2008-07-15 00:08:37 +08:00
|
|
|
|
/*
|
|
|
|
|
* This file is part of UBIFS.
|
|
|
|
|
*
|
|
|
|
|
* Copyright (C) 2006-2008 Nokia Corporation.
|
|
|
|
|
*
|
|
|
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
|
|
|
* under the terms of the GNU General Public License version 2 as published by
|
|
|
|
|
* the Free Software Foundation.
|
|
|
|
|
*
|
|
|
|
|
* This program is distributed in the hope that it will be useful, but WITHOUT
|
|
|
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
|
|
|
* more details.
|
|
|
|
|
*
|
|
|
|
|
* You should have received a copy of the GNU General Public License along with
|
|
|
|
|
* this program; if not, write to the Free Software Foundation, Inc., 51
|
|
|
|
|
* Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
|
*
|
|
|
|
|
* Authors: Artem Bityutskiy (Битюцкий Артём)
|
|
|
|
|
* Adrian Hunter
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* This file implements UBIFS initialization and VFS superblock operations. Some
|
|
|
|
|
* initialization stuff which is rather large and complex is placed at
|
|
|
|
|
* corresponding subsystems, but most of it is here.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
#include <linux/init.h>
|
|
|
|
|
#include <linux/slab.h>
|
|
|
|
|
#include <linux/module.h>
|
|
|
|
|
#include <linux/ctype.h>
|
|
|
|
|
#include <linux/kthread.h>
|
|
|
|
|
#include <linux/parser.h>
|
|
|
|
|
#include <linux/seq_file.h>
|
|
|
|
|
#include <linux/mount.h>
|
|
|
|
|
#include "ubifs.h"
|
|
|
|
|
|
|
|
|
|
/* Slab cache for UBIFS inodes */
|
|
|
|
|
struct kmem_cache *ubifs_inode_slab;
|
|
|
|
|
|
|
|
|
|
/* UBIFS TNC shrinker description */
|
|
|
|
|
static struct shrinker ubifs_shrinker_info = {
|
|
|
|
|
.shrink = ubifs_shrinker,
|
|
|
|
|
.seeks = DEFAULT_SEEKS,
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* validate_inode - validate inode.
|
|
|
|
|
* @c: UBIFS file-system description object
|
|
|
|
|
* @inode: the inode to validate
|
|
|
|
|
*
|
|
|
|
|
* This is a helper function for 'ubifs_iget()' which validates various fields
|
|
|
|
|
* of a newly built inode to make sure they contain sane values and prevent
|
|
|
|
|
* possible vulnerabilities. Returns zero if the inode is all right and
|
|
|
|
|
* a non-zero error code if not.
|
|
|
|
|
*/
|
|
|
|
|
static int validate_inode(struct ubifs_info *c, const struct inode *inode)
|
|
|
|
|
{
|
|
|
|
|
int err;
|
|
|
|
|
const struct ubifs_inode *ui = ubifs_inode(inode);
|
|
|
|
|
|
|
|
|
|
if (inode->i_size > c->max_inode_sz) {
|
|
|
|
|
ubifs_err("inode is too large (%lld)",
|
|
|
|
|
(long long)inode->i_size);
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
|
|
|
|
|
ubifs_err("unknown compression type %d", ui->compr_type);
|
|
|
|
|
return 2;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
|
|
|
|
|
return 3;
|
|
|
|
|
|
|
|
|
|
if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
|
|
|
|
|
return 4;
|
|
|
|
|
|
|
|
|
|
if (ui->xattr && (inode->i_mode & S_IFMT) != S_IFREG)
|
|
|
|
|
return 5;
|
|
|
|
|
|
|
|
|
|
if (!ubifs_compr_present(ui->compr_type)) {
|
|
|
|
|
ubifs_warn("inode %lu uses '%s' compression, but it was not "
|
|
|
|
|
"compiled in", inode->i_ino,
|
|
|
|
|
ubifs_compr_name(ui->compr_type));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
err = dbg_check_dir_size(c, inode);
|
|
|
|
|
return err;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
|
|
|
|
|
{
|
|
|
|
|
int err;
|
|
|
|
|
union ubifs_key key;
|
|
|
|
|
struct ubifs_ino_node *ino;
|
|
|
|
|
struct ubifs_info *c = sb->s_fs_info;
|
|
|
|
|
struct inode *inode;
|
|
|
|
|
struct ubifs_inode *ui;
|
|
|
|
|
|
|
|
|
|
dbg_gen("inode %lu", inum);
|
|
|
|
|
|
|
|
|
|
inode = iget_locked(sb, inum);
|
|
|
|
|
if (!inode)
|
|
|
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
|
if (!(inode->i_state & I_NEW))
|
|
|
|
|
return inode;
|
|
|
|
|
ui = ubifs_inode(inode);
|
|
|
|
|
|
|
|
|
|
ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
|
|
|
|
|
if (!ino) {
|
|
|
|
|
err = -ENOMEM;
|
|
|
|
|
goto out;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ino_key_init(c, &key, inode->i_ino);
|
|
|
|
|
|
|
|
|
|
err = ubifs_tnc_lookup(c, &key, ino);
|
|
|
|
|
if (err)
|
|
|
|
|
goto out_ino;
|
|
|
|
|
|
|
|
|
|
inode->i_flags |= (S_NOCMTIME | S_NOATIME);
|
|
|
|
|
inode->i_nlink = le32_to_cpu(ino->nlink);
|
|
|
|
|
inode->i_uid = le32_to_cpu(ino->uid);
|
|
|
|
|
inode->i_gid = le32_to_cpu(ino->gid);
|
|
|
|
|
inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
|
|
|
|
|
inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
|
|
|
|
|
inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
|
|
|
|
|
inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
|
|
|
|
|
inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
|
|
|
|
|
inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
|
|
|
|
|
inode->i_mode = le32_to_cpu(ino->mode);
|
|
|
|
|
inode->i_size = le64_to_cpu(ino->size);
|
|
|
|
|
|
|
|
|
|
ui->data_len = le32_to_cpu(ino->data_len);
|
|
|
|
|
ui->flags = le32_to_cpu(ino->flags);
|
|
|
|
|
ui->compr_type = le16_to_cpu(ino->compr_type);
|
|
|
|
|
ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
|
|
|
|
|
ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
|
|
|
|
|
ui->xattr_size = le32_to_cpu(ino->xattr_size);
|
|
|
|
|
ui->xattr_names = le32_to_cpu(ino->xattr_names);
|
|
|
|
|
ui->synced_i_size = ui->ui_size = inode->i_size;
|
|
|
|
|
|
|
|
|
|
ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
|
|
|
|
|
|
|
|
|
|
err = validate_inode(c, inode);
|
|
|
|
|
if (err)
|
|
|
|
|
goto out_invalid;
|
|
|
|
|
|
2008-08-13 19:13:26 +08:00
|
|
|
|
/* Disable read-ahead */
|
2008-07-15 00:08:37 +08:00
|
|
|
|
inode->i_mapping->backing_dev_info = &c->bdi;
|
|
|
|
|
|
|
|
|
|
switch (inode->i_mode & S_IFMT) {
|
|
|
|
|
case S_IFREG:
|
|
|
|
|
inode->i_mapping->a_ops = &ubifs_file_address_operations;
|
|
|
|
|
inode->i_op = &ubifs_file_inode_operations;
|
|
|
|
|
inode->i_fop = &ubifs_file_operations;
|
|
|
|
|
if (ui->xattr) {
|
|
|
|
|
ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
|
|
|
|
|
if (!ui->data) {
|
|
|
|
|
err = -ENOMEM;
|
|
|
|
|
goto out_ino;
|
|
|
|
|
}
|
|
|
|
|
memcpy(ui->data, ino->data, ui->data_len);
|
|
|
|
|
((char *)ui->data)[ui->data_len] = '\0';
|
|
|
|
|
} else if (ui->data_len != 0) {
|
|
|
|
|
err = 10;
|
|
|
|
|
goto out_invalid;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
case S_IFDIR:
|
|
|
|
|
inode->i_op = &ubifs_dir_inode_operations;
|
|
|
|
|
inode->i_fop = &ubifs_dir_operations;
|
|
|
|
|
if (ui->data_len != 0) {
|
|
|
|
|
err = 11;
|
|
|
|
|
goto out_invalid;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
case S_IFLNK:
|
|
|
|
|
inode->i_op = &ubifs_symlink_inode_operations;
|
|
|
|
|
if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
|
|
|
|
|
err = 12;
|
|
|
|
|
goto out_invalid;
|
|
|
|
|
}
|
|
|
|
|
ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
|
|
|
|
|
if (!ui->data) {
|
|
|
|
|
err = -ENOMEM;
|
|
|
|
|
goto out_ino;
|
|
|
|
|
}
|
|
|
|
|
memcpy(ui->data, ino->data, ui->data_len);
|
|
|
|
|
((char *)ui->data)[ui->data_len] = '\0';
|
|
|
|
|
break;
|
|
|
|
|
case S_IFBLK:
|
|
|
|
|
case S_IFCHR:
|
|
|
|
|
{
|
|
|
|
|
dev_t rdev;
|
|
|
|
|
union ubifs_dev_desc *dev;
|
|
|
|
|
|
|
|
|
|
ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
|
|
|
|
|
if (!ui->data) {
|
|
|
|
|
err = -ENOMEM;
|
|
|
|
|
goto out_ino;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
dev = (union ubifs_dev_desc *)ino->data;
|
|
|
|
|
if (ui->data_len == sizeof(dev->new))
|
|
|
|
|
rdev = new_decode_dev(le32_to_cpu(dev->new));
|
|
|
|
|
else if (ui->data_len == sizeof(dev->huge))
|
|
|
|
|
rdev = huge_decode_dev(le64_to_cpu(dev->huge));
|
|
|
|
|
else {
|
|
|
|
|
err = 13;
|
|
|
|
|
goto out_invalid;
|
|
|
|
|
}
|
|
|
|
|
memcpy(ui->data, ino->data, ui->data_len);
|
|
|
|
|
inode->i_op = &ubifs_file_inode_operations;
|
|
|
|
|
init_special_inode(inode, inode->i_mode, rdev);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
case S_IFSOCK:
|
|
|
|
|
case S_IFIFO:
|
|
|
|
|
inode->i_op = &ubifs_file_inode_operations;
|
|
|
|
|
init_special_inode(inode, inode->i_mode, 0);
|
|
|
|
|
if (ui->data_len != 0) {
|
|
|
|
|
err = 14;
|
|
|
|
|
goto out_invalid;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
err = 15;
|
|
|
|
|
goto out_invalid;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
kfree(ino);
|
|
|
|
|
ubifs_set_inode_flags(inode);
|
|
|
|
|
unlock_new_inode(inode);
|
|
|
|
|
return inode;
|
|
|
|
|
|
|
|
|
|
out_invalid:
|
|
|
|
|
ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
|
|
|
|
|
dbg_dump_node(c, ino);
|
|
|
|
|
dbg_dump_inode(c, inode);
|
|
|
|
|
err = -EINVAL;
|
|
|
|
|
out_ino:
|
|
|
|
|
kfree(ino);
|
|
|
|
|
out:
|
|
|
|
|
ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
|
|
|
|
|
iget_failed(inode);
|
|
|
|
|
return ERR_PTR(err);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static struct inode *ubifs_alloc_inode(struct super_block *sb)
|
|
|
|
|
{
|
|
|
|
|
struct ubifs_inode *ui;
|
|
|
|
|
|
|
|
|
|
ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
|
|
|
|
|
if (!ui)
|
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
|
|
memset((void *)ui + sizeof(struct inode), 0,
|
|
|
|
|
sizeof(struct ubifs_inode) - sizeof(struct inode));
|
|
|
|
|
mutex_init(&ui->ui_mutex);
|
|
|
|
|
spin_lock_init(&ui->ui_lock);
|
|
|
|
|
return &ui->vfs_inode;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
static void ubifs_destroy_inode(struct inode *inode)
|
|
|
|
|
{
|
|
|
|
|
struct ubifs_inode *ui = ubifs_inode(inode);
|
|
|
|
|
|
|
|
|
|
kfree(ui->data);
|
|
|
|
|
kmem_cache_free(ubifs_inode_slab, inode);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Note, Linux write-back code calls this without 'i_mutex'.
|
|
|
|
|
*/
|
|
|
|
|
static int ubifs_write_inode(struct inode *inode, int wait)
|
|
|
|
|
{
|
2008-07-22 16:52:52 +08:00
|
|
|
|
int err = 0;
|
2008-07-15 00:08:37 +08:00
|
|
|
|
struct ubifs_info *c = inode->i_sb->s_fs_info;
|
|
|
|
|
struct ubifs_inode *ui = ubifs_inode(inode);
|
|
|
|
|
|
|
|
|
|
ubifs_assert(!ui->xattr);
|
|
|
|
|
if (is_bad_inode(inode))
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
mutex_lock(&ui->ui_mutex);
|
|
|
|
|
/*
|
|
|
|
|
* Due to races between write-back forced by budgeting
|
|
|
|
|
* (see 'sync_some_inodes()') and pdflush write-back, the inode may
|
|
|
|
|
* have already been synchronized, do not do this again. This might
|
|
|
|
|
* also happen if it was synchronized in an VFS operation, e.g.
|
|
|
|
|
* 'ubifs_link()'.
|
|
|
|
|
*/
|
|
|
|
|
if (!ui->dirty) {
|
|
|
|
|
mutex_unlock(&ui->ui_mutex);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
2008-07-22 16:52:52 +08:00
|
|
|
|
/*
|
|
|
|
|
* As an optimization, do not write orphan inodes to the media just
|
|
|
|
|
* because this is not needed.
|
|
|
|
|
*/
|
|
|
|
|
dbg_gen("inode %lu, mode %#x, nlink %u",
|
|
|
|
|
inode->i_ino, (int)inode->i_mode, inode->i_nlink);
|
|
|
|
|
if (inode->i_nlink) {
|
2008-07-22 17:06:13 +08:00
|
|
|
|
err = ubifs_jnl_write_inode(c, inode);
|
2008-07-22 16:52:52 +08:00
|
|
|
|
if (err)
|
|
|
|
|
ubifs_err("can't write inode %lu, error %d",
|
|
|
|
|
inode->i_ino, err);
|
|
|
|
|
}
|
2008-07-15 00:08:37 +08:00
|
|
|
|
|
|
|
|
|
ui->dirty = 0;
|
|
|
|
|
mutex_unlock(&ui->ui_mutex);
|
|
|
|
|
ubifs_release_dirty_inode_budget(c, ui);
|
|
|
|
|
return err;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void ubifs_delete_inode(struct inode *inode)
|
|
|
|
|
{
|
|
|
|
|
int err;
|
|
|
|
|
struct ubifs_info *c = inode->i_sb->s_fs_info;
|
2008-07-21 15:59:53 +08:00
|
|
|
|
struct ubifs_inode *ui = ubifs_inode(inode);
|
2008-07-15 00:08:37 +08:00
|
|
|
|
|
2008-07-21 15:59:53 +08:00
|
|
|
|
if (ui->xattr)
|
2008-07-15 00:08:37 +08:00
|
|
|
|
/*
|
|
|
|
|
* Extended attribute inode deletions are fully handled in
|
|
|
|
|
* 'ubifs_removexattr()'. These inodes are special and have
|
|
|
|
|
* limited usage, so there is nothing to do here.
|
|
|
|
|
*/
|
|
|
|
|
goto out;
|
|
|
|
|
|
2008-07-18 23:54:29 +08:00
|
|
|
|
dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
|
2008-07-15 00:08:37 +08:00
|
|
|
|
ubifs_assert(!atomic_read(&inode->i_count));
|
|
|
|
|
ubifs_assert(inode->i_nlink == 0);
|
|
|
|
|
|
|
|
|
|
truncate_inode_pages(&inode->i_data, 0);
|
|
|
|
|
if (is_bad_inode(inode))
|
|
|
|
|
goto out;
|
|
|
|
|
|
2008-07-21 15:59:53 +08:00
|
|
|
|
ui->ui_size = inode->i_size = 0;
|
2008-07-22 18:06:20 +08:00
|
|
|
|
err = ubifs_jnl_delete_inode(c, inode);
|
2008-07-15 00:08:37 +08:00
|
|
|
|
if (err)
|
|
|
|
|
/*
|
|
|
|
|
* Worst case we have a lost orphan inode wasting space, so a
|
2008-08-13 19:13:26 +08:00
|
|
|
|
* simple error message is OK here.
|
2008-07-15 00:08:37 +08:00
|
|
|
|
*/
|
2008-07-22 18:06:20 +08:00
|
|
|
|
ubifs_err("can't delete inode %lu, error %d",
|
|
|
|
|
inode->i_ino, err);
|
|
|
|
|
|
2008-07-15 00:08:37 +08:00
|
|
|
|
out:
|
2008-07-21 15:59:53 +08:00
|
|
|
|
if (ui->dirty)
|
|
|
|
|
ubifs_release_dirty_inode_budget(c, ui);
|
2008-07-15 00:08:37 +08:00
|
|
|
|
clear_inode(inode);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void ubifs_dirty_inode(struct inode *inode)
|
|
|
|
|
{
|
|
|
|
|
struct ubifs_inode *ui = ubifs_inode(inode);
|
|
|
|
|
|
|
|
|
|
ubifs_assert(mutex_is_locked(&ui->ui_mutex));
|
|
|
|
|
if (!ui->dirty) {
|
|
|
|
|
ui->dirty = 1;
|
|
|
|
|
dbg_gen("inode %lu", inode->i_ino);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
|
|
|
|
|
{
|
|
|
|
|
struct ubifs_info *c = dentry->d_sb->s_fs_info;
|
|
|
|
|
unsigned long long free;
|
2008-09-03 19:16:42 +08:00
|
|
|
|
__le32 *uuid = (__le32 *)c->uuid;
|
2008-07-15 00:08:37 +08:00
|
|
|
|
|
UBIFS: improve statfs reporting even more
Since free space we report in statfs is file size which should
fit to the FS - change the way we calculate free space and use
leb_overhead instead of dark_wm in calculations.
Results of "freespace" test (120MiB volume, 16KiB LEB size,
512 bytes page size). Before the change:
freespace: Test 1: fill the space we have 3 times
freespace: was free: 85204992 bytes 81.3 MiB, wrote: 96489472 bytes 92.0 MiB, delta: 11284480 bytes 10.8 MiB, wrote 13.2% more than predicted
freespace: was free: 83554304 bytes 79.7 MiB, wrote: 96489472 bytes 92.0 MiB, delta: 12935168 bytes 12.3 MiB, wrote 15.5% more than predicted
freespace: was free: 83554304 bytes 79.7 MiB, wrote: 96493568 bytes 92.0 MiB, delta: 12939264 bytes 12.3 MiB, wrote 15.5% more than predicted
freespace: Test 1 finished
freespace: Test 2: gradually lessen amount of free space and fill the FS
freespace: do 10 steps, lessen free space by 7596218 bytes 7.2 MiB each time
freespace: was free: 78675968 bytes 75.0 MiB, wrote: 88903680 bytes 84.8 MiB, delta: 10227712 bytes 9.8 MiB, wrote 13.0% more than predicted
freespace: was free: 72015872 bytes 68.7 MiB, wrote: 81514496 bytes 77.7 MiB, delta: 9498624 bytes 9.1 MiB, wrote 13.2% more than predicted
freespace: was free: 63938560 bytes 61.0 MiB, wrote: 72589312 bytes 69.2 MiB, delta: 8650752 bytes 8.2 MiB, wrote 13.5% more than predicted
freespace: was free: 56127488 bytes 53.5 MiB, wrote: 63762432 bytes 60.8 MiB, delta: 7634944 bytes 7.3 MiB, wrote 13.6% more than predicted
freespace: was free: 48336896 bytes 46.1 MiB, wrote: 54935552 bytes 52.4 MiB, delta: 6598656 bytes 6.3 MiB, wrote 13.7% more than predicted
freespace: was free: 40587264 bytes 38.7 MiB, wrote: 46157824 bytes 44.0 MiB, delta: 5570560 bytes 5.3 MiB, wrote 13.7% more than predicted
freespace: was free: 32841728 bytes 31.3 MiB, wrote: 37384192 bytes 35.7 MiB, delta: 4542464 bytes 4.3 MiB, wrote 13.8% more than predicted
freespace: was free: 25100288 bytes 23.9 MiB, wrote: 28618752 bytes 27.3 MiB, delta: 3518464 bytes 3.4 MiB, wrote 14.0% more than predicted
freespace: was free: 17342464 bytes 16.5 MiB, wrote: 19841024 bytes 18.9 MiB, delta: 2498560 bytes 2.4 MiB, wrote 14.4% more than predicted
freespace: was free: 9605120 bytes 9.2 MiB, wrote: 11063296 bytes 10.6 MiB, delta: 1458176 bytes 1.4 MiB, wrote 15.2% more than predicted
freespace: Test 2 finished
freespace: Test 3: gradually lessen amount of free space by trashing and fill the FS
freespace: do 10 steps, lessen free space by 7606272 bytes 7.3 MiB each time
freespace: trashing: was free: 83668992 bytes 79.8 MiB, need free: 7606272 bytes 7.3 MiB, files created: 248297, delete 225724 (90.9% of them)
freespace: was free: 70803456 bytes 67.5 MiB, wrote: 82485248 bytes 78.7 MiB, delta: 11681792 bytes 11.1 MiB, wrote 16.5% more than predicted
freespace: trashing: was free: 81080320 bytes 77.3 MiB, need free: 15212544 bytes 14.5 MiB, files created: 248711, delete 202047 (81.2% of them)
freespace: was free: 59867136 bytes 57.1 MiB, wrote: 71897088 bytes 68.6 MiB, delta: 12029952 bytes 11.5 MiB, wrote 20.1% more than predicted
freespace: trashing: was free: 82243584 bytes 78.4 MiB, need free: 22818816 bytes 21.8 MiB, files created: 248866, delete 179817 (72.3% of them)
freespace: was free: 50905088 bytes 48.5 MiB, wrote: 63168512 bytes 60.2 MiB, delta: 12263424 bytes 11.7 MiB, wrote 24.1% more than predicted
freespace: trashing: was free: 83402752 bytes 79.5 MiB, need free: 30425088 bytes 29.0 MiB, files created: 248920, delete 158114 (63.5% of them)
freespace: was free: 42651648 bytes 40.7 MiB, wrote: 55406592 bytes 52.8 MiB, delta: 12754944 bytes 12.2 MiB, wrote 29.9% more than predicted
freespace: trashing: was free: 84402176 bytes 80.5 MiB, need free: 38031360 bytes 36.3 MiB, files created: 248709, delete 136641 (54.9% of them)
freespace: was free: 35233792 bytes 33.6 MiB, wrote: 48250880 bytes 46.0 MiB, delta: 13017088 bytes 12.4 MiB, wrote 36.9% more than predicted
freespace: trashing: was free: 82530304 bytes 78.7 MiB, need free: 45637632 bytes 43.5 MiB, files created: 248778, delete 111208 (44.7% of them)
freespace: was free: 27287552 bytes 26.0 MiB, wrote: 40267776 bytes 38.4 MiB, delta: 12980224 bytes 12.4 MiB, wrote 47.6% more than predicted
freespace: trashing: was free: 85114880 bytes 81.2 MiB, need free: 53243904 bytes 50.8 MiB, files created: 248508, delete 93052 (37.4% of them)
freespace: was free: 22437888 bytes 21.4 MiB, wrote: 35328000 bytes 33.7 MiB, delta: 12890112 bytes 12.3 MiB, wrote 57.4% more than predicted
freespace: trashing: was free: 84103168 bytes 80.2 MiB, need free: 60850176 bytes 58.0 MiB, files created: 248637, delete 68743 (27.6% of them)
freespace: was free: 15536128 bytes 14.8 MiB, wrote: 28319744 bytes 27.0 MiB, delta: 12783616 bytes 12.2 MiB, wrote 82.3% more than predicted
freespace: trashing: was free: 84357120 bytes 80.4 MiB, need free: 68456448 bytes 65.3 MiB, files created: 248567, delete 46852 (18.8% of them)
freespace: was free: 9015296 bytes 8.6 MiB, wrote: 22044672 bytes 21.0 MiB, delta: 13029376 bytes 12.4 MiB, wrote 144.5% more than predicted
freespace: trashing: was free: 84942848 bytes 81.0 MiB, need free: 76062720 bytes 72.5 MiB, files created: 248636, delete 25993 (10.5% of them)
freespace: was free: 6086656 bytes 5.8 MiB, wrote: 8331264 bytes 7.9 MiB, delta: 2244608 bytes 2.1 MiB, wrote 36.9% more than predicted
freespace: Test 3 finished
freespace: finished successfully
After the change:
freespace: Test 1: fill the space we have 3 times
freespace: was free: 94048256 bytes 89.7 MiB, wrote: 96489472 bytes 92.0 MiB, delta: 2441216 bytes 2.3 MiB, wrote 2.6% more than predicted
freespace: was free: 92246016 bytes 88.0 MiB, wrote: 96493568 bytes 92.0 MiB, delta: 4247552 bytes 4.1 MiB, wrote 4.6% more than predicted
freespace: was free: 92254208 bytes 88.0 MiB, wrote: 96489472 bytes 92.0 MiB, delta: 4235264 bytes 4.0 MiB, wrote 4.6% more than predicted
freespace: Test 1 finished
freespace: Test 2: gradually lessen amount of free space and fill the FS
freespace: do 10 steps, lessen free space by 8386001 bytes 8.0 MiB each time
freespace: was free: 86605824 bytes 82.6 MiB, wrote: 88252416 bytes 84.2 MiB, delta: 1646592 bytes 1.6 MiB, wrote 1.9% more than predicted
freespace: was free: 78667776 bytes 75.0 MiB, wrote: 80715776 bytes 77.0 MiB, delta: 2048000 bytes 2.0 MiB, wrote 2.6% more than predicted
freespace: was free: 69615616 bytes 66.4 MiB, wrote: 71630848 bytes 68.3 MiB, delta: 2015232 bytes 1.9 MiB, wrote 2.9% more than predicted
freespace: was free: 61018112 bytes 58.2 MiB, wrote: 62783488 bytes 59.9 MiB, delta: 1765376 bytes 1.7 MiB, wrote 2.9% more than predicted
freespace: was free: 52424704 bytes 50.0 MiB, wrote: 53968896 bytes 51.5 MiB, delta: 1544192 bytes 1.5 MiB, wrote 2.9% more than predicted
freespace: was free: 43880448 bytes 41.8 MiB, wrote: 45199360 bytes 43.1 MiB, delta: 1318912 bytes 1.3 MiB, wrote 3.0% more than predicted
freespace: was free: 35332096 bytes 33.7 MiB, wrote: 36425728 bytes 34.7 MiB, delta: 1093632 bytes 1.0 MiB, wrote 3.1% more than predicted
freespace: was free: 26771456 bytes 25.5 MiB, wrote: 27643904 bytes 26.4 MiB, delta: 872448 bytes 852.0 KiB, wrote 3.3% more than predicted
freespace: was free: 18231296 bytes 17.4 MiB, wrote: 18878464 bytes 18.0 MiB, delta: 647168 bytes 632.0 KiB, wrote 3.5% more than predicted
freespace: was free: 9674752 bytes 9.2 MiB, wrote: 10088448 bytes 9.6 MiB, delta: 413696 bytes 404.0 KiB, wrote 4.3% more than predicted
freespace: Test 2 finished
freespace: Test 3: gradually lessen amount of free space by trashing and fill the FS
freespace: do 10 steps, lessen free space by 8397544 bytes 8.0 MiB each time
freespace: trashing: was free: 92372992 bytes 88.1 MiB, need free: 8397552 bytes 8.0 MiB, files created: 248296, delete 225723 (90.9% of them)
freespace: was free: 71909376 bytes 68.6 MiB, wrote: 82472960 bytes 78.7 MiB, delta: 10563584 bytes 10.1 MiB, wrote 14.7% more than predicted
freespace: trashing: was free: 88989696 bytes 84.9 MiB, need free: 16795096 bytes 16.0 MiB, files created: 248794, delete 201838 (81.1% of them)
freespace: was free: 60354560 bytes 57.6 MiB, wrote: 71782400 bytes 68.5 MiB, delta: 11427840 bytes 10.9 MiB, wrote 18.9% more than predicted
freespace: trashing: was free: 90304512 bytes 86.1 MiB, need free: 25192640 bytes 24.0 MiB, files created: 248733, delete 179342 (72.1% of them)
freespace: was free: 51187712 bytes 48.8 MiB, wrote: 62943232 bytes 60.0 MiB, delta: 11755520 bytes 11.2 MiB, wrote 23.0% more than predicted
freespace: trashing: was free: 91209728 bytes 87.0 MiB, need free: 33590184 bytes 32.0 MiB, files created: 248779, delete 157160 (63.2% of them)
freespace: was free: 42704896 bytes 40.7 MiB, wrote: 55050240 bytes 52.5 MiB, delta: 12345344 bytes 11.8 MiB, wrote 28.9% more than predicted
freespace: trashing: was free: 92700672 bytes 88.4 MiB, need free: 41987728 bytes 40.0 MiB, files created: 248848, delete 136135 (54.7% of them)
freespace: was free: 35250176 bytes 33.6 MiB, wrote: 48115712 bytes 45.9 MiB, delta: 12865536 bytes 12.3 MiB, wrote 36.5% more than predicted
freespace: trashing: was free: 93986816 bytes 89.6 MiB, need free: 50385272 bytes 48.1 MiB, files created: 248723, delete 115385 (46.4% of them)
freespace: was free: 29995008 bytes 28.6 MiB, wrote: 41582592 bytes 39.7 MiB, delta: 11587584 bytes 11.1 MiB, wrote 38.6% more than predicted
freespace: trashing: was free: 91881472 bytes 87.6 MiB, need free: 58782816 bytes 56.1 MiB, files created: 248645, delete 89569 (36.0% of them)
freespace: was free: 22511616 bytes 21.5 MiB, wrote: 34705408 bytes 33.1 MiB, delta: 12193792 bytes 11.6 MiB, wrote 54.2% more than predicted
freespace: trashing: was free: 91774976 bytes 87.5 MiB, need free: 67180360 bytes 64.1 MiB, files created: 248580, delete 66616 (26.8% of them)
freespace: was free: 16908288 bytes 16.1 MiB, wrote: 26898432 bytes 25.7 MiB, delta: 9990144 bytes 9.5 MiB, wrote 59.1% more than predicted
freespace: trashing: was free: 92450816 bytes 88.2 MiB, need free: 75577904 bytes 72.1 MiB, files created: 248654, delete 45381 (18.3% of them)
freespace: was free: 10170368 bytes 9.7 MiB, wrote: 19111936 bytes 18.2 MiB, delta: 8941568 bytes 8.5 MiB, wrote 87.9% more than predicted
freespace: trashing: was free: 93282304 bytes 89.0 MiB, need free: 83975448 bytes 80.1 MiB, files created: 248513, delete 24794 (10.0% of them)
freespace: was free: 3911680 bytes 3.7 MiB, wrote: 7872512 bytes 7.5 MiB, delta: 3960832 bytes 3.8 MiB, wrote 101.3% more than predicted
freespace: Test 3 finished
freespace: finished successfully
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
2008-08-25 23:58:19 +08:00
|
|
|
|
free = ubifs_get_free_space(c);
|
2008-07-15 00:08:37 +08:00
|
|
|
|
dbg_gen("free space %lld bytes (%lld blocks)",
|
|
|
|
|
free, free >> UBIFS_BLOCK_SHIFT);
|
|
|
|
|
|
|
|
|
|
buf->f_type = UBIFS_SUPER_MAGIC;
|
|
|
|
|
buf->f_bsize = UBIFS_BLOCK_SIZE;
|
|
|
|
|
buf->f_blocks = c->block_cnt;
|
|
|
|
|
buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
|
|
|
|
|
if (free > c->report_rp_size)
|
|
|
|
|
buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
|
|
|
|
|
else
|
|
|
|
|
buf->f_bavail = 0;
|
|
|
|
|
buf->f_files = 0;
|
|
|
|
|
buf->f_ffree = 0;
|
|
|
|
|
buf->f_namelen = UBIFS_MAX_NLEN;
|
2008-09-03 19:16:42 +08:00
|
|
|
|
buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
|
|
|
|
|
buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
|
2008-07-15 00:08:37 +08:00
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static int ubifs_show_options(struct seq_file *s, struct vfsmount *mnt)
|
|
|
|
|
{
|
|
|
|
|
struct ubifs_info *c = mnt->mnt_sb->s_fs_info;
|
|
|
|
|
|
|
|
|
|
if (c->mount_opts.unmount_mode == 2)
|
|
|
|
|
seq_printf(s, ",fast_unmount");
|
|
|
|
|
else if (c->mount_opts.unmount_mode == 1)
|
|
|
|
|
seq_printf(s, ",norm_unmount");
|
|
|
|
|
|
2008-09-02 21:29:46 +08:00
|
|
|
|
if (c->mount_opts.bulk_read == 2)
|
|
|
|
|
seq_printf(s, ",bulk_read");
|
|
|
|
|
else if (c->mount_opts.bulk_read == 1)
|
|
|
|
|
seq_printf(s, ",no_bulk_read");
|
|
|
|
|
|
2008-09-04 21:26:00 +08:00
|
|
|
|
if (c->mount_opts.chk_data_crc == 2)
|
|
|
|
|
seq_printf(s, ",chk_data_crc");
|
|
|
|
|
else if (c->mount_opts.chk_data_crc == 1)
|
|
|
|
|
seq_printf(s, ",no_chk_data_crc");
|
|
|
|
|
|
2008-07-15 00:08:37 +08:00
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static int ubifs_sync_fs(struct super_block *sb, int wait)
|
|
|
|
|
{
|
|
|
|
|
struct ubifs_info *c = sb->s_fs_info;
|
|
|
|
|
int i, ret = 0, err;
|
2008-09-09 17:31:37 +08:00
|
|
|
|
long long bud_bytes;
|
2008-07-15 00:08:37 +08:00
|
|
|
|
|
|
|
|
|
if (c->jheads)
|
|
|
|
|
for (i = 0; i < c->jhead_cnt; i++) {
|
|
|
|
|
err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
|
|
|
|
|
if (err && !ret)
|
|
|
|
|
ret = err;
|
|
|
|
|
}
|
2008-09-09 17:31:37 +08:00
|
|
|
|
|
|
|
|
|
/* Commit the journal unless it has too few data */
|
|
|
|
|
spin_lock(&c->buds_lock);
|
|
|
|
|
bud_bytes = c->bud_bytes;
|
|
|
|
|
spin_unlock(&c->buds_lock);
|
|
|
|
|
if (bud_bytes > c->leb_size) {
|
|
|
|
|
err = ubifs_run_commit(c);
|
|
|
|
|
if (err)
|
|
|
|
|
return err;
|
|
|
|
|
}
|
|
|
|
|
|
2008-07-15 00:08:37 +08:00
|
|
|
|
/*
|
|
|
|
|
* We ought to call sync for c->ubi but it does not have one. If it had
|
|
|
|
|
* it would in turn call mtd->sync, however mtd operations are
|
|
|
|
|
* synchronous anyway, so we don't lose any sleep here.
|
|
|
|
|
*/
|
|
|
|
|
return ret;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* init_constants_early - initialize UBIFS constants.
|
|
|
|
|
* @c: UBIFS file-system description object
|
|
|
|
|
*
|
|
|
|
|
* This function initialize UBIFS constants which do not need the superblock to
|
|
|
|
|
* be read. It also checks that the UBI volume satisfies basic UBIFS
|
|
|
|
|
* requirements. Returns zero in case of success and a negative error code in
|
|
|
|
|
* case of failure.
|
|
|
|
|
*/
|
|
|
|
|
static int init_constants_early(struct ubifs_info *c)
|
|
|
|
|
{
|
|
|
|
|
if (c->vi.corrupted) {
|
|
|
|
|
ubifs_warn("UBI volume is corrupted - read-only mode");
|
|
|
|
|
c->ro_media = 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (c->di.ro_mode) {
|
|
|
|
|
ubifs_msg("read-only UBI device");
|
|
|
|
|
c->ro_media = 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (c->vi.vol_type == UBI_STATIC_VOLUME) {
|
|
|
|
|
ubifs_msg("static UBI volume - read-only mode");
|
|
|
|
|
c->ro_media = 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
c->leb_cnt = c->vi.size;
|
|
|
|
|
c->leb_size = c->vi.usable_leb_size;
|
|
|
|
|
c->half_leb_size = c->leb_size / 2;
|
|
|
|
|
c->min_io_size = c->di.min_io_size;
|
|
|
|
|
c->min_io_shift = fls(c->min_io_size) - 1;
|
|
|
|
|
|
|
|
|
|
if (c->leb_size < UBIFS_MIN_LEB_SZ) {
|
|
|
|
|
ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
|
|
|
|
|
c->leb_size, UBIFS_MIN_LEB_SZ);
|
|
|
|
|
return -EINVAL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
|
|
|
|
|
ubifs_err("too few LEBs (%d), min. is %d",
|
|
|
|
|
c->leb_cnt, UBIFS_MIN_LEB_CNT);
|
|
|
|
|
return -EINVAL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!is_power_of_2(c->min_io_size)) {
|
|
|
|
|
ubifs_err("bad min. I/O size %d", c->min_io_size);
|
|
|
|
|
return -EINVAL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* UBIFS aligns all node to 8-byte boundary, so to make function in
|
|
|
|
|
* io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
|
|
|
|
|
* less than 8.
|
|
|
|
|
*/
|
|
|
|
|
if (c->min_io_size < 8) {
|
|
|
|
|
c->min_io_size = 8;
|
|
|
|
|
c->min_io_shift = 3;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
|
|
|
|
|
c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Initialize node length ranges which are mostly needed for node
|
|
|
|
|
* length validation.
|
|
|
|
|
*/
|
|
|
|
|
c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
|
|
|
|
|
c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
|
|
|
|
|
c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
|
|
|
|
|
c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
|
|
|
|
|
c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
|
|
|
|
|
c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
|
|
|
|
|
|
|
|
|
|
c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
|
|
|
|
|
c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
|
|
|
|
|
c->ranges[UBIFS_ORPH_NODE].min_len =
|
|
|
|
|
UBIFS_ORPH_NODE_SZ + sizeof(__le64);
|
|
|
|
|
c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
|
|
|
|
|
c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
|
|
|
|
|
c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
|
|
|
|
|
c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
|
|
|
|
|
c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
|
|
|
|
|
c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
|
|
|
|
|
c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
|
|
|
|
|
/*
|
|
|
|
|
* Minimum indexing node size is amended later when superblock is
|
|
|
|
|
* read and the key length is known.
|
|
|
|
|
*/
|
|
|
|
|
c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
|
|
|
|
|
/*
|
|
|
|
|
* Maximum indexing node size is amended later when superblock is
|
|
|
|
|
* read and the fanout is known.
|
|
|
|
|
*/
|
|
|
|
|
c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Initialize dead and dark LEB space watermarks.
|
|
|
|
|
*
|
|
|
|
|
* Dead space is the space which cannot be used. Its watermark is
|
|
|
|
|
* equivalent to min. I/O unit or minimum node size if it is greater
|
|
|
|
|
* then min. I/O unit.
|
|
|
|
|
*
|
|
|
|
|
* Dark space is the space which might be used, or might not, depending
|
|
|
|
|
* on which node should be written to the LEB. Its watermark is
|
|
|
|
|
* equivalent to maximum UBIFS node size.
|
|
|
|
|
*/
|
|
|
|
|
c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
|
|
|
|
|
c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
|
|
|
|
|
|
2008-08-22 23:23:22 +08:00
|
|
|
|
/*
|
|
|
|
|
* Calculate how many bytes would be wasted at the end of LEB if it was
|
|
|
|
|
* fully filled with data nodes of maximum size. This is used in
|
|
|
|
|
* calculations when reporting free space.
|
|
|
|
|
*/
|
|
|
|
|
c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
|
2008-09-02 21:29:46 +08:00
|
|
|
|
/* Buffer size for bulk-reads */
|
|
|
|
|
c->bulk_read_buf_size = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
|
|
|
|
|
if (c->bulk_read_buf_size > c->leb_size)
|
|
|
|
|
c->bulk_read_buf_size = c->leb_size;
|
|
|
|
|
if (c->bulk_read_buf_size > 128 * 1024) {
|
|
|
|
|
/* Check if we can kmalloc more than 128KiB */
|
|
|
|
|
void *try = kmalloc(c->bulk_read_buf_size, GFP_KERNEL);
|
|
|
|
|
|
|
|
|
|
kfree(try);
|
|
|
|
|
if (!try)
|
|
|
|
|
c->bulk_read_buf_size = 128 * 1024;
|
|
|
|
|
}
|
2008-07-15 00:08:37 +08:00
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
|
|
|
|
|
* @c: UBIFS file-system description object
|
|
|
|
|
* @lnum: LEB the write-buffer was synchronized to
|
|
|
|
|
* @free: how many free bytes left in this LEB
|
|
|
|
|
* @pad: how many bytes were padded
|
|
|
|
|
*
|
|
|
|
|
* This is a callback function which is called by the I/O unit when the
|
|
|
|
|
* write-buffer is synchronized. We need this to correctly maintain space
|
|
|
|
|
* accounting in bud logical eraseblocks. This function returns zero in case of
|
|
|
|
|
* success and a negative error code in case of failure.
|
|
|
|
|
*
|
|
|
|
|
* This function actually belongs to the journal, but we keep it here because
|
|
|
|
|
* we want to keep it static.
|
|
|
|
|
*/
|
|
|
|
|
static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
|
|
|
|
|
{
|
|
|
|
|
return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* init_constants_late - initialize UBIFS constants.
|
|
|
|
|
* @c: UBIFS file-system description object
|
|
|
|
|
*
|
|
|
|
|
* This is a helper function which initializes various UBIFS constants after
|
|
|
|
|
* the superblock has been read. It also checks various UBIFS parameters and
|
|
|
|
|
* makes sure they are all right. Returns zero in case of success and a
|
|
|
|
|
* negative error code in case of failure.
|
|
|
|
|
*/
|
|
|
|
|
static int init_constants_late(struct ubifs_info *c)
|
|
|
|
|
{
|
|
|
|
|
int tmp, err;
|
|
|
|
|
uint64_t tmp64;
|
|
|
|
|
|
|
|
|
|
c->main_bytes = (long long)c->main_lebs * c->leb_size;
|
|
|
|
|
c->max_znode_sz = sizeof(struct ubifs_znode) +
|
|
|
|
|
c->fanout * sizeof(struct ubifs_zbranch);
|
|
|
|
|
|
|
|
|
|
tmp = ubifs_idx_node_sz(c, 1);
|
|
|
|
|
c->ranges[UBIFS_IDX_NODE].min_len = tmp;
|
|
|
|
|
c->min_idx_node_sz = ALIGN(tmp, 8);
|
|
|
|
|
|
|
|
|
|
tmp = ubifs_idx_node_sz(c, c->fanout);
|
|
|
|
|
c->ranges[UBIFS_IDX_NODE].max_len = tmp;
|
|
|
|
|
c->max_idx_node_sz = ALIGN(tmp, 8);
|
|
|
|
|
|
|
|
|
|
/* Make sure LEB size is large enough to fit full commit */
|
|
|
|
|
tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
|
|
|
|
|
tmp = ALIGN(tmp, c->min_io_size);
|
|
|
|
|
if (tmp > c->leb_size) {
|
|
|
|
|
dbg_err("too small LEB size %d, at least %d needed",
|
|
|
|
|
c->leb_size, tmp);
|
|
|
|
|
return -EINVAL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Make sure that the log is large enough to fit reference nodes for
|
|
|
|
|
* all buds plus one reserved LEB.
|
|
|
|
|
*/
|
|
|
|
|
tmp64 = c->max_bud_bytes;
|
|
|
|
|
tmp = do_div(tmp64, c->leb_size);
|
|
|
|
|
c->max_bud_cnt = tmp64 + !!tmp;
|
|
|
|
|
tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
|
|
|
|
|
tmp /= c->leb_size;
|
|
|
|
|
tmp += 1;
|
|
|
|
|
if (c->log_lebs < tmp) {
|
|
|
|
|
dbg_err("too small log %d LEBs, required min. %d LEBs",
|
|
|
|
|
c->log_lebs, tmp);
|
|
|
|
|
return -EINVAL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* When budgeting we assume worst-case scenarios when the pages are not
|
|
|
|
|
* be compressed and direntries are of the maximum size.
|
|
|
|
|
*
|
|
|
|
|
* Note, data, which may be stored in inodes is budgeted separately, so
|
|
|
|
|
* it is not included into 'c->inode_budget'.
|
|
|
|
|
*/
|
|
|
|
|
c->page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
|
|
|
|
|
c->inode_budget = UBIFS_INO_NODE_SZ;
|
|
|
|
|
c->dent_budget = UBIFS_MAX_DENT_NODE_SZ;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* When the amount of flash space used by buds becomes
|
|
|
|
|
* 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
|
|
|
|
|
* The writers are unblocked when the commit is finished. To avoid
|
|
|
|
|
* writers to be blocked UBIFS initiates background commit in advance,
|
|
|
|
|
* when number of bud bytes becomes above the limit defined below.
|
|
|
|
|
*/
|
|
|
|
|
c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Ensure minimum journal size. All the bytes in the journal heads are
|
|
|
|
|
* considered to be used, when calculating the current journal usage.
|
|
|
|
|
* Consequently, if the journal is too small, UBIFS will treat it as
|
|
|
|
|
* always full.
|
|
|
|
|
*/
|
|
|
|
|
tmp64 = (uint64_t)(c->jhead_cnt + 1) * c->leb_size + 1;
|
|
|
|
|
if (c->bg_bud_bytes < tmp64)
|
|
|
|
|
c->bg_bud_bytes = tmp64;
|
|
|
|
|
if (c->max_bud_bytes < tmp64 + c->leb_size)
|
|
|
|
|
c->max_bud_bytes = tmp64 + c->leb_size;
|
|
|
|
|
|
|
|
|
|
err = ubifs_calc_lpt_geom(c);
|
|
|
|
|
if (err)
|
|
|
|
|
return err;
|
|
|
|
|
|
|
|
|
|
c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Calculate total amount of FS blocks. This number is not used
|
|
|
|
|
* internally because it does not make much sense for UBIFS, but it is
|
|
|
|
|
* necessary to report something for the 'statfs()' call.
|
|
|
|
|
*
|
UBIFS: improve statfs reporting even more
Since free space we report in statfs is file size which should
fit to the FS - change the way we calculate free space and use
leb_overhead instead of dark_wm in calculations.
Results of "freespace" test (120MiB volume, 16KiB LEB size,
512 bytes page size). Before the change:
freespace: Test 1: fill the space we have 3 times
freespace: was free: 85204992 bytes 81.3 MiB, wrote: 96489472 bytes 92.0 MiB, delta: 11284480 bytes 10.8 MiB, wrote 13.2% more than predicted
freespace: was free: 83554304 bytes 79.7 MiB, wrote: 96489472 bytes 92.0 MiB, delta: 12935168 bytes 12.3 MiB, wrote 15.5% more than predicted
freespace: was free: 83554304 bytes 79.7 MiB, wrote: 96493568 bytes 92.0 MiB, delta: 12939264 bytes 12.3 MiB, wrote 15.5% more than predicted
freespace: Test 1 finished
freespace: Test 2: gradually lessen amount of free space and fill the FS
freespace: do 10 steps, lessen free space by 7596218 bytes 7.2 MiB each time
freespace: was free: 78675968 bytes 75.0 MiB, wrote: 88903680 bytes 84.8 MiB, delta: 10227712 bytes 9.8 MiB, wrote 13.0% more than predicted
freespace: was free: 72015872 bytes 68.7 MiB, wrote: 81514496 bytes 77.7 MiB, delta: 9498624 bytes 9.1 MiB, wrote 13.2% more than predicted
freespace: was free: 63938560 bytes 61.0 MiB, wrote: 72589312 bytes 69.2 MiB, delta: 8650752 bytes 8.2 MiB, wrote 13.5% more than predicted
freespace: was free: 56127488 bytes 53.5 MiB, wrote: 63762432 bytes 60.8 MiB, delta: 7634944 bytes 7.3 MiB, wrote 13.6% more than predicted
freespace: was free: 48336896 bytes 46.1 MiB, wrote: 54935552 bytes 52.4 MiB, delta: 6598656 bytes 6.3 MiB, wrote 13.7% more than predicted
freespace: was free: 40587264 bytes 38.7 MiB, wrote: 46157824 bytes 44.0 MiB, delta: 5570560 bytes 5.3 MiB, wrote 13.7% more than predicted
freespace: was free: 32841728 bytes 31.3 MiB, wrote: 37384192 bytes 35.7 MiB, delta: 4542464 bytes 4.3 MiB, wrote 13.8% more than predicted
freespace: was free: 25100288 bytes 23.9 MiB, wrote: 28618752 bytes 27.3 MiB, delta: 3518464 bytes 3.4 MiB, wrote 14.0% more than predicted
freespace: was free: 17342464 bytes 16.5 MiB, wrote: 19841024 bytes 18.9 MiB, delta: 2498560 bytes 2.4 MiB, wrote 14.4% more than predicted
freespace: was free: 9605120 bytes 9.2 MiB, wrote: 11063296 bytes 10.6 MiB, delta: 1458176 bytes 1.4 MiB, wrote 15.2% more than predicted
freespace: Test 2 finished
freespace: Test 3: gradually lessen amount of free space by trashing and fill the FS
freespace: do 10 steps, lessen free space by 7606272 bytes 7.3 MiB each time
freespace: trashing: was free: 83668992 bytes 79.8 MiB, need free: 7606272 bytes 7.3 MiB, files created: 248297, delete 225724 (90.9% of them)
freespace: was free: 70803456 bytes 67.5 MiB, wrote: 82485248 bytes 78.7 MiB, delta: 11681792 bytes 11.1 MiB, wrote 16.5% more than predicted
freespace: trashing: was free: 81080320 bytes 77.3 MiB, need free: 15212544 bytes 14.5 MiB, files created: 248711, delete 202047 (81.2% of them)
freespace: was free: 59867136 bytes 57.1 MiB, wrote: 71897088 bytes 68.6 MiB, delta: 12029952 bytes 11.5 MiB, wrote 20.1% more than predicted
freespace: trashing: was free: 82243584 bytes 78.4 MiB, need free: 22818816 bytes 21.8 MiB, files created: 248866, delete 179817 (72.3% of them)
freespace: was free: 50905088 bytes 48.5 MiB, wrote: 63168512 bytes 60.2 MiB, delta: 12263424 bytes 11.7 MiB, wrote 24.1% more than predicted
freespace: trashing: was free: 83402752 bytes 79.5 MiB, need free: 30425088 bytes 29.0 MiB, files created: 248920, delete 158114 (63.5% of them)
freespace: was free: 42651648 bytes 40.7 MiB, wrote: 55406592 bytes 52.8 MiB, delta: 12754944 bytes 12.2 MiB, wrote 29.9% more than predicted
freespace: trashing: was free: 84402176 bytes 80.5 MiB, need free: 38031360 bytes 36.3 MiB, files created: 248709, delete 136641 (54.9% of them)
freespace: was free: 35233792 bytes 33.6 MiB, wrote: 48250880 bytes 46.0 MiB, delta: 13017088 bytes 12.4 MiB, wrote 36.9% more than predicted
freespace: trashing: was free: 82530304 bytes 78.7 MiB, need free: 45637632 bytes 43.5 MiB, files created: 248778, delete 111208 (44.7% of them)
freespace: was free: 27287552 bytes 26.0 MiB, wrote: 40267776 bytes 38.4 MiB, delta: 12980224 bytes 12.4 MiB, wrote 47.6% more than predicted
freespace: trashing: was free: 85114880 bytes 81.2 MiB, need free: 53243904 bytes 50.8 MiB, files created: 248508, delete 93052 (37.4% of them)
freespace: was free: 22437888 bytes 21.4 MiB, wrote: 35328000 bytes 33.7 MiB, delta: 12890112 bytes 12.3 MiB, wrote 57.4% more than predicted
freespace: trashing: was free: 84103168 bytes 80.2 MiB, need free: 60850176 bytes 58.0 MiB, files created: 248637, delete 68743 (27.6% of them)
freespace: was free: 15536128 bytes 14.8 MiB, wrote: 28319744 bytes 27.0 MiB, delta: 12783616 bytes 12.2 MiB, wrote 82.3% more than predicted
freespace: trashing: was free: 84357120 bytes 80.4 MiB, need free: 68456448 bytes 65.3 MiB, files created: 248567, delete 46852 (18.8% of them)
freespace: was free: 9015296 bytes 8.6 MiB, wrote: 22044672 bytes 21.0 MiB, delta: 13029376 bytes 12.4 MiB, wrote 144.5% more than predicted
freespace: trashing: was free: 84942848 bytes 81.0 MiB, need free: 76062720 bytes 72.5 MiB, files created: 248636, delete 25993 (10.5% of them)
freespace: was free: 6086656 bytes 5.8 MiB, wrote: 8331264 bytes 7.9 MiB, delta: 2244608 bytes 2.1 MiB, wrote 36.9% more than predicted
freespace: Test 3 finished
freespace: finished successfully
After the change:
freespace: Test 1: fill the space we have 3 times
freespace: was free: 94048256 bytes 89.7 MiB, wrote: 96489472 bytes 92.0 MiB, delta: 2441216 bytes 2.3 MiB, wrote 2.6% more than predicted
freespace: was free: 92246016 bytes 88.0 MiB, wrote: 96493568 bytes 92.0 MiB, delta: 4247552 bytes 4.1 MiB, wrote 4.6% more than predicted
freespace: was free: 92254208 bytes 88.0 MiB, wrote: 96489472 bytes 92.0 MiB, delta: 4235264 bytes 4.0 MiB, wrote 4.6% more than predicted
freespace: Test 1 finished
freespace: Test 2: gradually lessen amount of free space and fill the FS
freespace: do 10 steps, lessen free space by 8386001 bytes 8.0 MiB each time
freespace: was free: 86605824 bytes 82.6 MiB, wrote: 88252416 bytes 84.2 MiB, delta: 1646592 bytes 1.6 MiB, wrote 1.9% more than predicted
freespace: was free: 78667776 bytes 75.0 MiB, wrote: 80715776 bytes 77.0 MiB, delta: 2048000 bytes 2.0 MiB, wrote 2.6% more than predicted
freespace: was free: 69615616 bytes 66.4 MiB, wrote: 71630848 bytes 68.3 MiB, delta: 2015232 bytes 1.9 MiB, wrote 2.9% more than predicted
freespace: was free: 61018112 bytes 58.2 MiB, wrote: 62783488 bytes 59.9 MiB, delta: 1765376 bytes 1.7 MiB, wrote 2.9% more than predicted
freespace: was free: 52424704 bytes 50.0 MiB, wrote: 53968896 bytes 51.5 MiB, delta: 1544192 bytes 1.5 MiB, wrote 2.9% more than predicted
freespace: was free: 43880448 bytes 41.8 MiB, wrote: 45199360 bytes 43.1 MiB, delta: 1318912 bytes 1.3 MiB, wrote 3.0% more than predicted
freespace: was free: 35332096 bytes 33.7 MiB, wrote: 36425728 bytes 34.7 MiB, delta: 1093632 bytes 1.0 MiB, wrote 3.1% more than predicted
freespace: was free: 26771456 bytes 25.5 MiB, wrote: 27643904 bytes 26.4 MiB, delta: 872448 bytes 852.0 KiB, wrote 3.3% more than predicted
freespace: was free: 18231296 bytes 17.4 MiB, wrote: 18878464 bytes 18.0 MiB, delta: 647168 bytes 632.0 KiB, wrote 3.5% more than predicted
freespace: was free: 9674752 bytes 9.2 MiB, wrote: 10088448 bytes 9.6 MiB, delta: 413696 bytes 404.0 KiB, wrote 4.3% more than predicted
freespace: Test 2 finished
freespace: Test 3: gradually lessen amount of free space by trashing and fill the FS
freespace: do 10 steps, lessen free space by 8397544 bytes 8.0 MiB each time
freespace: trashing: was free: 92372992 bytes 88.1 MiB, need free: 8397552 bytes 8.0 MiB, files created: 248296, delete 225723 (90.9% of them)
freespace: was free: 71909376 bytes 68.6 MiB, wrote: 82472960 bytes 78.7 MiB, delta: 10563584 bytes 10.1 MiB, wrote 14.7% more than predicted
freespace: trashing: was free: 88989696 bytes 84.9 MiB, need free: 16795096 bytes 16.0 MiB, files created: 248794, delete 201838 (81.1% of them)
freespace: was free: 60354560 bytes 57.6 MiB, wrote: 71782400 bytes 68.5 MiB, delta: 11427840 bytes 10.9 MiB, wrote 18.9% more than predicted
freespace: trashing: was free: 90304512 bytes 86.1 MiB, need free: 25192640 bytes 24.0 MiB, files created: 248733, delete 179342 (72.1% of them)
freespace: was free: 51187712 bytes 48.8 MiB, wrote: 62943232 bytes 60.0 MiB, delta: 11755520 bytes 11.2 MiB, wrote 23.0% more than predicted
freespace: trashing: was free: 91209728 bytes 87.0 MiB, need free: 33590184 bytes 32.0 MiB, files created: 248779, delete 157160 (63.2% of them)
freespace: was free: 42704896 bytes 40.7 MiB, wrote: 55050240 bytes 52.5 MiB, delta: 12345344 bytes 11.8 MiB, wrote 28.9% more than predicted
freespace: trashing: was free: 92700672 bytes 88.4 MiB, need free: 41987728 bytes 40.0 MiB, files created: 248848, delete 136135 (54.7% of them)
freespace: was free: 35250176 bytes 33.6 MiB, wrote: 48115712 bytes 45.9 MiB, delta: 12865536 bytes 12.3 MiB, wrote 36.5% more than predicted
freespace: trashing: was free: 93986816 bytes 89.6 MiB, need free: 50385272 bytes 48.1 MiB, files created: 248723, delete 115385 (46.4% of them)
freespace: was free: 29995008 bytes 28.6 MiB, wrote: 41582592 bytes 39.7 MiB, delta: 11587584 bytes 11.1 MiB, wrote 38.6% more than predicted
freespace: trashing: was free: 91881472 bytes 87.6 MiB, need free: 58782816 bytes 56.1 MiB, files created: 248645, delete 89569 (36.0% of them)
freespace: was free: 22511616 bytes 21.5 MiB, wrote: 34705408 bytes 33.1 MiB, delta: 12193792 bytes 11.6 MiB, wrote 54.2% more than predicted
freespace: trashing: was free: 91774976 bytes 87.5 MiB, need free: 67180360 bytes 64.1 MiB, files created: 248580, delete 66616 (26.8% of them)
freespace: was free: 16908288 bytes 16.1 MiB, wrote: 26898432 bytes 25.7 MiB, delta: 9990144 bytes 9.5 MiB, wrote 59.1% more than predicted
freespace: trashing: was free: 92450816 bytes 88.2 MiB, need free: 75577904 bytes 72.1 MiB, files created: 248654, delete 45381 (18.3% of them)
freespace: was free: 10170368 bytes 9.7 MiB, wrote: 19111936 bytes 18.2 MiB, delta: 8941568 bytes 8.5 MiB, wrote 87.9% more than predicted
freespace: trashing: was free: 93282304 bytes 89.0 MiB, need free: 83975448 bytes 80.1 MiB, files created: 248513, delete 24794 (10.0% of them)
freespace: was free: 3911680 bytes 3.7 MiB, wrote: 7872512 bytes 7.5 MiB, delta: 3960832 bytes 3.8 MiB, wrote 101.3% more than predicted
freespace: Test 3 finished
freespace: finished successfully
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
2008-08-25 23:58:19 +08:00
|
|
|
|
* Subtract the LEB reserved for GC, the LEB which is reserved for
|
|
|
|
|
* deletions, and assume only one journal head is available.
|
2008-07-15 00:08:37 +08:00
|
|
|
|
*/
|
UBIFS: improve statfs reporting even more
Since free space we report in statfs is file size which should
fit to the FS - change the way we calculate free space and use
leb_overhead instead of dark_wm in calculations.
Results of "freespace" test (120MiB volume, 16KiB LEB size,
512 bytes page size). Before the change:
freespace: Test 1: fill the space we have 3 times
freespace: was free: 85204992 bytes 81.3 MiB, wrote: 96489472 bytes 92.0 MiB, delta: 11284480 bytes 10.8 MiB, wrote 13.2% more than predicted
freespace: was free: 83554304 bytes 79.7 MiB, wrote: 96489472 bytes 92.0 MiB, delta: 12935168 bytes 12.3 MiB, wrote 15.5% more than predicted
freespace: was free: 83554304 bytes 79.7 MiB, wrote: 96493568 bytes 92.0 MiB, delta: 12939264 bytes 12.3 MiB, wrote 15.5% more than predicted
freespace: Test 1 finished
freespace: Test 2: gradually lessen amount of free space and fill the FS
freespace: do 10 steps, lessen free space by 7596218 bytes 7.2 MiB each time
freespace: was free: 78675968 bytes 75.0 MiB, wrote: 88903680 bytes 84.8 MiB, delta: 10227712 bytes 9.8 MiB, wrote 13.0% more than predicted
freespace: was free: 72015872 bytes 68.7 MiB, wrote: 81514496 bytes 77.7 MiB, delta: 9498624 bytes 9.1 MiB, wrote 13.2% more than predicted
freespace: was free: 63938560 bytes 61.0 MiB, wrote: 72589312 bytes 69.2 MiB, delta: 8650752 bytes 8.2 MiB, wrote 13.5% more than predicted
freespace: was free: 56127488 bytes 53.5 MiB, wrote: 63762432 bytes 60.8 MiB, delta: 7634944 bytes 7.3 MiB, wrote 13.6% more than predicted
freespace: was free: 48336896 bytes 46.1 MiB, wrote: 54935552 bytes 52.4 MiB, delta: 6598656 bytes 6.3 MiB, wrote 13.7% more than predicted
freespace: was free: 40587264 bytes 38.7 MiB, wrote: 46157824 bytes 44.0 MiB, delta: 5570560 bytes 5.3 MiB, wrote 13.7% more than predicted
freespace: was free: 32841728 bytes 31.3 MiB, wrote: 37384192 bytes 35.7 MiB, delta: 4542464 bytes 4.3 MiB, wrote 13.8% more than predicted
freespace: was free: 25100288 bytes 23.9 MiB, wrote: 28618752 bytes 27.3 MiB, delta: 3518464 bytes 3.4 MiB, wrote 14.0% more than predicted
freespace: was free: 17342464 bytes 16.5 MiB, wrote: 19841024 bytes 18.9 MiB, delta: 2498560 bytes 2.4 MiB, wrote 14.4% more than predicted
freespace: was free: 9605120 bytes 9.2 MiB, wrote: 11063296 bytes 10.6 MiB, delta: 1458176 bytes 1.4 MiB, wrote 15.2% more than predicted
freespace: Test 2 finished
freespace: Test 3: gradually lessen amount of free space by trashing and fill the FS
freespace: do 10 steps, lessen free space by 7606272 bytes 7.3 MiB each time
freespace: trashing: was free: 83668992 bytes 79.8 MiB, need free: 7606272 bytes 7.3 MiB, files created: 248297, delete 225724 (90.9% of them)
freespace: was free: 70803456 bytes 67.5 MiB, wrote: 82485248 bytes 78.7 MiB, delta: 11681792 bytes 11.1 MiB, wrote 16.5% more than predicted
freespace: trashing: was free: 81080320 bytes 77.3 MiB, need free: 15212544 bytes 14.5 MiB, files created: 248711, delete 202047 (81.2% of them)
freespace: was free: 59867136 bytes 57.1 MiB, wrote: 71897088 bytes 68.6 MiB, delta: 12029952 bytes 11.5 MiB, wrote 20.1% more than predicted
freespace: trashing: was free: 82243584 bytes 78.4 MiB, need free: 22818816 bytes 21.8 MiB, files created: 248866, delete 179817 (72.3% of them)
freespace: was free: 50905088 bytes 48.5 MiB, wrote: 63168512 bytes 60.2 MiB, delta: 12263424 bytes 11.7 MiB, wrote 24.1% more than predicted
freespace: trashing: was free: 83402752 bytes 79.5 MiB, need free: 30425088 bytes 29.0 MiB, files created: 248920, delete 158114 (63.5% of them)
freespace: was free: 42651648 bytes 40.7 MiB, wrote: 55406592 bytes 52.8 MiB, delta: 12754944 bytes 12.2 MiB, wrote 29.9% more than predicted
freespace: trashing: was free: 84402176 bytes 80.5 MiB, need free: 38031360 bytes 36.3 MiB, files created: 248709, delete 136641 (54.9% of them)
freespace: was free: 35233792 bytes 33.6 MiB, wrote: 48250880 bytes 46.0 MiB, delta: 13017088 bytes 12.4 MiB, wrote 36.9% more than predicted
freespace: trashing: was free: 82530304 bytes 78.7 MiB, need free: 45637632 bytes 43.5 MiB, files created: 248778, delete 111208 (44.7% of them)
freespace: was free: 27287552 bytes 26.0 MiB, wrote: 40267776 bytes 38.4 MiB, delta: 12980224 bytes 12.4 MiB, wrote 47.6% more than predicted
freespace: trashing: was free: 85114880 bytes 81.2 MiB, need free: 53243904 bytes 50.8 MiB, files created: 248508, delete 93052 (37.4% of them)
freespace: was free: 22437888 bytes 21.4 MiB, wrote: 35328000 bytes 33.7 MiB, delta: 12890112 bytes 12.3 MiB, wrote 57.4% more than predicted
freespace: trashing: was free: 84103168 bytes 80.2 MiB, need free: 60850176 bytes 58.0 MiB, files created: 248637, delete 68743 (27.6% of them)
freespace: was free: 15536128 bytes 14.8 MiB, wrote: 28319744 bytes 27.0 MiB, delta: 12783616 bytes 12.2 MiB, wrote 82.3% more than predicted
freespace: trashing: was free: 84357120 bytes 80.4 MiB, need free: 68456448 bytes 65.3 MiB, files created: 248567, delete 46852 (18.8% of them)
freespace: was free: 9015296 bytes 8.6 MiB, wrote: 22044672 bytes 21.0 MiB, delta: 13029376 bytes 12.4 MiB, wrote 144.5% more than predicted
freespace: trashing: was free: 84942848 bytes 81.0 MiB, need free: 76062720 bytes 72.5 MiB, files created: 248636, delete 25993 (10.5% of them)
freespace: was free: 6086656 bytes 5.8 MiB, wrote: 8331264 bytes 7.9 MiB, delta: 2244608 bytes 2.1 MiB, wrote 36.9% more than predicted
freespace: Test 3 finished
freespace: finished successfully
After the change:
freespace: Test 1: fill the space we have 3 times
freespace: was free: 94048256 bytes 89.7 MiB, wrote: 96489472 bytes 92.0 MiB, delta: 2441216 bytes 2.3 MiB, wrote 2.6% more than predicted
freespace: was free: 92246016 bytes 88.0 MiB, wrote: 96493568 bytes 92.0 MiB, delta: 4247552 bytes 4.1 MiB, wrote 4.6% more than predicted
freespace: was free: 92254208 bytes 88.0 MiB, wrote: 96489472 bytes 92.0 MiB, delta: 4235264 bytes 4.0 MiB, wrote 4.6% more than predicted
freespace: Test 1 finished
freespace: Test 2: gradually lessen amount of free space and fill the FS
freespace: do 10 steps, lessen free space by 8386001 bytes 8.0 MiB each time
freespace: was free: 86605824 bytes 82.6 MiB, wrote: 88252416 bytes 84.2 MiB, delta: 1646592 bytes 1.6 MiB, wrote 1.9% more than predicted
freespace: was free: 78667776 bytes 75.0 MiB, wrote: 80715776 bytes 77.0 MiB, delta: 2048000 bytes 2.0 MiB, wrote 2.6% more than predicted
freespace: was free: 69615616 bytes 66.4 MiB, wrote: 71630848 bytes 68.3 MiB, delta: 2015232 bytes 1.9 MiB, wrote 2.9% more than predicted
freespace: was free: 61018112 bytes 58.2 MiB, wrote: 62783488 bytes 59.9 MiB, delta: 1765376 bytes 1.7 MiB, wrote 2.9% more than predicted
freespace: was free: 52424704 bytes 50.0 MiB, wrote: 53968896 bytes 51.5 MiB, delta: 1544192 bytes 1.5 MiB, wrote 2.9% more than predicted
freespace: was free: 43880448 bytes 41.8 MiB, wrote: 45199360 bytes 43.1 MiB, delta: 1318912 bytes 1.3 MiB, wrote 3.0% more than predicted
freespace: was free: 35332096 bytes 33.7 MiB, wrote: 36425728 bytes 34.7 MiB, delta: 1093632 bytes 1.0 MiB, wrote 3.1% more than predicted
freespace: was free: 26771456 bytes 25.5 MiB, wrote: 27643904 bytes 26.4 MiB, delta: 872448 bytes 852.0 KiB, wrote 3.3% more than predicted
freespace: was free: 18231296 bytes 17.4 MiB, wrote: 18878464 bytes 18.0 MiB, delta: 647168 bytes 632.0 KiB, wrote 3.5% more than predicted
freespace: was free: 9674752 bytes 9.2 MiB, wrote: 10088448 bytes 9.6 MiB, delta: 413696 bytes 404.0 KiB, wrote 4.3% more than predicted
freespace: Test 2 finished
freespace: Test 3: gradually lessen amount of free space by trashing and fill the FS
freespace: do 10 steps, lessen free space by 8397544 bytes 8.0 MiB each time
freespace: trashing: was free: 92372992 bytes 88.1 MiB, need free: 8397552 bytes 8.0 MiB, files created: 248296, delete 225723 (90.9% of them)
freespace: was free: 71909376 bytes 68.6 MiB, wrote: 82472960 bytes 78.7 MiB, delta: 10563584 bytes 10.1 MiB, wrote 14.7% more than predicted
freespace: trashing: was free: 88989696 bytes 84.9 MiB, need free: 16795096 bytes 16.0 MiB, files created: 248794, delete 201838 (81.1% of them)
freespace: was free: 60354560 bytes 57.6 MiB, wrote: 71782400 bytes 68.5 MiB, delta: 11427840 bytes 10.9 MiB, wrote 18.9% more than predicted
freespace: trashing: was free: 90304512 bytes 86.1 MiB, need free: 25192640 bytes 24.0 MiB, files created: 248733, delete 179342 (72.1% of them)
freespace: was free: 51187712 bytes 48.8 MiB, wrote: 62943232 bytes 60.0 MiB, delta: 11755520 bytes 11.2 MiB, wrote 23.0% more than predicted
freespace: trashing: was free: 91209728 bytes 87.0 MiB, need free: 33590184 bytes 32.0 MiB, files created: 248779, delete 157160 (63.2% of them)
freespace: was free: 42704896 bytes 40.7 MiB, wrote: 55050240 bytes 52.5 MiB, delta: 12345344 bytes 11.8 MiB, wrote 28.9% more than predicted
freespace: trashing: was free: 92700672 bytes 88.4 MiB, need free: 41987728 bytes 40.0 MiB, files created: 248848, delete 136135 (54.7% of them)
freespace: was free: 35250176 bytes 33.6 MiB, wrote: 48115712 bytes 45.9 MiB, delta: 12865536 bytes 12.3 MiB, wrote 36.5% more than predicted
freespace: trashing: was free: 93986816 bytes 89.6 MiB, need free: 50385272 bytes 48.1 MiB, files created: 248723, delete 115385 (46.4% of them)
freespace: was free: 29995008 bytes 28.6 MiB, wrote: 41582592 bytes 39.7 MiB, delta: 11587584 bytes 11.1 MiB, wrote 38.6% more than predicted
freespace: trashing: was free: 91881472 bytes 87.6 MiB, need free: 58782816 bytes 56.1 MiB, files created: 248645, delete 89569 (36.0% of them)
freespace: was free: 22511616 bytes 21.5 MiB, wrote: 34705408 bytes 33.1 MiB, delta: 12193792 bytes 11.6 MiB, wrote 54.2% more than predicted
freespace: trashing: was free: 91774976 bytes 87.5 MiB, need free: 67180360 bytes 64.1 MiB, files created: 248580, delete 66616 (26.8% of them)
freespace: was free: 16908288 bytes 16.1 MiB, wrote: 26898432 bytes 25.7 MiB, delta: 9990144 bytes 9.5 MiB, wrote 59.1% more than predicted
freespace: trashing: was free: 92450816 bytes 88.2 MiB, need free: 75577904 bytes 72.1 MiB, files created: 248654, delete 45381 (18.3% of them)
freespace: was free: 10170368 bytes 9.7 MiB, wrote: 19111936 bytes 18.2 MiB, delta: 8941568 bytes 8.5 MiB, wrote 87.9% more than predicted
freespace: trashing: was free: 93282304 bytes 89.0 MiB, need free: 83975448 bytes 80.1 MiB, files created: 248513, delete 24794 (10.0% of them)
freespace: was free: 3911680 bytes 3.7 MiB, wrote: 7872512 bytes 7.5 MiB, delta: 3960832 bytes 3.8 MiB, wrote 101.3% more than predicted
freespace: Test 3 finished
freespace: finished successfully
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
2008-08-25 23:58:19 +08:00
|
|
|
|
tmp64 = c->main_lebs - 2 - c->jhead_cnt + 1;
|
|
|
|
|
tmp64 *= (uint64_t)c->leb_size - c->leb_overhead;
|
2008-07-15 00:08:37 +08:00
|
|
|
|
tmp64 = ubifs_reported_space(c, tmp64);
|
|
|
|
|
c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* take_gc_lnum - reserve GC LEB.
|
|
|
|
|
* @c: UBIFS file-system description object
|
|
|
|
|
*
|
|
|
|
|
* This function ensures that the LEB reserved for garbage collection is
|
|
|
|
|
* unmapped and is marked as "taken" in lprops. We also have to set free space
|
|
|
|
|
* to LEB size and dirty space to zero, because lprops may contain out-of-date
|
|
|
|
|
* information if the file-system was un-mounted before it has been committed.
|
|
|
|
|
* This function returns zero in case of success and a negative error code in
|
|
|
|
|
* case of failure.
|
|
|
|
|
*/
|
|
|
|
|
static int take_gc_lnum(struct ubifs_info *c)
|
|
|
|
|
{
|
|
|
|
|
int err;
|
|
|
|
|
|
|
|
|
|
if (c->gc_lnum == -1) {
|
|
|
|
|
ubifs_err("no LEB for GC");
|
|
|
|
|
return -EINVAL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
err = ubifs_leb_unmap(c, c->gc_lnum);
|
|
|
|
|
if (err)
|
|
|
|
|
return err;
|
|
|
|
|
|
|
|
|
|
/* And we have to tell lprops that this LEB is taken */
|
|
|
|
|
err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
|
|
|
|
|
LPROPS_TAKEN, 0, 0);
|
|
|
|
|
return err;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* alloc_wbufs - allocate write-buffers.
|
|
|
|
|
* @c: UBIFS file-system description object
|
|
|
|
|
*
|
|
|
|
|
* This helper function allocates and initializes UBIFS write-buffers. Returns
|
|
|
|
|
* zero in case of success and %-ENOMEM in case of failure.
|
|
|
|
|
*/
|
|
|
|
|
static int alloc_wbufs(struct ubifs_info *c)
|
|
|
|
|
{
|
|
|
|
|
int i, err;
|
|
|
|
|
|
|
|
|
|
c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
|
|
|
|
|
GFP_KERNEL);
|
|
|
|
|
if (!c->jheads)
|
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
|
|
/* Initialize journal heads */
|
|
|
|
|
for (i = 0; i < c->jhead_cnt; i++) {
|
|
|
|
|
INIT_LIST_HEAD(&c->jheads[i].buds_list);
|
|
|
|
|
err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
|
|
|
|
|
if (err)
|
|
|
|
|
return err;
|
|
|
|
|
|
|
|
|
|
c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
|
|
|
|
|
c->jheads[i].wbuf.jhead = i;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM;
|
|
|
|
|
/*
|
|
|
|
|
* Garbage Collector head likely contains long-term data and
|
|
|
|
|
* does not need to be synchronized by timer.
|
|
|
|
|
*/
|
|
|
|
|
c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM;
|
|
|
|
|
c->jheads[GCHD].wbuf.timeout = 0;
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* free_wbufs - free write-buffers.
|
|
|
|
|
* @c: UBIFS file-system description object
|
|
|
|
|
*/
|
|
|
|
|
static void free_wbufs(struct ubifs_info *c)
|
|
|
|
|
{
|
|
|
|
|
int i;
|
|
|
|
|
|
|
|
|
|
if (c->jheads) {
|
|
|
|
|
for (i = 0; i < c->jhead_cnt; i++) {
|
|
|
|
|
kfree(c->jheads[i].wbuf.buf);
|
|
|
|
|
kfree(c->jheads[i].wbuf.inodes);
|
|
|
|
|
}
|
|
|
|
|
kfree(c->jheads);
|
|
|
|
|
c->jheads = NULL;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* free_orphans - free orphans.
|
|
|
|
|
* @c: UBIFS file-system description object
|
|
|
|
|
*/
|
|
|
|
|
static void free_orphans(struct ubifs_info *c)
|
|
|
|
|
{
|
|
|
|
|
struct ubifs_orphan *orph;
|
|
|
|
|
|
|
|
|
|
while (c->orph_dnext) {
|
|
|
|
|
orph = c->orph_dnext;
|
|
|
|
|
c->orph_dnext = orph->dnext;
|
|
|
|
|
list_del(&orph->list);
|
|
|
|
|
kfree(orph);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
while (!list_empty(&c->orph_list)) {
|
|
|
|
|
orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
|
|
|
|
|
list_del(&orph->list);
|
|
|
|
|
kfree(orph);
|
|
|
|
|
dbg_err("orphan list not empty at unmount");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
vfree(c->orph_buf);
|
|
|
|
|
c->orph_buf = NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* free_buds - free per-bud objects.
|
|
|
|
|
* @c: UBIFS file-system description object
|
|
|
|
|
*/
|
|
|
|
|
static void free_buds(struct ubifs_info *c)
|
|
|
|
|
{
|
|
|
|
|
struct rb_node *this = c->buds.rb_node;
|
|
|
|
|
struct ubifs_bud *bud;
|
|
|
|
|
|
|
|
|
|
while (this) {
|
|
|
|
|
if (this->rb_left)
|
|
|
|
|
this = this->rb_left;
|
|
|
|
|
else if (this->rb_right)
|
|
|
|
|
this = this->rb_right;
|
|
|
|
|
else {
|
|
|
|
|
bud = rb_entry(this, struct ubifs_bud, rb);
|
|
|
|
|
this = rb_parent(this);
|
|
|
|
|
if (this) {
|
|
|
|
|
if (this->rb_left == &bud->rb)
|
|
|
|
|
this->rb_left = NULL;
|
|
|
|
|
else
|
|
|
|
|
this->rb_right = NULL;
|
|
|
|
|
}
|
|
|
|
|
kfree(bud);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* check_volume_empty - check if the UBI volume is empty.
|
|
|
|
|
* @c: UBIFS file-system description object
|
|
|
|
|
*
|
|
|
|
|
* This function checks if the UBIFS volume is empty by looking if its LEBs are
|
|
|
|
|
* mapped or not. The result of checking is stored in the @c->empty variable.
|
|
|
|
|
* Returns zero in case of success and a negative error code in case of
|
|
|
|
|
* failure.
|
|
|
|
|
*/
|
|
|
|
|
static int check_volume_empty(struct ubifs_info *c)
|
|
|
|
|
{
|
|
|
|
|
int lnum, err;
|
|
|
|
|
|
|
|
|
|
c->empty = 1;
|
|
|
|
|
for (lnum = 0; lnum < c->leb_cnt; lnum++) {
|
|
|
|
|
err = ubi_is_mapped(c->ubi, lnum);
|
|
|
|
|
if (unlikely(err < 0))
|
|
|
|
|
return err;
|
|
|
|
|
if (err == 1) {
|
|
|
|
|
c->empty = 0;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
cond_resched();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* UBIFS mount options.
|
|
|
|
|
*
|
|
|
|
|
* Opt_fast_unmount: do not run a journal commit before un-mounting
|
|
|
|
|
* Opt_norm_unmount: run a journal commit before un-mounting
|
2008-09-02 21:29:46 +08:00
|
|
|
|
* Opt_bulk_read: enable bulk-reads
|
|
|
|
|
* Opt_no_bulk_read: disable bulk-reads
|
2008-09-04 21:26:00 +08:00
|
|
|
|
* Opt_chk_data_crc: check CRCs when reading data nodes
|
|
|
|
|
* Opt_no_chk_data_crc: do not check CRCs when reading data nodes
|
2008-07-15 00:08:37 +08:00
|
|
|
|
* Opt_err: just end of array marker
|
|
|
|
|
*/
|
|
|
|
|
enum {
|
|
|
|
|
Opt_fast_unmount,
|
|
|
|
|
Opt_norm_unmount,
|
2008-09-02 21:29:46 +08:00
|
|
|
|
Opt_bulk_read,
|
|
|
|
|
Opt_no_bulk_read,
|
2008-09-04 21:26:00 +08:00
|
|
|
|
Opt_chk_data_crc,
|
|
|
|
|
Opt_no_chk_data_crc,
|
2008-07-15 00:08:37 +08:00
|
|
|
|
Opt_err,
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
static match_table_t tokens = {
|
|
|
|
|
{Opt_fast_unmount, "fast_unmount"},
|
|
|
|
|
{Opt_norm_unmount, "norm_unmount"},
|
2008-09-02 21:29:46 +08:00
|
|
|
|
{Opt_bulk_read, "bulk_read"},
|
|
|
|
|
{Opt_no_bulk_read, "no_bulk_read"},
|
2008-09-04 21:26:00 +08:00
|
|
|
|
{Opt_chk_data_crc, "chk_data_crc"},
|
|
|
|
|
{Opt_no_chk_data_crc, "no_chk_data_crc"},
|
2008-07-15 00:08:37 +08:00
|
|
|
|
{Opt_err, NULL},
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* ubifs_parse_options - parse mount parameters.
|
|
|
|
|
* @c: UBIFS file-system description object
|
|
|
|
|
* @options: parameters to parse
|
|
|
|
|
* @is_remount: non-zero if this is FS re-mount
|
|
|
|
|
*
|
|
|
|
|
* This function parses UBIFS mount options and returns zero in case success
|
|
|
|
|
* and a negative error code in case of failure.
|
|
|
|
|
*/
|
|
|
|
|
static int ubifs_parse_options(struct ubifs_info *c, char *options,
|
|
|
|
|
int is_remount)
|
|
|
|
|
{
|
|
|
|
|
char *p;
|
|
|
|
|
substring_t args[MAX_OPT_ARGS];
|
|
|
|
|
|
|
|
|
|
if (!options)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
while ((p = strsep(&options, ","))) {
|
|
|
|
|
int token;
|
|
|
|
|
|
|
|
|
|
if (!*p)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
token = match_token(p, tokens, args);
|
|
|
|
|
switch (token) {
|
|
|
|
|
case Opt_fast_unmount:
|
|
|
|
|
c->mount_opts.unmount_mode = 2;
|
|
|
|
|
c->fast_unmount = 1;
|
|
|
|
|
break;
|
|
|
|
|
case Opt_norm_unmount:
|
|
|
|
|
c->mount_opts.unmount_mode = 1;
|
|
|
|
|
c->fast_unmount = 0;
|
|
|
|
|
break;
|
2008-09-02 21:29:46 +08:00
|
|
|
|
case Opt_bulk_read:
|
|
|
|
|
c->mount_opts.bulk_read = 2;
|
|
|
|
|
c->bulk_read = 1;
|
|
|
|
|
break;
|
|
|
|
|
case Opt_no_bulk_read:
|
|
|
|
|
c->mount_opts.bulk_read = 1;
|
|
|
|
|
c->bulk_read = 0;
|
|
|
|
|
break;
|
2008-09-04 21:26:00 +08:00
|
|
|
|
case Opt_chk_data_crc:
|
|
|
|
|
c->mount_opts.chk_data_crc = 2;
|
|
|
|
|
c->no_chk_data_crc = 0;
|
|
|
|
|
break;
|
|
|
|
|
case Opt_no_chk_data_crc:
|
|
|
|
|
c->mount_opts.chk_data_crc = 1;
|
|
|
|
|
c->no_chk_data_crc = 1;
|
|
|
|
|
break;
|
2008-07-15 00:08:37 +08:00
|
|
|
|
default:
|
|
|
|
|
ubifs_err("unrecognized mount option \"%s\" "
|
|
|
|
|
"or missing value", p);
|
|
|
|
|
return -EINVAL;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* destroy_journal - destroy journal data structures.
|
|
|
|
|
* @c: UBIFS file-system description object
|
|
|
|
|
*
|
|
|
|
|
* This function destroys journal data structures including those that may have
|
|
|
|
|
* been created by recovery functions.
|
|
|
|
|
*/
|
|
|
|
|
static void destroy_journal(struct ubifs_info *c)
|
|
|
|
|
{
|
|
|
|
|
while (!list_empty(&c->unclean_leb_list)) {
|
|
|
|
|
struct ubifs_unclean_leb *ucleb;
|
|
|
|
|
|
|
|
|
|
ucleb = list_entry(c->unclean_leb_list.next,
|
|
|
|
|
struct ubifs_unclean_leb, list);
|
|
|
|
|
list_del(&ucleb->list);
|
|
|
|
|
kfree(ucleb);
|
|
|
|
|
}
|
|
|
|
|
while (!list_empty(&c->old_buds)) {
|
|
|
|
|
struct ubifs_bud *bud;
|
|
|
|
|
|
|
|
|
|
bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
|
|
|
|
|
list_del(&bud->list);
|
|
|
|
|
kfree(bud);
|
|
|
|
|
}
|
|
|
|
|
ubifs_destroy_idx_gc(c);
|
|
|
|
|
ubifs_destroy_size_tree(c);
|
|
|
|
|
ubifs_tnc_close(c);
|
|
|
|
|
free_buds(c);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* mount_ubifs - mount UBIFS file-system.
|
|
|
|
|
* @c: UBIFS file-system description object
|
|
|
|
|
*
|
|
|
|
|
* This function mounts UBIFS file system. Returns zero in case of success and
|
|
|
|
|
* a negative error code in case of failure.
|
|
|
|
|
*
|
|
|
|
|
* Note, the function does not de-allocate resources it it fails half way
|
|
|
|
|
* through, and the caller has to do this instead.
|
|
|
|
|
*/
|
|
|
|
|
static int mount_ubifs(struct ubifs_info *c)
|
|
|
|
|
{
|
|
|
|
|
struct super_block *sb = c->vfs_sb;
|
|
|
|
|
int err, mounted_read_only = (sb->s_flags & MS_RDONLY);
|
|
|
|
|
long long x;
|
|
|
|
|
size_t sz;
|
|
|
|
|
|
|
|
|
|
err = init_constants_early(c);
|
|
|
|
|
if (err)
|
|
|
|
|
return err;
|
|
|
|
|
|
|
|
|
|
#ifdef CONFIG_UBIFS_FS_DEBUG
|
|
|
|
|
c->dbg_buf = vmalloc(c->leb_size);
|
|
|
|
|
if (!c->dbg_buf)
|
|
|
|
|
return -ENOMEM;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
err = check_volume_empty(c);
|
|
|
|
|
if (err)
|
|
|
|
|
goto out_free;
|
|
|
|
|
|
|
|
|
|
if (c->empty && (mounted_read_only || c->ro_media)) {
|
|
|
|
|
/*
|
|
|
|
|
* This UBI volume is empty, and read-only, or the file system
|
|
|
|
|
* is mounted read-only - we cannot format it.
|
|
|
|
|
*/
|
|
|
|
|
ubifs_err("can't format empty UBI volume: read-only %s",
|
|
|
|
|
c->ro_media ? "UBI volume" : "mount");
|
|
|
|
|
err = -EROFS;
|
|
|
|
|
goto out_free;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (c->ro_media && !mounted_read_only) {
|
|
|
|
|
ubifs_err("cannot mount read-write - read-only media");
|
|
|
|
|
err = -EROFS;
|
|
|
|
|
goto out_free;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* The requirement for the buffer is that it should fit indexing B-tree
|
|
|
|
|
* height amount of integers. We assume the height if the TNC tree will
|
|
|
|
|
* never exceed 64.
|
|
|
|
|
*/
|
|
|
|
|
err = -ENOMEM;
|
|
|
|
|
c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
|
|
|
|
|
if (!c->bottom_up_buf)
|
|
|
|
|
goto out_free;
|
|
|
|
|
|
|
|
|
|
c->sbuf = vmalloc(c->leb_size);
|
|
|
|
|
if (!c->sbuf)
|
|
|
|
|
goto out_free;
|
|
|
|
|
|
|
|
|
|
if (!mounted_read_only) {
|
|
|
|
|
c->ileb_buf = vmalloc(c->leb_size);
|
|
|
|
|
if (!c->ileb_buf)
|
|
|
|
|
goto out_free;
|
|
|
|
|
}
|
|
|
|
|
|
2008-09-04 21:26:00 +08:00
|
|
|
|
c->always_chk_crc = 1;
|
|
|
|
|
|
2008-07-15 00:08:37 +08:00
|
|
|
|
err = ubifs_read_superblock(c);
|
|
|
|
|
if (err)
|
|
|
|
|
goto out_free;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Make sure the compressor which is set as the default on in the
|
|
|
|
|
* superblock was actually compiled in.
|
|
|
|
|
*/
|
|
|
|
|
if (!ubifs_compr_present(c->default_compr)) {
|
|
|
|
|
ubifs_warn("'%s' compressor is set by superblock, but not "
|
|
|
|
|
"compiled in", ubifs_compr_name(c->default_compr));
|
|
|
|
|
c->default_compr = UBIFS_COMPR_NONE;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
dbg_failure_mode_registration(c);
|
|
|
|
|
|
|
|
|
|
err = init_constants_late(c);
|
|
|
|
|
if (err)
|
|
|
|
|
goto out_dereg;
|
|
|
|
|
|
|
|
|
|
sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
|
|
|
|
|
sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
|
|
|
|
|
c->cbuf = kmalloc(sz, GFP_NOFS);
|
|
|
|
|
if (!c->cbuf) {
|
|
|
|
|
err = -ENOMEM;
|
|
|
|
|
goto out_dereg;
|
|
|
|
|
}
|
|
|
|
|
|
2008-09-09 17:17:29 +08:00
|
|
|
|
sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
|
2008-07-15 00:08:37 +08:00
|
|
|
|
if (!mounted_read_only) {
|
|
|
|
|
err = alloc_wbufs(c);
|
|
|
|
|
if (err)
|
|
|
|
|
goto out_cbuf;
|
|
|
|
|
|
|
|
|
|
/* Create background thread */
|
|
|
|
|
c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name);
|
|
|
|
|
if (IS_ERR(c->bgt)) {
|
|
|
|
|
err = PTR_ERR(c->bgt);
|
|
|
|
|
c->bgt = NULL;
|
|
|
|
|
ubifs_err("cannot spawn \"%s\", error %d",
|
|
|
|
|
c->bgt_name, err);
|
|
|
|
|
goto out_wbufs;
|
|
|
|
|
}
|
|
|
|
|
wake_up_process(c->bgt);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
err = ubifs_read_master(c);
|
|
|
|
|
if (err)
|
|
|
|
|
goto out_master;
|
|
|
|
|
|
|
|
|
|
if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
|
|
|
|
|
ubifs_msg("recovery needed");
|
|
|
|
|
c->need_recovery = 1;
|
|
|
|
|
if (!mounted_read_only) {
|
|
|
|
|
err = ubifs_recover_inl_heads(c, c->sbuf);
|
|
|
|
|
if (err)
|
|
|
|
|
goto out_master;
|
|
|
|
|
}
|
|
|
|
|
} else if (!mounted_read_only) {
|
|
|
|
|
/*
|
|
|
|
|
* Set the "dirty" flag so that if we reboot uncleanly we
|
|
|
|
|
* will notice this immediately on the next mount.
|
|
|
|
|
*/
|
|
|
|
|
c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
|
|
|
|
|
err = ubifs_write_master(c);
|
|
|
|
|
if (err)
|
|
|
|
|
goto out_master;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
err = ubifs_lpt_init(c, 1, !mounted_read_only);
|
|
|
|
|
if (err)
|
|
|
|
|
goto out_lpt;
|
|
|
|
|
|
|
|
|
|
err = dbg_check_idx_size(c, c->old_idx_sz);
|
|
|
|
|
if (err)
|
|
|
|
|
goto out_lpt;
|
|
|
|
|
|
|
|
|
|
err = ubifs_replay_journal(c);
|
|
|
|
|
if (err)
|
|
|
|
|
goto out_journal;
|
|
|
|
|
|
|
|
|
|
err = ubifs_mount_orphans(c, c->need_recovery, mounted_read_only);
|
|
|
|
|
if (err)
|
|
|
|
|
goto out_orphans;
|
|
|
|
|
|
|
|
|
|
if (!mounted_read_only) {
|
|
|
|
|
int lnum;
|
|
|
|
|
|
|
|
|
|
/* Check for enough free space */
|
|
|
|
|
if (ubifs_calc_available(c, c->min_idx_lebs) <= 0) {
|
|
|
|
|
ubifs_err("insufficient available space");
|
|
|
|
|
err = -EINVAL;
|
|
|
|
|
goto out_orphans;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Check for enough log space */
|
|
|
|
|
lnum = c->lhead_lnum + 1;
|
|
|
|
|
if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
|
|
|
|
|
lnum = UBIFS_LOG_LNUM;
|
|
|
|
|
if (lnum == c->ltail_lnum) {
|
|
|
|
|
err = ubifs_consolidate_log(c);
|
|
|
|
|
if (err)
|
|
|
|
|
goto out_orphans;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (c->need_recovery) {
|
|
|
|
|
err = ubifs_recover_size(c);
|
|
|
|
|
if (err)
|
|
|
|
|
goto out_orphans;
|
|
|
|
|
err = ubifs_rcvry_gc_commit(c);
|
|
|
|
|
} else
|
|
|
|
|
err = take_gc_lnum(c);
|
|
|
|
|
if (err)
|
|
|
|
|
goto out_orphans;
|
|
|
|
|
|
|
|
|
|
err = dbg_check_lprops(c);
|
|
|
|
|
if (err)
|
|
|
|
|
goto out_orphans;
|
|
|
|
|
} else if (c->need_recovery) {
|
|
|
|
|
err = ubifs_recover_size(c);
|
|
|
|
|
if (err)
|
|
|
|
|
goto out_orphans;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
spin_lock(&ubifs_infos_lock);
|
|
|
|
|
list_add_tail(&c->infos_list, &ubifs_infos);
|
|
|
|
|
spin_unlock(&ubifs_infos_lock);
|
|
|
|
|
|
|
|
|
|
if (c->need_recovery) {
|
|
|
|
|
if (mounted_read_only)
|
|
|
|
|
ubifs_msg("recovery deferred");
|
|
|
|
|
else {
|
|
|
|
|
c->need_recovery = 0;
|
|
|
|
|
ubifs_msg("recovery completed");
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
err = dbg_check_filesystem(c);
|
|
|
|
|
if (err)
|
|
|
|
|
goto out_infos;
|
|
|
|
|
|
2008-09-04 21:26:00 +08:00
|
|
|
|
c->always_chk_crc = 0;
|
|
|
|
|
|
2008-07-18 17:54:21 +08:00
|
|
|
|
ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"",
|
|
|
|
|
c->vi.ubi_num, c->vi.vol_id, c->vi.name);
|
2008-07-15 00:08:37 +08:00
|
|
|
|
if (mounted_read_only)
|
|
|
|
|
ubifs_msg("mounted read-only");
|
|
|
|
|
x = (long long)c->main_lebs * c->leb_size;
|
2008-08-20 16:56:33 +08:00
|
|
|
|
ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d "
|
|
|
|
|
"LEBs)", x, x >> 10, x >> 20, c->main_lebs);
|
2008-07-15 00:08:37 +08:00
|
|
|
|
x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
|
2008-08-20 16:56:33 +08:00
|
|
|
|
ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d "
|
|
|
|
|
"LEBs)", x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt);
|
|
|
|
|
ubifs_msg("media format: %d (latest is %d)",
|
2008-07-15 00:08:37 +08:00
|
|
|
|
c->fmt_version, UBIFS_FORMAT_VERSION);
|
2008-08-20 16:56:33 +08:00
|
|
|
|
ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr));
|
|
|
|
|
ubifs_msg("reserved pool size: %llu bytes (%llu KiB)",
|
|
|
|
|
c->report_rp_size, c->report_rp_size >> 10);
|
2008-07-15 00:08:37 +08:00
|
|
|
|
|
|
|
|
|
dbg_msg("compiled on: " __DATE__ " at " __TIME__);
|
|
|
|
|
dbg_msg("min. I/O unit size: %d bytes", c->min_io_size);
|
|
|
|
|
dbg_msg("LEB size: %d bytes (%d KiB)",
|
2008-08-20 16:56:33 +08:00
|
|
|
|
c->leb_size, c->leb_size >> 10);
|
2008-07-15 00:08:37 +08:00
|
|
|
|
dbg_msg("data journal heads: %d",
|
|
|
|
|
c->jhead_cnt - NONDATA_JHEADS_CNT);
|
|
|
|
|
dbg_msg("UUID: %02X%02X%02X%02X-%02X%02X"
|
|
|
|
|
"-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
|
|
|
|
|
c->uuid[0], c->uuid[1], c->uuid[2], c->uuid[3],
|
|
|
|
|
c->uuid[4], c->uuid[5], c->uuid[6], c->uuid[7],
|
|
|
|
|
c->uuid[8], c->uuid[9], c->uuid[10], c->uuid[11],
|
|
|
|
|
c->uuid[12], c->uuid[13], c->uuid[14], c->uuid[15]);
|
|
|
|
|
dbg_msg("fast unmount: %d", c->fast_unmount);
|
|
|
|
|
dbg_msg("big_lpt %d", c->big_lpt);
|
|
|
|
|
dbg_msg("log LEBs: %d (%d - %d)",
|
|
|
|
|
c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
|
|
|
|
|
dbg_msg("LPT area LEBs: %d (%d - %d)",
|
|
|
|
|
c->lpt_lebs, c->lpt_first, c->lpt_last);
|
|
|
|
|
dbg_msg("orphan area LEBs: %d (%d - %d)",
|
|
|
|
|
c->orph_lebs, c->orph_first, c->orph_last);
|
|
|
|
|
dbg_msg("main area LEBs: %d (%d - %d)",
|
|
|
|
|
c->main_lebs, c->main_first, c->leb_cnt - 1);
|
|
|
|
|
dbg_msg("index LEBs: %d", c->lst.idx_lebs);
|
|
|
|
|
dbg_msg("total index bytes: %lld (%lld KiB, %lld MiB)",
|
|
|
|
|
c->old_idx_sz, c->old_idx_sz >> 10, c->old_idx_sz >> 20);
|
|
|
|
|
dbg_msg("key hash type: %d", c->key_hash_type);
|
|
|
|
|
dbg_msg("tree fanout: %d", c->fanout);
|
|
|
|
|
dbg_msg("reserved GC LEB: %d", c->gc_lnum);
|
|
|
|
|
dbg_msg("first main LEB: %d", c->main_first);
|
|
|
|
|
dbg_msg("dead watermark: %d", c->dead_wm);
|
|
|
|
|
dbg_msg("dark watermark: %d", c->dark_wm);
|
|
|
|
|
x = (long long)c->main_lebs * c->dark_wm;
|
|
|
|
|
dbg_msg("max. dark space: %lld (%lld KiB, %lld MiB)",
|
|
|
|
|
x, x >> 10, x >> 20);
|
|
|
|
|
dbg_msg("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
|
|
|
|
|
c->max_bud_bytes, c->max_bud_bytes >> 10,
|
|
|
|
|
c->max_bud_bytes >> 20);
|
|
|
|
|
dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
|
|
|
|
|
c->bg_bud_bytes, c->bg_bud_bytes >> 10,
|
|
|
|
|
c->bg_bud_bytes >> 20);
|
|
|
|
|
dbg_msg("current bud bytes %lld (%lld KiB, %lld MiB)",
|
|
|
|
|
c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
|
|
|
|
|
dbg_msg("max. seq. number: %llu", c->max_sqnum);
|
|
|
|
|
dbg_msg("commit number: %llu", c->cmt_no);
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
out_infos:
|
|
|
|
|
spin_lock(&ubifs_infos_lock);
|
|
|
|
|
list_del(&c->infos_list);
|
|
|
|
|
spin_unlock(&ubifs_infos_lock);
|
|
|
|
|
out_orphans:
|
|
|
|
|
free_orphans(c);
|
|
|
|
|
out_journal:
|
|
|
|
|
destroy_journal(c);
|
|
|
|
|
out_lpt:
|
|
|
|
|
ubifs_lpt_free(c, 0);
|
|
|
|
|
out_master:
|
|
|
|
|
kfree(c->mst_node);
|
|
|
|
|
kfree(c->rcvrd_mst_node);
|
|
|
|
|
if (c->bgt)
|
|
|
|
|
kthread_stop(c->bgt);
|
|
|
|
|
out_wbufs:
|
|
|
|
|
free_wbufs(c);
|
|
|
|
|
out_cbuf:
|
|
|
|
|
kfree(c->cbuf);
|
|
|
|
|
out_dereg:
|
|
|
|
|
dbg_failure_mode_deregistration(c);
|
|
|
|
|
out_free:
|
|
|
|
|
vfree(c->ileb_buf);
|
|
|
|
|
vfree(c->sbuf);
|
|
|
|
|
kfree(c->bottom_up_buf);
|
|
|
|
|
UBIFS_DBG(vfree(c->dbg_buf));
|
|
|
|
|
return err;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* ubifs_umount - un-mount UBIFS file-system.
|
|
|
|
|
* @c: UBIFS file-system description object
|
|
|
|
|
*
|
|
|
|
|
* Note, this function is called to free allocated resourced when un-mounting,
|
|
|
|
|
* as well as free resources when an error occurred while we were half way
|
|
|
|
|
* through mounting (error path cleanup function). So it has to make sure the
|
|
|
|
|
* resource was actually allocated before freeing it.
|
|
|
|
|
*/
|
|
|
|
|
static void ubifs_umount(struct ubifs_info *c)
|
|
|
|
|
{
|
|
|
|
|
dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
|
|
|
|
|
c->vi.vol_id);
|
|
|
|
|
|
|
|
|
|
spin_lock(&ubifs_infos_lock);
|
|
|
|
|
list_del(&c->infos_list);
|
|
|
|
|
spin_unlock(&ubifs_infos_lock);
|
|
|
|
|
|
|
|
|
|
if (c->bgt)
|
|
|
|
|
kthread_stop(c->bgt);
|
|
|
|
|
|
|
|
|
|
destroy_journal(c);
|
|
|
|
|
free_wbufs(c);
|
|
|
|
|
free_orphans(c);
|
|
|
|
|
ubifs_lpt_free(c, 0);
|
|
|
|
|
|
|
|
|
|
kfree(c->cbuf);
|
|
|
|
|
kfree(c->rcvrd_mst_node);
|
|
|
|
|
kfree(c->mst_node);
|
|
|
|
|
vfree(c->sbuf);
|
|
|
|
|
kfree(c->bottom_up_buf);
|
|
|
|
|
UBIFS_DBG(vfree(c->dbg_buf));
|
|
|
|
|
vfree(c->ileb_buf);
|
|
|
|
|
dbg_failure_mode_deregistration(c);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* ubifs_remount_rw - re-mount in read-write mode.
|
|
|
|
|
* @c: UBIFS file-system description object
|
|
|
|
|
*
|
|
|
|
|
* UBIFS avoids allocating many unnecessary resources when mounted in read-only
|
|
|
|
|
* mode. This function allocates the needed resources and re-mounts UBIFS in
|
|
|
|
|
* read-write mode.
|
|
|
|
|
*/
|
|
|
|
|
static int ubifs_remount_rw(struct ubifs_info *c)
|
|
|
|
|
{
|
|
|
|
|
int err, lnum;
|
|
|
|
|
|
|
|
|
|
if (c->ro_media)
|
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
|
|
mutex_lock(&c->umount_mutex);
|
|
|
|
|
c->remounting_rw = 1;
|
2008-09-04 21:26:00 +08:00
|
|
|
|
c->always_chk_crc = 1;
|
2008-07-15 00:08:37 +08:00
|
|
|
|
|
|
|
|
|
/* Check for enough free space */
|
|
|
|
|
if (ubifs_calc_available(c, c->min_idx_lebs) <= 0) {
|
|
|
|
|
ubifs_err("insufficient available space");
|
|
|
|
|
err = -EINVAL;
|
|
|
|
|
goto out;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (c->old_leb_cnt != c->leb_cnt) {
|
|
|
|
|
struct ubifs_sb_node *sup;
|
|
|
|
|
|
|
|
|
|
sup = ubifs_read_sb_node(c);
|
|
|
|
|
if (IS_ERR(sup)) {
|
|
|
|
|
err = PTR_ERR(sup);
|
|
|
|
|
goto out;
|
|
|
|
|
}
|
|
|
|
|
sup->leb_cnt = cpu_to_le32(c->leb_cnt);
|
|
|
|
|
err = ubifs_write_sb_node(c, sup);
|
|
|
|
|
if (err)
|
|
|
|
|
goto out;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (c->need_recovery) {
|
|
|
|
|
ubifs_msg("completing deferred recovery");
|
|
|
|
|
err = ubifs_write_rcvrd_mst_node(c);
|
|
|
|
|
if (err)
|
|
|
|
|
goto out;
|
|
|
|
|
err = ubifs_recover_size(c);
|
|
|
|
|
if (err)
|
|
|
|
|
goto out;
|
|
|
|
|
err = ubifs_clean_lebs(c, c->sbuf);
|
|
|
|
|
if (err)
|
|
|
|
|
goto out;
|
|
|
|
|
err = ubifs_recover_inl_heads(c, c->sbuf);
|
|
|
|
|
if (err)
|
|
|
|
|
goto out;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
|
|
|
|
|
c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
|
|
|
|
|
err = ubifs_write_master(c);
|
|
|
|
|
if (err)
|
|
|
|
|
goto out;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
c->ileb_buf = vmalloc(c->leb_size);
|
|
|
|
|
if (!c->ileb_buf) {
|
|
|
|
|
err = -ENOMEM;
|
|
|
|
|
goto out;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
err = ubifs_lpt_init(c, 0, 1);
|
|
|
|
|
if (err)
|
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
|
|
err = alloc_wbufs(c);
|
|
|
|
|
if (err)
|
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
|
|
ubifs_create_buds_lists(c);
|
|
|
|
|
|
|
|
|
|
/* Create background thread */
|
|
|
|
|
c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name);
|
|
|
|
|
if (IS_ERR(c->bgt)) {
|
|
|
|
|
err = PTR_ERR(c->bgt);
|
|
|
|
|
c->bgt = NULL;
|
|
|
|
|
ubifs_err("cannot spawn \"%s\", error %d",
|
|
|
|
|
c->bgt_name, err);
|
2008-09-04 21:26:00 +08:00
|
|
|
|
goto out;
|
2008-07-15 00:08:37 +08:00
|
|
|
|
}
|
|
|
|
|
wake_up_process(c->bgt);
|
|
|
|
|
|
|
|
|
|
c->orph_buf = vmalloc(c->leb_size);
|
2008-09-04 21:26:00 +08:00
|
|
|
|
if (!c->orph_buf) {
|
|
|
|
|
err = -ENOMEM;
|
|
|
|
|
goto out;
|
|
|
|
|
}
|
2008-07-15 00:08:37 +08:00
|
|
|
|
|
|
|
|
|
/* Check for enough log space */
|
|
|
|
|
lnum = c->lhead_lnum + 1;
|
|
|
|
|
if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
|
|
|
|
|
lnum = UBIFS_LOG_LNUM;
|
|
|
|
|
if (lnum == c->ltail_lnum) {
|
|
|
|
|
err = ubifs_consolidate_log(c);
|
|
|
|
|
if (err)
|
|
|
|
|
goto out;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (c->need_recovery)
|
|
|
|
|
err = ubifs_rcvry_gc_commit(c);
|
|
|
|
|
else
|
|
|
|
|
err = take_gc_lnum(c);
|
|
|
|
|
if (err)
|
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
|
|
if (c->need_recovery) {
|
|
|
|
|
c->need_recovery = 0;
|
|
|
|
|
ubifs_msg("deferred recovery completed");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
dbg_gen("re-mounted read-write");
|
|
|
|
|
c->vfs_sb->s_flags &= ~MS_RDONLY;
|
|
|
|
|
c->remounting_rw = 0;
|
2008-09-04 21:26:00 +08:00
|
|
|
|
c->always_chk_crc = 0;
|
2008-07-15 00:08:37 +08:00
|
|
|
|
mutex_unlock(&c->umount_mutex);
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
out:
|
|
|
|
|
vfree(c->orph_buf);
|
|
|
|
|
c->orph_buf = NULL;
|
|
|
|
|
if (c->bgt) {
|
|
|
|
|
kthread_stop(c->bgt);
|
|
|
|
|
c->bgt = NULL;
|
|
|
|
|
}
|
|
|
|
|
free_wbufs(c);
|
|
|
|
|
vfree(c->ileb_buf);
|
|
|
|
|
c->ileb_buf = NULL;
|
|
|
|
|
ubifs_lpt_free(c, 1);
|
|
|
|
|
c->remounting_rw = 0;
|
2008-09-04 21:26:00 +08:00
|
|
|
|
c->always_chk_crc = 0;
|
2008-07-15 00:08:37 +08:00
|
|
|
|
mutex_unlock(&c->umount_mutex);
|
|
|
|
|
return err;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* commit_on_unmount - commit the journal when un-mounting.
|
|
|
|
|
* @c: UBIFS file-system description object
|
|
|
|
|
*
|
2008-09-09 17:23:50 +08:00
|
|
|
|
* This function is called during un-mounting and re-mounting, and it commits
|
|
|
|
|
* the journal unless the "fast unmount" mode is enabled. It also avoids
|
|
|
|
|
* committing the journal if it contains too few data.
|
2008-07-15 00:08:37 +08:00
|
|
|
|
*/
|
|
|
|
|
static void commit_on_unmount(struct ubifs_info *c)
|
|
|
|
|
{
|
|
|
|
|
if (!c->fast_unmount) {
|
|
|
|
|
long long bud_bytes;
|
|
|
|
|
|
|
|
|
|
spin_lock(&c->buds_lock);
|
|
|
|
|
bud_bytes = c->bud_bytes;
|
|
|
|
|
spin_unlock(&c->buds_lock);
|
|
|
|
|
if (bud_bytes > c->leb_size)
|
|
|
|
|
ubifs_run_commit(c);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* ubifs_remount_ro - re-mount in read-only mode.
|
|
|
|
|
* @c: UBIFS file-system description object
|
|
|
|
|
*
|
|
|
|
|
* We rely on VFS to have stopped writing. Possibly the background thread could
|
|
|
|
|
* be running a commit, however kthread_stop will wait in that case.
|
|
|
|
|
*/
|
|
|
|
|
static void ubifs_remount_ro(struct ubifs_info *c)
|
|
|
|
|
{
|
|
|
|
|
int i, err;
|
|
|
|
|
|
|
|
|
|
ubifs_assert(!c->need_recovery);
|
|
|
|
|
commit_on_unmount(c);
|
|
|
|
|
|
|
|
|
|
mutex_lock(&c->umount_mutex);
|
|
|
|
|
if (c->bgt) {
|
|
|
|
|
kthread_stop(c->bgt);
|
|
|
|
|
c->bgt = NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for (i = 0; i < c->jhead_cnt; i++) {
|
|
|
|
|
ubifs_wbuf_sync(&c->jheads[i].wbuf);
|
|
|
|
|
del_timer_sync(&c->jheads[i].wbuf.timer);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!c->ro_media) {
|
|
|
|
|
c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
|
|
|
|
|
c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
|
|
|
|
|
c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
|
|
|
|
|
err = ubifs_write_master(c);
|
|
|
|
|
if (err)
|
|
|
|
|
ubifs_ro_mode(c, err);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ubifs_destroy_idx_gc(c);
|
|
|
|
|
free_wbufs(c);
|
|
|
|
|
vfree(c->orph_buf);
|
|
|
|
|
c->orph_buf = NULL;
|
|
|
|
|
vfree(c->ileb_buf);
|
|
|
|
|
c->ileb_buf = NULL;
|
|
|
|
|
ubifs_lpt_free(c, 1);
|
|
|
|
|
mutex_unlock(&c->umount_mutex);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void ubifs_put_super(struct super_block *sb)
|
|
|
|
|
{
|
|
|
|
|
int i;
|
|
|
|
|
struct ubifs_info *c = sb->s_fs_info;
|
|
|
|
|
|
|
|
|
|
ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
|
|
|
|
|
c->vi.vol_id);
|
|
|
|
|
/*
|
|
|
|
|
* The following asserts are only valid if there has not been a failure
|
|
|
|
|
* of the media. For example, there will be dirty inodes if we failed
|
|
|
|
|
* to write them back because of I/O errors.
|
|
|
|
|
*/
|
|
|
|
|
ubifs_assert(atomic_long_read(&c->dirty_pg_cnt) == 0);
|
|
|
|
|
ubifs_assert(c->budg_idx_growth == 0);
|
2008-07-18 23:54:29 +08:00
|
|
|
|
ubifs_assert(c->budg_dd_growth == 0);
|
2008-07-15 00:08:37 +08:00
|
|
|
|
ubifs_assert(c->budg_data_growth == 0);
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* The 'c->umount_lock' prevents races between UBIFS memory shrinker
|
|
|
|
|
* and file system un-mount. Namely, it prevents the shrinker from
|
|
|
|
|
* picking this superblock for shrinking - it will be just skipped if
|
|
|
|
|
* the mutex is locked.
|
|
|
|
|
*/
|
|
|
|
|
mutex_lock(&c->umount_mutex);
|
|
|
|
|
if (!(c->vfs_sb->s_flags & MS_RDONLY)) {
|
|
|
|
|
/*
|
|
|
|
|
* First of all kill the background thread to make sure it does
|
|
|
|
|
* not interfere with un-mounting and freeing resources.
|
|
|
|
|
*/
|
|
|
|
|
if (c->bgt) {
|
|
|
|
|
kthread_stop(c->bgt);
|
|
|
|
|
c->bgt = NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Synchronize write-buffers */
|
|
|
|
|
if (c->jheads)
|
|
|
|
|
for (i = 0; i < c->jhead_cnt; i++) {
|
|
|
|
|
ubifs_wbuf_sync(&c->jheads[i].wbuf);
|
|
|
|
|
del_timer_sync(&c->jheads[i].wbuf.timer);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* On fatal errors c->ro_media is set to 1, in which case we do
|
|
|
|
|
* not write the master node.
|
|
|
|
|
*/
|
|
|
|
|
if (!c->ro_media) {
|
|
|
|
|
/*
|
|
|
|
|
* We are being cleanly unmounted which means the
|
|
|
|
|
* orphans were killed - indicate this in the master
|
|
|
|
|
* node. Also save the reserved GC LEB number.
|
|
|
|
|
*/
|
|
|
|
|
int err;
|
|
|
|
|
|
|
|
|
|
c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
|
|
|
|
|
c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
|
|
|
|
|
c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
|
|
|
|
|
err = ubifs_write_master(c);
|
|
|
|
|
if (err)
|
|
|
|
|
/*
|
|
|
|
|
* Recovery will attempt to fix the master area
|
|
|
|
|
* next mount, so we just print a message and
|
|
|
|
|
* continue to unmount normally.
|
|
|
|
|
*/
|
|
|
|
|
ubifs_err("failed to write master node, "
|
|
|
|
|
"error %d", err);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ubifs_umount(c);
|
|
|
|
|
bdi_destroy(&c->bdi);
|
|
|
|
|
ubi_close_volume(c->ubi);
|
|
|
|
|
mutex_unlock(&c->umount_mutex);
|
|
|
|
|
kfree(c);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
|
|
|
|
|
{
|
|
|
|
|
int err;
|
|
|
|
|
struct ubifs_info *c = sb->s_fs_info;
|
|
|
|
|
|
|
|
|
|
dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
|
|
|
|
|
|
|
|
|
|
err = ubifs_parse_options(c, data, 1);
|
|
|
|
|
if (err) {
|
|
|
|
|
ubifs_err("invalid or unknown remount parameter");
|
|
|
|
|
return err;
|
|
|
|
|
}
|
|
|
|
|
if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
|
|
|
|
|
err = ubifs_remount_rw(c);
|
|
|
|
|
if (err)
|
|
|
|
|
return err;
|
|
|
|
|
} else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY))
|
|
|
|
|
ubifs_remount_ro(c);
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
struct super_operations ubifs_super_operations = {
|
|
|
|
|
.alloc_inode = ubifs_alloc_inode,
|
|
|
|
|
.destroy_inode = ubifs_destroy_inode,
|
|
|
|
|
.put_super = ubifs_put_super,
|
|
|
|
|
.write_inode = ubifs_write_inode,
|
|
|
|
|
.delete_inode = ubifs_delete_inode,
|
|
|
|
|
.statfs = ubifs_statfs,
|
|
|
|
|
.dirty_inode = ubifs_dirty_inode,
|
|
|
|
|
.remount_fs = ubifs_remount_fs,
|
|
|
|
|
.show_options = ubifs_show_options,
|
|
|
|
|
.sync_fs = ubifs_sync_fs,
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* open_ubi - parse UBI device name string and open the UBI device.
|
|
|
|
|
* @name: UBI volume name
|
|
|
|
|
* @mode: UBI volume open mode
|
|
|
|
|
*
|
|
|
|
|
* There are several ways to specify UBI volumes when mounting UBIFS:
|
|
|
|
|
* o ubiX_Y - UBI device number X, volume Y;
|
|
|
|
|
* o ubiY - UBI device number 0, volume Y;
|
|
|
|
|
* o ubiX:NAME - mount UBI device X, volume with name NAME;
|
|
|
|
|
* o ubi:NAME - mount UBI device 0, volume with name NAME.
|
|
|
|
|
*
|
|
|
|
|
* Alternative '!' separator may be used instead of ':' (because some shells
|
|
|
|
|
* like busybox may interpret ':' as an NFS host name separator). This function
|
|
|
|
|
* returns ubi volume object in case of success and a negative error code in
|
|
|
|
|
* case of failure.
|
|
|
|
|
*/
|
|
|
|
|
static struct ubi_volume_desc *open_ubi(const char *name, int mode)
|
|
|
|
|
{
|
|
|
|
|
int dev, vol;
|
|
|
|
|
char *endptr;
|
|
|
|
|
|
|
|
|
|
if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
|
|
|
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
|
|
|
|
|
|
/* ubi:NAME method */
|
|
|
|
|
if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
|
|
|
|
|
return ubi_open_volume_nm(0, name + 4, mode);
|
|
|
|
|
|
|
|
|
|
if (!isdigit(name[3]))
|
|
|
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
|
|
|
|
|
|
dev = simple_strtoul(name + 3, &endptr, 0);
|
|
|
|
|
|
|
|
|
|
/* ubiY method */
|
|
|
|
|
if (*endptr == '\0')
|
|
|
|
|
return ubi_open_volume(0, dev, mode);
|
|
|
|
|
|
|
|
|
|
/* ubiX_Y method */
|
|
|
|
|
if (*endptr == '_' && isdigit(endptr[1])) {
|
|
|
|
|
vol = simple_strtoul(endptr + 1, &endptr, 0);
|
|
|
|
|
if (*endptr != '\0')
|
|
|
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
|
return ubi_open_volume(dev, vol, mode);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* ubiX:NAME method */
|
|
|
|
|
if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
|
|
|
|
|
return ubi_open_volume_nm(dev, ++endptr, mode);
|
|
|
|
|
|
|
|
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
|
|
|
|
|
{
|
|
|
|
|
struct ubi_volume_desc *ubi = sb->s_fs_info;
|
|
|
|
|
struct ubifs_info *c;
|
|
|
|
|
struct inode *root;
|
|
|
|
|
int err;
|
|
|
|
|
|
|
|
|
|
c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
|
|
|
|
|
if (!c)
|
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
|
|
spin_lock_init(&c->cnt_lock);
|
|
|
|
|
spin_lock_init(&c->cs_lock);
|
|
|
|
|
spin_lock_init(&c->buds_lock);
|
|
|
|
|
spin_lock_init(&c->space_lock);
|
|
|
|
|
spin_lock_init(&c->orphan_lock);
|
|
|
|
|
init_rwsem(&c->commit_sem);
|
|
|
|
|
mutex_init(&c->lp_mutex);
|
|
|
|
|
mutex_init(&c->tnc_mutex);
|
|
|
|
|
mutex_init(&c->log_mutex);
|
|
|
|
|
mutex_init(&c->mst_mutex);
|
|
|
|
|
mutex_init(&c->umount_mutex);
|
|
|
|
|
init_waitqueue_head(&c->cmt_wq);
|
|
|
|
|
c->buds = RB_ROOT;
|
|
|
|
|
c->old_idx = RB_ROOT;
|
|
|
|
|
c->size_tree = RB_ROOT;
|
|
|
|
|
c->orph_tree = RB_ROOT;
|
|
|
|
|
INIT_LIST_HEAD(&c->infos_list);
|
|
|
|
|
INIT_LIST_HEAD(&c->idx_gc);
|
|
|
|
|
INIT_LIST_HEAD(&c->replay_list);
|
|
|
|
|
INIT_LIST_HEAD(&c->replay_buds);
|
|
|
|
|
INIT_LIST_HEAD(&c->uncat_list);
|
|
|
|
|
INIT_LIST_HEAD(&c->empty_list);
|
|
|
|
|
INIT_LIST_HEAD(&c->freeable_list);
|
|
|
|
|
INIT_LIST_HEAD(&c->frdi_idx_list);
|
|
|
|
|
INIT_LIST_HEAD(&c->unclean_leb_list);
|
|
|
|
|
INIT_LIST_HEAD(&c->old_buds);
|
|
|
|
|
INIT_LIST_HEAD(&c->orph_list);
|
|
|
|
|
INIT_LIST_HEAD(&c->orph_new);
|
|
|
|
|
|
|
|
|
|
c->highest_inum = UBIFS_FIRST_INO;
|
|
|
|
|
c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
|
|
|
|
|
|
|
|
|
|
ubi_get_volume_info(ubi, &c->vi);
|
|
|
|
|
ubi_get_device_info(c->vi.ubi_num, &c->di);
|
|
|
|
|
|
|
|
|
|
/* Re-open the UBI device in read-write mode */
|
|
|
|
|
c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
|
|
|
|
|
if (IS_ERR(c->ubi)) {
|
|
|
|
|
err = PTR_ERR(c->ubi);
|
|
|
|
|
goto out_free;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
2008-08-13 19:13:26 +08:00
|
|
|
|
* UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
|
2008-07-15 00:08:37 +08:00
|
|
|
|
* UBIFS, I/O is not deferred, it is done immediately in readpage,
|
|
|
|
|
* which means the user would have to wait not just for their own I/O
|
2008-08-13 19:13:26 +08:00
|
|
|
|
* but the read-ahead I/O as well i.e. completely pointless.
|
2008-07-15 00:08:37 +08:00
|
|
|
|
*
|
|
|
|
|
* Read-ahead will be disabled because @c->bdi.ra_pages is 0.
|
|
|
|
|
*/
|
|
|
|
|
c->bdi.capabilities = BDI_CAP_MAP_COPY;
|
|
|
|
|
c->bdi.unplug_io_fn = default_unplug_io_fn;
|
|
|
|
|
err = bdi_init(&c->bdi);
|
|
|
|
|
if (err)
|
|
|
|
|
goto out_close;
|
|
|
|
|
|
|
|
|
|
err = ubifs_parse_options(c, data, 0);
|
|
|
|
|
if (err)
|
|
|
|
|
goto out_bdi;
|
|
|
|
|
|
|
|
|
|
c->vfs_sb = sb;
|
|
|
|
|
|
|
|
|
|
sb->s_fs_info = c;
|
|
|
|
|
sb->s_magic = UBIFS_SUPER_MAGIC;
|
|
|
|
|
sb->s_blocksize = UBIFS_BLOCK_SIZE;
|
|
|
|
|
sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
|
|
|
|
|
sb->s_dev = c->vi.cdev;
|
|
|
|
|
sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
|
|
|
|
|
if (c->max_inode_sz > MAX_LFS_FILESIZE)
|
|
|
|
|
sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
|
|
|
|
|
sb->s_op = &ubifs_super_operations;
|
|
|
|
|
|
|
|
|
|
mutex_lock(&c->umount_mutex);
|
|
|
|
|
err = mount_ubifs(c);
|
|
|
|
|
if (err) {
|
|
|
|
|
ubifs_assert(err < 0);
|
|
|
|
|
goto out_unlock;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Read the root inode */
|
|
|
|
|
root = ubifs_iget(sb, UBIFS_ROOT_INO);
|
|
|
|
|
if (IS_ERR(root)) {
|
|
|
|
|
err = PTR_ERR(root);
|
|
|
|
|
goto out_umount;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
sb->s_root = d_alloc_root(root);
|
|
|
|
|
if (!sb->s_root)
|
|
|
|
|
goto out_iput;
|
|
|
|
|
|
|
|
|
|
mutex_unlock(&c->umount_mutex);
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
out_iput:
|
|
|
|
|
iput(root);
|
|
|
|
|
out_umount:
|
|
|
|
|
ubifs_umount(c);
|
|
|
|
|
out_unlock:
|
|
|
|
|
mutex_unlock(&c->umount_mutex);
|
|
|
|
|
out_bdi:
|
|
|
|
|
bdi_destroy(&c->bdi);
|
|
|
|
|
out_close:
|
|
|
|
|
ubi_close_volume(c->ubi);
|
|
|
|
|
out_free:
|
|
|
|
|
kfree(c);
|
|
|
|
|
return err;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static int sb_test(struct super_block *sb, void *data)
|
|
|
|
|
{
|
|
|
|
|
dev_t *dev = data;
|
|
|
|
|
|
|
|
|
|
return sb->s_dev == *dev;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static int sb_set(struct super_block *sb, void *data)
|
|
|
|
|
{
|
|
|
|
|
dev_t *dev = data;
|
|
|
|
|
|
|
|
|
|
sb->s_dev = *dev;
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static int ubifs_get_sb(struct file_system_type *fs_type, int flags,
|
|
|
|
|
const char *name, void *data, struct vfsmount *mnt)
|
|
|
|
|
{
|
|
|
|
|
struct ubi_volume_desc *ubi;
|
|
|
|
|
struct ubi_volume_info vi;
|
|
|
|
|
struct super_block *sb;
|
|
|
|
|
int err;
|
|
|
|
|
|
|
|
|
|
dbg_gen("name %s, flags %#x", name, flags);
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Get UBI device number and volume ID. Mount it read-only so far
|
|
|
|
|
* because this might be a new mount point, and UBI allows only one
|
|
|
|
|
* read-write user at a time.
|
|
|
|
|
*/
|
|
|
|
|
ubi = open_ubi(name, UBI_READONLY);
|
|
|
|
|
if (IS_ERR(ubi)) {
|
|
|
|
|
ubifs_err("cannot open \"%s\", error %d",
|
|
|
|
|
name, (int)PTR_ERR(ubi));
|
|
|
|
|
return PTR_ERR(ubi);
|
|
|
|
|
}
|
|
|
|
|
ubi_get_volume_info(ubi, &vi);
|
|
|
|
|
|
|
|
|
|
dbg_gen("opened ubi%d_%d", vi.ubi_num, vi.vol_id);
|
|
|
|
|
|
|
|
|
|
sb = sget(fs_type, &sb_test, &sb_set, &vi.cdev);
|
|
|
|
|
if (IS_ERR(sb)) {
|
|
|
|
|
err = PTR_ERR(sb);
|
|
|
|
|
goto out_close;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (sb->s_root) {
|
|
|
|
|
/* A new mount point for already mounted UBIFS */
|
|
|
|
|
dbg_gen("this ubi volume is already mounted");
|
|
|
|
|
if ((flags ^ sb->s_flags) & MS_RDONLY) {
|
|
|
|
|
err = -EBUSY;
|
|
|
|
|
goto out_deact;
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
sb->s_flags = flags;
|
|
|
|
|
/*
|
|
|
|
|
* Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is
|
|
|
|
|
* replaced by 'c'.
|
|
|
|
|
*/
|
|
|
|
|
sb->s_fs_info = ubi;
|
|
|
|
|
err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
|
|
|
|
|
if (err)
|
|
|
|
|
goto out_deact;
|
|
|
|
|
/* We do not support atime */
|
|
|
|
|
sb->s_flags |= MS_ACTIVE | MS_NOATIME;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 'fill_super()' opens ubi again so we must close it here */
|
|
|
|
|
ubi_close_volume(ubi);
|
|
|
|
|
|
|
|
|
|
return simple_set_mnt(mnt, sb);
|
|
|
|
|
|
|
|
|
|
out_deact:
|
|
|
|
|
up_write(&sb->s_umount);
|
|
|
|
|
deactivate_super(sb);
|
|
|
|
|
out_close:
|
|
|
|
|
ubi_close_volume(ubi);
|
|
|
|
|
return err;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void ubifs_kill_sb(struct super_block *sb)
|
|
|
|
|
{
|
|
|
|
|
struct ubifs_info *c = sb->s_fs_info;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* We do 'commit_on_unmount()' here instead of 'ubifs_put_super()'
|
|
|
|
|
* in order to be outside BKL.
|
|
|
|
|
*/
|
|
|
|
|
if (sb->s_root && !(sb->s_flags & MS_RDONLY))
|
|
|
|
|
commit_on_unmount(c);
|
|
|
|
|
/* The un-mount routine is actually done in put_super() */
|
|
|
|
|
generic_shutdown_super(sb);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static struct file_system_type ubifs_fs_type = {
|
|
|
|
|
.name = "ubifs",
|
|
|
|
|
.owner = THIS_MODULE,
|
|
|
|
|
.get_sb = ubifs_get_sb,
|
|
|
|
|
.kill_sb = ubifs_kill_sb
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Inode slab cache constructor.
|
|
|
|
|
*/
|
2008-07-26 10:45:34 +08:00
|
|
|
|
static void inode_slab_ctor(void *obj)
|
2008-07-15 00:08:37 +08:00
|
|
|
|
{
|
|
|
|
|
struct ubifs_inode *ui = obj;
|
|
|
|
|
inode_init_once(&ui->vfs_inode);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static int __init ubifs_init(void)
|
|
|
|
|
{
|
|
|
|
|
int err;
|
|
|
|
|
|
|
|
|
|
BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
|
|
|
|
|
|
|
|
|
|
/* Make sure node sizes are 8-byte aligned */
|
|
|
|
|
BUILD_BUG_ON(UBIFS_CH_SZ & 7);
|
|
|
|
|
BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
|
|
|
|
|
BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
|
|
|
|
|
BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
|
|
|
|
|
BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
|
|
|
|
|
BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
|
|
|
|
|
BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
|
|
|
|
|
BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
|
|
|
|
|
BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
|
|
|
|
|
BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
|
|
|
|
|
BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
|
|
|
|
|
|
|
|
|
|
BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
|
|
|
|
|
BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
|
|
|
|
|
BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
|
|
|
|
|
BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
|
|
|
|
|
BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
|
|
|
|
|
BUILD_BUG_ON(MIN_WRITE_SZ & 7);
|
|
|
|
|
|
|
|
|
|
/* Check min. node size */
|
|
|
|
|
BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
|
|
|
|
|
BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
|
|
|
|
|
BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
|
|
|
|
|
BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
|
|
|
|
|
|
|
|
|
|
BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
|
|
|
|
|
BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
|
|
|
|
|
BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
|
|
|
|
|
BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
|
|
|
|
|
|
|
|
|
|
/* Defined node sizes */
|
|
|
|
|
BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
|
|
|
|
|
BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
|
|
|
|
|
BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
|
|
|
|
|
BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
|
|
|
|
|
* UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
|
|
|
|
|
*/
|
|
|
|
|
if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
|
|
|
|
|
ubifs_err("VFS page cache size is %u bytes, but UBIFS requires"
|
|
|
|
|
" at least 4096 bytes",
|
|
|
|
|
(unsigned int)PAGE_CACHE_SIZE);
|
|
|
|
|
return -EINVAL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
err = register_filesystem(&ubifs_fs_type);
|
|
|
|
|
if (err) {
|
|
|
|
|
ubifs_err("cannot register file system, error %d", err);
|
|
|
|
|
return err;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
err = -ENOMEM;
|
|
|
|
|
ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
|
|
|
|
|
sizeof(struct ubifs_inode), 0,
|
|
|
|
|
SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
|
|
|
|
|
&inode_slab_ctor);
|
|
|
|
|
if (!ubifs_inode_slab)
|
|
|
|
|
goto out_reg;
|
|
|
|
|
|
|
|
|
|
register_shrinker(&ubifs_shrinker_info);
|
|
|
|
|
|
|
|
|
|
err = ubifs_compressors_init();
|
|
|
|
|
if (err)
|
|
|
|
|
goto out_compr;
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
out_compr:
|
|
|
|
|
unregister_shrinker(&ubifs_shrinker_info);
|
|
|
|
|
kmem_cache_destroy(ubifs_inode_slab);
|
|
|
|
|
out_reg:
|
|
|
|
|
unregister_filesystem(&ubifs_fs_type);
|
|
|
|
|
return err;
|
|
|
|
|
}
|
|
|
|
|
/* late_initcall to let compressors initialize first */
|
|
|
|
|
late_initcall(ubifs_init);
|
|
|
|
|
|
|
|
|
|
static void __exit ubifs_exit(void)
|
|
|
|
|
{
|
|
|
|
|
ubifs_assert(list_empty(&ubifs_infos));
|
|
|
|
|
ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
|
|
|
|
|
|
|
|
|
|
ubifs_compressors_exit();
|
|
|
|
|
unregister_shrinker(&ubifs_shrinker_info);
|
|
|
|
|
kmem_cache_destroy(ubifs_inode_slab);
|
|
|
|
|
unregister_filesystem(&ubifs_fs_type);
|
|
|
|
|
}
|
|
|
|
|
module_exit(ubifs_exit);
|
|
|
|
|
|
|
|
|
|
MODULE_LICENSE("GPL");
|
|
|
|
|
MODULE_VERSION(__stringify(UBIFS_VERSION));
|
|
|
|
|
MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
|
|
|
|
|
MODULE_DESCRIPTION("UBIFS - UBI File System");
|