which indicates when a wake-up is needed. A new rcu_gp_kthread_wake()
does the wakeup when it is necessary and safe to do so: No self-wakes,
no wake-ups if the ->gp_flags field indicates there is no need (as in
someone else did the wake-up before we got around to it), and no wake-ups
before the grace-period kthread has been created.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2014-03-12 04:02:16 +08:00
|
|
|
bool needgp = false;
|
2018-04-27 02:52:09 +08:00
|
|
|
unsigned long new_gp_seq;
|
2012-06-23 02:08:41 +08:00
|
|
|
struct rcu_data *rdp;
|
2018-07-04 08:22:34 +08:00
|
|
|
struct rcu_node *rnp = rcu_get_root();
|
2016-02-19 16:46:41 +08:00
|
|
|
struct swait_queue_head *sq;
|
2012-06-19 09:36:08 +08:00
|
|
|
|
2018-07-06 06:47:01 +08:00
|
|
|
WRITE_ONCE(rcu_state.gp_activity, jiffies);
|
2015-10-08 18:24:23 +08:00
|
|
|
raw_spin_lock_irq_rcu_node(rnp);
|
2018-07-06 06:47:01 +08:00
|
|
|
gp_duration = jiffies - rcu_state.gp_start;
|
|
|
|
if (gp_duration > rcu_state.gp_max)
|
|
|
|
rcu_state.gp_max = gp_duration;
|
2012-06-19 09:36:08 +08:00
|
|
|
|
2012-06-23 02:08:41 +08:00
|
|
|
/*
|
|
|
|
* We know the grace period is complete, but to everyone else
|
|
|
|
* it appears to still be ongoing. But it is also the case
|
|
|
|
* that to everyone else it looks like there is nothing that
|
|
|
|
* they can do to advance the grace period. It is therefore
|
|
|
|
* safe for us to drop the lock in order to mark the grace
|
|
|
|
* period as completed in all of the rcu_node structures.
|
|
|
|
*/
|
2015-12-29 12:18:47 +08:00
|
|
|
raw_spin_unlock_irq_rcu_node(rnp);
|
2012-06-19 09:36:08 +08:00
|
|
|
|
rcu: Fix day-zero grace-period initialization/cleanup race
The current approach to grace-period initialization is vulnerable to
extremely low-probability races. These races stem from the fact that
the old grace period is marked completed on the same traversal through
the rcu_node structure that is marking the start of the new grace period.
This means that some rcu_node structures will believe that the old grace
period is still in effect at the same time that other rcu_node structures
believe that the new grace period has already started.
These sorts of disagreements can result in too-short grace periods,
as shown in the following scenario:
1. CPU 0 completes a grace period, but needs an additional
grace period, so starts initializing one, initializing all
the non-leaf rcu_node structures and the first leaf rcu_node
structure. Because CPU 0 is both completing the old grace
period and starting a new one, it marks the completion of
the old grace period and the start of the new grace period
in a single traversal of the rcu_node structures.
Therefore, CPUs corresponding to the first rcu_node structure
can become aware that the prior grace period has completed, but
CPUs corresponding to the other rcu_node structures will see
this same prior grace period as still being in progress.
2. CPU 1 passes through a quiescent state, and therefore informs
the RCU core. Because its leaf rcu_node structure has already
been initialized, this CPU's quiescent state is applied to the
new (and only partially initialized) grace period.
3. CPU 1 enters an RCU read-side critical section and acquires
a reference to data item A. Note that this CPU believes that
its critical section started after the beginning of the new
grace period, and therefore will not block this new grace period.
4. CPU 16 exits dyntick-idle mode. Because it was in dyntick-idle
mode, other CPUs informed the RCU core of its extended quiescent
state for the past several grace periods. This means that CPU 16
is not yet aware that these past grace periods have ended. Assume
that CPU 16 corresponds to the second leaf rcu_node structure --
which has not yet been made aware of the new grace period.
5. CPU 16 removes data item A from its enclosing data structure
and passes it to call_rcu(), which queues a callback in the
RCU_NEXT_TAIL segment of the callback queue.
6. CPU 16 enters the RCU core, possibly because it has taken a
scheduling-clock interrupt, or alternatively because it has
more than 10,000 callbacks queued. It notes that the second
most recent grace period has completed (recall that because it
corresponds to the second as-yet-uninitialized rcu_node structure,
it cannot yet become aware that the most recent grace period has
completed), and therefore advances its callbacks. The callback
for data item A is therefore in the RCU_NEXT_READY_TAIL segment
of the callback queue.
7. CPU 0 completes initialization of the remaining leaf rcu_node
structures for the new grace period, including the structure
corresponding to CPU 16.
8. CPU 16 again enters the RCU core, again, possibly because it has
taken a scheduling-clock interrupt, or alternatively because
it now has more than 10,000 callbacks queued. It notes that
the most recent grace period has ended, and therefore advances
its callbacks. The callback for data item A is therefore in
the RCU_DONE_TAIL segment of the callback queue.
9. All CPUs other than CPU 1 pass through quiescent states. Because
CPU 1 already passed through its quiescent state, the new grace
period completes. Note that CPU 1 is still in its RCU read-side
critical section, still referencing data item A.
10. Suppose that CPU 2 wais the last CPU to pass through a quiescent
state for the new grace period, and suppose further that CPU 2
did not have any callbacks queued, therefore not needing an
additional grace period. CPU 2 therefore traverses all of the
rcu_node structures, marking the new grace period as completed,
but does not initialize a new grace period.
11. CPU 16 yet again enters the RCU core, yet again possibly because
it has taken a scheduling-clock interrupt, or alternatively
because it now has more than 10,000 callbacks queued. It notes
that the new grace period has ended, and therefore advances
its callbacks. The callback for data item A is therefore in
the RCU_DONE_TAIL segment of the callback queue. This means
that this callback is now considered ready to be invoked.
12. CPU 16 invokes the callback, freeing data item A while CPU 1
is still referencing it.
This scenario represents a day-zero bug for TREE_RCU. This commit
therefore ensures that the old grace period is marked completed in
all leaf rcu_node structures before a new grace period is marked
started in any of them.
That said, it would have been insanely difficult to force this race to
happen before the grace-period initialization process was preemptible.
Therefore, this commit is not a candidate for -stable.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Conflicts:
kernel/rcutree.c
2012-07-07 22:56:57 +08:00
|
|
|
/*
|
2018-05-02 05:34:08 +08:00
|
|
|
* Propagate new ->gp_seq value to rcu_node structures so that
|
|
|
|
* other CPUs don't have to wait until the start of the next grace
|
|
|
|
* period to process their callbacks. This also avoids some nasty
|
|
|
|
* RCU grace-period initialization races by forcing the end of
|
|
|
|
* the current grace period to be completely recorded in all of
|
|
|
|
* the rcu_node structures before the beginning of the next grace
|
|
|
|
* period is recorded in any of the rcu_node structures.
|
rcu: Fix day-zero grace-period initialization/cleanup race
The current approach to grace-period initialization is vulnerable to
extremely low-probability races. These races stem from the fact that
the old grace period is marked completed on the same traversal through
the rcu_node structure that is marking the start of the new grace period.
This means that some rcu_node structures will believe that the old grace
period is still in effect at the same time that other rcu_node structures
believe that the new grace period has already started.
These sorts of disagreements can result in too-short grace periods,
as shown in the following scenario:
1. CPU 0 completes a grace period, but needs an additional
grace period, so starts initializing one, initializing all
the non-leaf rcu_node structures and the first leaf rcu_node
structure. Because CPU 0 is both completing the old grace
period and starting a new one, it marks the completion of
the old grace period and the start of the new grace period
in a single traversal of the rcu_node structures.
Therefore, CPUs corresponding to the first rcu_node structure
can become aware that the prior grace period has completed, but
CPUs corresponding to the other rcu_node structures will see
this same prior grace period as still being in progress.
2. CPU 1 passes through a quiescent state, and therefore informs
the RCU core. Because its leaf rcu_node structure has already
been initialized, this CPU's quiescent state is applied to the
new (and only partially initialized) grace period.
3. CPU 1 enters an RCU read-side critical section and acquires
a reference to data item A. Note that this CPU believes that
its critical section started after the beginning of the new
grace period, and therefore will not block this new grace period.
4. CPU 16 exits dyntick-idle mode. Because it was in dyntick-idle
mode, other CPUs informed the RCU core of its extended quiescent
state for the past several grace periods. This means that CPU 16
is not yet aware that these past grace periods have ended. Assume
that CPU 16 corresponds to the second leaf rcu_node structure --
which has not yet been made aware of the new grace period.
5. CPU 16 removes data item A from its enclosing data structure
and passes it to call_rcu(), which queues a callback in the
RCU_NEXT_TAIL segment of the callback queue.
6. CPU 16 enters the RCU core, possibly because it has taken a
scheduling-clock interrupt, or alternatively because it has
more than 10,000 callbacks queued. It notes that the second
most recent grace period has completed (recall that because it
corresponds to the second as-yet-uninitialized rcu_node structure,
it cannot yet become aware that the most recent grace period has
completed), and therefore advances its callbacks. The callback
for data item A is therefore in the RCU_NEXT_READY_TAIL segment
of the callback queue.
7. CPU 0 completes initialization of the remaining leaf rcu_node
structures for the new grace period, including the structure
corresponding to CPU 16.
8. CPU 16 again enters the RCU core, again, possibly because it has
taken a scheduling-clock interrupt, or alternatively because
it now has more than 10,000 callbacks queued. It notes that
the most recent grace period has ended, and therefore advances
its callbacks. The callback for data item A is therefore in
the RCU_DONE_TAIL segment of the callback queue.
9. All CPUs other than CPU 1 pass through quiescent states. Because
CPU 1 already passed through its quiescent state, the new grace
period completes. Note that CPU 1 is still in its RCU read-side
critical section, still referencing data item A.
10. Suppose that CPU 2 wais the last CPU to pass through a quiescent
state for the new grace period, and suppose further that CPU 2
did not have any callbacks queued, therefore not needing an
additional grace period. CPU 2 therefore traverses all of the
rcu_node structures, marking the new grace period as completed,
but does not initialize a new grace period.
11. CPU 16 yet again enters the RCU core, yet again possibly because
it has taken a scheduling-clock interrupt, or alternatively
because it now has more than 10,000 callbacks queued. It notes
that the new grace period has ended, and therefore advances
its callbacks. The callback for data item A is therefore in
the RCU_DONE_TAIL segment of the callback queue. This means
that this callback is now considered ready to be invoked.
12. CPU 16 invokes the callback, freeing data item A while CPU 1
is still referencing it.
This scenario represents a day-zero bug for TREE_RCU. This commit
therefore ensures that the old grace period is marked completed in
all leaf rcu_node structures before a new grace period is marked
started in any of them.
That said, it would have been insanely difficult to force this race to
happen before the grace-period initialization process was preemptible.
Therefore, this commit is not a candidate for -stable.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Conflicts:
kernel/rcutree.c
2012-07-07 22:56:57 +08:00
|
|
|
*/
|
2018-07-06 06:47:01 +08:00
|
|
|
new_gp_seq = rcu_state.gp_seq;
|
2018-04-27 02:52:09 +08:00
|
|
|
rcu_seq_end(&new_gp_seq);
|
2018-07-05 05:33:59 +08:00
|
|
|
rcu_for_each_node_breadth_first(rnp) {
|
2015-10-08 18:24:23 +08:00
|
|
|
raw_spin_lock_irq_rcu_node(rnp);
|
2017-11-28 07:13:56 +08:00
|
|
|
if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
|
2018-07-04 08:22:34 +08:00
|
|
|
dump_blkd_tasks(rnp, 10);
|
2015-02-09 21:37:47 +08:00
|
|
|
WARN_ON_ONCE(rnp->qsmask);
|
2018-04-27 02:52:09 +08:00
|
|
|
WRITE_ONCE(rnp->gp_seq, new_gp_seq);
|
2018-07-04 06:37:16 +08:00
|
|
|
rdp = this_cpu_ptr(&rcu_data);
|
2012-12-18 06:21:14 +08:00
|
|
|
if (rnp == rdp->mynode)
|
2018-07-04 08:22:34 +08:00
|
|
|
needgp = __note_gp_changes(rnp, rdp) || needgp;
|
2013-09-25 06:04:06 +08:00
|
|
|
/* smp_mb() provided by prior unlock-lock pair. */
|
2018-07-04 08:22:34 +08:00
|
|
|
needgp = rcu_future_gp_cleanup(rnp) || needgp;
|
2016-02-19 16:46:40 +08:00
|
|
|
sq = rcu_nocb_gp_get(rnp);
|
2015-12-29 12:18:47 +08:00
|
|
|
raw_spin_unlock_irq_rcu_node(rnp);
|
2016-02-19 16:46:40 +08:00
|
|
|
rcu_nocb_gp_cleanup(sq);
|
2018-03-03 08:35:27 +08:00
|
|
|
cond_resched_tasks_rcu_qs();
|
2018-07-06 06:47:01 +08:00
|
|
|
WRITE_ONCE(rcu_state.gp_activity, jiffies);
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_gp_slow(gp_cleanup_delay);
|
2012-06-23 02:08:41 +08:00
|
|
|
}
|
2018-07-04 08:22:34 +08:00
|
|
|
rnp = rcu_get_root();
|
2018-07-06 06:47:01 +08:00
|
|
|
raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
|
2012-06-23 02:08:41 +08:00
|
|
|
|
2014-03-15 07:37:08 +08:00
|
|
|
/* Declare grace period done. */
|
2018-07-06 06:47:01 +08:00
|
|
|
rcu_seq_end(&rcu_state.gp_seq);
|
|
|
|
trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
|
|
|
|
rcu_state.gp_state = RCU_GP_IDLE;
|
2018-04-12 22:20:30 +08:00
|
|
|
/* Check for GP requests since above loop. */
|
2018-07-04 06:37:16 +08:00
|
|
|
rdp = this_cpu_ptr(&rcu_data);
|
2018-05-14 11:15:40 +08:00
|
|
|
if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
|
2018-05-02 04:08:46 +08:00
|
|
|
trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
|
2018-04-13 02:24:09 +08:00
|
|
|
TPS("CleanupMore"));
|
2018-04-12 22:20:30 +08:00
|
|
|
needgp = true;
|
|
|
|
}
|
rcu: Make callers awaken grace-period kthread
The rcu_start_gp_advanced() function currently uses irq_work_queue()
to defer wakeups of the RCU grace-period kthread. This deferring
is necessary to avoid RCU-scheduler deadlocks involving the rcu_node
structure's lock, meaning that RCU cannot call any of the scheduler's
wake-up functions while holding one of these locks.
Unfortunately, the second and subsequent calls to irq_work_queue() are
ignored, and the first call will be ignored (aside from queuing the work
item) if the scheduler-clock tick is turned off. This is OK for many
uses, especially those where irq_work_queue() is called from an interrupt
or softirq handler, because in those cases the scheduler-clock-tick state
will be re-evaluated, which will turn the scheduler-clock tick back on.
On the next tick, any deferred work will then be processed.
However, this strategy does not always work for RCU, which can be invoked
at process level from idle CPUs. In this case, the tick might never
be turned back on, indefinitely defering a grace-period start request.
Note that the RCU CPU stall detector cannot see this condition, because
there is no RCU grace period in progress. Therefore, we can (and do!)
see long tens-of-seconds stalls in grace-period handling. In theory,
we could see a full grace-period hang, but rcutorture testing to date
has seen only the tens-of-seconds stalls. Event tracing demonstrates
that irq_work_queue() is being called repeatedly to no effect during
these stalls: The "newreq" event appears repeatedly from a task that is
not one of the grace-period kthreads.
In theory, irq_work_queue() might be fixed to avoid this sort of issue,
but RCU's requirements are unusual and it is quite straightforward to pass
wake-up responsibility up through RCU's call chain, so that the wakeup
happens when the offending locks are released.
This commit therefore makes this change. The rcu_start_gp_advanced(),
rcu_start_future_gp(), rcu_accelerate_cbs(), rcu_advance_cbs(),
__note_gp_changes(), and rcu_start_gp() functions now return a boolean
which indicates when a wake-up is needed. A new rcu_gp_kthread_wake()
does the wakeup when it is necessary and safe to do so: No self-wakes,
no wake-ups if the ->gp_flags field indicates there is no need (as in
someone else did the wake-up before we got around to it), and no wake-ups
before the grace-period kthread has been created.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2014-03-12 04:02:16 +08:00
|
|
|
/* Advance CBs to reduce false positives below. */
|
2018-07-04 08:22:34 +08:00
|
|
|
if (!rcu_accelerate_cbs(rnp, rdp) && needgp) {
|
2018-07-06 06:47:01 +08:00
|
|
|
WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
|
|
|
|
rcu_state.gp_req_activity = jiffies;
|
|
|
|
trace_rcu_grace_period(rcu_state.name,
|
|
|
|
READ_ONCE(rcu_state.gp_seq),
|
2013-08-10 07:02:09 +08:00
|
|
|
TPS("newreq"));
|
2018-04-23 06:06:05 +08:00
|
|
|
} else {
|
2018-07-06 06:47:01 +08:00
|
|
|
WRITE_ONCE(rcu_state.gp_flags,
|
|
|
|
rcu_state.gp_flags & RCU_GP_FLAG_INIT);
|
2013-08-10 07:02:09 +08:00
|
|
|
}
|
2015-12-29 12:18:47 +08:00
|
|
|
raw_spin_unlock_irq_rcu_node(rnp);
|
2012-06-23 02:08:41 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Body of kthread that handles grace periods.
|
|
|
|
*/
|
2018-07-04 08:22:34 +08:00
|
|
|
static int __noreturn rcu_gp_kthread(void *unused)
|
2012-06-23 02:08:41 +08:00
|
|
|
{
|
2015-02-25 03:05:36 +08:00
|
|
|
rcu_bind_gp_kthread();
|
2012-06-23 02:08:41 +08:00
|
|
|
for (;;) {
|
|
|
|
|
|
|
|
/* Handle grace-period start. */
|
|
|
|
for (;;) {
|
2018-07-06 06:47:01 +08:00
|
|
|
trace_rcu_grace_period(rcu_state.name,
|
|
|
|
READ_ONCE(rcu_state.gp_seq),
|
2013-08-10 03:19:29 +08:00
|
|
|
TPS("reqwait"));
|
2018-07-06 06:47:01 +08:00
|
|
|
rcu_state.gp_state = RCU_GP_WAIT_GPS;
|
|
|
|
swait_event_idle_exclusive(rcu_state.gp_wq,
|
|
|
|
READ_ONCE(rcu_state.gp_flags) &
|
|
|
|
RCU_GP_FLAG_INIT);
|
|
|
|
rcu_state.gp_state = RCU_GP_DONE_GPS;
|
2013-09-25 06:04:06 +08:00
|
|
|
/* Locking provides needed memory barrier. */
|
2018-07-04 08:22:34 +08:00
|
|
|
if (rcu_gp_init())
|
2012-06-23 02:08:41 +08:00
|
|
|
break;
|
2018-03-03 08:35:27 +08:00
|
|
|
cond_resched_tasks_rcu_qs();
|
2018-07-06 06:47:01 +08:00
|
|
|
WRITE_ONCE(rcu_state.gp_activity, jiffies);
|
2014-08-15 01:28:23 +08:00
|
|
|
WARN_ON(signal_pending(current));
|
2018-07-06 06:47:01 +08:00
|
|
|
trace_rcu_grace_period(rcu_state.name,
|
|
|
|
READ_ONCE(rcu_state.gp_seq),
|
2013-08-10 03:19:29 +08:00
|
|
|
TPS("reqwaitsig"));
|
2012-06-23 02:08:41 +08:00
|
|
|
}
|
2012-06-21 08:07:14 +08:00
|
|
|
|
2012-06-23 08:06:26 +08:00
|
|
|
/* Handle quiescent-state forcing. */
|
2018-07-06 09:23:23 +08:00
|
|
|
rcu_gp_fqs_loop();
|
2012-06-23 08:06:26 +08:00
|
|
|
|
|
|
|
/* Handle grace-period end. */
|
2018-07-06 06:47:01 +08:00
|
|
|
rcu_state.gp_state = RCU_GP_CLEANUP;
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_gp_cleanup();
|
2018-07-06 06:47:01 +08:00
|
|
|
rcu_state.gp_state = RCU_GP_CLEANED;
|
2012-06-19 09:36:08 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
rcu: Merge preemptable-RCU functionality into hierarchical RCU
Create a kernel/rcutree_plugin.h file that contains definitions
for preemptable RCU (or, under the #else branch of the #ifdef,
empty definitions for the classic non-preemptable semantics).
These definitions fit into plugins defined in kernel/rcutree.c
for this purpose.
This variant of preemptable RCU uses a new algorithm whose
read-side expense is roughly that of classic hierarchical RCU
under CONFIG_PREEMPT. This new algorithm's update-side expense
is similar to that of classic hierarchical RCU, and, in absence
of read-side preemption or blocking, is exactly that of classic
hierarchical RCU. Perhaps more important, this new algorithm
has a much simpler implementation, saving well over 1,000 lines
of code compared to mainline's implementation of preemptable
RCU, which will hopefully be retired in favor of this new
algorithm.
The simplifications are obtained by maintaining per-task
nesting state for running tasks, and using a simple
lock-protected algorithm to handle accounting when tasks block
within RCU read-side critical sections, making use of lessons
learned while creating numerous user-level RCU implementations
over the past 18 months.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <12509746134003-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-23 04:56:52 +08:00
|
|
|
/*
|
2018-07-08 09:12:26 +08:00
|
|
|
* Report a full set of quiescent states to the rcu_state data structure.
|
|
|
|
* Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
|
|
|
|
* another grace period is required. Whether we wake the grace-period
|
|
|
|
* kthread or it awakens itself for the next round of quiescent-state
|
|
|
|
* forcing, that kthread will clean up after the just-completed grace
|
|
|
|
* period. Note that the caller must hold rnp->lock, which is released
|
|
|
|
* before return.
|
rcu: Merge preemptable-RCU functionality into hierarchical RCU
Create a kernel/rcutree_plugin.h file that contains definitions
for preemptable RCU (or, under the #else branch of the #ifdef,
empty definitions for the classic non-preemptable semantics).
These definitions fit into plugins defined in kernel/rcutree.c
for this purpose.
This variant of preemptable RCU uses a new algorithm whose
read-side expense is roughly that of classic hierarchical RCU
under CONFIG_PREEMPT. This new algorithm's update-side expense
is similar to that of classic hierarchical RCU, and, in absence
of read-side preemption or blocking, is exactly that of classic
hierarchical RCU. Perhaps more important, this new algorithm
has a much simpler implementation, saving well over 1,000 lines
of code compared to mainline's implementation of preemptable
RCU, which will hopefully be retired in favor of this new
algorithm.
The simplifications are obtained by maintaining per-task
nesting state for running tasks, and using a simple
lock-protected algorithm to handle accounting when tasks block
within RCU read-side critical sections, making use of lessons
learned while creating numerous user-level RCU implementations
over the past 18 months.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <12509746134003-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-23 04:56:52 +08:00
|
|
|
*/
|
2018-07-04 08:22:34 +08:00
|
|
|
static void rcu_report_qs_rsp(unsigned long flags)
|
2018-07-04 08:22:34 +08:00
|
|
|
__releases(rcu_get_root()->lock)
|
rcu: Merge preemptable-RCU functionality into hierarchical RCU
Create a kernel/rcutree_plugin.h file that contains definitions
for preemptable RCU (or, under the #else branch of the #ifdef,
empty definitions for the classic non-preemptable semantics).
These definitions fit into plugins defined in kernel/rcutree.c
for this purpose.
This variant of preemptable RCU uses a new algorithm whose
read-side expense is roughly that of classic hierarchical RCU
under CONFIG_PREEMPT. This new algorithm's update-side expense
is similar to that of classic hierarchical RCU, and, in absence
of read-side preemption or blocking, is exactly that of classic
hierarchical RCU. Perhaps more important, this new algorithm
has a much simpler implementation, saving well over 1,000 lines
of code compared to mainline's implementation of preemptable
RCU, which will hopefully be retired in favor of this new
algorithm.
The simplifications are obtained by maintaining per-task
nesting state for running tasks, and using a simple
lock-protected algorithm to handle accounting when tasks block
within RCU read-side critical sections, making use of lessons
learned while creating numerous user-level RCU implementations
over the past 18 months.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <12509746134003-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-23 04:56:52 +08:00
|
|
|
{
|
2018-07-04 08:22:34 +08:00
|
|
|
raw_lockdep_assert_held_rcu_node(rcu_get_root());
|
2018-07-04 08:22:34 +08:00
|
|
|
WARN_ON_ONCE(!rcu_gp_in_progress());
|
2018-07-06 06:47:01 +08:00
|
|
|
WRITE_ONCE(rcu_state.gp_flags,
|
|
|
|
READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
|
2018-07-04 08:22:34 +08:00
|
|
|
raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_gp_kthread_wake();
|
rcu: Merge preemptable-RCU functionality into hierarchical RCU
Create a kernel/rcutree_plugin.h file that contains definitions
for preemptable RCU (or, under the #else branch of the #ifdef,
empty definitions for the classic non-preemptable semantics).
These definitions fit into plugins defined in kernel/rcutree.c
for this purpose.
This variant of preemptable RCU uses a new algorithm whose
read-side expense is roughly that of classic hierarchical RCU
under CONFIG_PREEMPT. This new algorithm's update-side expense
is similar to that of classic hierarchical RCU, and, in absence
of read-side preemption or blocking, is exactly that of classic
hierarchical RCU. Perhaps more important, this new algorithm
has a much simpler implementation, saving well over 1,000 lines
of code compared to mainline's implementation of preemptable
RCU, which will hopefully be retired in favor of this new
algorithm.
The simplifications are obtained by maintaining per-task
nesting state for running tasks, and using a simple
lock-protected algorithm to handle accounting when tasks block
within RCU read-side critical sections, making use of lessons
learned while creating numerous user-level RCU implementations
over the past 18 months.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <12509746134003-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-23 04:56:52 +08:00
|
|
|
}
|
|
|
|
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
/*
|
2009-12-03 04:10:13 +08:00
|
|
|
* Similar to rcu_report_qs_rdp(), for which it is a helper function.
|
|
|
|
* Allows quiescent states for a group of CPUs to be reported at one go
|
|
|
|
* to the specified rcu_node structure, though all the CPUs in the group
|
rcu: Associate quiescent-state reports with grace period
As noted in earlier commit logs, CPU hotplug operations running
concurrently with grace-period initialization can result in a given
leaf rcu_node structure having all CPUs offline and no blocked readers,
but with this rcu_node structure nevertheless blocking the current
grace period. Therefore, the quiescent-state forcing code now checks
for this situation and repairs it.
Unfortunately, this checking can result in false positives, for example,
when the last task has just removed itself from this leaf rcu_node
structure, but has not yet started clearing the ->qsmask bits further
up the structure. This means that the grace-period kthread (which
forces quiescent states) and some other task might be attempting to
concurrently clear these ->qsmask bits. This is usually not a problem:
One of these tasks will be the first to acquire the upper-level rcu_node
structure's lock and with therefore clear the bit, and the other task,
seeing the bit already cleared, will stop trying to clear bits.
Sadly, this means that the following unusual sequence of events -can-
result in a problem:
1. The grace-period kthread wins, and clears the ->qsmask bits.
2. This is the last thing blocking the current grace period, so
that the grace-period kthread clears ->qsmask bits all the way
to the root and finds that the root ->qsmask field is now zero.
3. Another grace period is required, so that the grace period kthread
initializes it, including setting all the needed qsmask bits.
4. The leaf rcu_node structure (the one that started this whole
mess) is blocking this new grace period, either because it
has at least one online CPU or because there is at least one
task that had blocked within an RCU read-side critical section
while running on one of this leaf rcu_node structure's CPUs.
(And yes, that CPU might well have gone offline before the
grace period in step (3) above started, which can mean that
there is a task on the leaf rcu_node structure's ->blkd_tasks
list, but ->qsmask equal to zero.)
5. The other kthread didn't get around to trying to clear the upper
level ->qsmask bits until all the above had happened. This means
that it now sees bits set in the upper-level ->qsmask field, so it
proceeds to clear them. Too bad that it is doing so on behalf of
a quiescent state that does not apply to the current grace period!
This sequence of events can result in the new grace period being too
short. It can also result in the new grace period ending before the
leaf rcu_node structure's ->qsmask bits have been cleared, which will
result in splats during initialization of the next grace period. In
addition, it can result in tasks blocking the new grace period still
being queued at the start of the next grace period, which will result
in other splats. Sasha's testing turned up another of these splats,
as did rcutorture testing. (And yes, rcutorture is being adjusted to
make these splats show up more quickly. Which probably is having the
undesirable side effect of making other problems show up less quickly.
Can't have everything!)
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org> # 4.0.x
Tested-by: Sasha Levin <sasha.levin@oracle.com>
2015-03-16 00:19:35 +08:00
|
|
|
* must be represented by the same rcu_node structure (which need not be a
|
|
|
|
* leaf rcu_node structure, though it often will be). The gps parameter
|
|
|
|
* is the grace-period snapshot, which means that the quiescent states
|
2018-04-28 05:54:46 +08:00
|
|
|
* are valid only if rnp->gp_seq is equal to gps. That structure's lock
|
rcu: Associate quiescent-state reports with grace period
As noted in earlier commit logs, CPU hotplug operations running
concurrently with grace-period initialization can result in a given
leaf rcu_node structure having all CPUs offline and no blocked readers,
but with this rcu_node structure nevertheless blocking the current
grace period. Therefore, the quiescent-state forcing code now checks
for this situation and repairs it.
Unfortunately, this checking can result in false positives, for example,
when the last task has just removed itself from this leaf rcu_node
structure, but has not yet started clearing the ->qsmask bits further
up the structure. This means that the grace-period kthread (which
forces quiescent states) and some other task might be attempting to
concurrently clear these ->qsmask bits. This is usually not a problem:
One of these tasks will be the first to acquire the upper-level rcu_node
structure's lock and with therefore clear the bit, and the other task,
seeing the bit already cleared, will stop trying to clear bits.
Sadly, this means that the following unusual sequence of events -can-
result in a problem:
1. The grace-period kthread wins, and clears the ->qsmask bits.
2. This is the last thing blocking the current grace period, so
that the grace-period kthread clears ->qsmask bits all the way
to the root and finds that the root ->qsmask field is now zero.
3. Another grace period is required, so that the grace period kthread
initializes it, including setting all the needed qsmask bits.
4. The leaf rcu_node structure (the one that started this whole
mess) is blocking this new grace period, either because it
has at least one online CPU or because there is at least one
task that had blocked within an RCU read-side critical section
while running on one of this leaf rcu_node structure's CPUs.
(And yes, that CPU might well have gone offline before the
grace period in step (3) above started, which can mean that
there is a task on the leaf rcu_node structure's ->blkd_tasks
list, but ->qsmask equal to zero.)
5. The other kthread didn't get around to trying to clear the upper
level ->qsmask bits until all the above had happened. This means
that it now sees bits set in the upper-level ->qsmask field, so it
proceeds to clear them. Too bad that it is doing so on behalf of
a quiescent state that does not apply to the current grace period!
This sequence of events can result in the new grace period being too
short. It can also result in the new grace period ending before the
leaf rcu_node structure's ->qsmask bits have been cleared, which will
result in splats during initialization of the next grace period. In
addition, it can result in tasks blocking the new grace period still
being queued at the start of the next grace period, which will result
in other splats. Sasha's testing turned up another of these splats,
as did rcutorture testing. (And yes, rcutorture is being adjusted to
make these splats show up more quickly. Which probably is having the
undesirable side effect of making other problems show up less quickly.
Can't have everything!)
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org> # 4.0.x
Tested-by: Sasha Levin <sasha.levin@oracle.com>
2015-03-16 00:19:35 +08:00
|
|
|
* must be held upon entry, and it is released before return.
|
rcu: Fix grace-period hangs from mid-init task resume
Without special fail-safe quiescent-state-propagation checks, grace-period
hangs can result from the following scenario:
1. A task running on a given CPU is preempted in its RCU read-side
critical section.
2. That CPU goes offline, and there are now no online CPUs
corresponding to that CPU's leaf rcu_node structure.
3. The rcu_gp_init() function does the first phase of grace-period
initialization, and sets the aforementioned leaf rcu_node
structure's ->qsmaskinit field to all zeroes. Because there
is a blocked task, it does not propagate the zeroing of either
->qsmaskinit or ->qsmaskinitnext up the rcu_node tree.
4. The task resumes on some other CPU and exits its critical section.
There is no grace period in progress, so the resulting quiescent
state is not reported up the tree.
5. The rcu_gp_init() function does the second phase of grace-period
initialization, which results in the leaf rcu_node structure
being initialized to expect no further quiescent states, but
with that structure's parent expecting a quiescent-state report.
The parent will never receive a quiescent state from this leaf
rcu_node structure, so the grace period will hang, resulting in
RCU CPU stall warnings.
It would be good to get rid of the special fail-safe quiescent-state
propagation checks. This commit therefore checks the leaf rcu_node
structure's ->wait_blkd_tasks field during grace-period initialization.
If this flag is set, the rcu_report_qs_rnp() is invoked to immediately
report the possible quiescent state. While in the neighborhood, this
commit also report quiescent states for any CPUs that went offline between
the two phases of grace-period initialization, thus reducing grace-period
delays and hopefully eventually allowing removal of offline-CPU checks
from the force-quiescent-state code path.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-05-08 00:34:17 +08:00
|
|
|
*
|
|
|
|
* As a special case, if mask is zero, the bit-already-cleared check is
|
|
|
|
* disabled. This allows propagating quiescent state due to resumed tasks
|
|
|
|
* during grace-period initialization.
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
*/
|
2018-07-04 08:22:34 +08:00
|
|
|
static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
|
|
|
|
unsigned long gps, unsigned long flags)
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
__releases(rnp->lock)
|
|
|
|
{
|
rcu: Associate quiescent-state reports with grace period
As noted in earlier commit logs, CPU hotplug operations running
concurrently with grace-period initialization can result in a given
leaf rcu_node structure having all CPUs offline and no blocked readers,
but with this rcu_node structure nevertheless blocking the current
grace period. Therefore, the quiescent-state forcing code now checks
for this situation and repairs it.
Unfortunately, this checking can result in false positives, for example,
when the last task has just removed itself from this leaf rcu_node
structure, but has not yet started clearing the ->qsmask bits further
up the structure. This means that the grace-period kthread (which
forces quiescent states) and some other task might be attempting to
concurrently clear these ->qsmask bits. This is usually not a problem:
One of these tasks will be the first to acquire the upper-level rcu_node
structure's lock and with therefore clear the bit, and the other task,
seeing the bit already cleared, will stop trying to clear bits.
Sadly, this means that the following unusual sequence of events -can-
result in a problem:
1. The grace-period kthread wins, and clears the ->qsmask bits.
2. This is the last thing blocking the current grace period, so
that the grace-period kthread clears ->qsmask bits all the way
to the root and finds that the root ->qsmask field is now zero.
3. Another grace period is required, so that the grace period kthread
initializes it, including setting all the needed qsmask bits.
4. The leaf rcu_node structure (the one that started this whole
mess) is blocking this new grace period, either because it
has at least one online CPU or because there is at least one
task that had blocked within an RCU read-side critical section
while running on one of this leaf rcu_node structure's CPUs.
(And yes, that CPU might well have gone offline before the
grace period in step (3) above started, which can mean that
there is a task on the leaf rcu_node structure's ->blkd_tasks
list, but ->qsmask equal to zero.)
5. The other kthread didn't get around to trying to clear the upper
level ->qsmask bits until all the above had happened. This means
that it now sees bits set in the upper-level ->qsmask field, so it
proceeds to clear them. Too bad that it is doing so on behalf of
a quiescent state that does not apply to the current grace period!
This sequence of events can result in the new grace period being too
short. It can also result in the new grace period ending before the
leaf rcu_node structure's ->qsmask bits have been cleared, which will
result in splats during initialization of the next grace period. In
addition, it can result in tasks blocking the new grace period still
being queued at the start of the next grace period, which will result
in other splats. Sasha's testing turned up another of these splats,
as did rcutorture testing. (And yes, rcutorture is being adjusted to
make these splats show up more quickly. Which probably is having the
undesirable side effect of making other problems show up less quickly.
Can't have everything!)
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org> # 4.0.x
Tested-by: Sasha Levin <sasha.levin@oracle.com>
2015-03-16 00:19:35 +08:00
|
|
|
unsigned long oldmask = 0;
|
2009-09-19 00:50:17 +08:00
|
|
|
struct rcu_node *rnp_c;
|
|
|
|
|
2018-01-17 22:24:30 +08:00
|
|
|
raw_lockdep_assert_held_rcu_node(rnp);
|
2017-04-29 03:32:15 +08:00
|
|
|
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
/* Walk up the rcu_node hierarchy. */
|
|
|
|
for (;;) {
|
rcu: Fix grace-period hangs from mid-init task resume
Without special fail-safe quiescent-state-propagation checks, grace-period
hangs can result from the following scenario:
1. A task running on a given CPU is preempted in its RCU read-side
critical section.
2. That CPU goes offline, and there are now no online CPUs
corresponding to that CPU's leaf rcu_node structure.
3. The rcu_gp_init() function does the first phase of grace-period
initialization, and sets the aforementioned leaf rcu_node
structure's ->qsmaskinit field to all zeroes. Because there
is a blocked task, it does not propagate the zeroing of either
->qsmaskinit or ->qsmaskinitnext up the rcu_node tree.
4. The task resumes on some other CPU and exits its critical section.
There is no grace period in progress, so the resulting quiescent
state is not reported up the tree.
5. The rcu_gp_init() function does the second phase of grace-period
initialization, which results in the leaf rcu_node structure
being initialized to expect no further quiescent states, but
with that structure's parent expecting a quiescent-state report.
The parent will never receive a quiescent state from this leaf
rcu_node structure, so the grace period will hang, resulting in
RCU CPU stall warnings.
It would be good to get rid of the special fail-safe quiescent-state
propagation checks. This commit therefore checks the leaf rcu_node
structure's ->wait_blkd_tasks field during grace-period initialization.
If this flag is set, the rcu_report_qs_rnp() is invoked to immediately
report the possible quiescent state. While in the neighborhood, this
commit also report quiescent states for any CPUs that went offline between
the two phases of grace-period initialization, thus reducing grace-period
delays and hopefully eventually allowing removal of offline-CPU checks
from the force-quiescent-state code path.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-05-08 00:34:17 +08:00
|
|
|
if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
|
rcu: Associate quiescent-state reports with grace period
As noted in earlier commit logs, CPU hotplug operations running
concurrently with grace-period initialization can result in a given
leaf rcu_node structure having all CPUs offline and no blocked readers,
but with this rcu_node structure nevertheless blocking the current
grace period. Therefore, the quiescent-state forcing code now checks
for this situation and repairs it.
Unfortunately, this checking can result in false positives, for example,
when the last task has just removed itself from this leaf rcu_node
structure, but has not yet started clearing the ->qsmask bits further
up the structure. This means that the grace-period kthread (which
forces quiescent states) and some other task might be attempting to
concurrently clear these ->qsmask bits. This is usually not a problem:
One of these tasks will be the first to acquire the upper-level rcu_node
structure's lock and with therefore clear the bit, and the other task,
seeing the bit already cleared, will stop trying to clear bits.
Sadly, this means that the following unusual sequence of events -can-
result in a problem:
1. The grace-period kthread wins, and clears the ->qsmask bits.
2. This is the last thing blocking the current grace period, so
that the grace-period kthread clears ->qsmask bits all the way
to the root and finds that the root ->qsmask field is now zero.
3. Another grace period is required, so that the grace period kthread
initializes it, including setting all the needed qsmask bits.
4. The leaf rcu_node structure (the one that started this whole
mess) is blocking this new grace period, either because it
has at least one online CPU or because there is at least one
task that had blocked within an RCU read-side critical section
while running on one of this leaf rcu_node structure's CPUs.
(And yes, that CPU might well have gone offline before the
grace period in step (3) above started, which can mean that
there is a task on the leaf rcu_node structure's ->blkd_tasks
list, but ->qsmask equal to zero.)
5. The other kthread didn't get around to trying to clear the upper
level ->qsmask bits until all the above had happened. This means
that it now sees bits set in the upper-level ->qsmask field, so it
proceeds to clear them. Too bad that it is doing so on behalf of
a quiescent state that does not apply to the current grace period!
This sequence of events can result in the new grace period being too
short. It can also result in the new grace period ending before the
leaf rcu_node structure's ->qsmask bits have been cleared, which will
result in splats during initialization of the next grace period. In
addition, it can result in tasks blocking the new grace period still
being queued at the start of the next grace period, which will result
in other splats. Sasha's testing turned up another of these splats,
as did rcutorture testing. (And yes, rcutorture is being adjusted to
make these splats show up more quickly. Which probably is having the
undesirable side effect of making other problems show up less quickly.
Can't have everything!)
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org> # 4.0.x
Tested-by: Sasha Levin <sasha.levin@oracle.com>
2015-03-16 00:19:35 +08:00
|
|
|
/*
|
|
|
|
* Our bit has already been cleared, or the
|
|
|
|
* relevant grace period is already over, so done.
|
|
|
|
*/
|
2015-12-29 12:18:47 +08:00
|
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
return;
|
|
|
|
}
|
rcu: Associate quiescent-state reports with grace period
As noted in earlier commit logs, CPU hotplug operations running
concurrently with grace-period initialization can result in a given
leaf rcu_node structure having all CPUs offline and no blocked readers,
but with this rcu_node structure nevertheless blocking the current
grace period. Therefore, the quiescent-state forcing code now checks
for this situation and repairs it.
Unfortunately, this checking can result in false positives, for example,
when the last task has just removed itself from this leaf rcu_node
structure, but has not yet started clearing the ->qsmask bits further
up the structure. This means that the grace-period kthread (which
forces quiescent states) and some other task might be attempting to
concurrently clear these ->qsmask bits. This is usually not a problem:
One of these tasks will be the first to acquire the upper-level rcu_node
structure's lock and with therefore clear the bit, and the other task,
seeing the bit already cleared, will stop trying to clear bits.
Sadly, this means that the following unusual sequence of events -can-
result in a problem:
1. The grace-period kthread wins, and clears the ->qsmask bits.
2. This is the last thing blocking the current grace period, so
that the grace-period kthread clears ->qsmask bits all the way
to the root and finds that the root ->qsmask field is now zero.
3. Another grace period is required, so that the grace period kthread
initializes it, including setting all the needed qsmask bits.
4. The leaf rcu_node structure (the one that started this whole
mess) is blocking this new grace period, either because it
has at least one online CPU or because there is at least one
task that had blocked within an RCU read-side critical section
while running on one of this leaf rcu_node structure's CPUs.
(And yes, that CPU might well have gone offline before the
grace period in step (3) above started, which can mean that
there is a task on the leaf rcu_node structure's ->blkd_tasks
list, but ->qsmask equal to zero.)
5. The other kthread didn't get around to trying to clear the upper
level ->qsmask bits until all the above had happened. This means
that it now sees bits set in the upper-level ->qsmask field, so it
proceeds to clear them. Too bad that it is doing so on behalf of
a quiescent state that does not apply to the current grace period!
This sequence of events can result in the new grace period being too
short. It can also result in the new grace period ending before the
leaf rcu_node structure's ->qsmask bits have been cleared, which will
result in splats during initialization of the next grace period. In
addition, it can result in tasks blocking the new grace period still
being queued at the start of the next grace period, which will result
in other splats. Sasha's testing turned up another of these splats,
as did rcutorture testing. (And yes, rcutorture is being adjusted to
make these splats show up more quickly. Which probably is having the
undesirable side effect of making other problems show up less quickly.
Can't have everything!)
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org> # 4.0.x
Tested-by: Sasha Levin <sasha.levin@oracle.com>
2015-03-16 00:19:35 +08:00
|
|
|
WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
|
2018-04-14 08:11:44 +08:00
|
|
|
WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
|
2017-07-12 12:52:31 +08:00
|
|
|
rcu_preempt_blocked_readers_cgp(rnp));
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
rnp->qsmask &= ~mask;
|
2018-07-06 07:15:38 +08:00
|
|
|
trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
|
rcu: Add grace-period, quiescent-state, and call_rcu trace events
Add trace events to record grace-period start and end, quiescent states,
CPUs noticing grace-period start and end, grace-period initialization,
call_rcu() invocation, tasks blocking in RCU read-side critical sections,
tasks exiting those same critical sections, force_quiescent_state()
detection of dyntick-idle and offline CPUs, CPUs entering and leaving
dyntick-idle mode (except from NMIs), CPUs coming online and going
offline, and CPUs being kicked for staying in dyntick-idle mode for too
long (as in many weeks, even on 32-bit systems).
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
rcu: Add the rcu flavor to callback trace events
The earlier trace events for registering RCU callbacks and for invoking
them did not include the RCU flavor (rcu_bh, rcu_preempt, or rcu_sched).
This commit adds the RCU flavor to those trace events.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-06-25 21:36:56 +08:00
|
|
|
mask, rnp->qsmask, rnp->level,
|
|
|
|
rnp->grplo, rnp->grphi,
|
|
|
|
!!rnp->gp_tasks);
|
2011-02-08 04:47:15 +08:00
|
|
|
if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
|
|
|
|
/* Other bits still set at this level, so done. */
|
2015-12-29 12:18:47 +08:00
|
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
return;
|
|
|
|
}
|
2018-04-29 09:50:06 +08:00
|
|
|
rnp->completedqs = rnp->gp_seq;
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
mask = rnp->grpmask;
|
|
|
|
if (rnp->parent == NULL) {
|
|
|
|
|
|
|
|
/* No more levels. Exit loop holding root lock. */
|
|
|
|
|
|
|
|
break;
|
|
|
|
}
|
2015-12-29 12:18:47 +08:00
|
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
2009-09-19 00:50:17 +08:00
|
|
|
rnp_c = rnp;
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
rnp = rnp->parent;
|
2015-10-08 18:24:23 +08:00
|
|
|
raw_spin_lock_irqsave_rcu_node(rnp, flags);
|
rcu: Associate quiescent-state reports with grace period
As noted in earlier commit logs, CPU hotplug operations running
concurrently with grace-period initialization can result in a given
leaf rcu_node structure having all CPUs offline and no blocked readers,
but with this rcu_node structure nevertheless blocking the current
grace period. Therefore, the quiescent-state forcing code now checks
for this situation and repairs it.
Unfortunately, this checking can result in false positives, for example,
when the last task has just removed itself from this leaf rcu_node
structure, but has not yet started clearing the ->qsmask bits further
up the structure. This means that the grace-period kthread (which
forces quiescent states) and some other task might be attempting to
concurrently clear these ->qsmask bits. This is usually not a problem:
One of these tasks will be the first to acquire the upper-level rcu_node
structure's lock and with therefore clear the bit, and the other task,
seeing the bit already cleared, will stop trying to clear bits.
Sadly, this means that the following unusual sequence of events -can-
result in a problem:
1. The grace-period kthread wins, and clears the ->qsmask bits.
2. This is the last thing blocking the current grace period, so
that the grace-period kthread clears ->qsmask bits all the way
to the root and finds that the root ->qsmask field is now zero.
3. Another grace period is required, so that the grace period kthread
initializes it, including setting all the needed qsmask bits.
4. The leaf rcu_node structure (the one that started this whole
mess) is blocking this new grace period, either because it
has at least one online CPU or because there is at least one
task that had blocked within an RCU read-side critical section
while running on one of this leaf rcu_node structure's CPUs.
(And yes, that CPU might well have gone offline before the
grace period in step (3) above started, which can mean that
there is a task on the leaf rcu_node structure's ->blkd_tasks
list, but ->qsmask equal to zero.)
5. The other kthread didn't get around to trying to clear the upper
level ->qsmask bits until all the above had happened. This means
that it now sees bits set in the upper-level ->qsmask field, so it
proceeds to clear them. Too bad that it is doing so on behalf of
a quiescent state that does not apply to the current grace period!
This sequence of events can result in the new grace period being too
short. It can also result in the new grace period ending before the
leaf rcu_node structure's ->qsmask bits have been cleared, which will
result in splats during initialization of the next grace period. In
addition, it can result in tasks blocking the new grace period still
being queued at the start of the next grace period, which will result
in other splats. Sasha's testing turned up another of these splats,
as did rcutorture testing. (And yes, rcutorture is being adjusted to
make these splats show up more quickly. Which probably is having the
undesirable side effect of making other problems show up less quickly.
Can't have everything!)
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org> # 4.0.x
Tested-by: Sasha Levin <sasha.levin@oracle.com>
2015-03-16 00:19:35 +08:00
|
|
|
oldmask = rnp_c->qsmask;
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Get here if we are the last CPU to pass through a quiescent
|
2009-12-03 04:10:13 +08:00
|
|
|
* state for this grace period. Invoke rcu_report_qs_rsp()
|
rcu: Merge preemptable-RCU functionality into hierarchical RCU
Create a kernel/rcutree_plugin.h file that contains definitions
for preemptable RCU (or, under the #else branch of the #ifdef,
empty definitions for the classic non-preemptable semantics).
These definitions fit into plugins defined in kernel/rcutree.c
for this purpose.
This variant of preemptable RCU uses a new algorithm whose
read-side expense is roughly that of classic hierarchical RCU
under CONFIG_PREEMPT. This new algorithm's update-side expense
is similar to that of classic hierarchical RCU, and, in absence
of read-side preemption or blocking, is exactly that of classic
hierarchical RCU. Perhaps more important, this new algorithm
has a much simpler implementation, saving well over 1,000 lines
of code compared to mainline's implementation of preemptable
RCU, which will hopefully be retired in favor of this new
algorithm.
The simplifications are obtained by maintaining per-task
nesting state for running tasks, and using a simple
lock-protected algorithm to handle accounting when tasks block
within RCU read-side critical sections, making use of lessons
learned while creating numerous user-level RCU implementations
over the past 18 months.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <12509746134003-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-23 04:56:52 +08:00
|
|
|
* to clean up and start the next grace period if one is needed.
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
*/
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_report_qs_rsp(flags); /* releases rnp->lock. */
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
}
|
|
|
|
|
2015-02-24 00:59:29 +08:00
|
|
|
/*
|
|
|
|
* Record a quiescent state for all tasks that were previously queued
|
|
|
|
* on the specified rcu_node structure and that were blocking the current
|
2018-07-08 09:12:26 +08:00
|
|
|
* RCU grace period. The caller must hold the corresponding rnp->lock with
|
2015-02-24 00:59:29 +08:00
|
|
|
* irqs disabled, and this lock is released upon return, but irqs remain
|
|
|
|
* disabled.
|
|
|
|
*/
|
2018-05-04 05:30:02 +08:00
|
|
|
static void __maybe_unused
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
|
2015-02-24 00:59:29 +08:00
|
|
|
__releases(rnp->lock)
|
|
|
|
{
|
rcu: Associate quiescent-state reports with grace period
As noted in earlier commit logs, CPU hotplug operations running
concurrently with grace-period initialization can result in a given
leaf rcu_node structure having all CPUs offline and no blocked readers,
but with this rcu_node structure nevertheless blocking the current
grace period. Therefore, the quiescent-state forcing code now checks
for this situation and repairs it.
Unfortunately, this checking can result in false positives, for example,
when the last task has just removed itself from this leaf rcu_node
structure, but has not yet started clearing the ->qsmask bits further
up the structure. This means that the grace-period kthread (which
forces quiescent states) and some other task might be attempting to
concurrently clear these ->qsmask bits. This is usually not a problem:
One of these tasks will be the first to acquire the upper-level rcu_node
structure's lock and with therefore clear the bit, and the other task,
seeing the bit already cleared, will stop trying to clear bits.
Sadly, this means that the following unusual sequence of events -can-
result in a problem:
1. The grace-period kthread wins, and clears the ->qsmask bits.
2. This is the last thing blocking the current grace period, so
that the grace-period kthread clears ->qsmask bits all the way
to the root and finds that the root ->qsmask field is now zero.
3. Another grace period is required, so that the grace period kthread
initializes it, including setting all the needed qsmask bits.
4. The leaf rcu_node structure (the one that started this whole
mess) is blocking this new grace period, either because it
has at least one online CPU or because there is at least one
task that had blocked within an RCU read-side critical section
while running on one of this leaf rcu_node structure's CPUs.
(And yes, that CPU might well have gone offline before the
grace period in step (3) above started, which can mean that
there is a task on the leaf rcu_node structure's ->blkd_tasks
list, but ->qsmask equal to zero.)
5. The other kthread didn't get around to trying to clear the upper
level ->qsmask bits until all the above had happened. This means
that it now sees bits set in the upper-level ->qsmask field, so it
proceeds to clear them. Too bad that it is doing so on behalf of
a quiescent state that does not apply to the current grace period!
This sequence of events can result in the new grace period being too
short. It can also result in the new grace period ending before the
leaf rcu_node structure's ->qsmask bits have been cleared, which will
result in splats during initialization of the next grace period. In
addition, it can result in tasks blocking the new grace period still
being queued at the start of the next grace period, which will result
in other splats. Sasha's testing turned up another of these splats,
as did rcutorture testing. (And yes, rcutorture is being adjusted to
make these splats show up more quickly. Which probably is having the
undesirable side effect of making other problems show up less quickly.
Can't have everything!)
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org> # 4.0.x
Tested-by: Sasha Levin <sasha.levin@oracle.com>
2015-03-16 00:19:35 +08:00
|
|
|
unsigned long gps;
|
2015-02-24 00:59:29 +08:00
|
|
|
unsigned long mask;
|
|
|
|
struct rcu_node *rnp_p;
|
|
|
|
|
2018-01-17 22:24:30 +08:00
|
|
|
raw_lockdep_assert_held_rcu_node(rnp);
|
2018-07-03 05:30:37 +08:00
|
|
|
if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)) ||
|
2018-04-28 05:05:27 +08:00
|
|
|
WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
|
|
|
|
rnp->qsmask != 0) {
|
2015-12-29 12:18:47 +08:00
|
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
2015-02-24 00:59:29 +08:00
|
|
|
return; /* Still need more quiescent states! */
|
|
|
|
}
|
|
|
|
|
2018-05-02 06:00:10 +08:00
|
|
|
rnp->completedqs = rnp->gp_seq;
|
2015-02-24 00:59:29 +08:00
|
|
|
rnp_p = rnp->parent;
|
|
|
|
if (rnp_p == NULL) {
|
|
|
|
/*
|
2015-03-09 05:52:27 +08:00
|
|
|
* Only one rcu_node structure in the tree, so don't
|
|
|
|
* try to report up to its nonexistent parent!
|
2015-02-24 00:59:29 +08:00
|
|
|
*/
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_report_qs_rsp(flags);
|
2015-02-24 00:59:29 +08:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2018-04-28 05:54:46 +08:00
|
|
|
/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
|
|
|
|
gps = rnp->gp_seq;
|
2015-02-24 00:59:29 +08:00
|
|
|
mask = rnp->grpmask;
|
2015-12-29 12:18:47 +08:00
|
|
|
raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
|
2015-10-08 18:24:23 +08:00
|
|
|
raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_report_qs_rnp(mask, rnp_p, gps, flags);
|
2015-02-24 00:59:29 +08:00
|
|
|
}
|
|
|
|
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
/*
|
2009-12-03 04:10:13 +08:00
|
|
|
* Record a quiescent state for the specified CPU to that CPU's rcu_data
|
2016-01-28 14:44:45 +08:00
|
|
|
* structure. This must be called from the specified CPU.
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
*/
|
|
|
|
static void
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
unsigned long mask;
|
rcu: Make callers awaken grace-period kthread
The rcu_start_gp_advanced() function currently uses irq_work_queue()
to defer wakeups of the RCU grace-period kthread. This deferring
is necessary to avoid RCU-scheduler deadlocks involving the rcu_node
structure's lock, meaning that RCU cannot call any of the scheduler's
wake-up functions while holding one of these locks.
Unfortunately, the second and subsequent calls to irq_work_queue() are
ignored, and the first call will be ignored (aside from queuing the work
item) if the scheduler-clock tick is turned off. This is OK for many
uses, especially those where irq_work_queue() is called from an interrupt
or softirq handler, because in those cases the scheduler-clock-tick state
will be re-evaluated, which will turn the scheduler-clock tick back on.
On the next tick, any deferred work will then be processed.
However, this strategy does not always work for RCU, which can be invoked
at process level from idle CPUs. In this case, the tick might never
be turned back on, indefinitely defering a grace-period start request.
Note that the RCU CPU stall detector cannot see this condition, because
there is no RCU grace period in progress. Therefore, we can (and do!)
see long tens-of-seconds stalls in grace-period handling. In theory,
we could see a full grace-period hang, but rcutorture testing to date
has seen only the tens-of-seconds stalls. Event tracing demonstrates
that irq_work_queue() is being called repeatedly to no effect during
these stalls: The "newreq" event appears repeatedly from a task that is
not one of the grace-period kthreads.
In theory, irq_work_queue() might be fixed to avoid this sort of issue,
but RCU's requirements are unusual and it is quite straightforward to pass
wake-up responsibility up through RCU's call chain, so that the wakeup
happens when the offending locks are released.
This commit therefore makes this change. The rcu_start_gp_advanced(),
rcu_start_future_gp(), rcu_accelerate_cbs(), rcu_advance_cbs(),
__note_gp_changes(), and rcu_start_gp() functions now return a boolean
which indicates when a wake-up is needed. A new rcu_gp_kthread_wake()
does the wakeup when it is necessary and safe to do so: No self-wakes,
no wake-ups if the ->gp_flags field indicates there is no need (as in
someone else did the wake-up before we got around to it), and no wake-ups
before the grace-period kthread has been created.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2014-03-12 04:02:16 +08:00
|
|
|
bool needwake;
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
struct rcu_node *rnp;
|
|
|
|
|
|
|
|
rnp = rdp->mynode;
|
2015-10-08 18:24:23 +08:00
|
|
|
raw_spin_lock_irqsave_rcu_node(rnp, flags);
|
2018-04-28 05:54:46 +08:00
|
|
|
if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
|
|
|
|
rdp->gpwrap) {
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
|
|
|
|
/*
|
rcu: Simplify quiescent-state accounting
There is often a delay between the time that a CPU passes through a
quiescent state and the time that this quiescent state is reported to the
RCU core. It is quite possible that the grace period ended before the
quiescent state could be reported, for example, some other CPU might have
deduced that this CPU passed through dyntick-idle mode. It is critically
important that quiescent state be counted only against the grace period
that was in effect at the time that the quiescent state was detected.
Previously, this was handled by recording the number of the last grace
period to complete when passing through a quiescent state. The RCU
core then checks this number against the current value, and rejects
the quiescent state if there is a mismatch. However, one additional
possibility must be accounted for, namely that the quiescent state was
recorded after the prior grace period completed but before the current
grace period started. In this case, the RCU core must reject the
quiescent state, but the recorded number will match. This is handled
when the CPU becomes aware of a new grace period -- at that point,
it invalidates any prior quiescent state.
This works, but is a bit indirect. The new approach records the current
grace period, and the RCU core checks to see (1) that this is still the
current grace period and (2) that this grace period has not yet ended.
This approach simplifies reasoning about correctness, and this commit
changes over to this new approach.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-06-27 15:17:43 +08:00
|
|
|
* The grace period in which this quiescent state was
|
|
|
|
* recorded has ended, so don't report it upwards.
|
|
|
|
* We will instead need a new quiescent state that lies
|
|
|
|
* within the current grace period.
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
*/
|
2015-08-07 06:16:57 +08:00
|
|
|
rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
|
2015-12-29 12:18:47 +08:00
|
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
mask = rdp->grpmask;
|
|
|
|
if ((rnp->qsmask & mask) == 0) {
|
2015-12-29 12:18:47 +08:00
|
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
} else {
|
2015-12-11 01:30:12 +08:00
|
|
|
rdp->core_needs_qs = false;
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* This GP can't end until cpu checks in, so all of our
|
|
|
|
* callbacks can be processed during the next GP.
|
|
|
|
*/
|
2018-07-04 08:22:34 +08:00
|
|
|
needwake = rcu_accelerate_cbs(rnp, rdp);
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
|
rcu: Associate quiescent-state reports with grace period
As noted in earlier commit logs, CPU hotplug operations running
concurrently with grace-period initialization can result in a given
leaf rcu_node structure having all CPUs offline and no blocked readers,
but with this rcu_node structure nevertheless blocking the current
grace period. Therefore, the quiescent-state forcing code now checks
for this situation and repairs it.
Unfortunately, this checking can result in false positives, for example,
when the last task has just removed itself from this leaf rcu_node
structure, but has not yet started clearing the ->qsmask bits further
up the structure. This means that the grace-period kthread (which
forces quiescent states) and some other task might be attempting to
concurrently clear these ->qsmask bits. This is usually not a problem:
One of these tasks will be the first to acquire the upper-level rcu_node
structure's lock and with therefore clear the bit, and the other task,
seeing the bit already cleared, will stop trying to clear bits.
Sadly, this means that the following unusual sequence of events -can-
result in a problem:
1. The grace-period kthread wins, and clears the ->qsmask bits.
2. This is the last thing blocking the current grace period, so
that the grace-period kthread clears ->qsmask bits all the way
to the root and finds that the root ->qsmask field is now zero.
3. Another grace period is required, so that the grace period kthread
initializes it, including setting all the needed qsmask bits.
4. The leaf rcu_node structure (the one that started this whole
mess) is blocking this new grace period, either because it
has at least one online CPU or because there is at least one
task that had blocked within an RCU read-side critical section
while running on one of this leaf rcu_node structure's CPUs.
(And yes, that CPU might well have gone offline before the
grace period in step (3) above started, which can mean that
there is a task on the leaf rcu_node structure's ->blkd_tasks
list, but ->qsmask equal to zero.)
5. The other kthread didn't get around to trying to clear the upper
level ->qsmask bits until all the above had happened. This means
that it now sees bits set in the upper-level ->qsmask field, so it
proceeds to clear them. Too bad that it is doing so on behalf of
a quiescent state that does not apply to the current grace period!
This sequence of events can result in the new grace period being too
short. It can also result in the new grace period ending before the
leaf rcu_node structure's ->qsmask bits have been cleared, which will
result in splats during initialization of the next grace period. In
addition, it can result in tasks blocking the new grace period still
being queued at the start of the next grace period, which will result
in other splats. Sasha's testing turned up another of these splats,
as did rcutorture testing. (And yes, rcutorture is being adjusted to
make these splats show up more quickly. Which probably is having the
undesirable side effect of making other problems show up less quickly.
Can't have everything!)
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org> # 4.0.x
Tested-by: Sasha Levin <sasha.levin@oracle.com>
2015-03-16 00:19:35 +08:00
|
|
|
/* ^^^ Released rnp->lock */
|
rcu: Make callers awaken grace-period kthread
The rcu_start_gp_advanced() function currently uses irq_work_queue()
to defer wakeups of the RCU grace-period kthread. This deferring
is necessary to avoid RCU-scheduler deadlocks involving the rcu_node
structure's lock, meaning that RCU cannot call any of the scheduler's
wake-up functions while holding one of these locks.
Unfortunately, the second and subsequent calls to irq_work_queue() are
ignored, and the first call will be ignored (aside from queuing the work
item) if the scheduler-clock tick is turned off. This is OK for many
uses, especially those where irq_work_queue() is called from an interrupt
or softirq handler, because in those cases the scheduler-clock-tick state
will be re-evaluated, which will turn the scheduler-clock tick back on.
On the next tick, any deferred work will then be processed.
However, this strategy does not always work for RCU, which can be invoked
at process level from idle CPUs. In this case, the tick might never
be turned back on, indefinitely defering a grace-period start request.
Note that the RCU CPU stall detector cannot see this condition, because
there is no RCU grace period in progress. Therefore, we can (and do!)
see long tens-of-seconds stalls in grace-period handling. In theory,
we could see a full grace-period hang, but rcutorture testing to date
has seen only the tens-of-seconds stalls. Event tracing demonstrates
that irq_work_queue() is being called repeatedly to no effect during
these stalls: The "newreq" event appears repeatedly from a task that is
not one of the grace-period kthreads.
In theory, irq_work_queue() might be fixed to avoid this sort of issue,
but RCU's requirements are unusual and it is quite straightforward to pass
wake-up responsibility up through RCU's call chain, so that the wakeup
happens when the offending locks are released.
This commit therefore makes this change. The rcu_start_gp_advanced(),
rcu_start_future_gp(), rcu_accelerate_cbs(), rcu_advance_cbs(),
__note_gp_changes(), and rcu_start_gp() functions now return a boolean
which indicates when a wake-up is needed. A new rcu_gp_kthread_wake()
does the wakeup when it is necessary and safe to do so: No self-wakes,
no wake-ups if the ->gp_flags field indicates there is no need (as in
someone else did the wake-up before we got around to it), and no wake-ups
before the grace-period kthread has been created.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2014-03-12 04:02:16 +08:00
|
|
|
if (needwake)
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_gp_kthread_wake();
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Check to see if there is a new grace period of which this CPU
|
|
|
|
* is not yet aware, and if so, set up local rcu_data state for it.
|
|
|
|
* Otherwise, see if this CPU has just passed through its first
|
|
|
|
* quiescent state for this grace period, and record that fact if so.
|
|
|
|
*/
|
|
|
|
static void
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_check_quiescent_state(struct rcu_data *rdp)
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
{
|
2013-03-20 03:38:24 +08:00
|
|
|
/* Check for grace-period ends and beginnings. */
|
2018-07-04 08:22:34 +08:00
|
|
|
note_gp_changes(rdp);
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Does this CPU still need to do its part for current grace period?
|
|
|
|
* If no, return and let the other CPUs do their part as well.
|
|
|
|
*/
|
2015-08-07 02:31:51 +08:00
|
|
|
if (!rdp->core_needs_qs)
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
return;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Was there a quiescent state since the beginning of the grace
|
|
|
|
* period? If no, then exit and wait for the next call.
|
|
|
|
*/
|
2016-12-01 03:21:21 +08:00
|
|
|
if (rdp->cpu_no_qs.b.norm)
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
return;
|
|
|
|
|
2009-12-03 04:10:13 +08:00
|
|
|
/*
|
|
|
|
* Tell RCU we are done (but rcu_report_qs_rdp() will be the
|
|
|
|
* judge of that).
|
|
|
|
*/
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_report_qs_rdp(rdp->cpu, rdp);
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
}
|
|
|
|
|
2012-03-02 05:18:08 +08:00
|
|
|
/*
|
2018-07-04 08:22:34 +08:00
|
|
|
* Near the end of the offline process. Trace the fact that this CPU
|
|
|
|
* is going offline.
|
2012-03-02 05:18:08 +08:00
|
|
|
*/
|
2018-07-04 08:22:34 +08:00
|
|
|
int rcutree_dying_cpu(unsigned int cpu)
|
2012-03-02 05:18:08 +08:00
|
|
|
{
|
2018-05-02 03:54:11 +08:00
|
|
|
RCU_TRACE(bool blkd;)
|
2018-07-04 06:37:16 +08:00
|
|
|
RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(&rcu_data);)
|
2017-01-24 04:04:46 +08:00
|
|
|
RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
|
2012-03-02 05:18:08 +08:00
|
|
|
|
2015-03-04 06:05:26 +08:00
|
|
|
if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
|
2018-07-04 08:22:34 +08:00
|
|
|
return 0;
|
2015-03-04 06:05:26 +08:00
|
|
|
|
2018-05-02 03:54:11 +08:00
|
|
|
RCU_TRACE(blkd = !!(rnp->qsmask & rdp->grpmask);)
|
2018-07-04 08:22:34 +08:00
|
|
|
trace_rcu_grace_period(rcu_state.name, rnp->gp_seq,
|
2018-05-02 03:54:11 +08:00
|
|
|
blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
|
2018-07-04 08:22:34 +08:00
|
|
|
return 0;
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
}
|
|
|
|
|
2014-11-01 02:22:37 +08:00
|
|
|
/*
|
|
|
|
* All CPUs for the specified rcu_node structure have gone offline,
|
|
|
|
* and all tasks that were preempted within an RCU read-side critical
|
|
|
|
* section while running on one of those CPUs have since exited their RCU
|
|
|
|
* read-side critical section. Some other CPU is reporting this fact with
|
|
|
|
* the specified rcu_node structure's ->lock held and interrupts disabled.
|
|
|
|
* This function therefore goes up the tree of rcu_node structures,
|
|
|
|
* clearing the corresponding bits in the ->qsmaskinit fields. Note that
|
|
|
|
* the leaf rcu_node structure's ->qsmaskinit field has already been
|
2018-05-03 04:51:57 +08:00
|
|
|
* updated.
|
2014-11-01 02:22:37 +08:00
|
|
|
*
|
|
|
|
* This function does check that the specified rcu_node structure has
|
|
|
|
* all CPUs offline and no blocked tasks, so it is OK to invoke it
|
|
|
|
* prematurely. That said, invoking it after the fact will cost you
|
|
|
|
* a needless lock acquisition. So once it has done its work, don't
|
|
|
|
* invoke it again.
|
|
|
|
*/
|
|
|
|
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
|
|
|
|
{
|
|
|
|
long mask;
|
|
|
|
struct rcu_node *rnp = rnp_leaf;
|
|
|
|
|
rcu: Clean up handling of tasks blocked across full-rcu_node offline
Commit 0aa04b055e71 ("rcu: Process offlining and onlining only at
grace-period start") deferred handling of CPU-hotplug events until the
start of the next grace period, but consider the following sequence
of events:
1. A task is preempted within an RCU-preempt read-side critical
section.
2. The CPU that this task was running on goes offline, along with all
other CPUs sharing the corresponding leaf rcu_node structure.
3. The task resumes execution.
4. One of those CPUs comes back online before a new grace period starts.
In step 2, the code in the next rcu_gp_init() invocation will (correctly)
defer removing the leaf rcu_node structure from the upper-level bitmasks,
and will (correctly) set that structure's ->wait_blkd_tasks field. During
the ensuing interval, RCU will (correctly) track the tasks preempted on
that structure because they must block any subsequent grace period.
In step 3, the code in rcu_read_unlock_special() will (correctly) remove
the task from the leaf rcu_node structure. From this point forward, RCU
need not pay attention to this structure, at least not until one of the
corresponding CPUs comes back online.
In step 4, the code in the next rcu_gp_init() invocation will
(incorrectly) invoke rcu_init_new_rnp(). This is incorrect because
the corresponding rcu_cleanup_dead_rnp() was never invoked. This is
nevertheless harmless because the upper-level bits are still set.
So, no harm, no foul, right?
At least, all is well until a little further into rcu_gp_init()
invocation, which will notice that there are no longer any tasks blocked
on the leaf rcu_node structure, conclude that there is no longer anything
left over from step 2's offline operation, and will therefore invoke
rcu_cleanup_dead_rnp(). But this invocation of rcu_cleanup_dead_rnp()
is for the beginning of the earlier offline interval, and the previous
invocation of rcu_init_new_rnp() is for the end of that same interval.
That is right, they are invoked out of order.
That cannot be good, can it?
It turns out that this is not a (correctness!) problem because
rcu_cleanup_dead_rnp() checks to see if any of the corresponding CPUs
are online, and refuses to do anything if so. In other words, in the
case where rcu_init_new_rnp() and rcu_cleanup_dead_rnp() execute out of
order, they both have no effect.
But this is at best an accident waiting to happen.
This commit therefore adds logic to rcu_gp_init() so that
rcu_init_new_rnp() and rcu_cleanup_dead_rnp() are always invoked in
order, and so that neither are invoked at all in cases where RCU had to
pay attention to the leaf rcu_node structure during the entire time that
all corresponding CPUs were offline.
And, while in the area, this commit reduces confusion by using formal
parameters rather than local variables that just happen to have the same
value at that particular point in the code.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-05-03 03:49:21 +08:00
|
|
|
raw_lockdep_assert_held_rcu_node(rnp_leaf);
|
2015-03-04 06:05:26 +08:00
|
|
|
if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
|
rcu: Clean up handling of tasks blocked across full-rcu_node offline
Commit 0aa04b055e71 ("rcu: Process offlining and onlining only at
grace-period start") deferred handling of CPU-hotplug events until the
start of the next grace period, but consider the following sequence
of events:
1. A task is preempted within an RCU-preempt read-side critical
section.
2. The CPU that this task was running on goes offline, along with all
other CPUs sharing the corresponding leaf rcu_node structure.
3. The task resumes execution.
4. One of those CPUs comes back online before a new grace period starts.
In step 2, the code in the next rcu_gp_init() invocation will (correctly)
defer removing the leaf rcu_node structure from the upper-level bitmasks,
and will (correctly) set that structure's ->wait_blkd_tasks field. During
the ensuing interval, RCU will (correctly) track the tasks preempted on
that structure because they must block any subsequent grace period.
In step 3, the code in rcu_read_unlock_special() will (correctly) remove
the task from the leaf rcu_node structure. From this point forward, RCU
need not pay attention to this structure, at least not until one of the
corresponding CPUs comes back online.
In step 4, the code in the next rcu_gp_init() invocation will
(incorrectly) invoke rcu_init_new_rnp(). This is incorrect because
the corresponding rcu_cleanup_dead_rnp() was never invoked. This is
nevertheless harmless because the upper-level bits are still set.
So, no harm, no foul, right?
At least, all is well until a little further into rcu_gp_init()
invocation, which will notice that there are no longer any tasks blocked
on the leaf rcu_node structure, conclude that there is no longer anything
left over from step 2's offline operation, and will therefore invoke
rcu_cleanup_dead_rnp(). But this invocation of rcu_cleanup_dead_rnp()
is for the beginning of the earlier offline interval, and the previous
invocation of rcu_init_new_rnp() is for the end of that same interval.
That is right, they are invoked out of order.
That cannot be good, can it?
It turns out that this is not a (correctness!) problem because
rcu_cleanup_dead_rnp() checks to see if any of the corresponding CPUs
are online, and refuses to do anything if so. In other words, in the
case where rcu_init_new_rnp() and rcu_cleanup_dead_rnp() execute out of
order, they both have no effect.
But this is at best an accident waiting to happen.
This commit therefore adds logic to rcu_gp_init() so that
rcu_init_new_rnp() and rcu_cleanup_dead_rnp() are always invoked in
order, and so that neither are invoked at all in cases where RCU had to
pay attention to the leaf rcu_node structure during the entire time that
all corresponding CPUs were offline.
And, while in the area, this commit reduces confusion by using formal
parameters rather than local variables that just happen to have the same
value at that particular point in the code.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-05-03 03:49:21 +08:00
|
|
|
WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
|
|
|
|
WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
|
2014-11-01 02:22:37 +08:00
|
|
|
return;
|
|
|
|
for (;;) {
|
|
|
|
mask = rnp->grpmask;
|
|
|
|
rnp = rnp->parent;
|
|
|
|
if (!rnp)
|
|
|
|
break;
|
2015-10-08 18:24:23 +08:00
|
|
|
raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
|
2014-11-01 02:22:37 +08:00
|
|
|
rnp->qsmaskinit &= ~mask;
|
rcu: Clean up handling of tasks blocked across full-rcu_node offline
Commit 0aa04b055e71 ("rcu: Process offlining and onlining only at
grace-period start") deferred handling of CPU-hotplug events until the
start of the next grace period, but consider the following sequence
of events:
1. A task is preempted within an RCU-preempt read-side critical
section.
2. The CPU that this task was running on goes offline, along with all
other CPUs sharing the corresponding leaf rcu_node structure.
3. The task resumes execution.
4. One of those CPUs comes back online before a new grace period starts.
In step 2, the code in the next rcu_gp_init() invocation will (correctly)
defer removing the leaf rcu_node structure from the upper-level bitmasks,
and will (correctly) set that structure's ->wait_blkd_tasks field. During
the ensuing interval, RCU will (correctly) track the tasks preempted on
that structure because they must block any subsequent grace period.
In step 3, the code in rcu_read_unlock_special() will (correctly) remove
the task from the leaf rcu_node structure. From this point forward, RCU
need not pay attention to this structure, at least not until one of the
corresponding CPUs comes back online.
In step 4, the code in the next rcu_gp_init() invocation will
(incorrectly) invoke rcu_init_new_rnp(). This is incorrect because
the corresponding rcu_cleanup_dead_rnp() was never invoked. This is
nevertheless harmless because the upper-level bits are still set.
So, no harm, no foul, right?
At least, all is well until a little further into rcu_gp_init()
invocation, which will notice that there are no longer any tasks blocked
on the leaf rcu_node structure, conclude that there is no longer anything
left over from step 2's offline operation, and will therefore invoke
rcu_cleanup_dead_rnp(). But this invocation of rcu_cleanup_dead_rnp()
is for the beginning of the earlier offline interval, and the previous
invocation of rcu_init_new_rnp() is for the end of that same interval.
That is right, they are invoked out of order.
That cannot be good, can it?
It turns out that this is not a (correctness!) problem because
rcu_cleanup_dead_rnp() checks to see if any of the corresponding CPUs
are online, and refuses to do anything if so. In other words, in the
case where rcu_init_new_rnp() and rcu_cleanup_dead_rnp() execute out of
order, they both have no effect.
But this is at best an accident waiting to happen.
This commit therefore adds logic to rcu_gp_init() so that
rcu_init_new_rnp() and rcu_cleanup_dead_rnp() are always invoked in
order, and so that neither are invoked at all in cases where RCU had to
pay attention to the leaf rcu_node structure during the entire time that
all corresponding CPUs were offline.
And, while in the area, this commit reduces confusion by using formal
parameters rather than local variables that just happen to have the same
value at that particular point in the code.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-05-03 03:49:21 +08:00
|
|
|
/* Between grace periods, so better already be zero! */
|
|
|
|
WARN_ON_ONCE(rnp->qsmask);
|
2014-11-01 02:22:37 +08:00
|
|
|
if (rnp->qsmaskinit) {
|
2015-12-29 12:18:47 +08:00
|
|
|
raw_spin_unlock_rcu_node(rnp);
|
|
|
|
/* irqs remain disabled. */
|
2014-11-01 02:22:37 +08:00
|
|
|
return;
|
|
|
|
}
|
2015-12-29 12:18:47 +08:00
|
|
|
raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
|
2014-11-01 02:22:37 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
/*
|
2012-01-08 03:03:57 +08:00
|
|
|
* The CPU has been completely removed, and some other CPU is reporting
|
rcu: Migrate callbacks earlier in the CPU-offline timeline
RCU callbacks must be migrated away from an outgoing CPU, and this is
done near the end of the CPU-hotplug operation, after the outgoing CPU is
long gone. Unfortunately, this means that other CPU-hotplug callbacks
can execute while the outgoing CPU's callbacks are still immobilized
on the long-gone CPU's callback lists. If any of these CPU-hotplug
callbacks must wait, either directly or indirectly, for the invocation
of any of the immobilized RCU callbacks, the system will hang.
This commit avoids such hangs by migrating the callbacks away from the
outgoing CPU immediately upon its departure, shortly after the return
from __cpu_die() in takedown_cpu(). Thus, RCU is able to advance these
callbacks and invoke them, which allows all the after-the-fact CPU-hotplug
callbacks to wait on these RCU callbacks without risk of a hang.
While in the neighborhood, this commit also moves rcu_send_cbs_to_orphanage()
and rcu_adopt_orphan_cbs() under a pre-existing #ifdef to avoid including
dead code on the one hand and to avoid define-without-use warnings on the
other hand.
Reported-by: Jeffrey Hugo <jhugo@codeaurora.org>
Link: http://lkml.kernel.org/r/db9c91f6-1b17-6136-84f0-03c3c2581ab4@codeaurora.org
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Richard Weinberger <richard@nod.at>
2017-06-21 03:11:34 +08:00
|
|
|
* this fact from process context. Do the remainder of the cleanup.
|
|
|
|
* There can only be one CPU hotplug operation at a time, so no need for
|
|
|
|
* explicit locking.
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
*/
|
2018-07-04 08:22:34 +08:00
|
|
|
int rcutree_dead_cpu(unsigned int cpu)
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
{
|
2018-07-04 06:37:16 +08:00
|
|
|
struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
|
2012-03-02 05:18:08 +08:00
|
|
|
struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
|
2012-01-08 03:03:57 +08:00
|
|
|
|
2015-03-04 06:05:26 +08:00
|
|
|
if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
|
2018-07-04 08:22:34 +08:00
|
|
|
return 0;
|
2015-03-04 06:05:26 +08:00
|
|
|
|
2012-01-31 09:02:47 +08:00
|
|
|
/* Adjust any no-longer-needed kthreads. */
|
2012-07-16 18:42:35 +08:00
|
|
|
rcu_boost_kthread_setaffinity(rnp, -1);
|
2018-07-04 08:22:34 +08:00
|
|
|
/* Do any needed no-CB deferred wakeups from this CPU. */
|
|
|
|
do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
|
|
|
|
return 0;
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Invoke any RCU callbacks that have made it to the end of their grace
|
|
|
|
* period. Thottle as specified by rdp->blimit.
|
|
|
|
*/
|
2018-07-04 08:22:34 +08:00
|
|
|
static void rcu_do_batch(struct rcu_data *rdp)
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
{
|
|
|
|
unsigned long flags;
|
srcu: Abstract multi-tail callback list handling
RCU has only one multi-tail callback list, which is implemented via
the nxtlist, nxttail, nxtcompleted, qlen_lazy, and qlen fields in the
rcu_data structure, and whose operations are open-code throughout the
Tree RCU implementation. This has been more or less OK in the past,
but upcoming callback-list optimizations in SRCU could really use
a multi-tail callback list there as well.
This commit therefore abstracts the multi-tail callback list handling
into a new kernel/rcu/rcu_segcblist.h file, and uses this new API.
The simple head-and-tail pointer callback list is also abstracted and
applied everywhere except for the NOCB callback-offload lists. (Yes,
the plan is to apply them there as well, but this commit is already
bigger than would be good.)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-02-09 04:36:42 +08:00
|
|
|
struct rcu_head *rhp;
|
|
|
|
struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
|
|
|
|
long bl, count;
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
|
2012-12-04 05:52:00 +08:00
|
|
|
/* If no callbacks are ready, just return. */
|
srcu: Abstract multi-tail callback list handling
RCU has only one multi-tail callback list, which is implemented via
the nxtlist, nxttail, nxtcompleted, qlen_lazy, and qlen fields in the
rcu_data structure, and whose operations are open-code throughout the
Tree RCU implementation. This has been more or less OK in the past,
but upcoming callback-list optimizations in SRCU could really use
a multi-tail callback list there as well.
This commit therefore abstracts the multi-tail callback list handling
into a new kernel/rcu/rcu_segcblist.h file, and uses this new API.
The simple head-and-tail pointer callback list is also abstracted and
applied everywhere except for the NOCB callback-offload lists. (Yes,
the plan is to apply them there as well, but this commit is already
bigger than would be good.)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-02-09 04:36:42 +08:00
|
|
|
if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
|
2018-07-06 06:54:02 +08:00
|
|
|
trace_rcu_batch_start(rcu_state.name,
|
srcu: Abstract multi-tail callback list handling
RCU has only one multi-tail callback list, which is implemented via
the nxtlist, nxttail, nxtcompleted, qlen_lazy, and qlen fields in the
rcu_data structure, and whose operations are open-code throughout the
Tree RCU implementation. This has been more or less OK in the past,
but upcoming callback-list optimizations in SRCU could really use
a multi-tail callback list there as well.
This commit therefore abstracts the multi-tail callback list handling
into a new kernel/rcu/rcu_segcblist.h file, and uses this new API.
The simple head-and-tail pointer callback list is also abstracted and
applied everywhere except for the NOCB callback-offload lists. (Yes,
the plan is to apply them there as well, but this commit is already
bigger than would be good.)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-02-09 04:36:42 +08:00
|
|
|
rcu_segcblist_n_lazy_cbs(&rdp->cblist),
|
|
|
|
rcu_segcblist_n_cbs(&rdp->cblist), 0);
|
2018-07-06 06:54:02 +08:00
|
|
|
trace_rcu_batch_end(rcu_state.name, 0,
|
srcu: Abstract multi-tail callback list handling
RCU has only one multi-tail callback list, which is implemented via
the nxtlist, nxttail, nxtcompleted, qlen_lazy, and qlen fields in the
rcu_data structure, and whose operations are open-code throughout the
Tree RCU implementation. This has been more or less OK in the past,
but upcoming callback-list optimizations in SRCU could really use
a multi-tail callback list there as well.
This commit therefore abstracts the multi-tail callback list handling
into a new kernel/rcu/rcu_segcblist.h file, and uses this new API.
The simple head-and-tail pointer callback list is also abstracted and
applied everywhere except for the NOCB callback-offload lists. (Yes,
the plan is to apply them there as well, but this commit is already
bigger than would be good.)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-02-09 04:36:42 +08:00
|
|
|
!rcu_segcblist_empty(&rdp->cblist),
|
2011-12-08 08:32:40 +08:00
|
|
|
need_resched(), is_idle_task(current),
|
|
|
|
rcu_is_callbacks_kthread());
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
return;
|
2011-06-18 06:53:19 +08:00
|
|
|
}
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Extract the list of ready callbacks, disabling to prevent
|
srcu: Abstract multi-tail callback list handling
RCU has only one multi-tail callback list, which is implemented via
the nxtlist, nxttail, nxtcompleted, qlen_lazy, and qlen fields in the
rcu_data structure, and whose operations are open-code throughout the
Tree RCU implementation. This has been more or less OK in the past,
but upcoming callback-list optimizations in SRCU could really use
a multi-tail callback list there as well.
This commit therefore abstracts the multi-tail callback list handling
into a new kernel/rcu/rcu_segcblist.h file, and uses this new API.
The simple head-and-tail pointer callback list is also abstracted and
applied everywhere except for the NOCB callback-offload lists. (Yes,
the plan is to apply them there as well, but this commit is already
bigger than would be good.)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-02-09 04:36:42 +08:00
|
|
|
* races with call_rcu() from interrupt handlers. Leave the
|
|
|
|
* callback counts, as rcu_barrier() needs to be conservative.
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
*/
|
|
|
|
local_irq_save(flags);
|
2012-01-11 06:23:29 +08:00
|
|
|
WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
|
2011-06-18 06:53:19 +08:00
|
|
|
bl = rdp->blimit;
|
2018-07-06 06:54:02 +08:00
|
|
|
trace_rcu_batch_start(rcu_state.name,
|
|
|
|
rcu_segcblist_n_lazy_cbs(&rdp->cblist),
|
srcu: Abstract multi-tail callback list handling
RCU has only one multi-tail callback list, which is implemented via
the nxtlist, nxttail, nxtcompleted, qlen_lazy, and qlen fields in the
rcu_data structure, and whose operations are open-code throughout the
Tree RCU implementation. This has been more or less OK in the past,
but upcoming callback-list optimizations in SRCU could really use
a multi-tail callback list there as well.
This commit therefore abstracts the multi-tail callback list handling
into a new kernel/rcu/rcu_segcblist.h file, and uses this new API.
The simple head-and-tail pointer callback list is also abstracted and
applied everywhere except for the NOCB callback-offload lists. (Yes,
the plan is to apply them there as well, but this commit is already
bigger than would be good.)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-02-09 04:36:42 +08:00
|
|
|
rcu_segcblist_n_cbs(&rdp->cblist), bl);
|
|
|
|
rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
local_irq_restore(flags);
|
|
|
|
|
|
|
|
/* Invoke callbacks. */
|
srcu: Abstract multi-tail callback list handling
RCU has only one multi-tail callback list, which is implemented via
the nxtlist, nxttail, nxtcompleted, qlen_lazy, and qlen fields in the
rcu_data structure, and whose operations are open-code throughout the
Tree RCU implementation. This has been more or less OK in the past,
but upcoming callback-list optimizations in SRCU could really use
a multi-tail callback list there as well.
This commit therefore abstracts the multi-tail callback list handling
into a new kernel/rcu/rcu_segcblist.h file, and uses this new API.
The simple head-and-tail pointer callback list is also abstracted and
applied everywhere except for the NOCB callback-offload lists. (Yes,
the plan is to apply them there as well, but this commit is already
bigger than would be good.)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-02-09 04:36:42 +08:00
|
|
|
rhp = rcu_cblist_dequeue(&rcl);
|
|
|
|
for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
|
|
|
|
debug_rcu_head_unqueue(rhp);
|
2018-07-06 06:54:02 +08:00
|
|
|
if (__rcu_reclaim(rcu_state.name, rhp))
|
srcu: Abstract multi-tail callback list handling
RCU has only one multi-tail callback list, which is implemented via
the nxtlist, nxttail, nxtcompleted, qlen_lazy, and qlen fields in the
rcu_data structure, and whose operations are open-code throughout the
Tree RCU implementation. This has been more or less OK in the past,
but upcoming callback-list optimizations in SRCU could really use
a multi-tail callback list there as well.
This commit therefore abstracts the multi-tail callback list handling
into a new kernel/rcu/rcu_segcblist.h file, and uses this new API.
The simple head-and-tail pointer callback list is also abstracted and
applied everywhere except for the NOCB callback-offload lists. (Yes,
the plan is to apply them there as well, but this commit is already
bigger than would be good.)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-02-09 04:36:42 +08:00
|
|
|
rcu_cblist_dequeued_lazy(&rcl);
|
|
|
|
/*
|
|
|
|
* Stop only if limit reached and CPU has something to do.
|
|
|
|
* Note: The rcl structure counts down from zero.
|
|
|
|
*/
|
2017-05-02 23:45:25 +08:00
|
|
|
if (-rcl.len >= bl &&
|
2011-11-30 07:57:13 +08:00
|
|
|
(need_resched() ||
|
|
|
|
(!is_idle_task(current) && !rcu_is_callbacks_kthread())))
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
local_irq_save(flags);
|
2017-05-02 23:45:25 +08:00
|
|
|
count = -rcl.len;
|
2018-07-06 06:54:02 +08:00
|
|
|
trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
|
2017-05-02 23:18:40 +08:00
|
|
|
is_idle_task(current), rcu_is_callbacks_kthread());
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
|
srcu: Abstract multi-tail callback list handling
RCU has only one multi-tail callback list, which is implemented via
the nxtlist, nxttail, nxtcompleted, qlen_lazy, and qlen fields in the
rcu_data structure, and whose operations are open-code throughout the
Tree RCU implementation. This has been more or less OK in the past,
but upcoming callback-list optimizations in SRCU could really use
a multi-tail callback list there as well.
This commit therefore abstracts the multi-tail callback list handling
into a new kernel/rcu/rcu_segcblist.h file, and uses this new API.
The simple head-and-tail pointer callback list is also abstracted and
applied everywhere except for the NOCB callback-offload lists. (Yes,
the plan is to apply them there as well, but this commit is already
bigger than would be good.)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-02-09 04:36:42 +08:00
|
|
|
/* Update counts and requeue any remaining callbacks. */
|
|
|
|
rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
|
2012-03-02 05:18:08 +08:00
|
|
|
smp_mb(); /* List handling before counting for rcu_barrier(). */
|
srcu: Abstract multi-tail callback list handling
RCU has only one multi-tail callback list, which is implemented via
the nxtlist, nxttail, nxtcompleted, qlen_lazy, and qlen fields in the
rcu_data structure, and whose operations are open-code throughout the
Tree RCU implementation. This has been more or less OK in the past,
but upcoming callback-list optimizations in SRCU could really use
a multi-tail callback list there as well.
This commit therefore abstracts the multi-tail callback list handling
into a new kernel/rcu/rcu_segcblist.h file, and uses this new API.
The simple head-and-tail pointer callback list is also abstracted and
applied everywhere except for the NOCB callback-offload lists. (Yes,
the plan is to apply them there as well, but this commit is already
bigger than would be good.)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-02-09 04:36:42 +08:00
|
|
|
rcu_segcblist_insert_count(&rdp->cblist, &rcl);
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
|
|
|
|
/* Reinstate batch limit if we have worked down the excess. */
|
srcu: Abstract multi-tail callback list handling
RCU has only one multi-tail callback list, which is implemented via
the nxtlist, nxttail, nxtcompleted, qlen_lazy, and qlen fields in the
rcu_data structure, and whose operations are open-code throughout the
Tree RCU implementation. This has been more or less OK in the past,
but upcoming callback-list optimizations in SRCU could really use
a multi-tail callback list there as well.
This commit therefore abstracts the multi-tail callback list handling
into a new kernel/rcu/rcu_segcblist.h file, and uses this new API.
The simple head-and-tail pointer callback list is also abstracted and
applied everywhere except for the NOCB callback-offload lists. (Yes,
the plan is to apply them there as well, but this commit is already
bigger than would be good.)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-02-09 04:36:42 +08:00
|
|
|
count = rcu_segcblist_n_cbs(&rdp->cblist);
|
|
|
|
if (rdp->blimit == LONG_MAX && count <= qlowmark)
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
rdp->blimit = blimit;
|
|
|
|
|
2009-10-15 01:15:55 +08:00
|
|
|
/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
|
srcu: Abstract multi-tail callback list handling
RCU has only one multi-tail callback list, which is implemented via
the nxtlist, nxttail, nxtcompleted, qlen_lazy, and qlen fields in the
rcu_data structure, and whose operations are open-code throughout the
Tree RCU implementation. This has been more or less OK in the past,
but upcoming callback-list optimizations in SRCU could really use
a multi-tail callback list there as well.
This commit therefore abstracts the multi-tail callback list handling
into a new kernel/rcu/rcu_segcblist.h file, and uses this new API.
The simple head-and-tail pointer callback list is also abstracted and
applied everywhere except for the NOCB callback-offload lists. (Yes,
the plan is to apply them there as well, but this commit is already
bigger than would be good.)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-02-09 04:36:42 +08:00
|
|
|
if (count == 0 && rdp->qlen_last_fqs_check != 0) {
|
2009-10-15 01:15:55 +08:00
|
|
|
rdp->qlen_last_fqs_check = 0;
|
2018-07-06 06:54:02 +08:00
|
|
|
rdp->n_force_qs_snap = rcu_state.n_force_qs;
|
srcu: Abstract multi-tail callback list handling
RCU has only one multi-tail callback list, which is implemented via
the nxtlist, nxttail, nxtcompleted, qlen_lazy, and qlen fields in the
rcu_data structure, and whose operations are open-code throughout the
Tree RCU implementation. This has been more or less OK in the past,
but upcoming callback-list optimizations in SRCU could really use
a multi-tail callback list there as well.
This commit therefore abstracts the multi-tail callback list handling
into a new kernel/rcu/rcu_segcblist.h file, and uses this new API.
The simple head-and-tail pointer callback list is also abstracted and
applied everywhere except for the NOCB callback-offload lists. (Yes,
the plan is to apply them there as well, but this commit is already
bigger than would be good.)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-02-09 04:36:42 +08:00
|
|
|
} else if (count < rdp->qlen_last_fqs_check - qhimark)
|
|
|
|
rdp->qlen_last_fqs_check = count;
|
2017-10-20 05:52:41 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* The following usually indicates a double call_rcu(). To track
|
|
|
|
* this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
|
|
|
|
*/
|
srcu: Abstract multi-tail callback list handling
RCU has only one multi-tail callback list, which is implemented via
the nxtlist, nxttail, nxtcompleted, qlen_lazy, and qlen fields in the
rcu_data structure, and whose operations are open-code throughout the
Tree RCU implementation. This has been more or less OK in the past,
but upcoming callback-list optimizations in SRCU could really use
a multi-tail callback list there as well.
This commit therefore abstracts the multi-tail callback list handling
into a new kernel/rcu/rcu_segcblist.h file, and uses this new API.
The simple head-and-tail pointer callback list is also abstracted and
applied everywhere except for the NOCB callback-offload lists. (Yes,
the plan is to apply them there as well, but this commit is already
bigger than would be good.)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-02-09 04:36:42 +08:00
|
|
|
WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
|
2009-10-15 01:15:55 +08:00
|
|
|
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
local_irq_restore(flags);
|
|
|
|
|
2011-06-21 16:29:39 +08:00
|
|
|
/* Re-invoke RCU core processing if there are callbacks remaining. */
|
srcu: Abstract multi-tail callback list handling
RCU has only one multi-tail callback list, which is implemented via
the nxtlist, nxttail, nxtcompleted, qlen_lazy, and qlen fields in the
rcu_data structure, and whose operations are open-code throughout the
Tree RCU implementation. This has been more or less OK in the past,
but upcoming callback-list optimizations in SRCU could really use
a multi-tail callback list there as well.
This commit therefore abstracts the multi-tail callback list handling
into a new kernel/rcu/rcu_segcblist.h file, and uses this new API.
The simple head-and-tail pointer callback list is also abstracted and
applied everywhere except for the NOCB callback-offload lists. (Yes,
the plan is to apply them there as well, but this commit is already
bigger than would be good.)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-02-09 04:36:42 +08:00
|
|
|
if (rcu_segcblist_ready_cbs(&rdp->cblist))
|
2011-06-16 06:47:09 +08:00
|
|
|
invoke_rcu_core();
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Check to see if this CPU is in a non-context-switch quiescent state
|
|
|
|
* (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
|
2011-06-21 16:29:39 +08:00
|
|
|
* Also schedule RCU core processing.
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
*
|
rcu: Track idleness independent of idle tasks
Earlier versions of RCU used the scheduling-clock tick to detect idleness
by checking for the idle task, but handled idleness differently for
CONFIG_NO_HZ=y. But there are now a number of uses of RCU read-side
critical sections in the idle task, for example, for tracing. A more
fine-grained detection of idleness is therefore required.
This commit presses the old dyntick-idle code into full-time service,
so that rcu_idle_enter(), previously known as rcu_enter_nohz(), is
always invoked at the beginning of an idle loop iteration. Similarly,
rcu_idle_exit(), previously known as rcu_exit_nohz(), is always invoked
at the end of an idle-loop iteration. This allows the idle task to
use RCU everywhere except between consecutive rcu_idle_enter() and
rcu_idle_exit() calls, in turn allowing architecture maintainers to
specify exactly where in the idle loop that RCU may be used.
Because some of the userspace upcall uses can result in what looks
to RCU like half of an interrupt, it is not possible to expect that
the irq_enter() and irq_exit() hooks will give exact counts. This
patch therefore expands the ->dynticks_nesting counter to 64 bits
and uses two separate bitfields to count process/idle transitions
and interrupt entry/exit transitions. It is presumed that userspace
upcalls do not happen in the idle loop or from usermode execution
(though usermode might do a system call that results in an upcall).
The counter is hard-reset on each process/idle transition, which
avoids the interrupt entry/exit error from accumulating. Overflow
is avoided by the 64-bitness of the ->dyntick_nesting counter.
This commit also adds warnings if a non-idle task asks RCU to enter
idle state (and these checks will need some adjustment before applying
Frederic's OS-jitter patches (http://lkml.org/lkml/2011/10/7/246).
In addition, validation of ->dynticks and ->dynticks_nesting is added.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-10-01 03:10:22 +08:00
|
|
|
* This function must be called from hardirq context. It is normally
|
2016-09-01 20:04:24 +08:00
|
|
|
* invoked from the scheduling-clock interrupt.
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
*/
|
2014-10-21 22:53:02 +08:00
|
|
|
void rcu_check_callbacks(int user)
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
{
|
2013-07-13 05:18:47 +08:00
|
|
|
trace_rcu_utilization(TPS("Start scheduler-tick"));
|
2018-07-06 08:59:36 +08:00
|
|
|
raw_cpu_inc(rcu_data.ticks_this_gp);
|
rcu: Make need_resched() respond to urgent RCU-QS needs
The per-CPU rcu_dynticks.rcu_urgent_qs variable communicates an urgent
need for an RCU quiescent state from the force-quiescent-state processing
within the grace-period kthread to context switches and to cond_resched().
Unfortunately, such urgent needs are not communicated to need_resched(),
which is sometimes used to decide when to invoke cond_resched(), for
but one example, within the KVM vcpu_run() function. As of v4.15, this
can result in synchronize_sched() being delayed by up to ten seconds,
which can be problematic, to say nothing of annoying.
This commit therefore checks rcu_dynticks.rcu_urgent_qs from within
rcu_check_callbacks(), which is invoked from the scheduling-clock
interrupt handler. If the current task is not an idle task and is
not executing in usermode, a context switch is forced, and either way,
the rcu_dynticks.rcu_urgent_qs variable is set to false. If the current
task is an idle task, then RCU's dyntick-idle code will detect the
quiescent state, so no further action is required. Similarly, if the
task is executing in usermode, other code in rcu_check_callbacks() and
its called functions will report the corresponding quiescent state.
Reported-by: Marius Hillenbrand <mhillenb@amazon.de>
Reported-by: David Woodhouse <dwmw2@infradead.org>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-10 04:47:30 +08:00
|
|
|
/* The load-acquire pairs with the store-release setting to true. */
|
2018-08-04 12:00:38 +08:00
|
|
|
if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
|
rcu: Make need_resched() respond to urgent RCU-QS needs
The per-CPU rcu_dynticks.rcu_urgent_qs variable communicates an urgent
need for an RCU quiescent state from the force-quiescent-state processing
within the grace-period kthread to context switches and to cond_resched().
Unfortunately, such urgent needs are not communicated to need_resched(),
which is sometimes used to decide when to invoke cond_resched(), for
but one example, within the KVM vcpu_run() function. As of v4.15, this
can result in synchronize_sched() being delayed by up to ten seconds,
which can be problematic, to say nothing of annoying.
This commit therefore checks rcu_dynticks.rcu_urgent_qs from within
rcu_check_callbacks(), which is invoked from the scheduling-clock
interrupt handler. If the current task is not an idle task and is
not executing in usermode, a context switch is forced, and either way,
the rcu_dynticks.rcu_urgent_qs variable is set to false. If the current
task is an idle task, then RCU's dyntick-idle code will detect the
quiescent state, so no further action is required. Similarly, if the
task is executing in usermode, other code in rcu_check_callbacks() and
its called functions will report the corresponding quiescent state.
Reported-by: Marius Hillenbrand <mhillenb@amazon.de>
Reported-by: David Woodhouse <dwmw2@infradead.org>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-10 04:47:30 +08:00
|
|
|
/* Idle and userspace execution already are quiescent states. */
|
2018-07-10 06:50:16 +08:00
|
|
|
if (!rcu_is_cpu_rrupt_from_idle() && !user) {
|
rcu: Make need_resched() respond to urgent RCU-QS needs
The per-CPU rcu_dynticks.rcu_urgent_qs variable communicates an urgent
need for an RCU quiescent state from the force-quiescent-state processing
within the grace-period kthread to context switches and to cond_resched().
Unfortunately, such urgent needs are not communicated to need_resched(),
which is sometimes used to decide when to invoke cond_resched(), for
but one example, within the KVM vcpu_run() function. As of v4.15, this
can result in synchronize_sched() being delayed by up to ten seconds,
which can be problematic, to say nothing of annoying.
This commit therefore checks rcu_dynticks.rcu_urgent_qs from within
rcu_check_callbacks(), which is invoked from the scheduling-clock
interrupt handler. If the current task is not an idle task and is
not executing in usermode, a context switch is forced, and either way,
the rcu_dynticks.rcu_urgent_qs variable is set to false. If the current
task is an idle task, then RCU's dyntick-idle code will detect the
quiescent state, so no further action is required. Similarly, if the
task is executing in usermode, other code in rcu_check_callbacks() and
its called functions will report the corresponding quiescent state.
Reported-by: Marius Hillenbrand <mhillenb@amazon.de>
Reported-by: David Woodhouse <dwmw2@infradead.org>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-10 04:47:30 +08:00
|
|
|
set_tsk_need_resched(current);
|
|
|
|
set_preempt_need_resched();
|
|
|
|
}
|
2018-08-04 12:00:38 +08:00
|
|
|
__this_cpu_write(rcu_data.rcu_urgent_qs, false);
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
}
|
2018-07-03 05:30:37 +08:00
|
|
|
rcu_flavor_check_callbacks(user);
|
2014-10-21 23:03:57 +08:00
|
|
|
if (rcu_pending())
|
2011-06-16 06:47:09 +08:00
|
|
|
invoke_rcu_core();
|
2018-05-11 16:30:34 +08:00
|
|
|
|
2013-07-13 05:18:47 +08:00
|
|
|
trace_rcu_utilization(TPS("End scheduler-tick"));
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Scan the leaf rcu_node structures, processing dyntick state for any that
|
|
|
|
* have not yet encountered a quiescent state, using the function specified.
|
2011-02-08 04:47:15 +08:00
|
|
|
* Also initiate boosting for any threads blocked on the root rcu_node.
|
|
|
|
*
|
2010-01-05 07:09:07 +08:00
|
|
|
* The caller must have suppressed start of new grace periods.
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
*/
|
2018-07-06 08:55:14 +08:00
|
|
|
static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
{
|
|
|
|
int cpu;
|
|
|
|
unsigned long flags;
|
|
|
|
unsigned long mask;
|
2009-09-28 22:46:33 +08:00
|
|
|
struct rcu_node *rnp;
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
|
2018-07-05 05:33:59 +08:00
|
|
|
rcu_for_each_leaf_node(rnp) {
|
2018-03-03 08:35:27 +08:00
|
|
|
cond_resched_tasks_rcu_qs();
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
mask = 0;
|
2015-10-08 18:24:23 +08:00
|
|
|
raw_spin_lock_irqsave_rcu_node(rnp, flags);
|
2009-09-28 22:46:33 +08:00
|
|
|
if (rnp->qsmask == 0) {
|
2018-07-03 05:30:37 +08:00
|
|
|
if (!IS_ENABLED(CONFIG_PREEMPT) ||
|
2015-03-09 05:52:27 +08:00
|
|
|
rcu_preempt_blocked_readers_cgp(rnp)) {
|
|
|
|
/*
|
|
|
|
* No point in scanning bits because they
|
|
|
|
* are all zero. But we might need to
|
|
|
|
* priority-boost blocked readers.
|
|
|
|
*/
|
|
|
|
rcu_initiate_boost(rnp, flags);
|
|
|
|
/* rcu_initiate_boost() releases rnp->lock */
|
|
|
|
continue;
|
|
|
|
}
|
2018-05-03 02:07:02 +08:00
|
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
|
|
|
continue;
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
}
|
rcu: Correctly handle sparse possible cpus
In many cases in the RCU tree code, we iterate over the set of cpus for
a leaf node described by rcu_node::grplo and rcu_node::grphi, checking
per-cpu data for each cpu in this range. However, if the set of possible
cpus is sparse, some cpus described in this range are not possible, and
thus no per-cpu region will have been allocated (or initialised) for
them by the generic percpu code.
Erroneous accesses to a per-cpu area for these !possible cpus may fault
or may hit other data depending on the addressed generated when the
erroneous per cpu offset is applied. In practice, both cases have been
observed on arm64 hardware (the former being silent, but detectable with
additional patches).
To avoid issues resulting from this, we must iterate over the set of
*possible* cpus for a given leaf node. This patch add a new helper,
for_each_leaf_node_possible_cpu, to enable this. As iteration is often
intertwined with rcu_node local bitmask manipulation, a new
leaf_node_cpu_bit helper is added to make this simpler and more
consistent. The RCU tree code is made to use both of these where
appropriate.
Without this patch, running reboot at a shell can result in an oops
like:
[ 3369.075979] Unable to handle kernel paging request at virtual address ffffff8008b21b4c
[ 3369.083881] pgd = ffffffc3ecdda000
[ 3369.087270] [ffffff8008b21b4c] *pgd=00000083eca48003, *pud=00000083eca48003, *pmd=0000000000000000
[ 3369.096222] Internal error: Oops: 96000007 [#1] PREEMPT SMP
[ 3369.101781] Modules linked in:
[ 3369.104825] CPU: 2 PID: 1817 Comm: NetworkManager Tainted: G W 4.6.0+ #3
[ 3369.121239] task: ffffffc0fa13e000 ti: ffffffc3eb940000 task.ti: ffffffc3eb940000
[ 3369.128708] PC is at sync_rcu_exp_select_cpus+0x188/0x510
[ 3369.134094] LR is at sync_rcu_exp_select_cpus+0x104/0x510
[ 3369.139479] pc : [<ffffff80081109a8>] lr : [<ffffff8008110924>] pstate: 200001c5
[ 3369.146860] sp : ffffffc3eb9435a0
[ 3369.150162] x29: ffffffc3eb9435a0 x28: ffffff8008be4f88
[ 3369.155465] x27: ffffff8008b66c80 x26: ffffffc3eceb2600
[ 3369.160767] x25: 0000000000000001 x24: ffffff8008be4f88
[ 3369.166070] x23: ffffff8008b51c3c x22: ffffff8008b66c80
[ 3369.171371] x21: 0000000000000001 x20: ffffff8008b21b40
[ 3369.176673] x19: ffffff8008b66c80 x18: 0000000000000000
[ 3369.181975] x17: 0000007fa951a010 x16: ffffff80086a30f0
[ 3369.187278] x15: 0000007fa9505590 x14: 0000000000000000
[ 3369.192580] x13: ffffff8008b51000 x12: ffffffc3eb940000
[ 3369.197882] x11: 0000000000000006 x10: ffffff8008b51b78
[ 3369.203184] x9 : 0000000000000001 x8 : ffffff8008be4000
[ 3369.208486] x7 : ffffff8008b21b40 x6 : 0000000000001003
[ 3369.213788] x5 : 0000000000000000 x4 : ffffff8008b27280
[ 3369.219090] x3 : ffffff8008b21b4c x2 : 0000000000000001
[ 3369.224406] x1 : 0000000000000001 x0 : 0000000000000140
...
[ 3369.972257] [<ffffff80081109a8>] sync_rcu_exp_select_cpus+0x188/0x510
[ 3369.978685] [<ffffff80081128b4>] synchronize_rcu_expedited+0x64/0xa8
[ 3369.985026] [<ffffff80086b987c>] synchronize_net+0x24/0x30
[ 3369.990499] [<ffffff80086ddb54>] dev_deactivate_many+0x28c/0x298
[ 3369.996493] [<ffffff80086b6bb8>] __dev_close_many+0x60/0xd0
[ 3370.002052] [<ffffff80086b6d48>] __dev_close+0x28/0x40
[ 3370.007178] [<ffffff80086bf62c>] __dev_change_flags+0x8c/0x158
[ 3370.012999] [<ffffff80086bf718>] dev_change_flags+0x20/0x60
[ 3370.018558] [<ffffff80086cf7f0>] do_setlink+0x288/0x918
[ 3370.023771] [<ffffff80086d0798>] rtnl_newlink+0x398/0x6a8
[ 3370.029158] [<ffffff80086cee84>] rtnetlink_rcv_msg+0xe4/0x220
[ 3370.034891] [<ffffff80086e274c>] netlink_rcv_skb+0xc4/0xf8
[ 3370.040364] [<ffffff80086ced8c>] rtnetlink_rcv+0x2c/0x40
[ 3370.045663] [<ffffff80086e1fe8>] netlink_unicast+0x160/0x238
[ 3370.051309] [<ffffff80086e24b8>] netlink_sendmsg+0x2f0/0x358
[ 3370.056956] [<ffffff80086a0070>] sock_sendmsg+0x18/0x30
[ 3370.062168] [<ffffff80086a21cc>] ___sys_sendmsg+0x26c/0x280
[ 3370.067728] [<ffffff80086a30ac>] __sys_sendmsg+0x44/0x88
[ 3370.073027] [<ffffff80086a3100>] SyS_sendmsg+0x10/0x20
[ 3370.078153] [<ffffff8008085e70>] el0_svc_naked+0x24/0x28
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reported-by: Dennis Chen <dennis.chen@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Steve Capper <steve.capper@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2016-06-03 22:20:04 +08:00
|
|
|
for_each_leaf_node_possible_cpu(rnp, cpu) {
|
|
|
|
unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
|
2013-06-22 07:37:22 +08:00
|
|
|
if ((rnp->qsmask & bit) != 0) {
|
2018-07-04 06:37:16 +08:00
|
|
|
if (f(per_cpu_ptr(&rcu_data, cpu)))
|
2013-06-22 07:37:22 +08:00
|
|
|
mask |= bit;
|
|
|
|
}
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
}
|
2010-01-05 07:09:08 +08:00
|
|
|
if (mask != 0) {
|
2018-04-28 05:54:46 +08:00
|
|
|
/* Idle/offline CPUs, report (releases rnp->lock). */
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
|
rcu: Process offlining and onlining only at grace-period start
Races between CPU hotplug and grace periods can be difficult to resolve,
so the ->onoff_mutex is used to exclude the two events. Unfortunately,
this means that it is impossible for an outgoing CPU to perform the
last bits of its offlining from its last pass through the idle loop,
because sleeplocks cannot be acquired in that context.
This commit avoids these problems by buffering online and offline events
in a new ->qsmaskinitnext field in the leaf rcu_node structures. When a
grace period starts, the events accumulated in this mask are applied to
the ->qsmaskinit field, and, if needed, up the rcu_node tree. The special
case of all CPUs corresponding to a given leaf rcu_node structure being
offline while there are still elements in that structure's ->blkd_tasks
list is handled using a new ->wait_blkd_tasks field. In this case,
propagating the offline bits up the tree is deferred until the beginning
of the grace period after all of the tasks have exited their RCU read-side
critical sections and removed themselves from the list, at which point
the ->wait_blkd_tasks flag is cleared. If one of that leaf rcu_node
structure's CPUs comes back online before the list empties, then the
->wait_blkd_tasks flag is simply cleared.
This of course means that RCU's notion of which CPUs are offline can be
out of date. This is OK because RCU need only wait on CPUs that were
online at the time that the grace period started. In addition, RCU's
force-quiescent-state actions will handle the case where a CPU goes
offline after the grace period starts.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2015-01-24 13:52:37 +08:00
|
|
|
} else {
|
|
|
|
/* Nothing to do here, so just drop the lock. */
|
2015-12-29 12:18:47 +08:00
|
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Force quiescent states on reluctant CPUs, and also detect which
|
|
|
|
* CPUs are in dyntick-idle mode.
|
|
|
|
*/
|
2018-07-04 08:22:34 +08:00
|
|
|
static void force_quiescent_state(void)
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
{
|
|
|
|
unsigned long flags;
|
2012-06-27 08:00:35 +08:00
|
|
|
bool ret;
|
|
|
|
struct rcu_node *rnp;
|
|
|
|
struct rcu_node *rnp_old = NULL;
|
|
|
|
|
|
|
|
/* Funnel through hierarchy to reduce memory contention. */
|
2018-07-04 06:37:16 +08:00
|
|
|
rnp = __this_cpu_read(rcu_data.mynode);
|
2012-06-27 08:00:35 +08:00
|
|
|
for (; rnp != NULL; rnp = rnp->parent) {
|
2018-07-06 07:15:38 +08:00
|
|
|
ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
|
2012-06-27 08:00:35 +08:00
|
|
|
!raw_spin_trylock(&rnp->fqslock);
|
|
|
|
if (rnp_old != NULL)
|
|
|
|
raw_spin_unlock(&rnp_old->fqslock);
|
2018-01-11 05:10:49 +08:00
|
|
|
if (ret)
|
2012-06-27 08:00:35 +08:00
|
|
|
return;
|
|
|
|
rnp_old = rnp;
|
|
|
|
}
|
2018-07-04 08:22:34 +08:00
|
|
|
/* rnp_old == rcu_get_root(), rnp == NULL. */
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
|
2012-06-27 08:00:35 +08:00
|
|
|
/* Reached the root of the rcu_node tree, acquire lock. */
|
2015-10-08 18:24:23 +08:00
|
|
|
raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
|
2012-06-27 08:00:35 +08:00
|
|
|
raw_spin_unlock(&rnp_old->fqslock);
|
2018-07-06 07:15:38 +08:00
|
|
|
if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
|
2015-12-29 12:18:47 +08:00
|
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
|
2012-06-23 08:06:26 +08:00
|
|
|
return; /* Someone beat us to it. */
|
2010-01-05 07:09:09 +08:00
|
|
|
}
|
2018-07-06 07:15:38 +08:00
|
|
|
WRITE_ONCE(rcu_state.gp_flags,
|
|
|
|
READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
|
2015-12-29 12:18:47 +08:00
|
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_gp_kthread_wake();
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
}
|
|
|
|
|
2018-04-22 11:44:11 +08:00
|
|
|
/*
|
|
|
|
* This function checks for grace-period requests that fail to motivate
|
|
|
|
* RCU to come out of its idle mode.
|
|
|
|
*/
|
|
|
|
static void
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_check_gp_start_stall(struct rcu_node *rnp, struct rcu_data *rdp)
|
2018-04-22 11:44:11 +08:00
|
|
|
{
|
2018-05-18 04:32:51 +08:00
|
|
|
const unsigned long gpssdelay = rcu_jiffies_till_stall_check() * HZ;
|
2018-04-22 11:44:11 +08:00
|
|
|
unsigned long flags;
|
|
|
|
unsigned long j;
|
2018-07-04 08:22:34 +08:00
|
|
|
struct rcu_node *rnp_root = rcu_get_root();
|
2018-04-22 11:44:11 +08:00
|
|
|
static atomic_t warned = ATOMIC_INIT(0);
|
|
|
|
|
2018-07-04 08:22:34 +08:00
|
|
|
if (!IS_ENABLED(CONFIG_PROVE_RCU) || rcu_gp_in_progress() ||
|
2018-05-02 01:26:57 +08:00
|
|
|
ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed))
|
2018-04-22 11:44:11 +08:00
|
|
|
return;
|
|
|
|
j = jiffies; /* Expensive access, and in common case don't get here. */
|
2018-07-06 07:15:38 +08:00
|
|
|
if (time_before(j, READ_ONCE(rcu_state.gp_req_activity) + gpssdelay) ||
|
|
|
|
time_before(j, READ_ONCE(rcu_state.gp_activity) + gpssdelay) ||
|
2018-04-22 11:44:11 +08:00
|
|
|
atomic_read(&warned))
|
|
|
|
return;
|
|
|
|
|
|
|
|
raw_spin_lock_irqsave_rcu_node(rnp, flags);
|
|
|
|
j = jiffies;
|
2018-07-04 08:22:34 +08:00
|
|
|
if (rcu_gp_in_progress() ||
|
2018-05-02 01:26:57 +08:00
|
|
|
ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) ||
|
2018-07-06 07:15:38 +08:00
|
|
|
time_before(j, READ_ONCE(rcu_state.gp_req_activity) + gpssdelay) ||
|
|
|
|
time_before(j, READ_ONCE(rcu_state.gp_activity) + gpssdelay) ||
|
2018-04-22 11:44:11 +08:00
|
|
|
atomic_read(&warned)) {
|
|
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
/* Hold onto the leaf lock to make others see warned==1. */
|
|
|
|
|
|
|
|
if (rnp_root != rnp)
|
|
|
|
raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
|
|
|
|
j = jiffies;
|
2018-07-04 08:22:34 +08:00
|
|
|
if (rcu_gp_in_progress() ||
|
2018-05-02 01:26:57 +08:00
|
|
|
ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) ||
|
2018-07-06 07:15:38 +08:00
|
|
|
time_before(j, rcu_state.gp_req_activity + gpssdelay) ||
|
|
|
|
time_before(j, rcu_state.gp_activity + gpssdelay) ||
|
2018-04-22 11:44:11 +08:00
|
|
|
atomic_xchg(&warned, 1)) {
|
|
|
|
raw_spin_unlock_rcu_node(rnp_root); /* irqs remain disabled. */
|
|
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
|
|
|
return;
|
|
|
|
}
|
2018-05-18 04:32:51 +08:00
|
|
|
pr_alert("%s: g%ld->%ld gar:%lu ga:%lu f%#x gs:%d %s->state:%#lx\n",
|
2018-07-06 07:15:38 +08:00
|
|
|
__func__, (long)READ_ONCE(rcu_state.gp_seq),
|
2018-05-02 01:26:57 +08:00
|
|
|
(long)READ_ONCE(rnp_root->gp_seq_needed),
|
2018-07-06 07:15:38 +08:00
|
|
|
j - rcu_state.gp_req_activity, j - rcu_state.gp_activity,
|
|
|
|
rcu_state.gp_flags, rcu_state.gp_state, rcu_state.name,
|
|
|
|
rcu_state.gp_kthread ? rcu_state.gp_kthread->state : 0x1ffffL);
|
2018-04-22 11:44:11 +08:00
|
|
|
WARN_ON(1);
|
|
|
|
if (rnp_root != rnp)
|
|
|
|
raw_spin_unlock_rcu_node(rnp_root);
|
|
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
|
|
|
}
|
|
|
|
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
/*
|
2018-07-04 08:22:34 +08:00
|
|
|
* This does the RCU core processing work for the specified rcu_data
|
|
|
|
* structures. This may be called only from the CPU to whom the rdp
|
|
|
|
* belongs.
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
*/
|
2018-07-04 08:22:34 +08:00
|
|
|
static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
{
|
|
|
|
unsigned long flags;
|
2018-07-04 06:37:16 +08:00
|
|
|
struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
|
2018-04-22 11:44:11 +08:00
|
|
|
struct rcu_node *rnp = rdp->mynode;
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
|
2018-07-04 08:22:34 +08:00
|
|
|
if (cpu_is_offline(smp_processor_id()))
|
|
|
|
return;
|
|
|
|
trace_rcu_utilization(TPS("Start RCU core"));
|
2017-03-26 03:46:01 +08:00
|
|
|
WARN_ON_ONCE(!rdp->beenonline);
|
2009-08-16 00:53:48 +08:00
|
|
|
|
rcu: Defer reporting RCU-preempt quiescent states when disabled
This commit defers reporting of RCU-preempt quiescent states at
rcu_read_unlock_special() time when any of interrupts, softirq, or
preemption are disabled. These deferred quiescent states are reported
at a later RCU_SOFTIRQ, context switch, idle entry, or CPU-hotplug
offline operation. Of course, if another RCU read-side critical
section has started in the meantime, the reporting of the quiescent
state will be further deferred.
This also means that disabling preemption, interrupts, and/or
softirqs will act as an RCU-preempt read-side critical section.
This is enforced by checking preempt_count() as needed.
Some special cases must be handled on an ad-hoc basis, for example,
context switch is a quiescent state even though both the scheduler and
do_exit() disable preemption. In these cases, additional calls to
rcu_preempt_deferred_qs() override the preemption disabling. Similar
logic overrides disabled interrupts in rcu_preempt_check_callbacks()
because in this case the quiescent state happened just before the
corresponding scheduling-clock interrupt.
In theory, this change lifts a long-standing restriction that required
that if interrupts were disabled across a call to rcu_read_unlock()
that the matching rcu_read_lock() also be contained within that
interrupts-disabled region of code. Because the reporting of the
corresponding RCU-preempt quiescent state is now deferred until
after interrupts have been enabled, it is no longer possible for this
situation to result in deadlocks involving the scheduler's runqueue and
priority-inheritance locks. This may allow some code simplification that
might reduce interrupt latency a bit. Unfortunately, in practice this
would also defer deboosting a low-priority task that had been subjected
to RCU priority boosting, so real-time-response considerations might
well force this restriction to remain in place.
Because RCU-preempt grace periods are now blocked not only by RCU
read-side critical sections, but also by disabling of interrupts,
preemption, and softirqs, it will be possible to eliminate RCU-bh and
RCU-sched in favor of RCU-preempt in CONFIG_PREEMPT=y kernels. This may
require some additional plumbing to provide the network denial-of-service
guarantees that have been traditionally provided by RCU-bh. Once these
are in place, CONFIG_PREEMPT=n kernels will be able to fold RCU-bh
into RCU-sched. This would mean that all kernels would have but
one flavor of RCU, which would open the door to significant code
cleanup.
Moving to a single flavor of RCU would also have the beneficial effect
of reducing the NOCB kthreads by at least a factor of two.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Apply rcu_read_unlock_special() preempt_count() feedback
from Joel Fernandes. ]
[ paulmck: Adjust rcu_eqs_enter() call to rcu_preempt_deferred_qs() in
response to bug reports from kbuild test robot. ]
[ paulmck: Fix bug located by kbuild test robot involving recursion
via rcu_preempt_deferred_qs(). ]
2018-06-22 03:50:01 +08:00
|
|
|
/* Report any deferred quiescent states if preemption enabled. */
|
2018-07-27 04:44:00 +08:00
|
|
|
if (!(preempt_count() & PREEMPT_MASK)) {
|
rcu: Defer reporting RCU-preempt quiescent states when disabled
This commit defers reporting of RCU-preempt quiescent states at
rcu_read_unlock_special() time when any of interrupts, softirq, or
preemption are disabled. These deferred quiescent states are reported
at a later RCU_SOFTIRQ, context switch, idle entry, or CPU-hotplug
offline operation. Of course, if another RCU read-side critical
section has started in the meantime, the reporting of the quiescent
state will be further deferred.
This also means that disabling preemption, interrupts, and/or
softirqs will act as an RCU-preempt read-side critical section.
This is enforced by checking preempt_count() as needed.
Some special cases must be handled on an ad-hoc basis, for example,
context switch is a quiescent state even though both the scheduler and
do_exit() disable preemption. In these cases, additional calls to
rcu_preempt_deferred_qs() override the preemption disabling. Similar
logic overrides disabled interrupts in rcu_preempt_check_callbacks()
because in this case the quiescent state happened just before the
corresponding scheduling-clock interrupt.
In theory, this change lifts a long-standing restriction that required
that if interrupts were disabled across a call to rcu_read_unlock()
that the matching rcu_read_lock() also be contained within that
interrupts-disabled region of code. Because the reporting of the
corresponding RCU-preempt quiescent state is now deferred until
after interrupts have been enabled, it is no longer possible for this
situation to result in deadlocks involving the scheduler's runqueue and
priority-inheritance locks. This may allow some code simplification that
might reduce interrupt latency a bit. Unfortunately, in practice this
would also defer deboosting a low-priority task that had been subjected
to RCU priority boosting, so real-time-response considerations might
well force this restriction to remain in place.
Because RCU-preempt grace periods are now blocked not only by RCU
read-side critical sections, but also by disabling of interrupts,
preemption, and softirqs, it will be possible to eliminate RCU-bh and
RCU-sched in favor of RCU-preempt in CONFIG_PREEMPT=y kernels. This may
require some additional plumbing to provide the network denial-of-service
guarantees that have been traditionally provided by RCU-bh. Once these
are in place, CONFIG_PREEMPT=n kernels will be able to fold RCU-bh
into RCU-sched. This would mean that all kernels would have but
one flavor of RCU, which would open the door to significant code
cleanup.
Moving to a single flavor of RCU would also have the beneficial effect
of reducing the NOCB kthreads by at least a factor of two.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Apply rcu_read_unlock_special() preempt_count() feedback
from Joel Fernandes. ]
[ paulmck: Adjust rcu_eqs_enter() call to rcu_preempt_deferred_qs() in
response to bug reports from kbuild test robot. ]
[ paulmck: Fix bug located by kbuild test robot involving recursion
via rcu_preempt_deferred_qs(). ]
2018-06-22 03:50:01 +08:00
|
|
|
rcu_preempt_deferred_qs(current);
|
2018-07-27 04:44:00 +08:00
|
|
|
} else if (rcu_preempt_need_deferred_qs(current)) {
|
|
|
|
set_tsk_need_resched(current);
|
|
|
|
set_preempt_need_resched();
|
|
|
|
}
|
rcu: Defer reporting RCU-preempt quiescent states when disabled
This commit defers reporting of RCU-preempt quiescent states at
rcu_read_unlock_special() time when any of interrupts, softirq, or
preemption are disabled. These deferred quiescent states are reported
at a later RCU_SOFTIRQ, context switch, idle entry, or CPU-hotplug
offline operation. Of course, if another RCU read-side critical
section has started in the meantime, the reporting of the quiescent
state will be further deferred.
This also means that disabling preemption, interrupts, and/or
softirqs will act as an RCU-preempt read-side critical section.
This is enforced by checking preempt_count() as needed.
Some special cases must be handled on an ad-hoc basis, for example,
context switch is a quiescent state even though both the scheduler and
do_exit() disable preemption. In these cases, additional calls to
rcu_preempt_deferred_qs() override the preemption disabling. Similar
logic overrides disabled interrupts in rcu_preempt_check_callbacks()
because in this case the quiescent state happened just before the
corresponding scheduling-clock interrupt.
In theory, this change lifts a long-standing restriction that required
that if interrupts were disabled across a call to rcu_read_unlock()
that the matching rcu_read_lock() also be contained within that
interrupts-disabled region of code. Because the reporting of the
corresponding RCU-preempt quiescent state is now deferred until
after interrupts have been enabled, it is no longer possible for this
situation to result in deadlocks involving the scheduler's runqueue and
priority-inheritance locks. This may allow some code simplification that
might reduce interrupt latency a bit. Unfortunately, in practice this
would also defer deboosting a low-priority task that had been subjected
to RCU priority boosting, so real-time-response considerations might
well force this restriction to remain in place.
Because RCU-preempt grace periods are now blocked not only by RCU
read-side critical sections, but also by disabling of interrupts,
preemption, and softirqs, it will be possible to eliminate RCU-bh and
RCU-sched in favor of RCU-preempt in CONFIG_PREEMPT=y kernels. This may
require some additional plumbing to provide the network denial-of-service
guarantees that have been traditionally provided by RCU-bh. Once these
are in place, CONFIG_PREEMPT=n kernels will be able to fold RCU-bh
into RCU-sched. This would mean that all kernels would have but
one flavor of RCU, which would open the door to significant code
cleanup.
Moving to a single flavor of RCU would also have the beneficial effect
of reducing the NOCB kthreads by at least a factor of two.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Apply rcu_read_unlock_special() preempt_count() feedback
from Joel Fernandes. ]
[ paulmck: Adjust rcu_eqs_enter() call to rcu_preempt_deferred_qs() in
response to bug reports from kbuild test robot. ]
[ paulmck: Fix bug located by kbuild test robot involving recursion
via rcu_preempt_deferred_qs(). ]
2018-06-22 03:50:01 +08:00
|
|
|
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
/* Update RCU state based on any recent quiescent states. */
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_check_quiescent_state(rdp);
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
|
rcu: Switch __rcu_process_callbacks() to rcu_accelerate_cbs()
The __rcu_process_callbacks() function currently checks to see if
the current CPU needs a grace period and also if there is any other
reason to kick off a new grace period. This is one of the fail-safe
checks that has been rendered unnecessary by the changes that increase
the accuracy of rcu_gp_cleanup()'s estimate as to whether another grace
period is required. Because this particular fail-safe involved acquiring
the root rcu_node structure's ->lock, which has seen excessive contention
in real life, this fail-safe needs to go.
However, one check must remain, namely the check for newly arrived
RCU callbacks that have not yet been associated with a grace period.
One might hope that the checks in __note_gp_changes(), which is invoked
indirectly from rcu_check_quiescent_state(), would suffice, but this
function won't be invoked at all if RCU is idle. It is therefore necessary
to replace the fail-safe checks with a simpler check for newly arrived
callbacks during an RCU idle period, which is exactly what this commit
does. This change removes the final call to rcu_start_gp(), so this
function is removed as well.
Note that lockless use of cpu_needs_another_gp() is racy, but that
these races are harmless in this case. If RCU really is idle, the
values will not change, so the return value from cpu_needs_another_gp()
will be correct. If RCU is not idle, the resulting redundant call to
rcu_accelerate_cbs() will be harmless, and might even have the benefit
of reducing grace-period latency a bit.
This commit also moves interrupt disabling into the "if" statement to
improve real-time response a bit.
Reported-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Nicholas Piggin <npiggin@gmail.com>
2018-04-12 00:51:20 +08:00
|
|
|
/* No grace period and unregistered callbacks? */
|
2018-07-04 08:22:34 +08:00
|
|
|
if (!rcu_gp_in_progress() &&
|
rcu: Switch __rcu_process_callbacks() to rcu_accelerate_cbs()
The __rcu_process_callbacks() function currently checks to see if
the current CPU needs a grace period and also if there is any other
reason to kick off a new grace period. This is one of the fail-safe
checks that has been rendered unnecessary by the changes that increase
the accuracy of rcu_gp_cleanup()'s estimate as to whether another grace
period is required. Because this particular fail-safe involved acquiring
the root rcu_node structure's ->lock, which has seen excessive contention
in real life, this fail-safe needs to go.
However, one check must remain, namely the check for newly arrived
RCU callbacks that have not yet been associated with a grace period.
One might hope that the checks in __note_gp_changes(), which is invoked
indirectly from rcu_check_quiescent_state(), would suffice, but this
function won't be invoked at all if RCU is idle. It is therefore necessary
to replace the fail-safe checks with a simpler check for newly arrived
callbacks during an RCU idle period, which is exactly what this commit
does. This change removes the final call to rcu_start_gp(), so this
function is removed as well.
Note that lockless use of cpu_needs_another_gp() is racy, but that
these races are harmless in this case. If RCU really is idle, the
values will not change, so the return value from cpu_needs_another_gp()
will be correct. If RCU is not idle, the resulting redundant call to
rcu_accelerate_cbs() will be harmless, and might even have the benefit
of reducing grace-period latency a bit.
This commit also moves interrupt disabling into the "if" statement to
improve real-time response a bit.
Reported-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Nicholas Piggin <npiggin@gmail.com>
2018-04-12 00:51:20 +08:00
|
|
|
rcu_segcblist_is_enabled(&rdp->cblist)) {
|
|
|
|
local_irq_save(flags);
|
2018-05-02 07:29:47 +08:00
|
|
|
if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_accelerate_cbs_unlocked(rnp, rdp);
|
2018-05-02 07:29:47 +08:00
|
|
|
local_irq_restore(flags);
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
}
|
|
|
|
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_check_gp_start_stall(rnp, rdp);
|
2018-04-22 11:44:11 +08:00
|
|
|
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
/* If there are callbacks ready, invoke them. */
|
srcu: Abstract multi-tail callback list handling
RCU has only one multi-tail callback list, which is implemented via
the nxtlist, nxttail, nxtcompleted, qlen_lazy, and qlen fields in the
rcu_data structure, and whose operations are open-code throughout the
Tree RCU implementation. This has been more or less OK in the past,
but upcoming callback-list optimizations in SRCU could really use
a multi-tail callback list there as well.
This commit therefore abstracts the multi-tail callback list handling
into a new kernel/rcu/rcu_segcblist.h file, and uses this new API.
The simple head-and-tail pointer callback list is also abstracted and
applied everywhere except for the NOCB callback-offload lists. (Yes,
the plan is to apply them there as well, but this commit is already
bigger than would be good.)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-02-09 04:36:42 +08:00
|
|
|
if (rcu_segcblist_ready_cbs(&rdp->cblist))
|
2018-07-04 08:22:34 +08:00
|
|
|
invoke_rcu_callbacks(rdp);
|
rcu: Break call_rcu() deadlock involving scheduler and perf
Dave Jones got the following lockdep splat:
> ======================================================
> [ INFO: possible circular locking dependency detected ]
> 3.12.0-rc3+ #92 Not tainted
> -------------------------------------------------------
> trinity-child2/15191 is trying to acquire lock:
> (&rdp->nocb_wq){......}, at: [<ffffffff8108ff43>] __wake_up+0x23/0x50
>
> but task is already holding lock:
> (&ctx->lock){-.-...}, at: [<ffffffff81154c19>] perf_event_exit_task+0x109/0x230
>
> which lock already depends on the new lock.
>
>
> the existing dependency chain (in reverse order) is:
>
> -> #3 (&ctx->lock){-.-...}:
> [<ffffffff810cc243>] lock_acquire+0x93/0x200
> [<ffffffff81733f90>] _raw_spin_lock+0x40/0x80
> [<ffffffff811500ff>] __perf_event_task_sched_out+0x2df/0x5e0
> [<ffffffff81091b83>] perf_event_task_sched_out+0x93/0xa0
> [<ffffffff81732052>] __schedule+0x1d2/0xa20
> [<ffffffff81732f30>] preempt_schedule_irq+0x50/0xb0
> [<ffffffff817352b6>] retint_kernel+0x26/0x30
> [<ffffffff813eed04>] tty_flip_buffer_push+0x34/0x50
> [<ffffffff813f0504>] pty_write+0x54/0x60
> [<ffffffff813e900d>] n_tty_write+0x32d/0x4e0
> [<ffffffff813e5838>] tty_write+0x158/0x2d0
> [<ffffffff811c4850>] vfs_write+0xc0/0x1f0
> [<ffffffff811c52cc>] SyS_write+0x4c/0xa0
> [<ffffffff8173d4e4>] tracesys+0xdd/0xe2
>
> -> #2 (&rq->lock){-.-.-.}:
> [<ffffffff810cc243>] lock_acquire+0x93/0x200
> [<ffffffff81733f90>] _raw_spin_lock+0x40/0x80
> [<ffffffff810980b2>] wake_up_new_task+0xc2/0x2e0
> [<ffffffff81054336>] do_fork+0x126/0x460
> [<ffffffff81054696>] kernel_thread+0x26/0x30
> [<ffffffff8171ff93>] rest_init+0x23/0x140
> [<ffffffff81ee1e4b>] start_kernel+0x3f6/0x403
> [<ffffffff81ee1571>] x86_64_start_reservations+0x2a/0x2c
> [<ffffffff81ee1664>] x86_64_start_kernel+0xf1/0xf4
>
> -> #1 (&p->pi_lock){-.-.-.}:
> [<ffffffff810cc243>] lock_acquire+0x93/0x200
> [<ffffffff8173419b>] _raw_spin_lock_irqsave+0x4b/0x90
> [<ffffffff810979d1>] try_to_wake_up+0x31/0x350
> [<ffffffff81097d62>] default_wake_function+0x12/0x20
> [<ffffffff81084af8>] autoremove_wake_function+0x18/0x40
> [<ffffffff8108ea38>] __wake_up_common+0x58/0x90
> [<ffffffff8108ff59>] __wake_up+0x39/0x50
> [<ffffffff8110d4f8>] __call_rcu_nocb_enqueue+0xa8/0xc0
> [<ffffffff81111450>] __call_rcu+0x140/0x820
> [<ffffffff81111b8d>] call_rcu+0x1d/0x20
> [<ffffffff81093697>] cpu_attach_domain+0x287/0x360
> [<ffffffff81099d7e>] build_sched_domains+0xe5e/0x10a0
> [<ffffffff81efa7fc>] sched_init_smp+0x3b7/0x47a
> [<ffffffff81ee1f4e>] kernel_init_freeable+0xf6/0x202
> [<ffffffff817200be>] kernel_init+0xe/0x190
> [<ffffffff8173d22c>] ret_from_fork+0x7c/0xb0
>
> -> #0 (&rdp->nocb_wq){......}:
> [<ffffffff810cb7ca>] __lock_acquire+0x191a/0x1be0
> [<ffffffff810cc243>] lock_acquire+0x93/0x200
> [<ffffffff8173419b>] _raw_spin_lock_irqsave+0x4b/0x90
> [<ffffffff8108ff43>] __wake_up+0x23/0x50
> [<ffffffff8110d4f8>] __call_rcu_nocb_enqueue+0xa8/0xc0
> [<ffffffff81111450>] __call_rcu+0x140/0x820
> [<ffffffff81111bb0>] kfree_call_rcu+0x20/0x30
> [<ffffffff81149abf>] put_ctx+0x4f/0x70
> [<ffffffff81154c3e>] perf_event_exit_task+0x12e/0x230
> [<ffffffff81056b8d>] do_exit+0x30d/0xcc0
> [<ffffffff8105893c>] do_group_exit+0x4c/0xc0
> [<ffffffff810589c4>] SyS_exit_group+0x14/0x20
> [<ffffffff8173d4e4>] tracesys+0xdd/0xe2
>
> other info that might help us debug this:
>
> Chain exists of:
> &rdp->nocb_wq --> &rq->lock --> &ctx->lock
>
> Possible unsafe locking scenario:
>
> CPU0 CPU1
> ---- ----
> lock(&ctx->lock);
> lock(&rq->lock);
> lock(&ctx->lock);
> lock(&rdp->nocb_wq);
>
> *** DEADLOCK ***
>
> 1 lock held by trinity-child2/15191:
> #0: (&ctx->lock){-.-...}, at: [<ffffffff81154c19>] perf_event_exit_task+0x109/0x230
>
> stack backtrace:
> CPU: 2 PID: 15191 Comm: trinity-child2 Not tainted 3.12.0-rc3+ #92
> ffffffff82565b70 ffff880070c2dbf8 ffffffff8172a363 ffffffff824edf40
> ffff880070c2dc38 ffffffff81726741 ffff880070c2dc90 ffff88022383b1c0
> ffff88022383aac0 0000000000000000 ffff88022383b188 ffff88022383b1c0
> Call Trace:
> [<ffffffff8172a363>] dump_stack+0x4e/0x82
> [<ffffffff81726741>] print_circular_bug+0x200/0x20f
> [<ffffffff810cb7ca>] __lock_acquire+0x191a/0x1be0
> [<ffffffff810c6439>] ? get_lock_stats+0x19/0x60
> [<ffffffff8100b2f4>] ? native_sched_clock+0x24/0x80
> [<ffffffff810cc243>] lock_acquire+0x93/0x200
> [<ffffffff8108ff43>] ? __wake_up+0x23/0x50
> [<ffffffff8173419b>] _raw_spin_lock_irqsave+0x4b/0x90
> [<ffffffff8108ff43>] ? __wake_up+0x23/0x50
> [<ffffffff8108ff43>] __wake_up+0x23/0x50
> [<ffffffff8110d4f8>] __call_rcu_nocb_enqueue+0xa8/0xc0
> [<ffffffff81111450>] __call_rcu+0x140/0x820
> [<ffffffff8109bc8f>] ? local_clock+0x3f/0x50
> [<ffffffff81111bb0>] kfree_call_rcu+0x20/0x30
> [<ffffffff81149abf>] put_ctx+0x4f/0x70
> [<ffffffff81154c3e>] perf_event_exit_task+0x12e/0x230
> [<ffffffff81056b8d>] do_exit+0x30d/0xcc0
> [<ffffffff810c9af5>] ? trace_hardirqs_on_caller+0x115/0x1e0
> [<ffffffff810c9bcd>] ? trace_hardirqs_on+0xd/0x10
> [<ffffffff8105893c>] do_group_exit+0x4c/0xc0
> [<ffffffff810589c4>] SyS_exit_group+0x14/0x20
> [<ffffffff8173d4e4>] tracesys+0xdd/0xe2
The underlying problem is that perf is invoking call_rcu() with the
scheduler locks held, but in NOCB mode, call_rcu() will with high
probability invoke the scheduler -- which just might want to use its
locks. The reason that call_rcu() needs to invoke the scheduler is
to wake up the corresponding rcuo callback-offload kthread, which
does the job of starting up a grace period and invoking the callbacks
afterwards.
One solution (championed on a related problem by Lai Jiangshan) is to
simply defer the wakeup to some point where scheduler locks are no longer
held. Since we don't want to unnecessarily incur the cost of such
deferral, the task before us is threefold:
1. Determine when it is likely that a relevant scheduler lock is held.
2. Defer the wakeup in such cases.
3. Ensure that all deferred wakeups eventually happen, preferably
sooner rather than later.
We use irqs_disabled_flags() as a proxy for relevant scheduler locks
being held. This works because the relevant locks are always acquired
with interrupts disabled. We may defer more often than needed, but that
is at least safe.
The wakeup deferral is tracked via a new field in the per-CPU and
per-RCU-flavor rcu_data structure, namely ->nocb_defer_wakeup.
This flag is checked by the RCU core processing. The __rcu_pending()
function now checks this flag, which causes rcu_check_callbacks()
to initiate RCU core processing at each scheduling-clock interrupt
where this flag is set. Of course this is not sufficient because
scheduling-clock interrupts are often turned off (the things we used to
be able to count on!). So the flags are also checked on entry to any
state that RCU considers to be idle, which includes both NO_HZ_IDLE idle
state and NO_HZ_FULL user-mode-execution state.
This approach should allow call_rcu() to be invoked regardless of what
locks you might be holding, the key word being "should".
Reported-by: Dave Jones <davej@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
2013-10-05 05:33:34 +08:00
|
|
|
|
|
|
|
/* Do any needed deferred wakeups of rcuo kthreads. */
|
|
|
|
do_nocb_deferred_wakeup(rdp);
|
2013-07-13 05:18:47 +08:00
|
|
|
trace_rcu_utilization(TPS("End RCU core"));
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
}
|
|
|
|
|
2011-01-13 06:10:23 +08:00
|
|
|
/*
|
2018-07-08 09:12:26 +08:00
|
|
|
* Schedule RCU callback invocation. If the running implementation of RCU
|
|
|
|
* does not support RCU priority boosting, just do a direct call, otherwise
|
|
|
|
* wake up the per-CPU kernel kthread. Note that because we are running
|
|
|
|
* on the current CPU with softirqs disabled, the rcu_cpu_kthread_task
|
|
|
|
* cannot disappear out from under us.
|
2011-01-13 06:10:23 +08:00
|
|
|
*/
|
2018-07-04 08:22:34 +08:00
|
|
|
static void invoke_rcu_callbacks(struct rcu_data *rdp)
|
2011-01-13 06:10:23 +08:00
|
|
|
{
|
2015-03-04 06:57:58 +08:00
|
|
|
if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
|
2011-07-11 06:57:35 +08:00
|
|
|
return;
|
2018-07-06 06:54:02 +08:00
|
|
|
if (likely(!rcu_state.boost)) {
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_do_batch(rdp);
|
2011-01-13 06:10:23 +08:00
|
|
|
return;
|
|
|
|
}
|
2011-06-16 06:47:09 +08:00
|
|
|
invoke_rcu_callbacks_kthread();
|
2011-01-13 06:10:23 +08:00
|
|
|
}
|
|
|
|
|
2011-06-16 06:47:09 +08:00
|
|
|
static void invoke_rcu_core(void)
|
rcu: Use softirq to address performance regression
Commit a26ac2455ffcf3(rcu: move TREE_RCU from softirq to kthread)
introduced performance regression. In an AIM7 test, this commit degraded
performance by about 40%.
The commit runs rcu callbacks in a kthread instead of softirq. We observed
high rate of context switch which is caused by this. Out test system has
64 CPUs and HZ is 1000, so we saw more than 64k context switch per second
which is caused by RCU's per-CPU kthread. A trace showed that most of
the time the RCU per-CPU kthread doesn't actually handle any callbacks,
but instead just does a very small amount of work handling grace periods.
This means that RCU's per-CPU kthreads are making the scheduler do quite
a bit of work in order to allow a very small amount of RCU-related
processing to be done.
Alex Shi's analysis determined that this slowdown is due to lock
contention within the scheduler. Unfortunately, as Peter Zijlstra points
out, the scheduler's real-time semantics require global action, which
means that this contention is inherent in real-time scheduling. (Yes,
perhaps someone will come up with a workaround -- otherwise, -rt is not
going to do well on large SMP systems -- but this patch will work around
this issue in the meantime. And "the meantime" might well be forever.)
This patch therefore re-introduces softirq processing to RCU, but only
for core RCU work. RCU callbacks are still executed in kthread context,
so that only a small amount of RCU work runs in softirq context in the
common case. This should minimize ksoftirqd execution, allowing us to
skip boosting of ksoftirqd for CONFIG_RCU_BOOST=y kernels.
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Tested-by: "Alex,Shi" <alex.shi@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-06-14 13:26:25 +08:00
|
|
|
{
|
2013-02-05 04:14:24 +08:00
|
|
|
if (cpu_online(smp_processor_id()))
|
|
|
|
raise_softirq(RCU_SOFTIRQ);
|
rcu: Use softirq to address performance regression
Commit a26ac2455ffcf3(rcu: move TREE_RCU from softirq to kthread)
introduced performance regression. In an AIM7 test, this commit degraded
performance by about 40%.
The commit runs rcu callbacks in a kthread instead of softirq. We observed
high rate of context switch which is caused by this. Out test system has
64 CPUs and HZ is 1000, so we saw more than 64k context switch per second
which is caused by RCU's per-CPU kthread. A trace showed that most of
the time the RCU per-CPU kthread doesn't actually handle any callbacks,
but instead just does a very small amount of work handling grace periods.
This means that RCU's per-CPU kthreads are making the scheduler do quite
a bit of work in order to allow a very small amount of RCU-related
processing to be done.
Alex Shi's analysis determined that this slowdown is due to lock
contention within the scheduler. Unfortunately, as Peter Zijlstra points
out, the scheduler's real-time semantics require global action, which
means that this contention is inherent in real-time scheduling. (Yes,
perhaps someone will come up with a workaround -- otherwise, -rt is not
going to do well on large SMP systems -- but this patch will work around
this issue in the meantime. And "the meantime" might well be forever.)
This patch therefore re-introduces softirq processing to RCU, but only
for core RCU work. RCU callbacks are still executed in kthread context,
so that only a small amount of RCU work runs in softirq context in the
common case. This should minimize ksoftirqd execution, allowing us to
skip boosting of ksoftirqd for CONFIG_RCU_BOOST=y kernels.
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Tested-by: "Alex,Shi" <alex.shi@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-06-14 13:26:25 +08:00
|
|
|
}
|
|
|
|
|
2012-05-30 18:21:48 +08:00
|
|
|
/*
|
|
|
|
* Handle any core-RCU processing required by a call_rcu() invocation.
|
|
|
|
*/
|
2018-07-04 08:22:34 +08:00
|
|
|
static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
|
|
|
|
unsigned long flags)
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
{
|
2012-05-23 13:10:24 +08:00
|
|
|
/*
|
|
|
|
* If called from an extended quiescent state, invoke the RCU
|
|
|
|
* core in order to force a re-evaluation of RCU's idleness.
|
|
|
|
*/
|
2015-02-25 17:09:46 +08:00
|
|
|
if (!rcu_is_watching())
|
2012-05-23 13:10:24 +08:00
|
|
|
invoke_rcu_core();
|
|
|
|
|
2012-05-26 23:56:01 +08:00
|
|
|
/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
|
2012-05-30 18:21:48 +08:00
|
|
|
if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
|
2011-04-08 13:47:23 +08:00
|
|
|
return;
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
|
2009-10-15 01:15:55 +08:00
|
|
|
/*
|
|
|
|
* Force the grace period if too many callbacks or too long waiting.
|
|
|
|
* Enforce hysteresis, and don't invoke force_quiescent_state()
|
|
|
|
* if some other CPU has recently done so. Also, don't bother
|
|
|
|
* invoking force_quiescent_state() if the newly enqueued callback
|
|
|
|
* is the only one waiting for a grace period to complete.
|
|
|
|
*/
|
srcu: Abstract multi-tail callback list handling
RCU has only one multi-tail callback list, which is implemented via
the nxtlist, nxttail, nxtcompleted, qlen_lazy, and qlen fields in the
rcu_data structure, and whose operations are open-code throughout the
Tree RCU implementation. This has been more or less OK in the past,
but upcoming callback-list optimizations in SRCU could really use
a multi-tail callback list there as well.
This commit therefore abstracts the multi-tail callback list handling
into a new kernel/rcu/rcu_segcblist.h file, and uses this new API.
The simple head-and-tail pointer callback list is also abstracted and
applied everywhere except for the NOCB callback-offload lists. (Yes,
the plan is to apply them there as well, but this commit is already
bigger than would be good.)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-02-09 04:36:42 +08:00
|
|
|
if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
|
|
|
|
rdp->qlen_last_fqs_check + qhimark)) {
|
2010-12-15 09:36:02 +08:00
|
|
|
|
|
|
|
/* Are we ignoring a completed grace period? */
|
2018-07-04 08:22:34 +08:00
|
|
|
note_gp_changes(rdp);
|
2010-12-15 09:36:02 +08:00
|
|
|
|
|
|
|
/* Start a new grace period if one not already started. */
|
2018-07-04 08:22:34 +08:00
|
|
|
if (!rcu_gp_in_progress()) {
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
|
2010-12-15 09:36:02 +08:00
|
|
|
} else {
|
|
|
|
/* Give the grace period a kick. */
|
|
|
|
rdp->blimit = LONG_MAX;
|
2018-07-04 08:22:34 +08:00
|
|
|
if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
|
srcu: Abstract multi-tail callback list handling
RCU has only one multi-tail callback list, which is implemented via
the nxtlist, nxttail, nxtcompleted, qlen_lazy, and qlen fields in the
rcu_data structure, and whose operations are open-code throughout the
Tree RCU implementation. This has been more or less OK in the past,
but upcoming callback-list optimizations in SRCU could really use
a multi-tail callback list there as well.
This commit therefore abstracts the multi-tail callback list handling
into a new kernel/rcu/rcu_segcblist.h file, and uses this new API.
The simple head-and-tail pointer callback list is also abstracted and
applied everywhere except for the NOCB callback-offload lists. (Yes,
the plan is to apply them there as well, but this commit is already
bigger than would be good.)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-02-09 04:36:42 +08:00
|
|
|
rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
|
2018-07-04 08:22:34 +08:00
|
|
|
force_quiescent_state();
|
2018-07-04 08:22:34 +08:00
|
|
|
rdp->n_force_qs_snap = rcu_state.n_force_qs;
|
srcu: Abstract multi-tail callback list handling
RCU has only one multi-tail callback list, which is implemented via
the nxtlist, nxttail, nxtcompleted, qlen_lazy, and qlen fields in the
rcu_data structure, and whose operations are open-code throughout the
Tree RCU implementation. This has been more or less OK in the past,
but upcoming callback-list optimizations in SRCU could really use
a multi-tail callback list there as well.
This commit therefore abstracts the multi-tail callback list handling
into a new kernel/rcu/rcu_segcblist.h file, and uses this new API.
The simple head-and-tail pointer callback list is also abstracted and
applied everywhere except for the NOCB callback-offload lists. (Yes,
the plan is to apply them there as well, but this commit is already
bigger than would be good.)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-02-09 04:36:42 +08:00
|
|
|
rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
|
2010-12-15 09:36:02 +08:00
|
|
|
}
|
2012-06-23 08:06:26 +08:00
|
|
|
}
|
2012-05-30 18:21:48 +08:00
|
|
|
}
|
|
|
|
|
2013-04-24 04:20:57 +08:00
|
|
|
/*
|
|
|
|
* RCU callback function to leak a callback.
|
|
|
|
*/
|
|
|
|
static void rcu_leak_callback(struct rcu_head *rhp)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
2012-08-20 12:35:53 +08:00
|
|
|
/*
|
|
|
|
* Helper function for call_rcu() and friends. The cpu argument will
|
|
|
|
* normally be -1, indicating "currently running CPU". It may specify
|
2018-07-11 09:37:30 +08:00
|
|
|
* a CPU only if that CPU is a no-CBs CPU. Currently, only rcu_barrier()
|
2012-08-20 12:35:53 +08:00
|
|
|
* is expected to specify a CPU.
|
|
|
|
*/
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
static void
|
2018-07-04 08:22:34 +08:00
|
|
|
__call_rcu(struct rcu_head *head, rcu_callback_t func, int cpu, bool lazy)
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
struct rcu_data *rdp;
|
|
|
|
|
2016-08-23 21:51:47 +08:00
|
|
|
/* Misaligned rcu_head! */
|
|
|
|
WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
|
|
|
|
|
2013-04-24 04:20:57 +08:00
|
|
|
if (debug_rcu_head_queue(head)) {
|
2017-05-04 02:38:55 +08:00
|
|
|
/*
|
|
|
|
* Probable double call_rcu(), so leak the callback.
|
|
|
|
* Use rcu:rcu_callback trace event to find the previous
|
|
|
|
* time callback was passed to __call_rcu().
|
|
|
|
*/
|
|
|
|
WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
|
|
|
|
head, head->func);
|
2015-03-04 06:57:58 +08:00
|
|
|
WRITE_ONCE(head->func, rcu_leak_callback);
|
2013-04-24 04:20:57 +08:00
|
|
|
return;
|
|
|
|
}
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
head->func = func;
|
|
|
|
head->next = NULL;
|
|
|
|
local_irq_save(flags);
|
2018-07-04 06:37:16 +08:00
|
|
|
rdp = this_cpu_ptr(&rcu_data);
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
|
|
|
|
/* Add the callback to our list. */
|
srcu: Abstract multi-tail callback list handling
RCU has only one multi-tail callback list, which is implemented via
the nxtlist, nxttail, nxtcompleted, qlen_lazy, and qlen fields in the
rcu_data structure, and whose operations are open-code throughout the
Tree RCU implementation. This has been more or less OK in the past,
but upcoming callback-list optimizations in SRCU could really use
a multi-tail callback list there as well.
This commit therefore abstracts the multi-tail callback list handling
into a new kernel/rcu/rcu_segcblist.h file, and uses this new API.
The simple head-and-tail pointer callback list is also abstracted and
applied everywhere except for the NOCB callback-offload lists. (Yes,
the plan is to apply them there as well, but this commit is already
bigger than would be good.)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-02-09 04:36:42 +08:00
|
|
|
if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
|
2012-08-20 12:35:53 +08:00
|
|
|
int offline;
|
|
|
|
|
|
|
|
if (cpu != -1)
|
2018-07-04 06:37:16 +08:00
|
|
|
rdp = per_cpu_ptr(&rcu_data, cpu);
|
2015-01-20 11:57:32 +08:00
|
|
|
if (likely(rdp->mynode)) {
|
|
|
|
/* Post-boot, so this should be for a no-CBs CPU. */
|
|
|
|
offline = !__call_rcu_nocb(rdp, head, lazy, flags);
|
|
|
|
WARN_ON_ONCE(offline);
|
|
|
|
/* Offline CPU, _call_rcu() illegal, leak callback. */
|
|
|
|
local_irq_restore(flags);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Very early boot, before rcu_init(). Initialize if needed
|
|
|
|
* and then drop through to queue the callback.
|
|
|
|
*/
|
|
|
|
BUG_ON(cpu != -1);
|
2015-01-20 12:39:20 +08:00
|
|
|
WARN_ON_ONCE(!rcu_is_watching());
|
srcu: Abstract multi-tail callback list handling
RCU has only one multi-tail callback list, which is implemented via
the nxtlist, nxttail, nxtcompleted, qlen_lazy, and qlen fields in the
rcu_data structure, and whose operations are open-code throughout the
Tree RCU implementation. This has been more or less OK in the past,
but upcoming callback-list optimizations in SRCU could really use
a multi-tail callback list there as well.
This commit therefore abstracts the multi-tail callback list handling
into a new kernel/rcu/rcu_segcblist.h file, and uses this new API.
The simple head-and-tail pointer callback list is also abstracted and
applied everywhere except for the NOCB callback-offload lists. (Yes,
the plan is to apply them there as well, but this commit is already
bigger than would be good.)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-02-09 04:36:42 +08:00
|
|
|
if (rcu_segcblist_empty(&rdp->cblist))
|
|
|
|
rcu_segcblist_init(&rdp->cblist);
|
2012-08-04 04:16:15 +08:00
|
|
|
}
|
srcu: Abstract multi-tail callback list handling
RCU has only one multi-tail callback list, which is implemented via
the nxtlist, nxttail, nxtcompleted, qlen_lazy, and qlen fields in the
rcu_data structure, and whose operations are open-code throughout the
Tree RCU implementation. This has been more or less OK in the past,
but upcoming callback-list optimizations in SRCU could really use
a multi-tail callback list there as well.
This commit therefore abstracts the multi-tail callback list handling
into a new kernel/rcu/rcu_segcblist.h file, and uses this new API.
The simple head-and-tail pointer callback list is also abstracted and
applied everywhere except for the NOCB callback-offload lists. (Yes,
the plan is to apply them there as well, but this commit is already
bigger than would be good.)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-02-09 04:36:42 +08:00
|
|
|
rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
|
|
|
|
if (!lazy)
|
2012-02-29 03:02:21 +08:00
|
|
|
rcu_idle_count_callbacks_posted();
|
2011-04-08 13:47:23 +08:00
|
|
|
|
rcu: Add grace-period, quiescent-state, and call_rcu trace events
Add trace events to record grace-period start and end, quiescent states,
CPUs noticing grace-period start and end, grace-period initialization,
call_rcu() invocation, tasks blocking in RCU read-side critical sections,
tasks exiting those same critical sections, force_quiescent_state()
detection of dyntick-idle and offline CPUs, CPUs entering and leaving
dyntick-idle mode (except from NMIs), CPUs coming online and going
offline, and CPUs being kicked for staying in dyntick-idle mode for too
long (as in many weeks, even on 32-bit systems).
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
rcu: Add the rcu flavor to callback trace events
The earlier trace events for registering RCU callbacks and for invoking
them did not include the RCU flavor (rcu_bh, rcu_preempt, or rcu_sched).
This commit adds the RCU flavor to those trace events.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-06-25 21:36:56 +08:00
|
|
|
if (__is_kfree_rcu_offset((unsigned long)func))
|
2018-07-06 06:54:02 +08:00
|
|
|
trace_rcu_kfree_callback(rcu_state.name, head,
|
|
|
|
(unsigned long)func,
|
srcu: Abstract multi-tail callback list handling
RCU has only one multi-tail callback list, which is implemented via
the nxtlist, nxttail, nxtcompleted, qlen_lazy, and qlen fields in the
rcu_data structure, and whose operations are open-code throughout the
Tree RCU implementation. This has been more or less OK in the past,
but upcoming callback-list optimizations in SRCU could really use
a multi-tail callback list there as well.
This commit therefore abstracts the multi-tail callback list handling
into a new kernel/rcu/rcu_segcblist.h file, and uses this new API.
The simple head-and-tail pointer callback list is also abstracted and
applied everywhere except for the NOCB callback-offload lists. (Yes,
the plan is to apply them there as well, but this commit is already
bigger than would be good.)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-02-09 04:36:42 +08:00
|
|
|
rcu_segcblist_n_lazy_cbs(&rdp->cblist),
|
|
|
|
rcu_segcblist_n_cbs(&rdp->cblist));
|
rcu: Add grace-period, quiescent-state, and call_rcu trace events
Add trace events to record grace-period start and end, quiescent states,
CPUs noticing grace-period start and end, grace-period initialization,
call_rcu() invocation, tasks blocking in RCU read-side critical sections,
tasks exiting those same critical sections, force_quiescent_state()
detection of dyntick-idle and offline CPUs, CPUs entering and leaving
dyntick-idle mode (except from NMIs), CPUs coming online and going
offline, and CPUs being kicked for staying in dyntick-idle mode for too
long (as in many weeks, even on 32-bit systems).
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
rcu: Add the rcu flavor to callback trace events
The earlier trace events for registering RCU callbacks and for invoking
them did not include the RCU flavor (rcu_bh, rcu_preempt, or rcu_sched).
This commit adds the RCU flavor to those trace events.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-06-25 21:36:56 +08:00
|
|
|
else
|
2018-07-06 06:54:02 +08:00
|
|
|
trace_rcu_callback(rcu_state.name, head,
|
srcu: Abstract multi-tail callback list handling
RCU has only one multi-tail callback list, which is implemented via
the nxtlist, nxttail, nxtcompleted, qlen_lazy, and qlen fields in the
rcu_data structure, and whose operations are open-code throughout the
Tree RCU implementation. This has been more or less OK in the past,
but upcoming callback-list optimizations in SRCU could really use
a multi-tail callback list there as well.
This commit therefore abstracts the multi-tail callback list handling
into a new kernel/rcu/rcu_segcblist.h file, and uses this new API.
The simple head-and-tail pointer callback list is also abstracted and
applied everywhere except for the NOCB callback-offload lists. (Yes,
the plan is to apply them there as well, but this commit is already
bigger than would be good.)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-02-09 04:36:42 +08:00
|
|
|
rcu_segcblist_n_lazy_cbs(&rdp->cblist),
|
|
|
|
rcu_segcblist_n_cbs(&rdp->cblist));
|
rcu: Add grace-period, quiescent-state, and call_rcu trace events
Add trace events to record grace-period start and end, quiescent states,
CPUs noticing grace-period start and end, grace-period initialization,
call_rcu() invocation, tasks blocking in RCU read-side critical sections,
tasks exiting those same critical sections, force_quiescent_state()
detection of dyntick-idle and offline CPUs, CPUs entering and leaving
dyntick-idle mode (except from NMIs), CPUs coming online and going
offline, and CPUs being kicked for staying in dyntick-idle mode for too
long (as in many weeks, even on 32-bit systems).
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
rcu: Add the rcu flavor to callback trace events
The earlier trace events for registering RCU callbacks and for invoking
them did not include the RCU flavor (rcu_bh, rcu_preempt, or rcu_sched).
This commit adds the RCU flavor to those trace events.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-06-25 21:36:56 +08:00
|
|
|
|
2012-05-30 18:21:48 +08:00
|
|
|
/* Go handle any RCU core processing required. */
|
2018-07-04 08:22:34 +08:00
|
|
|
__call_rcu_core(rdp, head, flags);
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
local_irq_restore(flags);
|
|
|
|
}
|
|
|
|
|
2017-05-03 23:34:57 +08:00
|
|
|
/**
|
2018-07-03 05:30:37 +08:00
|
|
|
* call_rcu() - Queue an RCU callback for invocation after a grace period.
|
2017-05-03 23:34:57 +08:00
|
|
|
* @head: structure to be used for queueing the RCU updates.
|
|
|
|
* @func: actual callback function to be invoked after the grace period
|
|
|
|
*
|
|
|
|
* The callback function will be invoked some time after a full grace
|
2018-07-03 05:30:37 +08:00
|
|
|
* period elapses, in other words after all pre-existing RCU read-side
|
|
|
|
* critical sections have completed. However, the callback function
|
|
|
|
* might well execute concurrently with RCU read-side critical sections
|
|
|
|
* that started after call_rcu() was invoked. RCU read-side critical
|
|
|
|
* sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
|
|
|
|
* may be nested. In addition, regions of code across which interrupts,
|
|
|
|
* preemption, or softirqs have been disabled also serve as RCU read-side
|
|
|
|
* critical sections. This includes hardware interrupt handlers, softirq
|
|
|
|
* handlers, and NMI handlers.
|
|
|
|
*
|
|
|
|
* Note that all CPUs must agree that the grace period extended beyond
|
|
|
|
* all pre-existing RCU read-side critical section. On systems with more
|
|
|
|
* than one CPU, this means that when "func()" is invoked, each CPU is
|
|
|
|
* guaranteed to have executed a full memory barrier since the end of its
|
|
|
|
* last RCU read-side critical section whose beginning preceded the call
|
|
|
|
* to call_rcu(). It also means that each CPU executing an RCU read-side
|
|
|
|
* critical section that continues beyond the start of "func()" must have
|
|
|
|
* executed a memory barrier after the call_rcu() but before the beginning
|
|
|
|
* of that RCU read-side critical section. Note that these guarantees
|
|
|
|
* include CPUs that are offline, idle, or executing in user mode, as
|
|
|
|
* well as CPUs that are executing in the kernel.
|
|
|
|
*
|
|
|
|
* Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
|
|
|
|
* resulting RCU callback function "func()", then both CPU A and CPU B are
|
|
|
|
* guaranteed to execute a full memory barrier during the time interval
|
|
|
|
* between the call to call_rcu() and the invocation of "func()" -- even
|
|
|
|
* if CPU A and CPU B are the same CPU (but again only if the system has
|
|
|
|
* more than one CPU).
|
|
|
|
*/
|
|
|
|
void call_rcu(struct rcu_head *head, rcu_callback_t func)
|
|
|
|
{
|
2018-07-04 08:22:34 +08:00
|
|
|
__call_rcu(head, func, -1, 0);
|
2018-07-03 05:30:37 +08:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(call_rcu);
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
|
2014-03-19 02:48:48 +08:00
|
|
|
/*
|
|
|
|
* Queue an RCU callback for lazy invocation after a grace period.
|
|
|
|
* This will likely be later named something like "call_rcu_lazy()",
|
|
|
|
* but this change will require some way of tagging the lazy RCU
|
|
|
|
* callbacks in the list of pending callbacks. Until then, this
|
|
|
|
* function may only be called from __kfree_rcu().
|
|
|
|
*/
|
2018-07-04 08:22:34 +08:00
|
|
|
void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
|
2014-03-19 02:48:48 +08:00
|
|
|
{
|
2018-07-04 08:22:34 +08:00
|
|
|
__call_rcu(head, func, -1, 1);
|
2014-03-19 02:48:48 +08:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(kfree_call_rcu);
|
|
|
|
|
2014-03-15 07:37:08 +08:00
|
|
|
/**
|
|
|
|
* get_state_synchronize_rcu - Snapshot current RCU state
|
|
|
|
*
|
|
|
|
* Returns a cookie that is used by a later call to cond_synchronize_rcu()
|
|
|
|
* to determine whether or not a full grace period has elapsed in the
|
|
|
|
* meantime.
|
|
|
|
*/
|
|
|
|
unsigned long get_state_synchronize_rcu(void)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Any prior manipulation of RCU-protected data must happen
|
2018-04-28 06:16:50 +08:00
|
|
|
* before the load from ->gp_seq.
|
2014-03-15 07:37:08 +08:00
|
|
|
*/
|
|
|
|
smp_mb(); /* ^^^ */
|
2018-07-04 06:54:39 +08:00
|
|
|
return rcu_seq_snap(&rcu_state.gp_seq);
|
2014-03-15 07:37:08 +08:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cond_synchronize_rcu - Conditionally wait for an RCU grace period
|
|
|
|
*
|
|
|
|
* @oldstate: return value from earlier call to get_state_synchronize_rcu()
|
|
|
|
*
|
|
|
|
* If a full RCU grace period has elapsed since the earlier call to
|
|
|
|
* get_state_synchronize_rcu(), just return. Otherwise, invoke
|
|
|
|
* synchronize_rcu() to wait for a full grace period.
|
|
|
|
*
|
|
|
|
* Yes, this function does not take counter wrap into account. But
|
|
|
|
* counter wrap is harmless. If the counter wraps, we have waited for
|
|
|
|
* more than 2 billion grace periods (and way more on a 64-bit system!),
|
|
|
|
* so waiting for one additional grace period should be just fine.
|
|
|
|
*/
|
|
|
|
void cond_synchronize_rcu(unsigned long oldstate)
|
|
|
|
{
|
2018-07-04 06:54:39 +08:00
|
|
|
if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
|
2014-03-15 07:37:08 +08:00
|
|
|
synchronize_rcu();
|
2018-04-28 06:16:50 +08:00
|
|
|
else
|
|
|
|
smp_mb(); /* Ensure GP ends before subsequent accesses. */
|
2014-03-15 07:37:08 +08:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
|
|
|
|
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
/*
|
2018-07-04 08:22:34 +08:00
|
|
|
* Check to see if there is any immediate RCU-related work to be done by
|
2018-07-08 09:12:26 +08:00
|
|
|
* the current CPU, returning 1 if so and zero otherwise. The checks are
|
|
|
|
* in order of increasing expense: checks that can be carried out against
|
|
|
|
* CPU-local state are performed first. However, we must check for CPU
|
|
|
|
* stalls first, else we might not get a chance.
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
*/
|
2018-07-04 08:22:34 +08:00
|
|
|
static int rcu_pending(void)
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
{
|
2018-07-04 08:22:34 +08:00
|
|
|
struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
|
2009-11-14 11:51:39 +08:00
|
|
|
struct rcu_node *rnp = rdp->mynode;
|
|
|
|
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
/* Check for CPU stalls, if enabled. */
|
2018-07-04 08:22:34 +08:00
|
|
|
check_cpu_stall(rdp);
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
|
2013-11-09 01:03:10 +08:00
|
|
|
/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
|
2018-07-04 08:22:34 +08:00
|
|
|
if (rcu_nohz_full_cpu())
|
2013-11-09 01:03:10 +08:00
|
|
|
return 0;
|
|
|
|
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
/* Is the RCU core waiting for a quiescent state from this CPU? */
|
2018-01-11 04:36:00 +08:00
|
|
|
if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
return 1;
|
|
|
|
|
|
|
|
/* Does this CPU have callbacks ready to invoke? */
|
2018-01-11 04:36:00 +08:00
|
|
|
if (rcu_segcblist_ready_cbs(&rdp->cblist))
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
return 1;
|
|
|
|
|
|
|
|
/* Has RCU gone idle with this CPU needing another grace period? */
|
2018-07-04 08:22:34 +08:00
|
|
|
if (!rcu_gp_in_progress() &&
|
2018-04-13 07:29:13 +08:00
|
|
|
rcu_segcblist_is_enabled(&rdp->cblist) &&
|
|
|
|
!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
return 1;
|
|
|
|
|
2018-04-28 07:01:46 +08:00
|
|
|
/* Have RCU grace period completed or started? */
|
|
|
|
if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
|
2018-01-11 04:36:00 +08:00
|
|
|
unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
return 1;
|
|
|
|
|
rcu: Break call_rcu() deadlock involving scheduler and perf
Dave Jones got the following lockdep splat:
> ======================================================
> [ INFO: possible circular locking dependency detected ]
> 3.12.0-rc3+ #92 Not tainted
> -------------------------------------------------------
> trinity-child2/15191 is trying to acquire lock:
> (&rdp->nocb_wq){......}, at: [<ffffffff8108ff43>] __wake_up+0x23/0x50
>
> but task is already holding lock:
> (&ctx->lock){-.-...}, at: [<ffffffff81154c19>] perf_event_exit_task+0x109/0x230
>
> which lock already depends on the new lock.
>
>
> the existing dependency chain (in reverse order) is:
>
> -> #3 (&ctx->lock){-.-...}:
> [<ffffffff810cc243>] lock_acquire+0x93/0x200
> [<ffffffff81733f90>] _raw_spin_lock+0x40/0x80
> [<ffffffff811500ff>] __perf_event_task_sched_out+0x2df/0x5e0
> [<ffffffff81091b83>] perf_event_task_sched_out+0x93/0xa0
> [<ffffffff81732052>] __schedule+0x1d2/0xa20
> [<ffffffff81732f30>] preempt_schedule_irq+0x50/0xb0
> [<ffffffff817352b6>] retint_kernel+0x26/0x30
> [<ffffffff813eed04>] tty_flip_buffer_push+0x34/0x50
> [<ffffffff813f0504>] pty_write+0x54/0x60
> [<ffffffff813e900d>] n_tty_write+0x32d/0x4e0
> [<ffffffff813e5838>] tty_write+0x158/0x2d0
> [<ffffffff811c4850>] vfs_write+0xc0/0x1f0
> [<ffffffff811c52cc>] SyS_write+0x4c/0xa0
> [<ffffffff8173d4e4>] tracesys+0xdd/0xe2
>
> -> #2 (&rq->lock){-.-.-.}:
> [<ffffffff810cc243>] lock_acquire+0x93/0x200
> [<ffffffff81733f90>] _raw_spin_lock+0x40/0x80
> [<ffffffff810980b2>] wake_up_new_task+0xc2/0x2e0
> [<ffffffff81054336>] do_fork+0x126/0x460
> [<ffffffff81054696>] kernel_thread+0x26/0x30
> [<ffffffff8171ff93>] rest_init+0x23/0x140
> [<ffffffff81ee1e4b>] start_kernel+0x3f6/0x403
> [<ffffffff81ee1571>] x86_64_start_reservations+0x2a/0x2c
> [<ffffffff81ee1664>] x86_64_start_kernel+0xf1/0xf4
>
> -> #1 (&p->pi_lock){-.-.-.}:
> [<ffffffff810cc243>] lock_acquire+0x93/0x200
> [<ffffffff8173419b>] _raw_spin_lock_irqsave+0x4b/0x90
> [<ffffffff810979d1>] try_to_wake_up+0x31/0x350
> [<ffffffff81097d62>] default_wake_function+0x12/0x20
> [<ffffffff81084af8>] autoremove_wake_function+0x18/0x40
> [<ffffffff8108ea38>] __wake_up_common+0x58/0x90
> [<ffffffff8108ff59>] __wake_up+0x39/0x50
> [<ffffffff8110d4f8>] __call_rcu_nocb_enqueue+0xa8/0xc0
> [<ffffffff81111450>] __call_rcu+0x140/0x820
> [<ffffffff81111b8d>] call_rcu+0x1d/0x20
> [<ffffffff81093697>] cpu_attach_domain+0x287/0x360
> [<ffffffff81099d7e>] build_sched_domains+0xe5e/0x10a0
> [<ffffffff81efa7fc>] sched_init_smp+0x3b7/0x47a
> [<ffffffff81ee1f4e>] kernel_init_freeable+0xf6/0x202
> [<ffffffff817200be>] kernel_init+0xe/0x190
> [<ffffffff8173d22c>] ret_from_fork+0x7c/0xb0
>
> -> #0 (&rdp->nocb_wq){......}:
> [<ffffffff810cb7ca>] __lock_acquire+0x191a/0x1be0
> [<ffffffff810cc243>] lock_acquire+0x93/0x200
> [<ffffffff8173419b>] _raw_spin_lock_irqsave+0x4b/0x90
> [<ffffffff8108ff43>] __wake_up+0x23/0x50
> [<ffffffff8110d4f8>] __call_rcu_nocb_enqueue+0xa8/0xc0
> [<ffffffff81111450>] __call_rcu+0x140/0x820
> [<ffffffff81111bb0>] kfree_call_rcu+0x20/0x30
> [<ffffffff81149abf>] put_ctx+0x4f/0x70
> [<ffffffff81154c3e>] perf_event_exit_task+0x12e/0x230
> [<ffffffff81056b8d>] do_exit+0x30d/0xcc0
> [<ffffffff8105893c>] do_group_exit+0x4c/0xc0
> [<ffffffff810589c4>] SyS_exit_group+0x14/0x20
> [<ffffffff8173d4e4>] tracesys+0xdd/0xe2
>
> other info that might help us debug this:
>
> Chain exists of:
> &rdp->nocb_wq --> &rq->lock --> &ctx->lock
>
> Possible unsafe locking scenario:
>
> CPU0 CPU1
> ---- ----
> lock(&ctx->lock);
> lock(&rq->lock);
> lock(&ctx->lock);
> lock(&rdp->nocb_wq);
>
> *** DEADLOCK ***
>
> 1 lock held by trinity-child2/15191:
> #0: (&ctx->lock){-.-...}, at: [<ffffffff81154c19>] perf_event_exit_task+0x109/0x230
>
> stack backtrace:
> CPU: 2 PID: 15191 Comm: trinity-child2 Not tainted 3.12.0-rc3+ #92
> ffffffff82565b70 ffff880070c2dbf8 ffffffff8172a363 ffffffff824edf40
> ffff880070c2dc38 ffffffff81726741 ffff880070c2dc90 ffff88022383b1c0
> ffff88022383aac0 0000000000000000 ffff88022383b188 ffff88022383b1c0
> Call Trace:
> [<ffffffff8172a363>] dump_stack+0x4e/0x82
> [<ffffffff81726741>] print_circular_bug+0x200/0x20f
> [<ffffffff810cb7ca>] __lock_acquire+0x191a/0x1be0
> [<ffffffff810c6439>] ? get_lock_stats+0x19/0x60
> [<ffffffff8100b2f4>] ? native_sched_clock+0x24/0x80
> [<ffffffff810cc243>] lock_acquire+0x93/0x200
> [<ffffffff8108ff43>] ? __wake_up+0x23/0x50
> [<ffffffff8173419b>] _raw_spin_lock_irqsave+0x4b/0x90
> [<ffffffff8108ff43>] ? __wake_up+0x23/0x50
> [<ffffffff8108ff43>] __wake_up+0x23/0x50
> [<ffffffff8110d4f8>] __call_rcu_nocb_enqueue+0xa8/0xc0
> [<ffffffff81111450>] __call_rcu+0x140/0x820
> [<ffffffff8109bc8f>] ? local_clock+0x3f/0x50
> [<ffffffff81111bb0>] kfree_call_rcu+0x20/0x30
> [<ffffffff81149abf>] put_ctx+0x4f/0x70
> [<ffffffff81154c3e>] perf_event_exit_task+0x12e/0x230
> [<ffffffff81056b8d>] do_exit+0x30d/0xcc0
> [<ffffffff810c9af5>] ? trace_hardirqs_on_caller+0x115/0x1e0
> [<ffffffff810c9bcd>] ? trace_hardirqs_on+0xd/0x10
> [<ffffffff8105893c>] do_group_exit+0x4c/0xc0
> [<ffffffff810589c4>] SyS_exit_group+0x14/0x20
> [<ffffffff8173d4e4>] tracesys+0xdd/0xe2
The underlying problem is that perf is invoking call_rcu() with the
scheduler locks held, but in NOCB mode, call_rcu() will with high
probability invoke the scheduler -- which just might want to use its
locks. The reason that call_rcu() needs to invoke the scheduler is
to wake up the corresponding rcuo callback-offload kthread, which
does the job of starting up a grace period and invoking the callbacks
afterwards.
One solution (championed on a related problem by Lai Jiangshan) is to
simply defer the wakeup to some point where scheduler locks are no longer
held. Since we don't want to unnecessarily incur the cost of such
deferral, the task before us is threefold:
1. Determine when it is likely that a relevant scheduler lock is held.
2. Defer the wakeup in such cases.
3. Ensure that all deferred wakeups eventually happen, preferably
sooner rather than later.
We use irqs_disabled_flags() as a proxy for relevant scheduler locks
being held. This works because the relevant locks are always acquired
with interrupts disabled. We may defer more often than needed, but that
is at least safe.
The wakeup deferral is tracked via a new field in the per-CPU and
per-RCU-flavor rcu_data structure, namely ->nocb_defer_wakeup.
This flag is checked by the RCU core processing. The __rcu_pending()
function now checks this flag, which causes rcu_check_callbacks()
to initiate RCU core processing at each scheduling-clock interrupt
where this flag is set. Of course this is not sufficient because
scheduling-clock interrupts are often turned off (the things we used to
be able to count on!). So the flags are also checked on entry to any
state that RCU considers to be idle, which includes both NO_HZ_IDLE idle
state and NO_HZ_FULL user-mode-execution state.
This approach should allow call_rcu() to be invoked regardless of what
locks you might be holding, the key word being "should".
Reported-by: Dave Jones <davej@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
2013-10-05 05:33:34 +08:00
|
|
|
/* Does this CPU need a deferred NOCB wakeup? */
|
2018-01-11 04:36:00 +08:00
|
|
|
if (rcu_nocb_need_deferred_wakeup(rdp))
|
rcu: Break call_rcu() deadlock involving scheduler and perf
Dave Jones got the following lockdep splat:
> ======================================================
> [ INFO: possible circular locking dependency detected ]
> 3.12.0-rc3+ #92 Not tainted
> -------------------------------------------------------
> trinity-child2/15191 is trying to acquire lock:
> (&rdp->nocb_wq){......}, at: [<ffffffff8108ff43>] __wake_up+0x23/0x50
>
> but task is already holding lock:
> (&ctx->lock){-.-...}, at: [<ffffffff81154c19>] perf_event_exit_task+0x109/0x230
>
> which lock already depends on the new lock.
>
>
> the existing dependency chain (in reverse order) is:
>
> -> #3 (&ctx->lock){-.-...}:
> [<ffffffff810cc243>] lock_acquire+0x93/0x200
> [<ffffffff81733f90>] _raw_spin_lock+0x40/0x80
> [<ffffffff811500ff>] __perf_event_task_sched_out+0x2df/0x5e0
> [<ffffffff81091b83>] perf_event_task_sched_out+0x93/0xa0
> [<ffffffff81732052>] __schedule+0x1d2/0xa20
> [<ffffffff81732f30>] preempt_schedule_irq+0x50/0xb0
> [<ffffffff817352b6>] retint_kernel+0x26/0x30
> [<ffffffff813eed04>] tty_flip_buffer_push+0x34/0x50
> [<ffffffff813f0504>] pty_write+0x54/0x60
> [<ffffffff813e900d>] n_tty_write+0x32d/0x4e0
> [<ffffffff813e5838>] tty_write+0x158/0x2d0
> [<ffffffff811c4850>] vfs_write+0xc0/0x1f0
> [<ffffffff811c52cc>] SyS_write+0x4c/0xa0
> [<ffffffff8173d4e4>] tracesys+0xdd/0xe2
>
> -> #2 (&rq->lock){-.-.-.}:
> [<ffffffff810cc243>] lock_acquire+0x93/0x200
> [<ffffffff81733f90>] _raw_spin_lock+0x40/0x80
> [<ffffffff810980b2>] wake_up_new_task+0xc2/0x2e0
> [<ffffffff81054336>] do_fork+0x126/0x460
> [<ffffffff81054696>] kernel_thread+0x26/0x30
> [<ffffffff8171ff93>] rest_init+0x23/0x140
> [<ffffffff81ee1e4b>] start_kernel+0x3f6/0x403
> [<ffffffff81ee1571>] x86_64_start_reservations+0x2a/0x2c
> [<ffffffff81ee1664>] x86_64_start_kernel+0xf1/0xf4
>
> -> #1 (&p->pi_lock){-.-.-.}:
> [<ffffffff810cc243>] lock_acquire+0x93/0x200
> [<ffffffff8173419b>] _raw_spin_lock_irqsave+0x4b/0x90
> [<ffffffff810979d1>] try_to_wake_up+0x31/0x350
> [<ffffffff81097d62>] default_wake_function+0x12/0x20
> [<ffffffff81084af8>] autoremove_wake_function+0x18/0x40
> [<ffffffff8108ea38>] __wake_up_common+0x58/0x90
> [<ffffffff8108ff59>] __wake_up+0x39/0x50
> [<ffffffff8110d4f8>] __call_rcu_nocb_enqueue+0xa8/0xc0
> [<ffffffff81111450>] __call_rcu+0x140/0x820
> [<ffffffff81111b8d>] call_rcu+0x1d/0x20
> [<ffffffff81093697>] cpu_attach_domain+0x287/0x360
> [<ffffffff81099d7e>] build_sched_domains+0xe5e/0x10a0
> [<ffffffff81efa7fc>] sched_init_smp+0x3b7/0x47a
> [<ffffffff81ee1f4e>] kernel_init_freeable+0xf6/0x202
> [<ffffffff817200be>] kernel_init+0xe/0x190
> [<ffffffff8173d22c>] ret_from_fork+0x7c/0xb0
>
> -> #0 (&rdp->nocb_wq){......}:
> [<ffffffff810cb7ca>] __lock_acquire+0x191a/0x1be0
> [<ffffffff810cc243>] lock_acquire+0x93/0x200
> [<ffffffff8173419b>] _raw_spin_lock_irqsave+0x4b/0x90
> [<ffffffff8108ff43>] __wake_up+0x23/0x50
> [<ffffffff8110d4f8>] __call_rcu_nocb_enqueue+0xa8/0xc0
> [<ffffffff81111450>] __call_rcu+0x140/0x820
> [<ffffffff81111bb0>] kfree_call_rcu+0x20/0x30
> [<ffffffff81149abf>] put_ctx+0x4f/0x70
> [<ffffffff81154c3e>] perf_event_exit_task+0x12e/0x230
> [<ffffffff81056b8d>] do_exit+0x30d/0xcc0
> [<ffffffff8105893c>] do_group_exit+0x4c/0xc0
> [<ffffffff810589c4>] SyS_exit_group+0x14/0x20
> [<ffffffff8173d4e4>] tracesys+0xdd/0xe2
>
> other info that might help us debug this:
>
> Chain exists of:
> &rdp->nocb_wq --> &rq->lock --> &ctx->lock
>
> Possible unsafe locking scenario:
>
> CPU0 CPU1
> ---- ----
> lock(&ctx->lock);
> lock(&rq->lock);
> lock(&ctx->lock);
> lock(&rdp->nocb_wq);
>
> *** DEADLOCK ***
>
> 1 lock held by trinity-child2/15191:
> #0: (&ctx->lock){-.-...}, at: [<ffffffff81154c19>] perf_event_exit_task+0x109/0x230
>
> stack backtrace:
> CPU: 2 PID: 15191 Comm: trinity-child2 Not tainted 3.12.0-rc3+ #92
> ffffffff82565b70 ffff880070c2dbf8 ffffffff8172a363 ffffffff824edf40
> ffff880070c2dc38 ffffffff81726741 ffff880070c2dc90 ffff88022383b1c0
> ffff88022383aac0 0000000000000000 ffff88022383b188 ffff88022383b1c0
> Call Trace:
> [<ffffffff8172a363>] dump_stack+0x4e/0x82
> [<ffffffff81726741>] print_circular_bug+0x200/0x20f
> [<ffffffff810cb7ca>] __lock_acquire+0x191a/0x1be0
> [<ffffffff810c6439>] ? get_lock_stats+0x19/0x60
> [<ffffffff8100b2f4>] ? native_sched_clock+0x24/0x80
> [<ffffffff810cc243>] lock_acquire+0x93/0x200
> [<ffffffff8108ff43>] ? __wake_up+0x23/0x50
> [<ffffffff8173419b>] _raw_spin_lock_irqsave+0x4b/0x90
> [<ffffffff8108ff43>] ? __wake_up+0x23/0x50
> [<ffffffff8108ff43>] __wake_up+0x23/0x50
> [<ffffffff8110d4f8>] __call_rcu_nocb_enqueue+0xa8/0xc0
> [<ffffffff81111450>] __call_rcu+0x140/0x820
> [<ffffffff8109bc8f>] ? local_clock+0x3f/0x50
> [<ffffffff81111bb0>] kfree_call_rcu+0x20/0x30
> [<ffffffff81149abf>] put_ctx+0x4f/0x70
> [<ffffffff81154c3e>] perf_event_exit_task+0x12e/0x230
> [<ffffffff81056b8d>] do_exit+0x30d/0xcc0
> [<ffffffff810c9af5>] ? trace_hardirqs_on_caller+0x115/0x1e0
> [<ffffffff810c9bcd>] ? trace_hardirqs_on+0xd/0x10
> [<ffffffff8105893c>] do_group_exit+0x4c/0xc0
> [<ffffffff810589c4>] SyS_exit_group+0x14/0x20
> [<ffffffff8173d4e4>] tracesys+0xdd/0xe2
The underlying problem is that perf is invoking call_rcu() with the
scheduler locks held, but in NOCB mode, call_rcu() will with high
probability invoke the scheduler -- which just might want to use its
locks. The reason that call_rcu() needs to invoke the scheduler is
to wake up the corresponding rcuo callback-offload kthread, which
does the job of starting up a grace period and invoking the callbacks
afterwards.
One solution (championed on a related problem by Lai Jiangshan) is to
simply defer the wakeup to some point where scheduler locks are no longer
held. Since we don't want to unnecessarily incur the cost of such
deferral, the task before us is threefold:
1. Determine when it is likely that a relevant scheduler lock is held.
2. Defer the wakeup in such cases.
3. Ensure that all deferred wakeups eventually happen, preferably
sooner rather than later.
We use irqs_disabled_flags() as a proxy for relevant scheduler locks
being held. This works because the relevant locks are always acquired
with interrupts disabled. We may defer more often than needed, but that
is at least safe.
The wakeup deferral is tracked via a new field in the per-CPU and
per-RCU-flavor rcu_data structure, namely ->nocb_defer_wakeup.
This flag is checked by the RCU core processing. The __rcu_pending()
function now checks this flag, which causes rcu_check_callbacks()
to initiate RCU core processing at each scheduling-clock interrupt
where this flag is set. Of course this is not sufficient because
scheduling-clock interrupts are often turned off (the things we used to
be able to count on!). So the flags are also checked on entry to any
state that RCU considers to be idle, which includes both NO_HZ_IDLE idle
state and NO_HZ_FULL user-mode-execution state.
This approach should allow call_rcu() to be invoked regardless of what
locks you might be holding, the key word being "should".
Reported-by: Dave Jones <davej@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
2013-10-05 05:33:34 +08:00
|
|
|
return 1;
|
|
|
|
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
/* nothing to do */
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2012-12-29 03:30:36 +08:00
|
|
|
* Return true if the specified CPU has any callback. If all_lazy is
|
|
|
|
* non-NULL, store an indication of whether all callbacks are lazy.
|
|
|
|
* (If there are no callbacks, all of them are deemed to be lazy.)
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
*/
|
2018-05-18 04:15:40 +08:00
|
|
|
static bool rcu_cpu_has_callbacks(bool *all_lazy)
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
{
|
2012-12-29 03:30:36 +08:00
|
|
|
bool al = true;
|
|
|
|
bool hc = false;
|
|
|
|
struct rcu_data *rdp;
|
2012-06-13 02:01:13 +08:00
|
|
|
|
2018-07-05 06:35:00 +08:00
|
|
|
rdp = this_cpu_ptr(&rcu_data);
|
|
|
|
if (!rcu_segcblist_empty(&rdp->cblist)) {
|
rcu: Micro-optimize rcu_cpu_has_callbacks()
The for_each_rcu_flavor() loop unconditionally scans all flavors, even
when the first flavor might have some non-lazy callbacks. Once the
loop has seen a non-lazy callback, further passes through the loop
cannot change the state. This is not a huge problem, given that there
can be at most three RCU flavors (RCU-bh, RCU-preempt, and RCU-sched),
but this code is on the path to idle, so speeding it up even a small
amount would have some benefit.
This commit therefore does two things:
1. Rearranges the order of the list of RCU flavors in order to
place the most active flavor first in the list. The most active
RCU flavor is RCU-preempt, or, if there is no RCU-preempt,
RCU-sched.
2. Reworks the for_each_rcu_flavor() to exit early when the first
non-lazy callback is seen, or, in the case where the caller
does not care about non-lazy callbacks (RCU_FAST_NO_HZ=n),
when the first callback is seen.
Reported-by: Chen Gang <gang.chen@asianux.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2013-09-04 00:52:20 +08:00
|
|
|
hc = true;
|
2018-07-05 06:35:00 +08:00
|
|
|
if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist))
|
2012-12-29 03:30:36 +08:00
|
|
|
al = false;
|
|
|
|
}
|
|
|
|
if (all_lazy)
|
|
|
|
*all_lazy = al;
|
|
|
|
return hc;
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
}
|
|
|
|
|
2012-05-24 09:47:05 +08:00
|
|
|
/*
|
2018-07-11 09:37:30 +08:00
|
|
|
* Helper function for rcu_barrier() tracing. If tracing is disabled,
|
2012-05-24 09:47:05 +08:00
|
|
|
* the compiler is expected to optimize this away.
|
|
|
|
*/
|
2018-07-11 09:37:30 +08:00
|
|
|
static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
|
2012-05-24 09:47:05 +08:00
|
|
|
{
|
2018-07-04 08:22:34 +08:00
|
|
|
trace_rcu_barrier(rcu_state.name, s, cpu,
|
|
|
|
atomic_read(&rcu_state.barrier_cpu_count), done);
|
2012-05-24 09:47:05 +08:00
|
|
|
}
|
|
|
|
|
2012-03-02 05:18:08 +08:00
|
|
|
/*
|
2018-07-11 09:37:30 +08:00
|
|
|
* RCU callback function for rcu_barrier(). If we are last, wake
|
|
|
|
* up the task executing rcu_barrier().
|
2012-03-02 05:18:08 +08:00
|
|
|
*/
|
2012-05-29 15:34:56 +08:00
|
|
|
static void rcu_barrier_callback(struct rcu_head *rhp)
|
2009-10-07 12:48:16 +08:00
|
|
|
{
|
2018-07-06 07:26:12 +08:00
|
|
|
if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
|
2018-07-11 09:37:30 +08:00
|
|
|
rcu_barrier_trace(TPS("LastCB"), -1,
|
2018-07-06 07:26:12 +08:00
|
|
|
rcu_state.barrier_sequence);
|
|
|
|
complete(&rcu_state.barrier_completion);
|
2012-05-24 09:47:05 +08:00
|
|
|
} else {
|
2018-07-11 09:37:30 +08:00
|
|
|
rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence);
|
2012-05-24 09:47:05 +08:00
|
|
|
}
|
2009-10-07 12:48:16 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Called with preemption disabled, and from cross-cpu IRQ context.
|
|
|
|
*/
|
2018-07-06 07:26:12 +08:00
|
|
|
static void rcu_barrier_func(void *unused)
|
2009-10-07 12:48:16 +08:00
|
|
|
{
|
2018-07-04 06:37:16 +08:00
|
|
|
struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
|
2009-10-07 12:48:16 +08:00
|
|
|
|
2018-07-11 09:37:30 +08:00
|
|
|
rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
|
2017-04-11 06:40:35 +08:00
|
|
|
rdp->barrier_head.func = rcu_barrier_callback;
|
|
|
|
debug_rcu_head_queue(&rdp->barrier_head);
|
|
|
|
if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
|
2018-07-06 07:26:12 +08:00
|
|
|
atomic_inc(&rcu_state.barrier_cpu_count);
|
2017-04-11 06:40:35 +08:00
|
|
|
} else {
|
|
|
|
debug_rcu_head_unqueue(&rdp->barrier_head);
|
2018-07-11 09:37:30 +08:00
|
|
|
rcu_barrier_trace(TPS("IRQNQ"), -1,
|
2018-07-06 07:26:12 +08:00
|
|
|
rcu_state.barrier_sequence);
|
2017-04-11 06:40:35 +08:00
|
|
|
}
|
2009-10-07 12:48:16 +08:00
|
|
|
}
|
|
|
|
|
2018-07-11 09:37:30 +08:00
|
|
|
/**
|
|
|
|
* rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
|
|
|
|
*
|
|
|
|
* Note that this primitive does not necessarily wait for an RCU grace period
|
|
|
|
* to complete. For example, if there are no RCU callbacks queued anywhere
|
|
|
|
* in the system, then rcu_barrier() is within its rights to return
|
|
|
|
* immediately, without waiting for anything, much less an RCU grace period.
|
2009-10-07 12:48:16 +08:00
|
|
|
*/
|
2018-07-11 09:37:30 +08:00
|
|
|
void rcu_barrier(void)
|
2009-10-07 12:48:16 +08:00
|
|
|
{
|
2012-03-02 05:18:08 +08:00
|
|
|
int cpu;
|
|
|
|
struct rcu_data *rdp;
|
2018-07-06 07:26:12 +08:00
|
|
|
unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
|
2012-03-02 05:18:08 +08:00
|
|
|
|
2018-07-11 09:37:30 +08:00
|
|
|
rcu_barrier_trace(TPS("Begin"), -1, s);
|
2012-03-02 05:18:08 +08:00
|
|
|
|
2009-10-07 12:48:17 +08:00
|
|
|
/* Take mutex to serialize concurrent rcu_barrier() requests. */
|
2018-07-06 07:26:12 +08:00
|
|
|
mutex_lock(&rcu_state.barrier_mutex);
|
2012-03-02 05:18:08 +08:00
|
|
|
|
2015-06-27 02:20:00 +08:00
|
|
|
/* Did someone else do our work for us? */
|
2018-07-06 07:26:12 +08:00
|
|
|
if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
|
2018-07-11 09:37:30 +08:00
|
|
|
rcu_barrier_trace(TPS("EarlyExit"), -1,
|
2018-07-06 07:26:12 +08:00
|
|
|
rcu_state.barrier_sequence);
|
2012-05-30 05:56:46 +08:00
|
|
|
smp_mb(); /* caller's subsequent code after above check. */
|
2018-07-06 07:26:12 +08:00
|
|
|
mutex_unlock(&rcu_state.barrier_mutex);
|
2012-05-30 05:56:46 +08:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2015-06-27 02:20:00 +08:00
|
|
|
/* Mark the start of the barrier operation. */
|
2018-07-06 07:26:12 +08:00
|
|
|
rcu_seq_start(&rcu_state.barrier_sequence);
|
2018-07-11 09:37:30 +08:00
|
|
|
rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
|
2012-03-02 05:18:08 +08:00
|
|
|
|
2009-10-07 12:48:16 +08:00
|
|
|
/*
|
2012-03-02 05:18:08 +08:00
|
|
|
* Initialize the count to one rather than to zero in order to
|
|
|
|
* avoid a too-soon return to zero in case of a short grace period
|
2012-08-03 08:43:50 +08:00
|
|
|
* (or preemption of this task). Exclude CPU-hotplug operations
|
|
|
|
* to ensure that no offline CPU has callbacks queued.
|
2009-10-07 12:48:16 +08:00
|
|
|
*/
|
2018-07-06 07:26:12 +08:00
|
|
|
init_completion(&rcu_state.barrier_completion);
|
|
|
|
atomic_set(&rcu_state.barrier_cpu_count, 1);
|
2012-08-03 08:43:50 +08:00
|
|
|
get_online_cpus();
|
2012-03-02 05:18:08 +08:00
|
|
|
|
|
|
|
/*
|
2012-08-03 08:43:50 +08:00
|
|
|
* Force each CPU with callbacks to register a new callback.
|
|
|
|
* When that callback is invoked, we will know that all of the
|
|
|
|
* corresponding CPU's preceding callbacks have been invoked.
|
2012-03-02 05:18:08 +08:00
|
|
|
*/
|
2012-08-20 12:35:53 +08:00
|
|
|
for_each_possible_cpu(cpu) {
|
2013-03-27 06:47:24 +08:00
|
|
|
if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
|
2012-08-20 12:35:53 +08:00
|
|
|
continue;
|
2018-07-04 06:37:16 +08:00
|
|
|
rdp = per_cpu_ptr(&rcu_data, cpu);
|
2013-03-27 06:47:24 +08:00
|
|
|
if (rcu_is_nocb_cpu(cpu)) {
|
2018-07-04 08:22:34 +08:00
|
|
|
if (!rcu_nocb_cpu_needs_barrier(cpu)) {
|
2018-07-11 09:37:30 +08:00
|
|
|
rcu_barrier_trace(TPS("OfflineNoCB"), cpu,
|
2018-07-06 07:26:12 +08:00
|
|
|
rcu_state.barrier_sequence);
|
rcu: Make rcu_barrier() understand about missing rcuo kthreads
Commit 35ce7f29a44a (rcu: Create rcuo kthreads only for onlined CPUs)
avoids creating rcuo kthreads for CPUs that never come online. This
fixes a bug in many instances of firmware: Instead of lying about their
age, these systems instead lie about the number of CPUs that they have.
Before commit 35ce7f29a44a, this could result in huge numbers of useless
rcuo kthreads being created.
It appears that experience indicates that I should have told the
people suffering from this problem to fix their broken firmware, but
I instead produced what turned out to be a partial fix. The missing
piece supplied by this commit makes sure that rcu_barrier() knows not to
post callbacks for no-CBs CPUs that have not yet come online, because
otherwise rcu_barrier() will hang on systems having firmware that lies
about the number of CPUs.
It is tempting to simply have rcu_barrier() refuse to post a callback on
any no-CBs CPU that does not have an rcuo kthread. This unfortunately
does not work because rcu_barrier() is required to wait for all pending
callbacks. It is therefore required to wait even for those callbacks
that cannot possibly be invoked. Even if doing so hangs the system.
Given that posting a callback to a no-CBs CPU that does not yet have an
rcuo kthread can hang rcu_barrier(), It is tempting to report an error
in this case. Unfortunately, this will result in false positives at
boot time, when it is perfectly legal to post callbacks to the boot CPU
before the scheduler has started, in other words, before it is legal
to invoke rcu_barrier().
So this commit instead has rcu_barrier() avoid posting callbacks to
CPUs having neither rcuo kthread nor pending callbacks, and has it
complain bitterly if it finds CPUs having no rcuo kthread but some
pending callbacks. And when rcu_barrier() does find CPUs having no rcuo
kthread but pending callbacks, as noted earlier, it has no choice but
to hang indefinitely.
Reported-by: Yanko Kaneti <yaneti@declera.com>
Reported-by: Jay Vosburgh <jay.vosburgh@canonical.com>
Reported-by: Meelis Roos <mroos@linux.ee>
Reported-by: Eric B Munson <emunson@akamai.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Eric B Munson <emunson@akamai.com>
Tested-by: Jay Vosburgh <jay.vosburgh@canonical.com>
Tested-by: Yanko Kaneti <yaneti@declera.com>
Tested-by: Kevin Fenzi <kevin@scrye.com>
Tested-by: Meelis Roos <mroos@linux.ee>
2014-10-28 00:15:54 +08:00
|
|
|
} else {
|
2018-07-11 09:37:30 +08:00
|
|
|
rcu_barrier_trace(TPS("OnlineNoCB"), cpu,
|
2018-07-06 07:26:12 +08:00
|
|
|
rcu_state.barrier_sequence);
|
2014-12-19 04:31:27 +08:00
|
|
|
smp_mb__before_atomic();
|
2018-07-06 07:26:12 +08:00
|
|
|
atomic_inc(&rcu_state.barrier_cpu_count);
|
rcu: Make rcu_barrier() understand about missing rcuo kthreads
Commit 35ce7f29a44a (rcu: Create rcuo kthreads only for onlined CPUs)
avoids creating rcuo kthreads for CPUs that never come online. This
fixes a bug in many instances of firmware: Instead of lying about their
age, these systems instead lie about the number of CPUs that they have.
Before commit 35ce7f29a44a, this could result in huge numbers of useless
rcuo kthreads being created.
It appears that experience indicates that I should have told the
people suffering from this problem to fix their broken firmware, but
I instead produced what turned out to be a partial fix. The missing
piece supplied by this commit makes sure that rcu_barrier() knows not to
post callbacks for no-CBs CPUs that have not yet come online, because
otherwise rcu_barrier() will hang on systems having firmware that lies
about the number of CPUs.
It is tempting to simply have rcu_barrier() refuse to post a callback on
any no-CBs CPU that does not have an rcuo kthread. This unfortunately
does not work because rcu_barrier() is required to wait for all pending
callbacks. It is therefore required to wait even for those callbacks
that cannot possibly be invoked. Even if doing so hangs the system.
Given that posting a callback to a no-CBs CPU that does not yet have an
rcuo kthread can hang rcu_barrier(), It is tempting to report an error
in this case. Unfortunately, this will result in false positives at
boot time, when it is perfectly legal to post callbacks to the boot CPU
before the scheduler has started, in other words, before it is legal
to invoke rcu_barrier().
So this commit instead has rcu_barrier() avoid posting callbacks to
CPUs having neither rcuo kthread nor pending callbacks, and has it
complain bitterly if it finds CPUs having no rcuo kthread but some
pending callbacks. And when rcu_barrier() does find CPUs having no rcuo
kthread but pending callbacks, as noted earlier, it has no choice but
to hang indefinitely.
Reported-by: Yanko Kaneti <yaneti@declera.com>
Reported-by: Jay Vosburgh <jay.vosburgh@canonical.com>
Reported-by: Meelis Roos <mroos@linux.ee>
Reported-by: Eric B Munson <emunson@akamai.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Eric B Munson <emunson@akamai.com>
Tested-by: Jay Vosburgh <jay.vosburgh@canonical.com>
Tested-by: Yanko Kaneti <yaneti@declera.com>
Tested-by: Kevin Fenzi <kevin@scrye.com>
Tested-by: Meelis Roos <mroos@linux.ee>
2014-10-28 00:15:54 +08:00
|
|
|
__call_rcu(&rdp->barrier_head,
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_barrier_callback, cpu, 0);
|
rcu: Make rcu_barrier() understand about missing rcuo kthreads
Commit 35ce7f29a44a (rcu: Create rcuo kthreads only for onlined CPUs)
avoids creating rcuo kthreads for CPUs that never come online. This
fixes a bug in many instances of firmware: Instead of lying about their
age, these systems instead lie about the number of CPUs that they have.
Before commit 35ce7f29a44a, this could result in huge numbers of useless
rcuo kthreads being created.
It appears that experience indicates that I should have told the
people suffering from this problem to fix their broken firmware, but
I instead produced what turned out to be a partial fix. The missing
piece supplied by this commit makes sure that rcu_barrier() knows not to
post callbacks for no-CBs CPUs that have not yet come online, because
otherwise rcu_barrier() will hang on systems having firmware that lies
about the number of CPUs.
It is tempting to simply have rcu_barrier() refuse to post a callback on
any no-CBs CPU that does not have an rcuo kthread. This unfortunately
does not work because rcu_barrier() is required to wait for all pending
callbacks. It is therefore required to wait even for those callbacks
that cannot possibly be invoked. Even if doing so hangs the system.
Given that posting a callback to a no-CBs CPU that does not yet have an
rcuo kthread can hang rcu_barrier(), It is tempting to report an error
in this case. Unfortunately, this will result in false positives at
boot time, when it is perfectly legal to post callbacks to the boot CPU
before the scheduler has started, in other words, before it is legal
to invoke rcu_barrier().
So this commit instead has rcu_barrier() avoid posting callbacks to
CPUs having neither rcuo kthread nor pending callbacks, and has it
complain bitterly if it finds CPUs having no rcuo kthread but some
pending callbacks. And when rcu_barrier() does find CPUs having no rcuo
kthread but pending callbacks, as noted earlier, it has no choice but
to hang indefinitely.
Reported-by: Yanko Kaneti <yaneti@declera.com>
Reported-by: Jay Vosburgh <jay.vosburgh@canonical.com>
Reported-by: Meelis Roos <mroos@linux.ee>
Reported-by: Eric B Munson <emunson@akamai.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Eric B Munson <emunson@akamai.com>
Tested-by: Jay Vosburgh <jay.vosburgh@canonical.com>
Tested-by: Yanko Kaneti <yaneti@declera.com>
Tested-by: Kevin Fenzi <kevin@scrye.com>
Tested-by: Meelis Roos <mroos@linux.ee>
2014-10-28 00:15:54 +08:00
|
|
|
}
|
srcu: Abstract multi-tail callback list handling
RCU has only one multi-tail callback list, which is implemented via
the nxtlist, nxttail, nxtcompleted, qlen_lazy, and qlen fields in the
rcu_data structure, and whose operations are open-code throughout the
Tree RCU implementation. This has been more or less OK in the past,
but upcoming callback-list optimizations in SRCU could really use
a multi-tail callback list there as well.
This commit therefore abstracts the multi-tail callback list handling
into a new kernel/rcu/rcu_segcblist.h file, and uses this new API.
The simple head-and-tail pointer callback list is also abstracted and
applied everywhere except for the NOCB callback-offload lists. (Yes,
the plan is to apply them there as well, but this commit is already
bigger than would be good.)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-02-09 04:36:42 +08:00
|
|
|
} else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
|
2018-07-11 09:37:30 +08:00
|
|
|
rcu_barrier_trace(TPS("OnlineQ"), cpu,
|
2018-07-06 07:26:12 +08:00
|
|
|
rcu_state.barrier_sequence);
|
|
|
|
smp_call_function_single(cpu, rcu_barrier_func, NULL, 1);
|
2012-03-02 05:18:08 +08:00
|
|
|
} else {
|
2018-07-11 09:37:30 +08:00
|
|
|
rcu_barrier_trace(TPS("OnlineNQ"), cpu,
|
2018-07-06 07:26:12 +08:00
|
|
|
rcu_state.barrier_sequence);
|
2012-03-02 05:18:08 +08:00
|
|
|
}
|
|
|
|
}
|
2012-08-03 08:43:50 +08:00
|
|
|
put_online_cpus();
|
2012-03-02 05:18:08 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Now that we have an rcu_barrier_callback() callback on each
|
|
|
|
* CPU, and thus each counted, remove the initial count.
|
|
|
|
*/
|
2018-07-06 07:26:12 +08:00
|
|
|
if (atomic_dec_and_test(&rcu_state.barrier_cpu_count))
|
|
|
|
complete(&rcu_state.barrier_completion);
|
2012-03-02 05:18:08 +08:00
|
|
|
|
|
|
|
/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
|
2018-07-06 07:26:12 +08:00
|
|
|
wait_for_completion(&rcu_state.barrier_completion);
|
2012-03-02 05:18:08 +08:00
|
|
|
|
2015-06-27 02:20:00 +08:00
|
|
|
/* Mark the end of the barrier operation. */
|
2018-07-11 09:37:30 +08:00
|
|
|
rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
|
2018-07-06 07:26:12 +08:00
|
|
|
rcu_seq_end(&rcu_state.barrier_sequence);
|
2015-06-27 02:20:00 +08:00
|
|
|
|
2012-03-02 05:18:08 +08:00
|
|
|
/* Other rcu_barrier() invocations can now safely proceed. */
|
2018-07-06 07:26:12 +08:00
|
|
|
mutex_unlock(&rcu_state.barrier_mutex);
|
2009-10-07 12:48:16 +08:00
|
|
|
}
|
2018-07-03 05:30:37 +08:00
|
|
|
EXPORT_SYMBOL_GPL(rcu_barrier);
|
2009-10-07 12:48:16 +08:00
|
|
|
|
rcu: Process offlining and onlining only at grace-period start
Races between CPU hotplug and grace periods can be difficult to resolve,
so the ->onoff_mutex is used to exclude the two events. Unfortunately,
this means that it is impossible for an outgoing CPU to perform the
last bits of its offlining from its last pass through the idle loop,
because sleeplocks cannot be acquired in that context.
This commit avoids these problems by buffering online and offline events
in a new ->qsmaskinitnext field in the leaf rcu_node structures. When a
grace period starts, the events accumulated in this mask are applied to
the ->qsmaskinit field, and, if needed, up the rcu_node tree. The special
case of all CPUs corresponding to a given leaf rcu_node structure being
offline while there are still elements in that structure's ->blkd_tasks
list is handled using a new ->wait_blkd_tasks field. In this case,
propagating the offline bits up the tree is deferred until the beginning
of the grace period after all of the tasks have exited their RCU read-side
critical sections and removed themselves from the list, at which point
the ->wait_blkd_tasks flag is cleared. If one of that leaf rcu_node
structure's CPUs comes back online before the list empties, then the
->wait_blkd_tasks flag is simply cleared.
This of course means that RCU's notion of which CPUs are offline can be
out of date. This is OK because RCU need only wait on CPUs that were
online at the time that the grace period started. In addition, RCU's
force-quiescent-state actions will handle the case where a CPU goes
offline after the grace period starts.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2015-01-24 13:52:37 +08:00
|
|
|
/*
|
|
|
|
* Propagate ->qsinitmask bits up the rcu_node tree to account for the
|
|
|
|
* first CPU in a given leaf rcu_node structure coming online. The caller
|
|
|
|
* must hold the corresponding leaf rcu_node ->lock with interrrupts
|
|
|
|
* disabled.
|
|
|
|
*/
|
|
|
|
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
|
|
|
|
{
|
|
|
|
long mask;
|
2018-05-03 05:46:43 +08:00
|
|
|
long oldmask;
|
rcu: Process offlining and onlining only at grace-period start
Races between CPU hotplug and grace periods can be difficult to resolve,
so the ->onoff_mutex is used to exclude the two events. Unfortunately,
this means that it is impossible for an outgoing CPU to perform the
last bits of its offlining from its last pass through the idle loop,
because sleeplocks cannot be acquired in that context.
This commit avoids these problems by buffering online and offline events
in a new ->qsmaskinitnext field in the leaf rcu_node structures. When a
grace period starts, the events accumulated in this mask are applied to
the ->qsmaskinit field, and, if needed, up the rcu_node tree. The special
case of all CPUs corresponding to a given leaf rcu_node structure being
offline while there are still elements in that structure's ->blkd_tasks
list is handled using a new ->wait_blkd_tasks field. In this case,
propagating the offline bits up the tree is deferred until the beginning
of the grace period after all of the tasks have exited their RCU read-side
critical sections and removed themselves from the list, at which point
the ->wait_blkd_tasks flag is cleared. If one of that leaf rcu_node
structure's CPUs comes back online before the list empties, then the
->wait_blkd_tasks flag is simply cleared.
This of course means that RCU's notion of which CPUs are offline can be
out of date. This is OK because RCU need only wait on CPUs that were
online at the time that the grace period started. In addition, RCU's
force-quiescent-state actions will handle the case where a CPU goes
offline after the grace period starts.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2015-01-24 13:52:37 +08:00
|
|
|
struct rcu_node *rnp = rnp_leaf;
|
|
|
|
|
2018-05-03 05:46:43 +08:00
|
|
|
raw_lockdep_assert_held_rcu_node(rnp_leaf);
|
rcu: Clean up handling of tasks blocked across full-rcu_node offline
Commit 0aa04b055e71 ("rcu: Process offlining and onlining only at
grace-period start") deferred handling of CPU-hotplug events until the
start of the next grace period, but consider the following sequence
of events:
1. A task is preempted within an RCU-preempt read-side critical
section.
2. The CPU that this task was running on goes offline, along with all
other CPUs sharing the corresponding leaf rcu_node structure.
3. The task resumes execution.
4. One of those CPUs comes back online before a new grace period starts.
In step 2, the code in the next rcu_gp_init() invocation will (correctly)
defer removing the leaf rcu_node structure from the upper-level bitmasks,
and will (correctly) set that structure's ->wait_blkd_tasks field. During
the ensuing interval, RCU will (correctly) track the tasks preempted on
that structure because they must block any subsequent grace period.
In step 3, the code in rcu_read_unlock_special() will (correctly) remove
the task from the leaf rcu_node structure. From this point forward, RCU
need not pay attention to this structure, at least not until one of the
corresponding CPUs comes back online.
In step 4, the code in the next rcu_gp_init() invocation will
(incorrectly) invoke rcu_init_new_rnp(). This is incorrect because
the corresponding rcu_cleanup_dead_rnp() was never invoked. This is
nevertheless harmless because the upper-level bits are still set.
So, no harm, no foul, right?
At least, all is well until a little further into rcu_gp_init()
invocation, which will notice that there are no longer any tasks blocked
on the leaf rcu_node structure, conclude that there is no longer anything
left over from step 2's offline operation, and will therefore invoke
rcu_cleanup_dead_rnp(). But this invocation of rcu_cleanup_dead_rnp()
is for the beginning of the earlier offline interval, and the previous
invocation of rcu_init_new_rnp() is for the end of that same interval.
That is right, they are invoked out of order.
That cannot be good, can it?
It turns out that this is not a (correctness!) problem because
rcu_cleanup_dead_rnp() checks to see if any of the corresponding CPUs
are online, and refuses to do anything if so. In other words, in the
case where rcu_init_new_rnp() and rcu_cleanup_dead_rnp() execute out of
order, they both have no effect.
But this is at best an accident waiting to happen.
This commit therefore adds logic to rcu_gp_init() so that
rcu_init_new_rnp() and rcu_cleanup_dead_rnp() are always invoked in
order, and so that neither are invoked at all in cases where RCU had to
pay attention to the leaf rcu_node structure during the entire time that
all corresponding CPUs were offline.
And, while in the area, this commit reduces confusion by using formal
parameters rather than local variables that just happen to have the same
value at that particular point in the code.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-05-03 03:49:21 +08:00
|
|
|
WARN_ON_ONCE(rnp->wait_blkd_tasks);
|
rcu: Process offlining and onlining only at grace-period start
Races between CPU hotplug and grace periods can be difficult to resolve,
so the ->onoff_mutex is used to exclude the two events. Unfortunately,
this means that it is impossible for an outgoing CPU to perform the
last bits of its offlining from its last pass through the idle loop,
because sleeplocks cannot be acquired in that context.
This commit avoids these problems by buffering online and offline events
in a new ->qsmaskinitnext field in the leaf rcu_node structures. When a
grace period starts, the events accumulated in this mask are applied to
the ->qsmaskinit field, and, if needed, up the rcu_node tree. The special
case of all CPUs corresponding to a given leaf rcu_node structure being
offline while there are still elements in that structure's ->blkd_tasks
list is handled using a new ->wait_blkd_tasks field. In this case,
propagating the offline bits up the tree is deferred until the beginning
of the grace period after all of the tasks have exited their RCU read-side
critical sections and removed themselves from the list, at which point
the ->wait_blkd_tasks flag is cleared. If one of that leaf rcu_node
structure's CPUs comes back online before the list empties, then the
->wait_blkd_tasks flag is simply cleared.
This of course means that RCU's notion of which CPUs are offline can be
out of date. This is OK because RCU need only wait on CPUs that were
online at the time that the grace period started. In addition, RCU's
force-quiescent-state actions will handle the case where a CPU goes
offline after the grace period starts.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2015-01-24 13:52:37 +08:00
|
|
|
for (;;) {
|
|
|
|
mask = rnp->grpmask;
|
|
|
|
rnp = rnp->parent;
|
|
|
|
if (rnp == NULL)
|
|
|
|
return;
|
2015-10-09 06:36:54 +08:00
|
|
|
raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
|
2018-05-03 05:46:43 +08:00
|
|
|
oldmask = rnp->qsmaskinit;
|
rcu: Process offlining and onlining only at grace-period start
Races between CPU hotplug and grace periods can be difficult to resolve,
so the ->onoff_mutex is used to exclude the two events. Unfortunately,
this means that it is impossible for an outgoing CPU to perform the
last bits of its offlining from its last pass through the idle loop,
because sleeplocks cannot be acquired in that context.
This commit avoids these problems by buffering online and offline events
in a new ->qsmaskinitnext field in the leaf rcu_node structures. When a
grace period starts, the events accumulated in this mask are applied to
the ->qsmaskinit field, and, if needed, up the rcu_node tree. The special
case of all CPUs corresponding to a given leaf rcu_node structure being
offline while there are still elements in that structure's ->blkd_tasks
list is handled using a new ->wait_blkd_tasks field. In this case,
propagating the offline bits up the tree is deferred until the beginning
of the grace period after all of the tasks have exited their RCU read-side
critical sections and removed themselves from the list, at which point
the ->wait_blkd_tasks flag is cleared. If one of that leaf rcu_node
structure's CPUs comes back online before the list empties, then the
->wait_blkd_tasks flag is simply cleared.
This of course means that RCU's notion of which CPUs are offline can be
out of date. This is OK because RCU need only wait on CPUs that were
online at the time that the grace period started. In addition, RCU's
force-quiescent-state actions will handle the case where a CPU goes
offline after the grace period starts.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2015-01-24 13:52:37 +08:00
|
|
|
rnp->qsmaskinit |= mask;
|
2015-12-29 12:18:47 +08:00
|
|
|
raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
|
2018-05-03 05:46:43 +08:00
|
|
|
if (oldmask)
|
|
|
|
return;
|
rcu: Process offlining and onlining only at grace-period start
Races between CPU hotplug and grace periods can be difficult to resolve,
so the ->onoff_mutex is used to exclude the two events. Unfortunately,
this means that it is impossible for an outgoing CPU to perform the
last bits of its offlining from its last pass through the idle loop,
because sleeplocks cannot be acquired in that context.
This commit avoids these problems by buffering online and offline events
in a new ->qsmaskinitnext field in the leaf rcu_node structures. When a
grace period starts, the events accumulated in this mask are applied to
the ->qsmaskinit field, and, if needed, up the rcu_node tree. The special
case of all CPUs corresponding to a given leaf rcu_node structure being
offline while there are still elements in that structure's ->blkd_tasks
list is handled using a new ->wait_blkd_tasks field. In this case,
propagating the offline bits up the tree is deferred until the beginning
of the grace period after all of the tasks have exited their RCU read-side
critical sections and removed themselves from the list, at which point
the ->wait_blkd_tasks flag is cleared. If one of that leaf rcu_node
structure's CPUs comes back online before the list empties, then the
->wait_blkd_tasks flag is simply cleared.
This of course means that RCU's notion of which CPUs are offline can be
out of date. This is OK because RCU need only wait on CPUs that were
online at the time that the grace period started. In addition, RCU's
force-quiescent-state actions will handle the case where a CPU goes
offline after the grace period starts.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2015-01-24 13:52:37 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
/*
|
2009-08-16 00:53:46 +08:00
|
|
|
* Do boot-time initialization of a CPU's per-CPU RCU data.
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
*/
|
2009-08-16 00:53:46 +08:00
|
|
|
static void __init
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_boot_init_percpu_data(int cpu)
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
{
|
2018-07-04 06:37:16 +08:00
|
|
|
struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
|
2009-08-16 00:53:46 +08:00
|
|
|
|
|
|
|
/* Set up local state, ensuring consistent view of global state. */
|
rcu: Correctly handle sparse possible cpus
In many cases in the RCU tree code, we iterate over the set of cpus for
a leaf node described by rcu_node::grplo and rcu_node::grphi, checking
per-cpu data for each cpu in this range. However, if the set of possible
cpus is sparse, some cpus described in this range are not possible, and
thus no per-cpu region will have been allocated (or initialised) for
them by the generic percpu code.
Erroneous accesses to a per-cpu area for these !possible cpus may fault
or may hit other data depending on the addressed generated when the
erroneous per cpu offset is applied. In practice, both cases have been
observed on arm64 hardware (the former being silent, but detectable with
additional patches).
To avoid issues resulting from this, we must iterate over the set of
*possible* cpus for a given leaf node. This patch add a new helper,
for_each_leaf_node_possible_cpu, to enable this. As iteration is often
intertwined with rcu_node local bitmask manipulation, a new
leaf_node_cpu_bit helper is added to make this simpler and more
consistent. The RCU tree code is made to use both of these where
appropriate.
Without this patch, running reboot at a shell can result in an oops
like:
[ 3369.075979] Unable to handle kernel paging request at virtual address ffffff8008b21b4c
[ 3369.083881] pgd = ffffffc3ecdda000
[ 3369.087270] [ffffff8008b21b4c] *pgd=00000083eca48003, *pud=00000083eca48003, *pmd=0000000000000000
[ 3369.096222] Internal error: Oops: 96000007 [#1] PREEMPT SMP
[ 3369.101781] Modules linked in:
[ 3369.104825] CPU: 2 PID: 1817 Comm: NetworkManager Tainted: G W 4.6.0+ #3
[ 3369.121239] task: ffffffc0fa13e000 ti: ffffffc3eb940000 task.ti: ffffffc3eb940000
[ 3369.128708] PC is at sync_rcu_exp_select_cpus+0x188/0x510
[ 3369.134094] LR is at sync_rcu_exp_select_cpus+0x104/0x510
[ 3369.139479] pc : [<ffffff80081109a8>] lr : [<ffffff8008110924>] pstate: 200001c5
[ 3369.146860] sp : ffffffc3eb9435a0
[ 3369.150162] x29: ffffffc3eb9435a0 x28: ffffff8008be4f88
[ 3369.155465] x27: ffffff8008b66c80 x26: ffffffc3eceb2600
[ 3369.160767] x25: 0000000000000001 x24: ffffff8008be4f88
[ 3369.166070] x23: ffffff8008b51c3c x22: ffffff8008b66c80
[ 3369.171371] x21: 0000000000000001 x20: ffffff8008b21b40
[ 3369.176673] x19: ffffff8008b66c80 x18: 0000000000000000
[ 3369.181975] x17: 0000007fa951a010 x16: ffffff80086a30f0
[ 3369.187278] x15: 0000007fa9505590 x14: 0000000000000000
[ 3369.192580] x13: ffffff8008b51000 x12: ffffffc3eb940000
[ 3369.197882] x11: 0000000000000006 x10: ffffff8008b51b78
[ 3369.203184] x9 : 0000000000000001 x8 : ffffff8008be4000
[ 3369.208486] x7 : ffffff8008b21b40 x6 : 0000000000001003
[ 3369.213788] x5 : 0000000000000000 x4 : ffffff8008b27280
[ 3369.219090] x3 : ffffff8008b21b4c x2 : 0000000000000001
[ 3369.224406] x1 : 0000000000000001 x0 : 0000000000000140
...
[ 3369.972257] [<ffffff80081109a8>] sync_rcu_exp_select_cpus+0x188/0x510
[ 3369.978685] [<ffffff80081128b4>] synchronize_rcu_expedited+0x64/0xa8
[ 3369.985026] [<ffffff80086b987c>] synchronize_net+0x24/0x30
[ 3369.990499] [<ffffff80086ddb54>] dev_deactivate_many+0x28c/0x298
[ 3369.996493] [<ffffff80086b6bb8>] __dev_close_many+0x60/0xd0
[ 3370.002052] [<ffffff80086b6d48>] __dev_close+0x28/0x40
[ 3370.007178] [<ffffff80086bf62c>] __dev_change_flags+0x8c/0x158
[ 3370.012999] [<ffffff80086bf718>] dev_change_flags+0x20/0x60
[ 3370.018558] [<ffffff80086cf7f0>] do_setlink+0x288/0x918
[ 3370.023771] [<ffffff80086d0798>] rtnl_newlink+0x398/0x6a8
[ 3370.029158] [<ffffff80086cee84>] rtnetlink_rcv_msg+0xe4/0x220
[ 3370.034891] [<ffffff80086e274c>] netlink_rcv_skb+0xc4/0xf8
[ 3370.040364] [<ffffff80086ced8c>] rtnetlink_rcv+0x2c/0x40
[ 3370.045663] [<ffffff80086e1fe8>] netlink_unicast+0x160/0x238
[ 3370.051309] [<ffffff80086e24b8>] netlink_sendmsg+0x2f0/0x358
[ 3370.056956] [<ffffff80086a0070>] sock_sendmsg+0x18/0x30
[ 3370.062168] [<ffffff80086a21cc>] ___sys_sendmsg+0x26c/0x280
[ 3370.067728] [<ffffff80086a30ac>] __sys_sendmsg+0x44/0x88
[ 3370.073027] [<ffffff80086a3100>] SyS_sendmsg+0x10/0x20
[ 3370.078153] [<ffffff8008085e70>] el0_svc_naked+0x24/0x28
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reported-by: Dennis Chen <dennis.chen@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Steve Capper <steve.capper@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2016-06-03 22:20:04 +08:00
|
|
|
rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
|
2018-08-04 12:00:38 +08:00
|
|
|
WARN_ON_ONCE(rdp->dynticks_nesting != 1);
|
2018-08-04 12:00:38 +08:00
|
|
|
WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
|
2018-07-04 08:22:34 +08:00
|
|
|
rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
|
2018-05-09 05:18:57 +08:00
|
|
|
rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
|
2018-07-04 08:22:34 +08:00
|
|
|
rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
|
2018-05-09 05:18:57 +08:00
|
|
|
rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
|
2009-08-16 00:53:46 +08:00
|
|
|
rdp->cpu = cpu;
|
2012-08-20 12:35:53 +08:00
|
|
|
rcu_boot_init_nocb_percpu_data(rdp);
|
2009-08-16 00:53:46 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2018-07-04 08:22:34 +08:00
|
|
|
* Invoked early in the CPU-online process, when pretty much all services
|
|
|
|
* are available. The incoming CPU is not present.
|
|
|
|
*
|
|
|
|
* Initializes a CPU's per-CPU RCU data. Note that only one online or
|
2018-05-02 05:34:08 +08:00
|
|
|
* offline event can be happening at a given time. Note also that we can
|
|
|
|
* accept some slop in the rsp->gp_seq access due to the fact that this
|
|
|
|
* CPU cannot possibly have any RCU callbacks in flight yet.
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
*/
|
2018-07-04 08:22:34 +08:00
|
|
|
int rcutree_prepare_cpu(unsigned int cpu)
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
{
|
|
|
|
unsigned long flags;
|
2018-07-04 06:37:16 +08:00
|
|
|
struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
|
2018-07-04 08:22:34 +08:00
|
|
|
struct rcu_node *rnp = rcu_get_root();
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
|
|
|
|
/* Set up local state, ensuring consistent view of global state. */
|
2015-10-09 06:36:54 +08:00
|
|
|
raw_spin_lock_irqsave_rcu_node(rnp, flags);
|
2009-10-15 01:15:55 +08:00
|
|
|
rdp->qlen_last_fqs_check = 0;
|
2018-07-04 08:22:34 +08:00
|
|
|
rdp->n_force_qs_snap = rcu_state.n_force_qs;
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
rdp->blimit = blimit;
|
srcu: Abstract multi-tail callback list handling
RCU has only one multi-tail callback list, which is implemented via
the nxtlist, nxttail, nxtcompleted, qlen_lazy, and qlen fields in the
rcu_data structure, and whose operations are open-code throughout the
Tree RCU implementation. This has been more or less OK in the past,
but upcoming callback-list optimizations in SRCU could really use
a multi-tail callback list there as well.
This commit therefore abstracts the multi-tail callback list handling
into a new kernel/rcu/rcu_segcblist.h file, and uses this new API.
The simple head-and-tail pointer callback list is also abstracted and
applied everywhere except for the NOCB callback-offload lists. (Yes,
the plan is to apply them there as well, but this commit is already
bigger than would be good.)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-02-09 04:36:42 +08:00
|
|
|
if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
|
|
|
|
!init_nocb_callback_list(rdp))
|
|
|
|
rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
|
2018-08-04 12:00:38 +08:00
|
|
|
rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */
|
2016-11-03 05:23:30 +08:00
|
|
|
rcu_dynticks_eqs_online();
|
2015-12-29 12:18:47 +08:00
|
|
|
raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
|
rcu: Process offlining and onlining only at grace-period start
Races between CPU hotplug and grace periods can be difficult to resolve,
so the ->onoff_mutex is used to exclude the two events. Unfortunately,
this means that it is impossible for an outgoing CPU to perform the
last bits of its offlining from its last pass through the idle loop,
because sleeplocks cannot be acquired in that context.
This commit avoids these problems by buffering online and offline events
in a new ->qsmaskinitnext field in the leaf rcu_node structures. When a
grace period starts, the events accumulated in this mask are applied to
the ->qsmaskinit field, and, if needed, up the rcu_node tree. The special
case of all CPUs corresponding to a given leaf rcu_node structure being
offline while there are still elements in that structure's ->blkd_tasks
list is handled using a new ->wait_blkd_tasks field. In this case,
propagating the offline bits up the tree is deferred until the beginning
of the grace period after all of the tasks have exited their RCU read-side
critical sections and removed themselves from the list, at which point
the ->wait_blkd_tasks flag is cleared. If one of that leaf rcu_node
structure's CPUs comes back online before the list empties, then the
->wait_blkd_tasks flag is simply cleared.
This of course means that RCU's notion of which CPUs are offline can be
out of date. This is OK because RCU need only wait on CPUs that were
online at the time that the grace period started. In addition, RCU's
force-quiescent-state actions will handle the case where a CPU goes
offline after the grace period starts.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2015-01-24 13:52:37 +08:00
|
|
|
/*
|
|
|
|
* Add CPU to leaf rcu_node pending-online bitmask. Any needed
|
|
|
|
* propagation up the rcu_node tree will happen at the beginning
|
|
|
|
* of the next grace period.
|
|
|
|
*/
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
rnp = rdp->mynode;
|
2015-10-08 18:24:23 +08:00
|
|
|
raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
|
2015-08-01 07:04:45 +08:00
|
|
|
rdp->beenonline = true; /* We have now been online. */
|
2018-04-27 02:52:09 +08:00
|
|
|
rdp->gp_seq = rnp->gp_seq;
|
2018-05-02 01:26:57 +08:00
|
|
|
rdp->gp_seq_needed = rnp->gp_seq;
|
2015-08-07 06:16:57 +08:00
|
|
|
rdp->cpu_no_qs.b.norm = true;
|
2015-08-07 02:31:51 +08:00
|
|
|
rdp->core_needs_qs = false;
|
2017-08-18 08:05:59 +08:00
|
|
|
rdp->rcu_iw_pending = false;
|
2018-04-29 05:15:40 +08:00
|
|
|
rdp->rcu_iw_gp_seq = rnp->gp_seq - 1;
|
2018-07-04 08:22:34 +08:00
|
|
|
trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
|
2015-12-29 12:18:47 +08:00
|
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
2016-07-14 01:17:03 +08:00
|
|
|
rcu_prepare_kthreads(cpu);
|
|
|
|
rcu_spawn_all_nocb_kthreads(cpu);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2017-03-24 04:21:30 +08:00
|
|
|
/*
|
|
|
|
* Update RCU priority boot kthread affinity for CPU-hotplug changes.
|
|
|
|
*/
|
2016-07-14 01:17:03 +08:00
|
|
|
static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
|
|
|
|
{
|
2018-07-04 06:37:16 +08:00
|
|
|
struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
|
2016-07-14 01:17:03 +08:00
|
|
|
|
|
|
|
rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
|
|
|
|
}
|
|
|
|
|
2017-03-24 04:21:30 +08:00
|
|
|
/*
|
|
|
|
* Near the end of the CPU-online process. Pretty much all services
|
|
|
|
* enabled, and the CPU is now very much alive.
|
|
|
|
*/
|
2016-07-14 01:17:03 +08:00
|
|
|
int rcutree_online_cpu(unsigned int cpu)
|
|
|
|
{
|
2017-08-18 08:05:59 +08:00
|
|
|
unsigned long flags;
|
|
|
|
struct rcu_data *rdp;
|
|
|
|
struct rcu_node *rnp;
|
|
|
|
|
2018-07-05 06:35:00 +08:00
|
|
|
rdp = per_cpu_ptr(&rcu_data, cpu);
|
|
|
|
rnp = rdp->mynode;
|
|
|
|
raw_spin_lock_irqsave_rcu_node(rnp, flags);
|
|
|
|
rnp->ffmask |= rdp->grpmask;
|
|
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
srcu: Parallelize callback handling
Peter Zijlstra proposed using SRCU to reduce mmap_sem contention [1,2],
however, there are workloads that could result in a high volume of
concurrent invocations of call_srcu(), which with current SRCU would
result in excessive lock contention on the srcu_struct structure's
->queue_lock, which protects SRCU's callback lists. This commit therefore
moves SRCU to per-CPU callback lists, thus greatly reducing contention.
Because a given SRCU instance no longer has a single centralized callback
list, starting grace periods and invoking callbacks are both more complex
than in the single-list Classic SRCU implementation. Starting grace
periods and handling callbacks are now handled using an srcu_node tree
that is in some ways similar to the rcu_node trees used by RCU-bh,
RCU-preempt, and RCU-sched (for example, the srcu_node tree shape is
controlled by exactly the same Kconfig options and boot parameters that
control the shape of the rcu_node tree).
In addition, the old per-CPU srcu_array structure is now named srcu_data
and contains an rcu_segcblist structure named ->srcu_cblist for its
callbacks (and a spinlock to protect this). The srcu_struct gets
an srcu_gp_seq that is used to associate callback segments with the
corresponding completion-time grace-period number. These completion-time
grace-period numbers are propagated up the srcu_node tree so that the
grace-period workqueue handler can determine whether additional grace
periods are needed on the one hand and where to look for callbacks that
are ready to be invoked.
The srcu_barrier() function must now wait on all instances of the per-CPU
->srcu_cblist. Because each ->srcu_cblist is protected by ->lock,
srcu_barrier() can remotely add the needed callbacks. In theory,
it could also remotely start grace periods, but in practice doing so
is complex and racy. And interestingly enough, it is never necessary
for srcu_barrier() to start a grace period because srcu_barrier() only
enqueues a callback when a callback is already present--and it turns out
that a grace period has to have already been started for this pre-existing
callback. Furthermore, it is only the callback that srcu_barrier()
needs to wait on, not any particular grace period. Therefore, a new
rcu_segcblist_entrain() function enqueues the srcu_barrier() function's
callback into the same segment occupied by the last pre-existing callback
in the list. The special case where all the pre-existing callbacks are
on a different list (because they are in the process of being invoked)
is handled by enqueuing srcu_barrier()'s callback into the RCU_DONE_TAIL
segment, relying on the done-callbacks check that takes place after all
callbacks are inovked.
Note that the readers use the same algorithm as before. Note that there
is a separate srcu_idx that tells the readers what counter to increment.
This unfortunately cannot be combined with srcu_gp_seq because they
need to be incremented at different times.
This commit introduces some ugly #ifdefs in rcutorture. These will go
away when I feel good enough about Tree SRCU to ditch Classic SRCU.
Some crude performance comparisons, courtesy of a quickly hacked rcuperf
asynchronous-grace-period capability:
Callback Queuing Overhead
-------------------------
# CPUS Classic SRCU Tree SRCU
------ ------------ ---------
2 0.349 us 0.342 us
16 31.66 us 0.4 us
41 --------- 0.417 us
The times are the 90th percentiles, a statistic that was chosen to reject
the overheads of the occasional srcu_barrier() call needed to avoid OOMing
the test machine. The rcuperf test hangs when running Classic SRCU at 41
CPUs, hence the line of dashes. Despite the hacks to both the rcuperf code
and that statistics, this is a convincing demonstration of Tree SRCU's
performance and scalability advantages.
[1] https://lwn.net/Articles/309030/
[2] https://patchwork.kernel.org/patch/5108281/
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Fix initialization if synchronize_srcu_expedited() called first. ]
2017-04-06 00:01:53 +08:00
|
|
|
if (IS_ENABLED(CONFIG_TREE_SRCU))
|
|
|
|
srcu_online_cpu(cpu);
|
2017-08-18 08:05:59 +08:00
|
|
|
if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
|
|
|
|
return 0; /* Too early in boot for scheduler work. */
|
|
|
|
sync_sched_exp_online_cleanup(cpu);
|
|
|
|
rcutree_affinity_setting(cpu, -1);
|
2016-07-14 01:17:03 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2017-03-24 04:21:30 +08:00
|
|
|
/*
|
|
|
|
* Near the beginning of the process. The CPU is still very much alive
|
|
|
|
* with pretty much all services enabled.
|
|
|
|
*/
|
2016-07-14 01:17:03 +08:00
|
|
|
int rcutree_offline_cpu(unsigned int cpu)
|
|
|
|
{
|
2017-08-18 08:05:59 +08:00
|
|
|
unsigned long flags;
|
|
|
|
struct rcu_data *rdp;
|
|
|
|
struct rcu_node *rnp;
|
|
|
|
|
2018-07-05 06:35:00 +08:00
|
|
|
rdp = per_cpu_ptr(&rcu_data, cpu);
|
|
|
|
rnp = rdp->mynode;
|
|
|
|
raw_spin_lock_irqsave_rcu_node(rnp, flags);
|
|
|
|
rnp->ffmask &= ~rdp->grpmask;
|
|
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
2017-08-18 08:05:59 +08:00
|
|
|
|
2016-07-14 01:17:03 +08:00
|
|
|
rcutree_affinity_setting(cpu, cpu);
|
srcu: Parallelize callback handling
Peter Zijlstra proposed using SRCU to reduce mmap_sem contention [1,2],
however, there are workloads that could result in a high volume of
concurrent invocations of call_srcu(), which with current SRCU would
result in excessive lock contention on the srcu_struct structure's
->queue_lock, which protects SRCU's callback lists. This commit therefore
moves SRCU to per-CPU callback lists, thus greatly reducing contention.
Because a given SRCU instance no longer has a single centralized callback
list, starting grace periods and invoking callbacks are both more complex
than in the single-list Classic SRCU implementation. Starting grace
periods and handling callbacks are now handled using an srcu_node tree
that is in some ways similar to the rcu_node trees used by RCU-bh,
RCU-preempt, and RCU-sched (for example, the srcu_node tree shape is
controlled by exactly the same Kconfig options and boot parameters that
control the shape of the rcu_node tree).
In addition, the old per-CPU srcu_array structure is now named srcu_data
and contains an rcu_segcblist structure named ->srcu_cblist for its
callbacks (and a spinlock to protect this). The srcu_struct gets
an srcu_gp_seq that is used to associate callback segments with the
corresponding completion-time grace-period number. These completion-time
grace-period numbers are propagated up the srcu_node tree so that the
grace-period workqueue handler can determine whether additional grace
periods are needed on the one hand and where to look for callbacks that
are ready to be invoked.
The srcu_barrier() function must now wait on all instances of the per-CPU
->srcu_cblist. Because each ->srcu_cblist is protected by ->lock,
srcu_barrier() can remotely add the needed callbacks. In theory,
it could also remotely start grace periods, but in practice doing so
is complex and racy. And interestingly enough, it is never necessary
for srcu_barrier() to start a grace period because srcu_barrier() only
enqueues a callback when a callback is already present--and it turns out
that a grace period has to have already been started for this pre-existing
callback. Furthermore, it is only the callback that srcu_barrier()
needs to wait on, not any particular grace period. Therefore, a new
rcu_segcblist_entrain() function enqueues the srcu_barrier() function's
callback into the same segment occupied by the last pre-existing callback
in the list. The special case where all the pre-existing callbacks are
on a different list (because they are in the process of being invoked)
is handled by enqueuing srcu_barrier()'s callback into the RCU_DONE_TAIL
segment, relying on the done-callbacks check that takes place after all
callbacks are inovked.
Note that the readers use the same algorithm as before. Note that there
is a separate srcu_idx that tells the readers what counter to increment.
This unfortunately cannot be combined with srcu_gp_seq because they
need to be incremented at different times.
This commit introduces some ugly #ifdefs in rcutorture. These will go
away when I feel good enough about Tree SRCU to ditch Classic SRCU.
Some crude performance comparisons, courtesy of a quickly hacked rcuperf
asynchronous-grace-period capability:
Callback Queuing Overhead
-------------------------
# CPUS Classic SRCU Tree SRCU
------ ------------ ---------
2 0.349 us 0.342 us
16 31.66 us 0.4 us
41 --------- 0.417 us
The times are the 90th percentiles, a statistic that was chosen to reject
the overheads of the occasional srcu_barrier() call needed to avoid OOMing
the test machine. The rcuperf test hangs when running Classic SRCU at 41
CPUs, hence the line of dashes. Despite the hacks to both the rcuperf code
and that statistics, this is a convincing demonstration of Tree SRCU's
performance and scalability advantages.
[1] https://lwn.net/Articles/309030/
[2] https://patchwork.kernel.org/patch/5108281/
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Fix initialization if synchronize_srcu_expedited() called first. ]
2017-04-06 00:01:53 +08:00
|
|
|
if (IS_ENABLED(CONFIG_TREE_SRCU))
|
|
|
|
srcu_offline_cpu(cpu);
|
2016-07-14 01:17:03 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-05-23 00:50:53 +08:00
|
|
|
static DEFINE_PER_CPU(int, rcu_cpu_started);
|
|
|
|
|
2016-07-01 04:58:26 +08:00
|
|
|
/*
|
|
|
|
* Mark the specified CPU as being online so that subsequent grace periods
|
|
|
|
* (both expedited and normal) will wait on it. Note that this means that
|
|
|
|
* incoming CPUs are not allowed to use RCU read-side critical sections
|
|
|
|
* until this function is called. Failing to observe this restriction
|
|
|
|
* will result in lockdep splats.
|
2017-03-24 04:21:30 +08:00
|
|
|
*
|
|
|
|
* Note that this function is special in that it is invoked directly
|
|
|
|
* from the incoming CPU rather than from the cpuhp_step mechanism.
|
|
|
|
* This is because this function must be invoked at a precise location.
|
2016-07-01 04:58:26 +08:00
|
|
|
*/
|
|
|
|
void rcu_cpu_starting(unsigned int cpu)
|
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
unsigned long mask;
|
rcu: Make expedited GPs correctly handle hardware CPU insertion
The update of the ->expmaskinitnext and of ->ncpus are unsynchronized,
with the value of ->ncpus being incremented long before the corresponding
->expmaskinitnext mask is updated. If an RCU expedited grace period
sees ->ncpus change, it will update the ->expmaskinit masks from the new
->expmaskinitnext masks. But it is possible that ->ncpus has already
been updated, but the ->expmaskinitnext masks still have their old values.
For the current expedited grace period, no harm done. The CPU could not
have been online before the grace period started, so there is no need to
wait for its non-existent pre-existing readers.
But the next RCU expedited grace period is in a world of hurt. The value
of ->ncpus has already been updated, so this grace period will assume
that the ->expmaskinitnext masks have not changed. But they have, and
they won't be taken into account until the next never-been-online CPU
comes online. This means that RCU will be ignoring some CPUs that it
should be paying attention to.
The solution is to update ->ncpus and ->expmaskinitnext while holding
the ->lock for the rcu_node structure containing the ->expmaskinitnext
mask. Because smp_store_release() is now used to update ->ncpus and
smp_load_acquire() is now used to locklessly read it, if the expedited
grace period sees ->ncpus change, then the updating CPU has to
already be holding the corresponding ->lock. Therefore, when the
expedited grace period later acquires that ->lock, it is guaranteed
to see the new value of ->expmaskinitnext.
On the other hand, if the expedited grace period loads ->ncpus just
before an update, earlier full memory barriers guarantee that
the incoming CPU isn't far enough along to be running any RCU readers.
This commit therefore makes the required change.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-06-09 07:55:40 +08:00
|
|
|
int nbits;
|
|
|
|
unsigned long oldmask;
|
2016-07-01 04:58:26 +08:00
|
|
|
struct rcu_data *rdp;
|
|
|
|
struct rcu_node *rnp;
|
|
|
|
|
2018-05-23 00:50:53 +08:00
|
|
|
if (per_cpu(rcu_cpu_started, cpu))
|
|
|
|
return;
|
|
|
|
|
|
|
|
per_cpu(rcu_cpu_started, cpu) = 1;
|
|
|
|
|
2018-07-05 06:35:00 +08:00
|
|
|
rdp = per_cpu_ptr(&rcu_data, cpu);
|
|
|
|
rnp = rdp->mynode;
|
|
|
|
mask = rdp->grpmask;
|
|
|
|
raw_spin_lock_irqsave_rcu_node(rnp, flags);
|
|
|
|
rnp->qsmaskinitnext |= mask;
|
|
|
|
oldmask = rnp->expmaskinitnext;
|
|
|
|
rnp->expmaskinitnext |= mask;
|
|
|
|
oldmask ^= rnp->expmaskinitnext;
|
|
|
|
nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
|
|
|
|
/* Allow lockless access for expedited grace periods. */
|
2018-07-06 08:47:45 +08:00
|
|
|
smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */
|
2018-07-05 06:35:00 +08:00
|
|
|
rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
|
2018-07-06 08:47:45 +08:00
|
|
|
rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
|
|
|
|
rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
|
2018-07-05 06:35:00 +08:00
|
|
|
if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
|
|
|
|
/* Report QS -after- changing ->qsmaskinitnext! */
|
|
|
|
rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
|
|
|
|
} else {
|
|
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
2016-07-01 04:58:26 +08:00
|
|
|
}
|
rcu: Make expedited GPs correctly handle hardware CPU insertion
The update of the ->expmaskinitnext and of ->ncpus are unsynchronized,
with the value of ->ncpus being incremented long before the corresponding
->expmaskinitnext mask is updated. If an RCU expedited grace period
sees ->ncpus change, it will update the ->expmaskinit masks from the new
->expmaskinitnext masks. But it is possible that ->ncpus has already
been updated, but the ->expmaskinitnext masks still have their old values.
For the current expedited grace period, no harm done. The CPU could not
have been online before the grace period started, so there is no need to
wait for its non-existent pre-existing readers.
But the next RCU expedited grace period is in a world of hurt. The value
of ->ncpus has already been updated, so this grace period will assume
that the ->expmaskinitnext masks have not changed. But they have, and
they won't be taken into account until the next never-been-online CPU
comes online. This means that RCU will be ignoring some CPUs that it
should be paying attention to.
The solution is to update ->ncpus and ->expmaskinitnext while holding
the ->lock for the rcu_node structure containing the ->expmaskinitnext
mask. Because smp_store_release() is now used to update ->ncpus and
smp_load_acquire() is now used to locklessly read it, if the expedited
grace period sees ->ncpus change, then the updating CPU has to
already be holding the corresponding ->lock. Therefore, when the
expedited grace period later acquires that ->lock, it is guaranteed
to see the new value of ->expmaskinitnext.
On the other hand, if the expedited grace period loads ->ncpus just
before an update, earlier full memory barriers guarantee that
the incoming CPU isn't far enough along to be running any RCU readers.
This commit therefore makes the required change.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-06-09 07:55:40 +08:00
|
|
|
smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
|
2016-07-01 04:58:26 +08:00
|
|
|
}
|
|
|
|
|
2016-02-27 02:43:44 +08:00
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
|
|
/*
|
2018-07-04 08:22:34 +08:00
|
|
|
* The outgoing function has no further need of RCU, so remove it from
|
|
|
|
* the rcu_node tree's ->qsmaskinitnext bit masks.
|
|
|
|
*
|
|
|
|
* Note that this function is special in that it is invoked directly
|
|
|
|
* from the outgoing CPU rather than from the cpuhp_step mechanism.
|
|
|
|
* This is because this function must be invoked at a precise location.
|
2016-02-27 02:43:44 +08:00
|
|
|
*/
|
2018-07-04 08:22:34 +08:00
|
|
|
void rcu_report_dead(unsigned int cpu)
|
2016-02-27 02:43:44 +08:00
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
unsigned long mask;
|
2018-07-04 06:37:16 +08:00
|
|
|
struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
|
2016-02-27 02:43:44 +08:00
|
|
|
struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
|
|
|
|
|
2018-07-08 09:12:26 +08:00
|
|
|
/* QS for any half-done expedited grace period. */
|
2018-07-04 08:22:34 +08:00
|
|
|
preempt_disable();
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
|
2018-07-04 08:22:34 +08:00
|
|
|
preempt_enable();
|
|
|
|
rcu_preempt_deferred_qs(current);
|
|
|
|
|
2016-02-27 02:43:44 +08:00
|
|
|
/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
|
|
|
|
mask = rdp->grpmask;
|
2018-08-16 00:05:29 +08:00
|
|
|
raw_spin_lock(&rcu_state.ofl_lock);
|
2016-02-27 02:43:44 +08:00
|
|
|
raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
|
2018-07-04 08:22:34 +08:00
|
|
|
rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
|
|
|
|
rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
|
rcu: Suppress false-positive preempted-task splats
Consider the following sequence of events in a PREEMPT=y kernel:
1. All CPUs corresponding to a given rcu_node structure go offline.
A new grace period starts just after the CPU-hotplug code path
does its synchronize_rcu() for the last CPU, so at least this
CPU is present in that structure's ->qsmask.
2. Before the grace period ends, a CPU comes back online, and not
just any CPU, but the one corresponding to a non-zero bit in
the leaf rcu_node structure's ->qsmask.
3. A task running on the newly onlined CPU is preempted while in
an RCU read-side critical section. Because this CPU's ->qsmask
bit is net, not only does this task queue itself on the leaf
rcu_node structure's ->blkd_tasks list, it also sets that
structure's ->gp_tasks pointer to reference it.
4. The grace period started in #1 above comes to an end. This
results in rcu_gp_cleanup() being invoked, which, among other
things, checks to make sure that there are no tasks blocking the
just-ended grace period, that is, that all ->gp_tasks pointers
are NULL. The ->gp_tasks pointer corresponding to the task
preempted in #3 above is non-NULL, which results in a splat.
This splat is a false positive. The task's RCU read-side critical
section cannot have begun before the just-ended grace period because
this would mean either: (1) The CPU came online before the grace period
started, which cannot have happened because the grace period started
before that CPU was all the way offline, or (2) The task started its
RCU read-side critical section on some other CPU, but then it would
have had to have been preempted before migrating to this CPU, which
would mean that it would have instead queued itself on that other CPU's
rcu_node structure.
This commit eliminates this false positive by adding code to the end
of rcu_cleanup_dying_idle_cpu() that reports a quiescent state to RCU,
which has the side-effect of clearing that CPU's ->qsmask bit, preventing
the above scenario. This approach has the added benefit of more promptly
reporting quiescent states corresponding to offline CPUs.
Note well that the call to rcu_report_qs_rnp() reporting the quiescent
state must come -before- the clearing of this CPU's bit in the leaf
rcu_node structure's ->qsmaskinitnext field. Otherwise, lockdep-RCU
will complain bitterly about quiescent states coming from an offline CPU.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-05-03 11:04:12 +08:00
|
|
|
if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
|
|
|
|
/* Report quiescent state -before- changing ->qsmaskinitnext! */
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
|
rcu: Suppress false-positive preempted-task splats
Consider the following sequence of events in a PREEMPT=y kernel:
1. All CPUs corresponding to a given rcu_node structure go offline.
A new grace period starts just after the CPU-hotplug code path
does its synchronize_rcu() for the last CPU, so at least this
CPU is present in that structure's ->qsmask.
2. Before the grace period ends, a CPU comes back online, and not
just any CPU, but the one corresponding to a non-zero bit in
the leaf rcu_node structure's ->qsmask.
3. A task running on the newly onlined CPU is preempted while in
an RCU read-side critical section. Because this CPU's ->qsmask
bit is net, not only does this task queue itself on the leaf
rcu_node structure's ->blkd_tasks list, it also sets that
structure's ->gp_tasks pointer to reference it.
4. The grace period started in #1 above comes to an end. This
results in rcu_gp_cleanup() being invoked, which, among other
things, checks to make sure that there are no tasks blocking the
just-ended grace period, that is, that all ->gp_tasks pointers
are NULL. The ->gp_tasks pointer corresponding to the task
preempted in #3 above is non-NULL, which results in a splat.
This splat is a false positive. The task's RCU read-side critical
section cannot have begun before the just-ended grace period because
this would mean either: (1) The CPU came online before the grace period
started, which cannot have happened because the grace period started
before that CPU was all the way offline, or (2) The task started its
RCU read-side critical section on some other CPU, but then it would
have had to have been preempted before migrating to this CPU, which
would mean that it would have instead queued itself on that other CPU's
rcu_node structure.
This commit eliminates this false positive by adding code to the end
of rcu_cleanup_dying_idle_cpu() that reports a quiescent state to RCU,
which has the side-effect of clearing that CPU's ->qsmask bit, preventing
the above scenario. This approach has the added benefit of more promptly
reporting quiescent states corresponding to offline CPUs.
Note well that the call to rcu_report_qs_rnp() reporting the quiescent
state must come -before- the clearing of this CPU's bit in the leaf
rcu_node structure's ->qsmaskinitnext field. Otherwise, lockdep-RCU
will complain bitterly about quiescent states coming from an offline CPU.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-05-03 11:04:12 +08:00
|
|
|
raw_spin_lock_irqsave_rcu_node(rnp, flags);
|
|
|
|
}
|
2016-02-27 02:43:44 +08:00
|
|
|
rnp->qsmaskinitnext &= ~mask;
|
Merge branch 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull cpu hotplug updates from Thomas Gleixner:
"This is the first part of the ongoing cpu hotplug rework:
- Initial implementation of the state machine
- Runs all online and prepare down callbacks on the plugged cpu and
not on some random processor
- Replaces busy loop waiting with completions
- Adds tracepoints so the states can be followed"
More detailed commentary on this work from an earlier email:
"What's wrong with the current cpu hotplug infrastructure?
- Asymmetry
The hotplug notifier mechanism is asymmetric versus the bringup and
teardown. This is mostly caused by the notifier mechanism.
- Largely undocumented dependencies
While some notifiers use explicitely defined notifier priorities,
we have quite some notifiers which use numerical priorities to
express dependencies without any documentation why.
- Control processor driven
Most of the bringup/teardown of a cpu is driven by a control
processor. While it is understandable, that preperatory steps,
like idle thread creation, memory allocation for and initialization
of essential facilities needs to be done before a cpu can boot,
there is no reason why everything else must run on a control
processor. Before this patch series, bringup looks like this:
Control CPU Booting CPU
do preparatory steps
kick cpu into life
do low level init
sync with booting cpu sync with control cpu
bring the rest up
- All or nothing approach
There is no way to do partial bringups. That's something which is
really desired because we waste e.g. at boot substantial amount of
time just busy waiting that the cpu comes to life. That's stupid
as we could very well do preparatory steps and the initial IPI for
other cpus and then go back and do the necessary low level
synchronization with the freshly booted cpu.
- Minimal debuggability
Due to the notifier based design, it's impossible to switch between
two stages of the bringup/teardown back and forth in order to test
the correctness. So in many hotplug notifiers the cancel
mechanisms are either not existant or completely untested.
- Notifier [un]registering is tedious
To [un]register notifiers we need to protect against hotplug at
every callsite. There is no mechanism that bringup/teardown
callbacks are issued on the online cpus, so every caller needs to
do it itself. That also includes error rollback.
What's the new design?
The base of the new design is a symmetric state machine, where both
the control processor and the booting/dying cpu execute a well
defined set of states. Each state is symmetric in the end, except
for some well defined exceptions, and the bringup/teardown can be
stopped and reversed at almost all states.
So the bringup of a cpu will look like this in the future:
Control CPU Booting CPU
do preparatory steps
kick cpu into life
do low level init
sync with booting cpu sync with control cpu
bring itself up
The synchronization step does not require the control cpu to wait.
That mechanism can be done asynchronously via a worker or some
other mechanism.
The teardown can be made very similar, so that the dying cpu cleans
up and brings itself down. Cleanups which need to be done after
the cpu is gone, can be scheduled asynchronously as well.
There is a long way to this, as we need to refactor the notion when a
cpu is available. Today we set the cpu online right after it comes
out of the low level bringup, which is not really correct.
The proper mechanism is to set it to available, i.e. cpu local
threads, like softirqd, hotplug thread etc. can be scheduled on that
cpu, and once it finished all booting steps, it's set to online, so
general workloads can be scheduled on it. The reverse happens on
teardown. First thing to do is to forbid scheduling of general
workloads, then teardown all the per cpu resources and finally shut it
off completely.
This patch series implements the basic infrastructure for this at the
core level. This includes the following:
- Basic state machine implementation with well defined states, so
ordering and prioritization can be expressed.
- Interfaces to [un]register state callbacks
This invokes the bringup/teardown callback on all online cpus with
the proper protection in place and [un]installs the callbacks in
the state machine array.
For callbacks which have no particular ordering requirement we have
a dynamic state space, so that drivers don't have to register an
explicit hotplug state.
If a callback fails, the code automatically does a rollback to the
previous state.
- Sysfs interface to drive the state machine to a particular step.
This is only partially functional today. Full functionality and
therefor testability will be achieved once we converted all
existing hotplug notifiers over to the new scheme.
- Run all CPU_ONLINE/DOWN_PREPARE notifiers on the booting/dying
processor:
Control CPU Booting CPU
do preparatory steps
kick cpu into life
do low level init
sync with booting cpu sync with control cpu
wait for boot
bring itself up
Signal completion to control cpu
In a previous step of this work we've done a full tree mechanical
conversion of all hotplug notifiers to the new scheme. The balance
is a net removal of about 4000 lines of code.
This is not included in this series, as we decided to take a
different approach. Instead of mechanically converting everything
over, we will do a proper overhaul of the usage sites one by one so
they nicely fit into the symmetric callback scheme.
I decided to do that after I looked at the ugliness of some of the
converted sites and figured out that their hotplug mechanism is
completely buggered anyway. So there is no point to do a
mechanical conversion first as we need to go through the usage
sites one by one again in order to achieve a full symmetric and
testable behaviour"
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
cpu/hotplug: Document states better
cpu/hotplug: Fix smpboot thread ordering
cpu/hotplug: Remove redundant state check
cpu/hotplug: Plug death reporting race
rcu: Make CPU_DYING_IDLE an explicit call
cpu/hotplug: Make wait for dead cpu completion based
cpu/hotplug: Let upcoming cpu bring itself fully up
arch/hotplug: Call into idle with a proper state
cpu/hotplug: Move online calls to hotplugged cpu
cpu/hotplug: Create hotplug threads
cpu/hotplug: Split out the state walk into functions
cpu/hotplug: Unpark smpboot threads from the state machine
cpu/hotplug: Move scheduler cpu_online notifier to hotplug core
cpu/hotplug: Implement setup/removal interface
cpu/hotplug: Make target state writeable
cpu/hotplug: Add sysfs state interface
cpu/hotplug: Hand in target state to _cpu_up/down
cpu/hotplug: Convert the hotplugged cpu work to a state machine
cpu/hotplug: Convert to a state machine for the control processor
cpu/hotplug: Add tracepoints
...
2016-03-16 04:50:29 +08:00
|
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
2018-08-16 00:05:29 +08:00
|
|
|
raw_spin_unlock(&rcu_state.ofl_lock);
|
2018-05-23 00:50:53 +08:00
|
|
|
|
|
|
|
per_cpu(rcu_cpu_started, cpu) = 0;
|
2016-02-27 02:43:44 +08:00
|
|
|
}
|
rcu: Migrate callbacks earlier in the CPU-offline timeline
RCU callbacks must be migrated away from an outgoing CPU, and this is
done near the end of the CPU-hotplug operation, after the outgoing CPU is
long gone. Unfortunately, this means that other CPU-hotplug callbacks
can execute while the outgoing CPU's callbacks are still immobilized
on the long-gone CPU's callback lists. If any of these CPU-hotplug
callbacks must wait, either directly or indirectly, for the invocation
of any of the immobilized RCU callbacks, the system will hang.
This commit avoids such hangs by migrating the callbacks away from the
outgoing CPU immediately upon its departure, shortly after the return
from __cpu_die() in takedown_cpu(). Thus, RCU is able to advance these
callbacks and invoke them, which allows all the after-the-fact CPU-hotplug
callbacks to wait on these RCU callbacks without risk of a hang.
While in the neighborhood, this commit also moves rcu_send_cbs_to_orphanage()
and rcu_adopt_orphan_cbs() under a pre-existing #ifdef to avoid including
dead code on the one hand and to avoid define-without-use warnings on the
other hand.
Reported-by: Jeffrey Hugo <jhugo@codeaurora.org>
Link: http://lkml.kernel.org/r/db9c91f6-1b17-6136-84f0-03c3c2581ab4@codeaurora.org
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Richard Weinberger <richard@nod.at>
2017-06-21 03:11:34 +08:00
|
|
|
|
2018-07-04 08:22:34 +08:00
|
|
|
/*
|
|
|
|
* The outgoing CPU has just passed through the dying-idle state, and we
|
|
|
|
* are being invoked from the CPU that was IPIed to continue the offline
|
|
|
|
* operation. Migrate the outgoing CPU's callbacks to the current CPU.
|
|
|
|
*/
|
|
|
|
void rcutree_migrate_callbacks(int cpu)
|
rcu: Migrate callbacks earlier in the CPU-offline timeline
RCU callbacks must be migrated away from an outgoing CPU, and this is
done near the end of the CPU-hotplug operation, after the outgoing CPU is
long gone. Unfortunately, this means that other CPU-hotplug callbacks
can execute while the outgoing CPU's callbacks are still immobilized
on the long-gone CPU's callback lists. If any of these CPU-hotplug
callbacks must wait, either directly or indirectly, for the invocation
of any of the immobilized RCU callbacks, the system will hang.
This commit avoids such hangs by migrating the callbacks away from the
outgoing CPU immediately upon its departure, shortly after the return
from __cpu_die() in takedown_cpu(). Thus, RCU is able to advance these
callbacks and invoke them, which allows all the after-the-fact CPU-hotplug
callbacks to wait on these RCU callbacks without risk of a hang.
While in the neighborhood, this commit also moves rcu_send_cbs_to_orphanage()
and rcu_adopt_orphan_cbs() under a pre-existing #ifdef to avoid including
dead code on the one hand and to avoid define-without-use warnings on the
other hand.
Reported-by: Jeffrey Hugo <jhugo@codeaurora.org>
Link: http://lkml.kernel.org/r/db9c91f6-1b17-6136-84f0-03c3c2581ab4@codeaurora.org
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Richard Weinberger <richard@nod.at>
2017-06-21 03:11:34 +08:00
|
|
|
{
|
|
|
|
unsigned long flags;
|
2017-06-27 03:23:46 +08:00
|
|
|
struct rcu_data *my_rdp;
|
2018-07-04 06:37:16 +08:00
|
|
|
struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
|
2018-07-04 08:22:34 +08:00
|
|
|
struct rcu_node *rnp_root = rcu_get_root();
|
2018-04-22 23:49:24 +08:00
|
|
|
bool needwake;
|
rcu: Migrate callbacks earlier in the CPU-offline timeline
RCU callbacks must be migrated away from an outgoing CPU, and this is
done near the end of the CPU-hotplug operation, after the outgoing CPU is
long gone. Unfortunately, this means that other CPU-hotplug callbacks
can execute while the outgoing CPU's callbacks are still immobilized
on the long-gone CPU's callback lists. If any of these CPU-hotplug
callbacks must wait, either directly or indirectly, for the invocation
of any of the immobilized RCU callbacks, the system will hang.
This commit avoids such hangs by migrating the callbacks away from the
outgoing CPU immediately upon its departure, shortly after the return
from __cpu_die() in takedown_cpu(). Thus, RCU is able to advance these
callbacks and invoke them, which allows all the after-the-fact CPU-hotplug
callbacks to wait on these RCU callbacks without risk of a hang.
While in the neighborhood, this commit also moves rcu_send_cbs_to_orphanage()
and rcu_adopt_orphan_cbs() under a pre-existing #ifdef to avoid including
dead code on the one hand and to avoid define-without-use warnings on the
other hand.
Reported-by: Jeffrey Hugo <jhugo@codeaurora.org>
Link: http://lkml.kernel.org/r/db9c91f6-1b17-6136-84f0-03c3c2581ab4@codeaurora.org
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Richard Weinberger <richard@nod.at>
2017-06-21 03:11:34 +08:00
|
|
|
|
2017-06-27 01:49:50 +08:00
|
|
|
if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
|
|
|
|
return; /* No callbacks to migrate. */
|
|
|
|
|
2017-06-27 03:23:46 +08:00
|
|
|
local_irq_save(flags);
|
2018-07-04 06:37:16 +08:00
|
|
|
my_rdp = this_cpu_ptr(&rcu_data);
|
2017-06-27 03:23:46 +08:00
|
|
|
if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
|
|
|
|
local_irq_restore(flags);
|
|
|
|
return;
|
|
|
|
}
|
2017-06-27 06:43:27 +08:00
|
|
|
raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
|
2018-04-22 23:49:24 +08:00
|
|
|
/* Leverage recent GPs and set GP for new callbacks. */
|
2018-07-04 08:22:34 +08:00
|
|
|
needwake = rcu_advance_cbs(rnp_root, rdp) ||
|
|
|
|
rcu_advance_cbs(rnp_root, my_rdp);
|
2017-06-27 22:44:06 +08:00
|
|
|
rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
|
2017-07-20 01:56:46 +08:00
|
|
|
WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
|
|
|
|
!rcu_segcblist_n_cbs(&my_rdp->cblist));
|
2017-06-27 08:59:02 +08:00
|
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
|
2018-04-22 23:49:24 +08:00
|
|
|
if (needwake)
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_gp_kthread_wake();
|
rcu: Migrate callbacks earlier in the CPU-offline timeline
RCU callbacks must be migrated away from an outgoing CPU, and this is
done near the end of the CPU-hotplug operation, after the outgoing CPU is
long gone. Unfortunately, this means that other CPU-hotplug callbacks
can execute while the outgoing CPU's callbacks are still immobilized
on the long-gone CPU's callback lists. If any of these CPU-hotplug
callbacks must wait, either directly or indirectly, for the invocation
of any of the immobilized RCU callbacks, the system will hang.
This commit avoids such hangs by migrating the callbacks away from the
outgoing CPU immediately upon its departure, shortly after the return
from __cpu_die() in takedown_cpu(). Thus, RCU is able to advance these
callbacks and invoke them, which allows all the after-the-fact CPU-hotplug
callbacks to wait on these RCU callbacks without risk of a hang.
While in the neighborhood, this commit also moves rcu_send_cbs_to_orphanage()
and rcu_adopt_orphan_cbs() under a pre-existing #ifdef to avoid including
dead code on the one hand and to avoid define-without-use warnings on the
other hand.
Reported-by: Jeffrey Hugo <jhugo@codeaurora.org>
Link: http://lkml.kernel.org/r/db9c91f6-1b17-6136-84f0-03c3c2581ab4@codeaurora.org
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Richard Weinberger <richard@nod.at>
2017-06-21 03:11:34 +08:00
|
|
|
WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
|
|
|
|
!rcu_segcblist_empty(&rdp->cblist),
|
|
|
|
"rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
|
|
|
|
cpu, rcu_segcblist_n_cbs(&rdp->cblist),
|
|
|
|
rcu_segcblist_first_cb(&rdp->cblist));
|
|
|
|
}
|
2016-02-27 02:43:44 +08:00
|
|
|
#endif
|
|
|
|
|
2017-03-24 04:21:30 +08:00
|
|
|
/*
|
|
|
|
* On non-huge systems, use expedited RCU grace periods to make suspend
|
|
|
|
* and hibernation run faster.
|
|
|
|
*/
|
2013-04-22 06:12:42 +08:00
|
|
|
static int rcu_pm_notify(struct notifier_block *self,
|
|
|
|
unsigned long action, void *hcpu)
|
|
|
|
{
|
|
|
|
switch (action) {
|
|
|
|
case PM_HIBERNATION_PREPARE:
|
|
|
|
case PM_SUSPEND_PREPARE:
|
|
|
|
if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
|
2015-02-19 08:39:09 +08:00
|
|
|
rcu_expedite_gp();
|
2013-04-22 06:12:42 +08:00
|
|
|
break;
|
|
|
|
case PM_POST_HIBERNATION:
|
|
|
|
case PM_POST_SUSPEND:
|
2015-02-19 08:39:09 +08:00
|
|
|
if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
|
|
|
|
rcu_unexpedite_gp();
|
2013-04-22 06:12:42 +08:00
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return NOTIFY_OK;
|
|
|
|
}
|
|
|
|
|
2012-06-19 09:36:08 +08:00
|
|
|
/*
|
2018-07-08 09:12:26 +08:00
|
|
|
* Spawn the kthreads that handle RCU's grace periods.
|
2012-06-19 09:36:08 +08:00
|
|
|
*/
|
|
|
|
static int __init rcu_spawn_gp_kthread(void)
|
|
|
|
{
|
|
|
|
unsigned long flags;
|
2014-12-12 23:37:48 +08:00
|
|
|
int kthread_prio_in = kthread_prio;
|
2012-06-19 09:36:08 +08:00
|
|
|
struct rcu_node *rnp;
|
2014-12-12 23:37:48 +08:00
|
|
|
struct sched_param sp;
|
2012-06-19 09:36:08 +08:00
|
|
|
struct task_struct *t;
|
|
|
|
|
2014-12-12 23:37:48 +08:00
|
|
|
/* Force priority into range. */
|
2018-06-20 06:14:17 +08:00
|
|
|
if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
|
|
|
|
&& IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
|
|
|
|
kthread_prio = 2;
|
|
|
|
else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
|
2014-12-12 23:37:48 +08:00
|
|
|
kthread_prio = 1;
|
|
|
|
else if (kthread_prio < 0)
|
|
|
|
kthread_prio = 0;
|
|
|
|
else if (kthread_prio > 99)
|
|
|
|
kthread_prio = 99;
|
2018-06-20 06:14:17 +08:00
|
|
|
|
2014-12-12 23:37:48 +08:00
|
|
|
if (kthread_prio != kthread_prio_in)
|
|
|
|
pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
|
|
|
|
kthread_prio, kthread_prio_in);
|
|
|
|
|
2014-07-14 03:00:53 +08:00
|
|
|
rcu_scheduler_fully_active = 1;
|
2018-07-05 06:35:00 +08:00
|
|
|
t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
|
|
|
|
BUG_ON(IS_ERR(t));
|
|
|
|
rnp = rcu_get_root();
|
|
|
|
raw_spin_lock_irqsave_rcu_node(rnp, flags);
|
|
|
|
rcu_state.gp_kthread = t;
|
|
|
|
if (kthread_prio) {
|
|
|
|
sp.sched_priority = kthread_prio;
|
|
|
|
sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
|
2012-06-19 09:36:08 +08:00
|
|
|
}
|
2018-07-05 06:35:00 +08:00
|
|
|
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
|
|
|
|
wake_up_process(t);
|
2014-07-12 02:30:24 +08:00
|
|
|
rcu_spawn_nocb_kthreads();
|
2014-07-14 03:00:53 +08:00
|
|
|
rcu_spawn_boost_kthreads();
|
2012-06-19 09:36:08 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
early_initcall(rcu_spawn_gp_kthread);
|
|
|
|
|
2010-04-03 07:17:17 +08:00
|
|
|
/*
|
rcu: Narrow early boot window of illegal synchronous grace periods
The current preemptible RCU implementation goes through three phases
during bootup. In the first phase, there is only one CPU that is running
with preemption disabled, so that a no-op is a synchronous grace period.
In the second mid-boot phase, the scheduler is running, but RCU has
not yet gotten its kthreads spawned (and, for expedited grace periods,
workqueues are not yet running. During this time, any attempt to do
a synchronous grace period will hang the system (or complain bitterly,
depending). In the third and final phase, RCU is fully operational and
everything works normally.
This has been OK for some time, but there has recently been some
synchronous grace periods showing up during the second mid-boot phase.
This code worked "by accident" for awhile, but started failing as soon
as expedited RCU grace periods switched over to workqueues in commit
8b355e3bc140 ("rcu: Drive expedited grace periods from workqueue").
Note that the code was buggy even before this commit, as it was subject
to failure on real-time systems that forced all expedited grace periods
to run as normal grace periods (for example, using the rcu_normal ksysfs
parameter). The callchain from the failure case is as follows:
early_amd_iommu_init()
|-> acpi_put_table(ivrs_base);
|-> acpi_tb_put_table(table_desc);
|-> acpi_tb_invalidate_table(table_desc);
|-> acpi_tb_release_table(...)
|-> acpi_os_unmap_memory
|-> acpi_os_unmap_iomem
|-> acpi_os_map_cleanup
|-> synchronize_rcu_expedited
The kernel showing this callchain was built with CONFIG_PREEMPT_RCU=y,
which caused the code to try using workqueues before they were
initialized, which did not go well.
This commit therefore reworks RCU to permit synchronous grace periods
to proceed during this mid-boot phase. This commit is therefore a
fix to a regression introduced in v4.9, and is therefore being put
forward post-merge-window in v4.10.
This commit sets a flag from the existing rcu_scheduler_starting()
function which causes all synchronous grace periods to take the expedited
path. The expedited path now checks this flag, using the requesting task
to drive the expedited grace period forward during the mid-boot phase.
Finally, this flag is updated by a core_initcall() function named
rcu_exp_runtime_mode(), which causes the runtime codepaths to be used.
Note that this arrangement assumes that tasks are not sent POSIX signals
(or anything similar) from the time that the first task is spawned
through core_initcall() time.
Fixes: 8b355e3bc140 ("rcu: Drive expedited grace periods from workqueue")
Reported-by: "Zheng, Lv" <lv.zheng@intel.com>
Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Stan Kain <stan.kain@gmail.com>
Tested-by: Ivan <waffolz@hotmail.com>
Tested-by: Emanuel Castelo <emanuel.castelo@gmail.com>
Tested-by: Bruno Pesavento <bpesavento@infinito.it>
Tested-by: Borislav Petkov <bp@suse.de>
Tested-by: Frederic Bezies <fredbezies@gmail.com>
Cc: <stable@vger.kernel.org> # 4.9.0-
2017-01-10 18:28:26 +08:00
|
|
|
* This function is invoked towards the end of the scheduler's
|
|
|
|
* initialization process. Before this is called, the idle task might
|
|
|
|
* contain synchronous grace-period primitives (during which time, this idle
|
|
|
|
* task is booting the system, and such primitives are no-ops). After this
|
|
|
|
* function is called, any synchronous grace-period primitives are run as
|
|
|
|
* expedited, with the requesting task driving the grace period forward.
|
2017-02-11 06:32:54 +08:00
|
|
|
* A later core_initcall() rcu_set_runtime_mode() will switch to full
|
rcu: Narrow early boot window of illegal synchronous grace periods
The current preemptible RCU implementation goes through three phases
during bootup. In the first phase, there is only one CPU that is running
with preemption disabled, so that a no-op is a synchronous grace period.
In the second mid-boot phase, the scheduler is running, but RCU has
not yet gotten its kthreads spawned (and, for expedited grace periods,
workqueues are not yet running. During this time, any attempt to do
a synchronous grace period will hang the system (or complain bitterly,
depending). In the third and final phase, RCU is fully operational and
everything works normally.
This has been OK for some time, but there has recently been some
synchronous grace periods showing up during the second mid-boot phase.
This code worked "by accident" for awhile, but started failing as soon
as expedited RCU grace periods switched over to workqueues in commit
8b355e3bc140 ("rcu: Drive expedited grace periods from workqueue").
Note that the code was buggy even before this commit, as it was subject
to failure on real-time systems that forced all expedited grace periods
to run as normal grace periods (for example, using the rcu_normal ksysfs
parameter). The callchain from the failure case is as follows:
early_amd_iommu_init()
|-> acpi_put_table(ivrs_base);
|-> acpi_tb_put_table(table_desc);
|-> acpi_tb_invalidate_table(table_desc);
|-> acpi_tb_release_table(...)
|-> acpi_os_unmap_memory
|-> acpi_os_unmap_iomem
|-> acpi_os_map_cleanup
|-> synchronize_rcu_expedited
The kernel showing this callchain was built with CONFIG_PREEMPT_RCU=y,
which caused the code to try using workqueues before they were
initialized, which did not go well.
This commit therefore reworks RCU to permit synchronous grace periods
to proceed during this mid-boot phase. This commit is therefore a
fix to a regression introduced in v4.9, and is therefore being put
forward post-merge-window in v4.10.
This commit sets a flag from the existing rcu_scheduler_starting()
function which causes all synchronous grace periods to take the expedited
path. The expedited path now checks this flag, using the requesting task
to drive the expedited grace period forward during the mid-boot phase.
Finally, this flag is updated by a core_initcall() function named
rcu_exp_runtime_mode(), which causes the runtime codepaths to be used.
Note that this arrangement assumes that tasks are not sent POSIX signals
(or anything similar) from the time that the first task is spawned
through core_initcall() time.
Fixes: 8b355e3bc140 ("rcu: Drive expedited grace periods from workqueue")
Reported-by: "Zheng, Lv" <lv.zheng@intel.com>
Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Stan Kain <stan.kain@gmail.com>
Tested-by: Ivan <waffolz@hotmail.com>
Tested-by: Emanuel Castelo <emanuel.castelo@gmail.com>
Tested-by: Bruno Pesavento <bpesavento@infinito.it>
Tested-by: Borislav Petkov <bp@suse.de>
Tested-by: Frederic Bezies <fredbezies@gmail.com>
Cc: <stable@vger.kernel.org> # 4.9.0-
2017-01-10 18:28:26 +08:00
|
|
|
* runtime RCU functionality.
|
2010-04-03 07:17:17 +08:00
|
|
|
*/
|
|
|
|
void rcu_scheduler_starting(void)
|
|
|
|
{
|
|
|
|
WARN_ON(num_online_cpus() != 1);
|
|
|
|
WARN_ON(nr_context_switches() > 0);
|
rcu: Narrow early boot window of illegal synchronous grace periods
The current preemptible RCU implementation goes through three phases
during bootup. In the first phase, there is only one CPU that is running
with preemption disabled, so that a no-op is a synchronous grace period.
In the second mid-boot phase, the scheduler is running, but RCU has
not yet gotten its kthreads spawned (and, for expedited grace periods,
workqueues are not yet running. During this time, any attempt to do
a synchronous grace period will hang the system (or complain bitterly,
depending). In the third and final phase, RCU is fully operational and
everything works normally.
This has been OK for some time, but there has recently been some
synchronous grace periods showing up during the second mid-boot phase.
This code worked "by accident" for awhile, but started failing as soon
as expedited RCU grace periods switched over to workqueues in commit
8b355e3bc140 ("rcu: Drive expedited grace periods from workqueue").
Note that the code was buggy even before this commit, as it was subject
to failure on real-time systems that forced all expedited grace periods
to run as normal grace periods (for example, using the rcu_normal ksysfs
parameter). The callchain from the failure case is as follows:
early_amd_iommu_init()
|-> acpi_put_table(ivrs_base);
|-> acpi_tb_put_table(table_desc);
|-> acpi_tb_invalidate_table(table_desc);
|-> acpi_tb_release_table(...)
|-> acpi_os_unmap_memory
|-> acpi_os_unmap_iomem
|-> acpi_os_map_cleanup
|-> synchronize_rcu_expedited
The kernel showing this callchain was built with CONFIG_PREEMPT_RCU=y,
which caused the code to try using workqueues before they were
initialized, which did not go well.
This commit therefore reworks RCU to permit synchronous grace periods
to proceed during this mid-boot phase. This commit is therefore a
fix to a regression introduced in v4.9, and is therefore being put
forward post-merge-window in v4.10.
This commit sets a flag from the existing rcu_scheduler_starting()
function which causes all synchronous grace periods to take the expedited
path. The expedited path now checks this flag, using the requesting task
to drive the expedited grace period forward during the mid-boot phase.
Finally, this flag is updated by a core_initcall() function named
rcu_exp_runtime_mode(), which causes the runtime codepaths to be used.
Note that this arrangement assumes that tasks are not sent POSIX signals
(or anything similar) from the time that the first task is spawned
through core_initcall() time.
Fixes: 8b355e3bc140 ("rcu: Drive expedited grace periods from workqueue")
Reported-by: "Zheng, Lv" <lv.zheng@intel.com>
Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Stan Kain <stan.kain@gmail.com>
Tested-by: Ivan <waffolz@hotmail.com>
Tested-by: Emanuel Castelo <emanuel.castelo@gmail.com>
Tested-by: Bruno Pesavento <bpesavento@infinito.it>
Tested-by: Borislav Petkov <bp@suse.de>
Tested-by: Frederic Bezies <fredbezies@gmail.com>
Cc: <stable@vger.kernel.org> # 4.9.0-
2017-01-10 18:28:26 +08:00
|
|
|
rcu_test_sync_prims();
|
|
|
|
rcu_scheduler_active = RCU_SCHEDULER_INIT;
|
|
|
|
rcu_test_sync_prims();
|
2010-04-03 07:17:17 +08:00
|
|
|
}
|
|
|
|
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
/*
|
2018-07-08 09:12:26 +08:00
|
|
|
* Helper function for rcu_init() that initializes the rcu_state structure.
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
*/
|
2018-07-04 08:22:34 +08:00
|
|
|
static void __init rcu_init_one(void)
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
{
|
2015-06-03 14:18:30 +08:00
|
|
|
static const char * const buf[] = RCU_NODE_NAME_INIT;
|
|
|
|
static const char * const fqs[] = RCU_FQS_NAME_INIT;
|
2015-09-27 05:51:24 +08:00
|
|
|
static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
|
|
|
|
static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
|
2015-06-03 14:18:29 +08:00
|
|
|
|
|
|
|
int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
int cpustride = 1;
|
|
|
|
int i;
|
|
|
|
int j;
|
|
|
|
struct rcu_node *rnp;
|
|
|
|
|
2015-06-03 14:18:28 +08:00
|
|
|
BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
|
2010-01-05 08:04:02 +08:00
|
|
|
|
2015-03-10 07:51:17 +08:00
|
|
|
/* Silence gcc 4.8 false positive about array index out of range. */
|
|
|
|
if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
|
|
|
|
panic("rcu_init_one: rcu_num_lvls out of range");
|
2012-11-30 05:49:00 +08:00
|
|
|
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
/* Initialize the level-tracking arrays. */
|
|
|
|
|
2012-04-24 06:52:53 +08:00
|
|
|
for (i = 1; i < rcu_num_lvls; i++)
|
2018-07-06 08:47:45 +08:00
|
|
|
rcu_state.level[i] =
|
|
|
|
rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
|
2017-03-16 03:59:17 +08:00
|
|
|
rcu_init_levelspread(levelspread, num_rcu_lvl);
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
|
|
|
|
/* Initialize the elements themselves, starting from the leaves. */
|
|
|
|
|
2012-04-24 06:52:53 +08:00
|
|
|
for (i = rcu_num_lvls - 1; i >= 0; i--) {
|
2015-06-03 14:18:29 +08:00
|
|
|
cpustride *= levelspread[i];
|
2018-07-06 08:47:45 +08:00
|
|
|
rnp = rcu_state.level[i];
|
2017-03-16 03:59:17 +08:00
|
|
|
for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
|
2015-12-29 12:18:47 +08:00
|
|
|
raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
|
|
|
|
lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
|
2010-01-05 08:04:02 +08:00
|
|
|
&rcu_node_class[i], buf[i]);
|
2012-06-27 08:00:35 +08:00
|
|
|
raw_spin_lock_init(&rnp->fqslock);
|
|
|
|
lockdep_set_class_and_name(&rnp->fqslock,
|
|
|
|
&rcu_fqs_class[i], fqs[i]);
|
2018-07-06 08:47:45 +08:00
|
|
|
rnp->gp_seq = rcu_state.gp_seq;
|
|
|
|
rnp->gp_seq_needed = rcu_state.gp_seq;
|
|
|
|
rnp->completedqs = rcu_state.gp_seq;
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
rnp->qsmask = 0;
|
|
|
|
rnp->qsmaskinit = 0;
|
|
|
|
rnp->grplo = j * cpustride;
|
|
|
|
rnp->grphi = (j + 1) * cpustride - 1;
|
2014-03-19 01:22:26 +08:00
|
|
|
if (rnp->grphi >= nr_cpu_ids)
|
|
|
|
rnp->grphi = nr_cpu_ids - 1;
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
if (i == 0) {
|
|
|
|
rnp->grpnum = 0;
|
|
|
|
rnp->grpmask = 0;
|
|
|
|
rnp->parent = NULL;
|
|
|
|
} else {
|
2015-06-03 14:18:29 +08:00
|
|
|
rnp->grpnum = j % levelspread[i - 1];
|
2018-08-01 00:49:20 +08:00
|
|
|
rnp->grpmask = BIT(rnp->grpnum);
|
2018-07-06 08:47:45 +08:00
|
|
|
rnp->parent = rcu_state.level[i - 1] +
|
2015-06-03 14:18:29 +08:00
|
|
|
j / levelspread[i - 1];
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
}
|
|
|
|
rnp->level = i;
|
2010-11-30 13:56:39 +08:00
|
|
|
INIT_LIST_HEAD(&rnp->blkd_tasks);
|
2013-02-11 12:48:58 +08:00
|
|
|
rcu_init_one_nocb(rnp);
|
2016-01-31 09:57:35 +08:00
|
|
|
init_waitqueue_head(&rnp->exp_wq[0]);
|
|
|
|
init_waitqueue_head(&rnp->exp_wq[1]);
|
2016-03-17 07:47:55 +08:00
|
|
|
init_waitqueue_head(&rnp->exp_wq[2]);
|
|
|
|
init_waitqueue_head(&rnp->exp_wq[3]);
|
2016-01-31 09:57:35 +08:00
|
|
|
spin_lock_init(&rnp->exp_lock);
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
}
|
|
|
|
}
|
2010-03-28 11:12:30 +08:00
|
|
|
|
2018-07-06 08:47:45 +08:00
|
|
|
init_swait_queue_head(&rcu_state.gp_wq);
|
|
|
|
init_swait_queue_head(&rcu_state.expedited_wq);
|
2018-07-05 05:33:59 +08:00
|
|
|
rnp = rcu_first_leaf_node();
|
2010-03-28 11:12:30 +08:00
|
|
|
for_each_possible_cpu(i) {
|
2010-04-15 07:48:11 +08:00
|
|
|
while (i > rnp->grphi)
|
2010-03-28 11:12:30 +08:00
|
|
|
rnp++;
|
2018-07-04 06:37:16 +08:00
|
|
|
per_cpu_ptr(&rcu_data, i)->mynode = rnp;
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_boot_init_percpu_data(i);
|
2010-03-28 11:12:30 +08:00
|
|
|
}
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
}
|
|
|
|
|
2012-04-24 06:52:53 +08:00
|
|
|
/*
|
|
|
|
* Compute the rcu_node tree geometry from kernel parameters. This cannot
|
2013-10-09 11:23:47 +08:00
|
|
|
* replace the definitions in tree.h because those are needed to size
|
2012-04-24 06:52:53 +08:00
|
|
|
* the ->node array in the rcu_state structure.
|
|
|
|
*/
|
|
|
|
static void __init rcu_init_geometry(void)
|
|
|
|
{
|
2013-04-04 13:14:11 +08:00
|
|
|
ulong d;
|
2012-04-24 06:52:53 +08:00
|
|
|
int i;
|
2015-06-03 14:18:28 +08:00
|
|
|
int rcu_capacity[RCU_NUM_LVLS];
|
2012-04-24 06:52:53 +08:00
|
|
|
|
2013-04-04 13:14:11 +08:00
|
|
|
/*
|
|
|
|
* Initialize any unspecified boot parameters.
|
|
|
|
* The default values of jiffies_till_first_fqs and
|
|
|
|
* jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
|
|
|
|
* value, which is a function of HZ, then adding one for each
|
|
|
|
* RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
|
|
|
|
*/
|
|
|
|
d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
|
|
|
|
if (jiffies_till_first_fqs == ULONG_MAX)
|
|
|
|
jiffies_till_first_fqs = d;
|
|
|
|
if (jiffies_till_next_fqs == ULONG_MAX)
|
|
|
|
jiffies_till_next_fqs = d;
|
rcu: Compute jiffies_till_sched_qs from other kernel parameters
The jiffies_till_sched_qs value used to determine how old a grace period
must be before RCU enlists the help of the scheduler to force a quiescent
state on the holdout CPU. Currently, this defaults to HZ/10 regardless of
system size and may be set only at boot time. This can be a problem for
very large systems, because if the values of the jiffies_till_first_fqs
and jiffies_till_next_fqs kernel parameters are left at their defaults,
they are calculated to increase as the number of CPUs actually configured
on the system increases. Thus, on a sufficiently large system, RCU would
enlist the help of the scheduler before the grace-period kthread had a
chance to scan for idle CPUs, which wastes CPU time.
This commit therefore allows jiffies_till_sched_qs to be set, if desired,
but if left as default, computes is as jiffies_till_first_fqs plus twice
jiffies_till_next_fqs, thus allowing three force-quiescent-state scans
for idle CPUs. This scales with the number of CPUs, providing sensible
default values.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-26 02:25:23 +08:00
|
|
|
if (jiffies_till_sched_qs == ULONG_MAX)
|
|
|
|
adjust_jiffies_till_sched_qs();
|
2013-04-04 13:14:11 +08:00
|
|
|
|
2012-04-24 06:52:53 +08:00
|
|
|
/* If the compile-time values are accurate, just leave. */
|
2015-04-22 00:12:13 +08:00
|
|
|
if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
|
2012-09-07 06:38:02 +08:00
|
|
|
nr_cpu_ids == NR_CPUS)
|
2012-04-24 06:52:53 +08:00
|
|
|
return;
|
2018-05-15 04:27:33 +08:00
|
|
|
pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
|
2013-10-10 06:20:33 +08:00
|
|
|
rcu_fanout_leaf, nr_cpu_ids);
|
2012-04-24 06:52:53 +08:00
|
|
|
|
|
|
|
/*
|
2015-07-31 23:28:35 +08:00
|
|
|
* The boot-time rcu_fanout_leaf parameter must be at least two
|
|
|
|
* and cannot exceed the number of bits in the rcu_node masks.
|
|
|
|
* Complain and fall back to the compile-time values if this
|
|
|
|
* limit is exceeded.
|
2012-04-24 06:52:53 +08:00
|
|
|
*/
|
2015-07-31 23:28:35 +08:00
|
|
|
if (rcu_fanout_leaf < 2 ||
|
2015-06-03 14:18:23 +08:00
|
|
|
rcu_fanout_leaf > sizeof(unsigned long) * 8) {
|
2015-06-05 01:06:01 +08:00
|
|
|
rcu_fanout_leaf = RCU_FANOUT_LEAF;
|
2012-04-24 06:52:53 +08:00
|
|
|
WARN_ON(1);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Compute number of nodes that can be handled an rcu_node tree
|
2015-06-03 14:18:26 +08:00
|
|
|
* with the given number of levels.
|
2012-04-24 06:52:53 +08:00
|
|
|
*/
|
2015-06-03 14:18:26 +08:00
|
|
|
rcu_capacity[0] = rcu_fanout_leaf;
|
2015-06-03 14:18:28 +08:00
|
|
|
for (i = 1; i < RCU_NUM_LVLS; i++)
|
2015-04-21 05:27:43 +08:00
|
|
|
rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
|
2012-04-24 06:52:53 +08:00
|
|
|
|
|
|
|
/*
|
2015-06-03 14:18:23 +08:00
|
|
|
* The tree must be able to accommodate the configured number of CPUs.
|
2015-07-31 23:28:35 +08:00
|
|
|
* If this limit is exceeded, fall back to the compile-time values.
|
2012-04-24 06:52:53 +08:00
|
|
|
*/
|
2015-07-31 23:28:35 +08:00
|
|
|
if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
|
|
|
|
rcu_fanout_leaf = RCU_FANOUT_LEAF;
|
|
|
|
WARN_ON(1);
|
|
|
|
return;
|
|
|
|
}
|
2012-04-24 06:52:53 +08:00
|
|
|
|
2015-06-03 14:18:25 +08:00
|
|
|
/* Calculate the number of levels in the tree. */
|
2015-06-03 14:18:26 +08:00
|
|
|
for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
|
2015-06-03 14:18:25 +08:00
|
|
|
}
|
2015-06-03 14:18:26 +08:00
|
|
|
rcu_num_lvls = i + 1;
|
2015-06-03 14:18:25 +08:00
|
|
|
|
2012-04-24 06:52:53 +08:00
|
|
|
/* Calculate the number of rcu_nodes at each level of the tree. */
|
2015-06-03 14:18:25 +08:00
|
|
|
for (i = 0; i < rcu_num_lvls; i++) {
|
2015-06-03 14:18:26 +08:00
|
|
|
int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
|
2015-06-03 14:18:25 +08:00
|
|
|
num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
|
|
|
|
}
|
2012-04-24 06:52:53 +08:00
|
|
|
|
|
|
|
/* Calculate the total number of rcu_node structures. */
|
|
|
|
rcu_num_nodes = 0;
|
2015-06-03 14:18:25 +08:00
|
|
|
for (i = 0; i < rcu_num_lvls; i++)
|
2012-04-24 06:52:53 +08:00
|
|
|
rcu_num_nodes += num_rcu_lvl[i];
|
|
|
|
}
|
|
|
|
|
2015-04-21 02:40:50 +08:00
|
|
|
/*
|
|
|
|
* Dump out the structure of the rcu_node combining tree associated
|
2018-07-08 09:12:26 +08:00
|
|
|
* with the rcu_state structure.
|
2015-04-21 02:40:50 +08:00
|
|
|
*/
|
2018-07-04 08:22:34 +08:00
|
|
|
static void __init rcu_dump_rcu_node_tree(void)
|
2015-04-21 02:40:50 +08:00
|
|
|
{
|
|
|
|
int level = 0;
|
|
|
|
struct rcu_node *rnp;
|
|
|
|
|
|
|
|
pr_info("rcu_node tree layout dump\n");
|
|
|
|
pr_info(" ");
|
2018-07-05 05:33:59 +08:00
|
|
|
rcu_for_each_node_breadth_first(rnp) {
|
2015-04-21 02:40:50 +08:00
|
|
|
if (rnp->level != level) {
|
|
|
|
pr_cont("\n");
|
|
|
|
pr_info(" ");
|
|
|
|
level = rnp->level;
|
|
|
|
}
|
|
|
|
pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
|
|
|
|
}
|
|
|
|
pr_cont("\n");
|
|
|
|
}
|
|
|
|
|
2018-01-09 06:35:52 +08:00
|
|
|
struct workqueue_struct *rcu_gp_wq;
|
2018-02-02 14:05:38 +08:00
|
|
|
struct workqueue_struct *rcu_par_gp_wq;
|
2018-01-09 06:35:52 +08:00
|
|
|
|
2009-11-23 00:53:49 +08:00
|
|
|
void __init rcu_init(void)
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
{
|
2010-01-15 08:10:58 +08:00
|
|
|
int cpu;
|
2009-11-23 00:53:49 +08:00
|
|
|
|
2015-01-20 13:10:21 +08:00
|
|
|
rcu_early_boot_tests();
|
|
|
|
|
rcu: Merge preemptable-RCU functionality into hierarchical RCU
Create a kernel/rcutree_plugin.h file that contains definitions
for preemptable RCU (or, under the #else branch of the #ifdef,
empty definitions for the classic non-preemptable semantics).
These definitions fit into plugins defined in kernel/rcutree.c
for this purpose.
This variant of preemptable RCU uses a new algorithm whose
read-side expense is roughly that of classic hierarchical RCU
under CONFIG_PREEMPT. This new algorithm's update-side expense
is similar to that of classic hierarchical RCU, and, in absence
of read-side preemption or blocking, is exactly that of classic
hierarchical RCU. Perhaps more important, this new algorithm
has a much simpler implementation, saving well over 1,000 lines
of code compared to mainline's implementation of preemptable
RCU, which will hopefully be retired in favor of this new
algorithm.
The simplifications are obtained by maintaining per-task
nesting state for running tasks, and using a simple
lock-protected algorithm to handle accounting when tasks block
within RCU read-side critical sections, making use of lessons
learned while creating numerous user-level RCU implementations
over the past 18 months.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: akpm@linux-foundation.org
Cc: mathieu.desnoyers@polymtl.ca
Cc: josht@linux.vnet.ibm.com
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
LKML-Reference: <12509746134003-git-send-email->
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-23 04:56:52 +08:00
|
|
|
rcu_bootup_announce();
|
2012-04-24 06:52:53 +08:00
|
|
|
rcu_init_geometry();
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_init_one();
|
2015-04-21 02:40:50 +08:00
|
|
|
if (dump_tree)
|
2018-07-04 08:22:34 +08:00
|
|
|
rcu_dump_rcu_node_tree();
|
2013-02-03 06:13:42 +08:00
|
|
|
open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
|
2009-11-23 00:53:49 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* We don't need protection against CPU-hotplug here because
|
|
|
|
* this is called early in boot, before either interrupts
|
|
|
|
* or the scheduler are operational.
|
|
|
|
*/
|
2013-04-22 06:12:42 +08:00
|
|
|
pm_notifier(rcu_pm_notify, 0);
|
2016-07-01 04:58:26 +08:00
|
|
|
for_each_online_cpu(cpu) {
|
2016-07-14 01:17:03 +08:00
|
|
|
rcutree_prepare_cpu(cpu);
|
2016-07-01 04:58:26 +08:00
|
|
|
rcu_cpu_starting(cpu);
|
2017-08-18 08:05:59 +08:00
|
|
|
rcutree_online_cpu(cpu);
|
2016-07-01 04:58:26 +08:00
|
|
|
}
|
2018-01-09 06:35:52 +08:00
|
|
|
|
|
|
|
/* Create workqueue for expedited GPs and for Tree SRCU. */
|
|
|
|
rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
|
|
|
|
WARN_ON(!rcu_gp_wq);
|
2018-02-02 14:05:38 +08:00
|
|
|
rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
|
|
|
|
WARN_ON(!rcu_par_gp_wq);
|
srcu: Make call_srcu() available during very early boot
Event tracing is moving to SRCU in order to take advantage of the fact
that SRCU may be safely used from idle and even offline CPUs. However,
event tracing can invoke call_srcu() very early in the boot process,
even before workqueue_init_early() is invoked (let alone rcu_init()).
Therefore, call_srcu()'s attempts to queue work fail miserably.
This commit therefore detects this situation, and refrains from attempting
to queue work before rcu_init() time, but does everything else that it
would have done, and in addition, adds the srcu_struct to a global list.
The rcu_init() function now invokes a new srcu_init() function, which
is empty if CONFIG_SRCU=n. Otherwise, srcu_init() queues work for
each srcu_struct on the list. This all happens early enough in boot
that there is but a single CPU with interrupts disabled, which allows
synchronization to be dispensed with.
Of course, the queued work won't actually be invoked until after
workqueue_init() is invoked, which happens shortly after the scheduler
is up and running. This means that although call_srcu() may be invoked
any time after per-CPU variables have been set up, there is still a very
narrow window when synchronize_srcu() won't work, and this window
extends from the time that the scheduler starts until the time that
workqueue_init() returns. This can be fixed in a manner similar to
the fix for synchronize_rcu_expedited() and friends, but until someone
actually needs to use synchronize_srcu() during this window, this fix
is added churn for no benefit.
Finally, note that Tree SRCU's new srcu_init() function invokes
queue_work() rather than the queue_delayed_work() function that is
invoked post-boot. The reason is that queue_delayed_work() will (as you
would expect) post a timer, and timers have not yet been initialized.
So use of queue_work() avoids the complaints about use of uninitialized
spinlocks that would otherwise result. Besides, some delay is already
provide by the aforementioned fact that the queued work won't actually
be invoked until after the scheduler is up and running.
Requested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2018-08-14 23:45:54 +08:00
|
|
|
srcu_init();
|
"Tree RCU": scalable classic RCU implementation
This patch fixes a long-standing performance bug in classic RCU that
results in massive internal-to-RCU lock contention on systems with
more than a few hundred CPUs. Although this patch creates a separate
flavor of RCU for ease of review and patch maintenance, it is intended
to replace classic RCU.
This patch still handles stress better than does mainline, so I am still
calling it ready for inclusion. This patch is against the -tip tree.
Nevertheless, experience on an actual 1000+ CPU machine would still be
most welcome.
Most of the changes noted below were found while creating an rcutiny
(which should permit ejecting the current rcuclassic) and while doing
detailed line-by-line documentation.
Updates from v9 (http://lkml.org/lkml/2008/12/2/334):
o Fixes from remainder of line-by-line code walkthrough,
including comment spelling, initialization, undesirable
narrowing due to type conversion, removing redundant memory
barriers, removing redundant local-variable initialization,
and removing redundant local variables.
I do not believe that any of these fixes address the CPU-hotplug
issues that Andi Kleen was seeing, but please do give it a whirl
in case the machine is smarter than I am.
A writeup from the walkthrough may be found at the following
URL, in case you are suffering from terminal insomnia or
masochism:
http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf
o Made rcutree tracing use seq_file, as suggested some time
ago by Lai Jiangshan.
o Added a .csv variant of the rcudata debugfs trace file, to allow
people having thousands of CPUs to drop the data into
a spreadsheet. Tested with oocalc and gnumeric. Updated
documentation to suit.
Updates from v8 (http://lkml.org/lkml/2008/11/15/139):
o Fix a theoretical race between grace-period initialization and
force_quiescent_state() that could occur if more than three
jiffies were required to carry out the grace-period
initialization. Which it might, if you had enough CPUs.
o Apply Ingo's printk-standardization patch.
o Substitute local variables for repeated accesses to global
variables.
o Fix comment misspellings and redundant (but harmless) increments
of ->n_rcu_pending (this latter after having explicitly added it).
o Apply checkpatch fixes.
Updates from v7 (http://lkml.org/lkml/2008/10/10/291):
o Fixed a number of problems noted by Gautham Shenoy, including
the cpu-stall-detection bug that he was having difficulty
convincing me was real. ;-)
o Changed cpu-stall detection to wait for ten seconds rather than
three in order to reduce false positive, as suggested by Ingo
Molnar.
o Produced a design document (http://lwn.net/Articles/305782/).
The act of writing this document uncovered a number of both
theoretical and "here and now" bugs as noted below.
o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
condition, fix kerneldoc comments, and add memory barriers
in dynticks interface functions.
o Add more data to tracing.
o Remove unused "rcu_barrier" field from rcu_data structure.
o Count calls to rcu_pending() from scheduling-clock interrupt
to use as a surrogate timebase should jiffies stop counting.
o Fix a theoretical race between force_quiescent_state() and
grace-period initialization. Yes, initialization does have to
go on for some jiffies for this race to occur, but given enough
CPUs...
Updates from v6 (http://lkml.org/lkml/2008/9/23/448):
o Fix a number of checkpatch.pl complaints.
o Apply review comments from Ingo Molnar and Lai Jiangshan
on the stall-detection code.
o Fix several bugs in !CONFIG_SMP builds.
o Fix a misspelled config-parameter name so that RCU now announces
at boot time if stall detection is configured.
o Run tests on numerous combinations of configurations parameters,
which after the fixes above, now build and run correctly.
Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):
o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
changeset some time ago, and finally got around to retesting
this option).
o Fix some tracing bugs in rcupreempt that caused incorrect
totals to be printed.
o I now test with a more brutal random-selection online/offline
script (attached). Probably more brutal than it needs to be
on the people reading it as well, but so it goes.
o A number of optimizations and usability improvements:
o Make rcu_pending() ignore the grace-period timeout when
there is no grace period in progress.
o Make force_quiescent_state() avoid going for a global
lock in the case where there is no grace period in
progress.
o Rearrange struct fields to improve struct layout.
o Make call_rcu() initiate a grace period if RCU was
idle, rather than waiting for the next scheduling
clock interrupt.
o Invoke rcu_irq_enter() and rcu_irq_exit() only when
idle, as suggested by Andi Kleen. I still don't
completely trust this change, and might back it out.
o Make CONFIG_RCU_TRACE be the single config variable
manipulated for all forms of RCU, instead of the prior
confusion.
o Document tracing files and formats for both rcupreempt
and rcutree.
Updates from v4 for those missing v5 given its bad subject line:
o Separated dynticks interface so that NMIs and irqs call separate
functions, greatly simplifying it. In particular, this code
no longer requires a proof of correctness. ;-)
o Separated dynticks state out into its own per-CPU structure,
avoiding the duplicated accounting.
o The case where a dynticks-idle CPU runs an irq handler that
invokes call_rcu() is now correctly handled, forcing that CPU
out of dynticks-idle mode.
o Review comments have been applied (thank you all!!!).
For but one example, fixed the dynticks-ordering issue that
Manfred pointed out, saving me much debugging. ;-)
o Adjusted rcuclassic and rcupreempt to handle dynticks changes.
Attached is an updated patch to Classic RCU that applies a hierarchy,
greatly reducing the contention on the top-level lock for large machines.
This passes 10-hour concurrent rcutorture and online-offline testing on
128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
bugs in presence of dynticks (exciting working on a system where
"sleep 1" hangs until interrupted...), which were fixed in the
2.6.27 kernel. It is getting more reliable than mainline by some
measures, so the next version will be against -tip for inclusion.
See also Manfred Spraul's recent patches (or his earlier work from
2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
We will converge onto a common patch in the fullness of time, but are
currently exploring different regions of the design space. That said,
I have already gratefully stolen quite a few of Manfred's ideas.
This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
there is no hierarchy. By default, the RCU initialization code will
adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
this balancing, allowing the hierarchy to be exactly aligned to the
underlying hardware. Up to two levels of hierarchy are permitted
(in addition to the root node), allowing up to 16,384 CPUs on 32-bit
systems and up to 262,144 CPUs on 64-bit systems. I just know that I
am going to regret saying this, but this seems more than sufficient
for the foreseeable future. (Some architectures might wish to set
CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
If this becomes a real problem, additional levels can be added, but I
doubt that it will make a significant difference on real hardware.)
In the common case, a given CPU will manipulate its private rcu_data
structure and the rcu_node structure that it shares with its immediate
neighbors. This can reduce both lock and memory contention by multiple
orders of magnitude, which should eliminate the need for the strange
manipulations that are reported to be required when running Linux on
very large systems.
Some shortcomings:
o More bugs will probably surface as a result of an ongoing
line-by-line code inspection.
Patches will be provided as required.
o There are probably hangs, rcutorture failures, &c. Seems
quite stable on a 128-CPU machine, but that is kind of small
compared to 4096 CPUs. However, seems to do better than
mainline.
Patches will be provided as required.
o The memory footprint of this version is several KB larger
than rcuclassic.
A separate UP-only rcutiny patch will be provided, which will
reduce the memory footprint significantly, even compared
to the old rcuclassic. One such patch passes light testing,
and has a memory footprint smaller even than rcuclassic.
Initial reaction from various embedded guys was "it is not
worth it", so am putting it aside.
Credits:
o Manfred Spraul for ideas, review comments, and bugs spotted,
as well as some good friendly competition. ;-)
o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
for reviews and comments.
o Thomas Gleixner for much-needed help with some timer issues
(see patches below).
o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
alive despite my heavy abuse^Wtesting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-19 04:55:32 +08:00
|
|
|
}
|
|
|
|
|
2016-04-16 07:35:29 +08:00
|
|
|
#include "tree_exp.h"
|
2013-10-09 11:23:47 +08:00
|
|
|
#include "tree_plugin.h"
|