OpenCloudOS-Kernel/net/ipv4/inet_fragment.c

528 lines
14 KiB
C
Raw Normal View History

/*
* inet fragments management
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Authors: Pavel Emelyanov <xemul@openvz.org>
* Started as consolidation of ipv4/ip_fragment.c,
* ipv6/reassembly. and ipv6 nf conntrack reassembly
*/
#include <linux/list.h>
#include <linux/spinlock.h>
#include <linux/module.h>
#include <linux/timer.h>
#include <linux/mm.h>
#include <linux/random.h>
#include <linux/skbuff.h>
#include <linux/rtnetlink.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/rhashtable.h>
#include <net/sock.h>
#include <net/inet_frag.h>
#include <net/inet_ecn.h>
#include <net/ip.h>
#include <net/ipv6.h>
/* Use skb->cb to track consecutive/adjacent fragments coming at
* the end of the queue. Nodes in the rb-tree queue will
* contain "runs" of one or more adjacent fragments.
*
* Invariants:
* - next_frag is NULL at the tail of a "run";
* - the head of a "run" has the sum of all fragment lengths in frag_run_len.
*/
struct ipfrag_skb_cb {
union {
struct inet_skb_parm h4;
struct inet6_skb_parm h6;
};
struct sk_buff *next_frag;
int frag_run_len;
};
#define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb))
static void fragcb_clear(struct sk_buff *skb)
{
RB_CLEAR_NODE(&skb->rbnode);
FRAG_CB(skb)->next_frag = NULL;
FRAG_CB(skb)->frag_run_len = skb->len;
}
/* Append skb to the last "run". */
static void fragrun_append_to_last(struct inet_frag_queue *q,
struct sk_buff *skb)
{
fragcb_clear(skb);
FRAG_CB(q->last_run_head)->frag_run_len += skb->len;
FRAG_CB(q->fragments_tail)->next_frag = skb;
q->fragments_tail = skb;
}
/* Create a new "run" with the skb. */
static void fragrun_create(struct inet_frag_queue *q, struct sk_buff *skb)
{
BUILD_BUG_ON(sizeof(struct ipfrag_skb_cb) > sizeof(skb->cb));
fragcb_clear(skb);
if (q->last_run_head)
rb_link_node(&skb->rbnode, &q->last_run_head->rbnode,
&q->last_run_head->rbnode.rb_right);
else
rb_link_node(&skb->rbnode, NULL, &q->rb_fragments.rb_node);
rb_insert_color(&skb->rbnode, &q->rb_fragments);
q->fragments_tail = skb;
q->last_run_head = skb;
}
/* Given the OR values of all fragments, apply RFC 3168 5.3 requirements
* Value : 0xff if frame should be dropped.
* 0 or INET_ECN_CE value, to be ORed in to final iph->tos field
*/
const u8 ip_frag_ecn_table[16] = {
/* at least one fragment had CE, and others ECT_0 or ECT_1 */
[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = INET_ECN_CE,
[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = INET_ECN_CE,
[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = INET_ECN_CE,
/* invalid combinations : drop frame */
[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE] = 0xff,
[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0] = 0xff,
[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_1] = 0xff,
[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = 0xff,
[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = 0xff,
[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
};
EXPORT_SYMBOL(ip_frag_ecn_table);
int inet_frags_init(struct inet_frags *f)
{
f->frags_cachep = kmem_cache_create(f->frags_cache_name, f->qsize, 0, 0,
NULL);
if (!f->frags_cachep)
return -ENOMEM;
return 0;
}
EXPORT_SYMBOL(inet_frags_init);
void inet_frags_fini(struct inet_frags *f)
{
inet: frags: use rhashtables for reassembly units Some applications still rely on IP fragmentation, and to be fair linux reassembly unit is not working under any serious load. It uses static hash tables of 1024 buckets, and up to 128 items per bucket (!!!) A work queue is supposed to garbage collect items when host is under memory pressure, and doing a hash rebuild, changing seed used in hash computations. This work queue blocks softirqs for up to 25 ms when doing a hash rebuild, occurring every 5 seconds if host is under fire. Then there is the problem of sharing this hash table for all netns. It is time to switch to rhashtables, and allocate one of them per netns to speedup netns dismantle, since this is a critical metric these days. Lookup is now using RCU. A followup patch will even remove the refcount hold/release left from prior implementation and save a couple of atomic operations. Before this patch, 16 cpus (16 RX queue NIC) could not handle more than 1 Mpps frags DDOS. After the patch, I reach 9 Mpps without any tuning, and can use up to 2GB of storage for the fragments (exact number depends on frags being evicted after timeout) $ grep FRAG /proc/net/sockstat FRAG: inuse 1966916 memory 2140004608 A followup patch will change the limits for 64bit arches. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Florian Westphal <fw@strlen.de> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Alexander Aring <alex.aring@gmail.com> Cc: Stefan Schmidt <stefan@osg.samsung.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-01 03:58:49 +08:00
/* We must wait that all inet_frag_destroy_rcu() have completed. */
rcu_barrier();
kmem_cache_destroy(f->frags_cachep);
inet: frags: use rhashtables for reassembly units Some applications still rely on IP fragmentation, and to be fair linux reassembly unit is not working under any serious load. It uses static hash tables of 1024 buckets, and up to 128 items per bucket (!!!) A work queue is supposed to garbage collect items when host is under memory pressure, and doing a hash rebuild, changing seed used in hash computations. This work queue blocks softirqs for up to 25 ms when doing a hash rebuild, occurring every 5 seconds if host is under fire. Then there is the problem of sharing this hash table for all netns. It is time to switch to rhashtables, and allocate one of them per netns to speedup netns dismantle, since this is a critical metric these days. Lookup is now using RCU. A followup patch will even remove the refcount hold/release left from prior implementation and save a couple of atomic operations. Before this patch, 16 cpus (16 RX queue NIC) could not handle more than 1 Mpps frags DDOS. After the patch, I reach 9 Mpps without any tuning, and can use up to 2GB of storage for the fragments (exact number depends on frags being evicted after timeout) $ grep FRAG /proc/net/sockstat FRAG: inuse 1966916 memory 2140004608 A followup patch will change the limits for 64bit arches. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Florian Westphal <fw@strlen.de> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Alexander Aring <alex.aring@gmail.com> Cc: Stefan Schmidt <stefan@osg.samsung.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-01 03:58:49 +08:00
f->frags_cachep = NULL;
}
EXPORT_SYMBOL(inet_frags_fini);
inet: frags: rework rhashtable dismantle syszbot found an interesting use-after-free [1] happening while IPv4 fragment rhashtable was destroyed at netns dismantle. While no insertions can possibly happen at the time a dismantling netns is destroying this rhashtable, timers can still fire and attempt to remove elements from this rhashtable. This is forbidden, since rhashtable_free_and_destroy() has no synchronization against concurrent inserts and deletes. Add a new fqdir->dead flag so that timers do not attempt a rhashtable_remove_fast() operation. We also have to respect an RCU grace period before starting the rhashtable_free_and_destroy() from process context, thus we use rcu_work infrastructure. This is a refinement of a prior rough attempt to fix this bug : https://marc.info/?l=linux-netdev&m=153845936820900&w=2 Since the rhashtable cleanup is now deferred to a work queue, netns dismantles should be slightly faster. [1] BUG: KASAN: use-after-free in __read_once_size include/linux/compiler.h:194 [inline] BUG: KASAN: use-after-free in rhashtable_last_table+0x162/0x180 lib/rhashtable.c:212 Read of size 8 at addr ffff8880a6497b70 by task kworker/0:0/5 CPU: 0 PID: 5 Comm: kworker/0:0 Not tainted 5.2.0-rc1+ #2 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: events rht_deferred_worker Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x172/0x1f0 lib/dump_stack.c:113 print_address_description.cold+0x7c/0x20d mm/kasan/report.c:188 __kasan_report.cold+0x1b/0x40 mm/kasan/report.c:317 kasan_report+0x12/0x20 mm/kasan/common.c:614 __asan_report_load8_noabort+0x14/0x20 mm/kasan/generic_report.c:132 __read_once_size include/linux/compiler.h:194 [inline] rhashtable_last_table+0x162/0x180 lib/rhashtable.c:212 rht_deferred_worker+0x111/0x2030 lib/rhashtable.c:411 process_one_work+0x989/0x1790 kernel/workqueue.c:2269 worker_thread+0x98/0xe40 kernel/workqueue.c:2415 kthread+0x354/0x420 kernel/kthread.c:255 ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:352 Allocated by task 32687: save_stack+0x23/0x90 mm/kasan/common.c:71 set_track mm/kasan/common.c:79 [inline] __kasan_kmalloc mm/kasan/common.c:489 [inline] __kasan_kmalloc.constprop.0+0xcf/0xe0 mm/kasan/common.c:462 kasan_kmalloc+0x9/0x10 mm/kasan/common.c:503 __do_kmalloc_node mm/slab.c:3620 [inline] __kmalloc_node+0x4e/0x70 mm/slab.c:3627 kmalloc_node include/linux/slab.h:590 [inline] kvmalloc_node+0x68/0x100 mm/util.c:431 kvmalloc include/linux/mm.h:637 [inline] kvzalloc include/linux/mm.h:645 [inline] bucket_table_alloc+0x90/0x480 lib/rhashtable.c:178 rhashtable_init+0x3f4/0x7b0 lib/rhashtable.c:1057 inet_frags_init_net include/net/inet_frag.h:109 [inline] ipv4_frags_init_net+0x182/0x410 net/ipv4/ip_fragment.c:683 ops_init+0xb3/0x410 net/core/net_namespace.c:130 setup_net+0x2d3/0x740 net/core/net_namespace.c:316 copy_net_ns+0x1df/0x340 net/core/net_namespace.c:439 create_new_namespaces+0x400/0x7b0 kernel/nsproxy.c:107 unshare_nsproxy_namespaces+0xc2/0x200 kernel/nsproxy.c:206 ksys_unshare+0x440/0x980 kernel/fork.c:2692 __do_sys_unshare kernel/fork.c:2760 [inline] __se_sys_unshare kernel/fork.c:2758 [inline] __x64_sys_unshare+0x31/0x40 kernel/fork.c:2758 do_syscall_64+0xfd/0x680 arch/x86/entry/common.c:301 entry_SYSCALL_64_after_hwframe+0x49/0xbe Freed by task 7: save_stack+0x23/0x90 mm/kasan/common.c:71 set_track mm/kasan/common.c:79 [inline] __kasan_slab_free+0x102/0x150 mm/kasan/common.c:451 kasan_slab_free+0xe/0x10 mm/kasan/common.c:459 __cache_free mm/slab.c:3432 [inline] kfree+0xcf/0x220 mm/slab.c:3755 kvfree+0x61/0x70 mm/util.c:460 bucket_table_free+0x69/0x150 lib/rhashtable.c:108 rhashtable_free_and_destroy+0x165/0x8b0 lib/rhashtable.c:1155 inet_frags_exit_net+0x3d/0x50 net/ipv4/inet_fragment.c:152 ipv4_frags_exit_net+0x73/0x90 net/ipv4/ip_fragment.c:695 ops_exit_list.isra.0+0xaa/0x150 net/core/net_namespace.c:154 cleanup_net+0x3fb/0x960 net/core/net_namespace.c:553 process_one_work+0x989/0x1790 kernel/workqueue.c:2269 worker_thread+0x98/0xe40 kernel/workqueue.c:2415 kthread+0x354/0x420 kernel/kthread.c:255 ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:352 The buggy address belongs to the object at ffff8880a6497b40 which belongs to the cache kmalloc-1k of size 1024 The buggy address is located 48 bytes inside of 1024-byte region [ffff8880a6497b40, ffff8880a6497f40) The buggy address belongs to the page: page:ffffea0002992580 refcount:1 mapcount:0 mapping:ffff8880aa400ac0 index:0xffff8880a64964c0 compound_mapcount: 0 flags: 0x1fffc0000010200(slab|head) raw: 01fffc0000010200 ffffea0002916e88 ffffea000218fe08 ffff8880aa400ac0 raw: ffff8880a64964c0 ffff8880a6496040 0000000100000005 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff8880a6497a00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880a6497a80: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc >ffff8880a6497b00: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb ^ ffff8880a6497b80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880a6497c00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb Fixes: 648700f76b03 ("inet: frags: use rhashtables for reassembly units") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-25 00:03:40 +08:00
/* called from rhashtable_free_and_destroy() at netns_frags dismantle */
inet: frags: use rhashtables for reassembly units Some applications still rely on IP fragmentation, and to be fair linux reassembly unit is not working under any serious load. It uses static hash tables of 1024 buckets, and up to 128 items per bucket (!!!) A work queue is supposed to garbage collect items when host is under memory pressure, and doing a hash rebuild, changing seed used in hash computations. This work queue blocks softirqs for up to 25 ms when doing a hash rebuild, occurring every 5 seconds if host is under fire. Then there is the problem of sharing this hash table for all netns. It is time to switch to rhashtables, and allocate one of them per netns to speedup netns dismantle, since this is a critical metric these days. Lookup is now using RCU. A followup patch will even remove the refcount hold/release left from prior implementation and save a couple of atomic operations. Before this patch, 16 cpus (16 RX queue NIC) could not handle more than 1 Mpps frags DDOS. After the patch, I reach 9 Mpps without any tuning, and can use up to 2GB of storage for the fragments (exact number depends on frags being evicted after timeout) $ grep FRAG /proc/net/sockstat FRAG: inuse 1966916 memory 2140004608 A followup patch will change the limits for 64bit arches. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Florian Westphal <fw@strlen.de> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Alexander Aring <alex.aring@gmail.com> Cc: Stefan Schmidt <stefan@osg.samsung.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-01 03:58:49 +08:00
static void inet_frags_free_cb(void *ptr, void *arg)
{
inet: frags: use rhashtables for reassembly units Some applications still rely on IP fragmentation, and to be fair linux reassembly unit is not working under any serious load. It uses static hash tables of 1024 buckets, and up to 128 items per bucket (!!!) A work queue is supposed to garbage collect items when host is under memory pressure, and doing a hash rebuild, changing seed used in hash computations. This work queue blocks softirqs for up to 25 ms when doing a hash rebuild, occurring every 5 seconds if host is under fire. Then there is the problem of sharing this hash table for all netns. It is time to switch to rhashtables, and allocate one of them per netns to speedup netns dismantle, since this is a critical metric these days. Lookup is now using RCU. A followup patch will even remove the refcount hold/release left from prior implementation and save a couple of atomic operations. Before this patch, 16 cpus (16 RX queue NIC) could not handle more than 1 Mpps frags DDOS. After the patch, I reach 9 Mpps without any tuning, and can use up to 2GB of storage for the fragments (exact number depends on frags being evicted after timeout) $ grep FRAG /proc/net/sockstat FRAG: inuse 1966916 memory 2140004608 A followup patch will change the limits for 64bit arches. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Florian Westphal <fw@strlen.de> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Alexander Aring <alex.aring@gmail.com> Cc: Stefan Schmidt <stefan@osg.samsung.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-01 03:58:49 +08:00
struct inet_frag_queue *fq = ptr;
inet: frags: rework rhashtable dismantle syszbot found an interesting use-after-free [1] happening while IPv4 fragment rhashtable was destroyed at netns dismantle. While no insertions can possibly happen at the time a dismantling netns is destroying this rhashtable, timers can still fire and attempt to remove elements from this rhashtable. This is forbidden, since rhashtable_free_and_destroy() has no synchronization against concurrent inserts and deletes. Add a new fqdir->dead flag so that timers do not attempt a rhashtable_remove_fast() operation. We also have to respect an RCU grace period before starting the rhashtable_free_and_destroy() from process context, thus we use rcu_work infrastructure. This is a refinement of a prior rough attempt to fix this bug : https://marc.info/?l=linux-netdev&m=153845936820900&w=2 Since the rhashtable cleanup is now deferred to a work queue, netns dismantles should be slightly faster. [1] BUG: KASAN: use-after-free in __read_once_size include/linux/compiler.h:194 [inline] BUG: KASAN: use-after-free in rhashtable_last_table+0x162/0x180 lib/rhashtable.c:212 Read of size 8 at addr ffff8880a6497b70 by task kworker/0:0/5 CPU: 0 PID: 5 Comm: kworker/0:0 Not tainted 5.2.0-rc1+ #2 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: events rht_deferred_worker Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x172/0x1f0 lib/dump_stack.c:113 print_address_description.cold+0x7c/0x20d mm/kasan/report.c:188 __kasan_report.cold+0x1b/0x40 mm/kasan/report.c:317 kasan_report+0x12/0x20 mm/kasan/common.c:614 __asan_report_load8_noabort+0x14/0x20 mm/kasan/generic_report.c:132 __read_once_size include/linux/compiler.h:194 [inline] rhashtable_last_table+0x162/0x180 lib/rhashtable.c:212 rht_deferred_worker+0x111/0x2030 lib/rhashtable.c:411 process_one_work+0x989/0x1790 kernel/workqueue.c:2269 worker_thread+0x98/0xe40 kernel/workqueue.c:2415 kthread+0x354/0x420 kernel/kthread.c:255 ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:352 Allocated by task 32687: save_stack+0x23/0x90 mm/kasan/common.c:71 set_track mm/kasan/common.c:79 [inline] __kasan_kmalloc mm/kasan/common.c:489 [inline] __kasan_kmalloc.constprop.0+0xcf/0xe0 mm/kasan/common.c:462 kasan_kmalloc+0x9/0x10 mm/kasan/common.c:503 __do_kmalloc_node mm/slab.c:3620 [inline] __kmalloc_node+0x4e/0x70 mm/slab.c:3627 kmalloc_node include/linux/slab.h:590 [inline] kvmalloc_node+0x68/0x100 mm/util.c:431 kvmalloc include/linux/mm.h:637 [inline] kvzalloc include/linux/mm.h:645 [inline] bucket_table_alloc+0x90/0x480 lib/rhashtable.c:178 rhashtable_init+0x3f4/0x7b0 lib/rhashtable.c:1057 inet_frags_init_net include/net/inet_frag.h:109 [inline] ipv4_frags_init_net+0x182/0x410 net/ipv4/ip_fragment.c:683 ops_init+0xb3/0x410 net/core/net_namespace.c:130 setup_net+0x2d3/0x740 net/core/net_namespace.c:316 copy_net_ns+0x1df/0x340 net/core/net_namespace.c:439 create_new_namespaces+0x400/0x7b0 kernel/nsproxy.c:107 unshare_nsproxy_namespaces+0xc2/0x200 kernel/nsproxy.c:206 ksys_unshare+0x440/0x980 kernel/fork.c:2692 __do_sys_unshare kernel/fork.c:2760 [inline] __se_sys_unshare kernel/fork.c:2758 [inline] __x64_sys_unshare+0x31/0x40 kernel/fork.c:2758 do_syscall_64+0xfd/0x680 arch/x86/entry/common.c:301 entry_SYSCALL_64_after_hwframe+0x49/0xbe Freed by task 7: save_stack+0x23/0x90 mm/kasan/common.c:71 set_track mm/kasan/common.c:79 [inline] __kasan_slab_free+0x102/0x150 mm/kasan/common.c:451 kasan_slab_free+0xe/0x10 mm/kasan/common.c:459 __cache_free mm/slab.c:3432 [inline] kfree+0xcf/0x220 mm/slab.c:3755 kvfree+0x61/0x70 mm/util.c:460 bucket_table_free+0x69/0x150 lib/rhashtable.c:108 rhashtable_free_and_destroy+0x165/0x8b0 lib/rhashtable.c:1155 inet_frags_exit_net+0x3d/0x50 net/ipv4/inet_fragment.c:152 ipv4_frags_exit_net+0x73/0x90 net/ipv4/ip_fragment.c:695 ops_exit_list.isra.0+0xaa/0x150 net/core/net_namespace.c:154 cleanup_net+0x3fb/0x960 net/core/net_namespace.c:553 process_one_work+0x989/0x1790 kernel/workqueue.c:2269 worker_thread+0x98/0xe40 kernel/workqueue.c:2415 kthread+0x354/0x420 kernel/kthread.c:255 ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:352 The buggy address belongs to the object at ffff8880a6497b40 which belongs to the cache kmalloc-1k of size 1024 The buggy address is located 48 bytes inside of 1024-byte region [ffff8880a6497b40, ffff8880a6497f40) The buggy address belongs to the page: page:ffffea0002992580 refcount:1 mapcount:0 mapping:ffff8880aa400ac0 index:0xffff8880a64964c0 compound_mapcount: 0 flags: 0x1fffc0000010200(slab|head) raw: 01fffc0000010200 ffffea0002916e88 ffffea000218fe08 ffff8880aa400ac0 raw: ffff8880a64964c0 ffff8880a6496040 0000000100000005 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff8880a6497a00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880a6497a80: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc >ffff8880a6497b00: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb ^ ffff8880a6497b80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880a6497c00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb Fixes: 648700f76b03 ("inet: frags: use rhashtables for reassembly units") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-25 00:03:40 +08:00
int count;
inet: frags: rework rhashtable dismantle syszbot found an interesting use-after-free [1] happening while IPv4 fragment rhashtable was destroyed at netns dismantle. While no insertions can possibly happen at the time a dismantling netns is destroying this rhashtable, timers can still fire and attempt to remove elements from this rhashtable. This is forbidden, since rhashtable_free_and_destroy() has no synchronization against concurrent inserts and deletes. Add a new fqdir->dead flag so that timers do not attempt a rhashtable_remove_fast() operation. We also have to respect an RCU grace period before starting the rhashtable_free_and_destroy() from process context, thus we use rcu_work infrastructure. This is a refinement of a prior rough attempt to fix this bug : https://marc.info/?l=linux-netdev&m=153845936820900&w=2 Since the rhashtable cleanup is now deferred to a work queue, netns dismantles should be slightly faster. [1] BUG: KASAN: use-after-free in __read_once_size include/linux/compiler.h:194 [inline] BUG: KASAN: use-after-free in rhashtable_last_table+0x162/0x180 lib/rhashtable.c:212 Read of size 8 at addr ffff8880a6497b70 by task kworker/0:0/5 CPU: 0 PID: 5 Comm: kworker/0:0 Not tainted 5.2.0-rc1+ #2 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: events rht_deferred_worker Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x172/0x1f0 lib/dump_stack.c:113 print_address_description.cold+0x7c/0x20d mm/kasan/report.c:188 __kasan_report.cold+0x1b/0x40 mm/kasan/report.c:317 kasan_report+0x12/0x20 mm/kasan/common.c:614 __asan_report_load8_noabort+0x14/0x20 mm/kasan/generic_report.c:132 __read_once_size include/linux/compiler.h:194 [inline] rhashtable_last_table+0x162/0x180 lib/rhashtable.c:212 rht_deferred_worker+0x111/0x2030 lib/rhashtable.c:411 process_one_work+0x989/0x1790 kernel/workqueue.c:2269 worker_thread+0x98/0xe40 kernel/workqueue.c:2415 kthread+0x354/0x420 kernel/kthread.c:255 ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:352 Allocated by task 32687: save_stack+0x23/0x90 mm/kasan/common.c:71 set_track mm/kasan/common.c:79 [inline] __kasan_kmalloc mm/kasan/common.c:489 [inline] __kasan_kmalloc.constprop.0+0xcf/0xe0 mm/kasan/common.c:462 kasan_kmalloc+0x9/0x10 mm/kasan/common.c:503 __do_kmalloc_node mm/slab.c:3620 [inline] __kmalloc_node+0x4e/0x70 mm/slab.c:3627 kmalloc_node include/linux/slab.h:590 [inline] kvmalloc_node+0x68/0x100 mm/util.c:431 kvmalloc include/linux/mm.h:637 [inline] kvzalloc include/linux/mm.h:645 [inline] bucket_table_alloc+0x90/0x480 lib/rhashtable.c:178 rhashtable_init+0x3f4/0x7b0 lib/rhashtable.c:1057 inet_frags_init_net include/net/inet_frag.h:109 [inline] ipv4_frags_init_net+0x182/0x410 net/ipv4/ip_fragment.c:683 ops_init+0xb3/0x410 net/core/net_namespace.c:130 setup_net+0x2d3/0x740 net/core/net_namespace.c:316 copy_net_ns+0x1df/0x340 net/core/net_namespace.c:439 create_new_namespaces+0x400/0x7b0 kernel/nsproxy.c:107 unshare_nsproxy_namespaces+0xc2/0x200 kernel/nsproxy.c:206 ksys_unshare+0x440/0x980 kernel/fork.c:2692 __do_sys_unshare kernel/fork.c:2760 [inline] __se_sys_unshare kernel/fork.c:2758 [inline] __x64_sys_unshare+0x31/0x40 kernel/fork.c:2758 do_syscall_64+0xfd/0x680 arch/x86/entry/common.c:301 entry_SYSCALL_64_after_hwframe+0x49/0xbe Freed by task 7: save_stack+0x23/0x90 mm/kasan/common.c:71 set_track mm/kasan/common.c:79 [inline] __kasan_slab_free+0x102/0x150 mm/kasan/common.c:451 kasan_slab_free+0xe/0x10 mm/kasan/common.c:459 __cache_free mm/slab.c:3432 [inline] kfree+0xcf/0x220 mm/slab.c:3755 kvfree+0x61/0x70 mm/util.c:460 bucket_table_free+0x69/0x150 lib/rhashtable.c:108 rhashtable_free_and_destroy+0x165/0x8b0 lib/rhashtable.c:1155 inet_frags_exit_net+0x3d/0x50 net/ipv4/inet_fragment.c:152 ipv4_frags_exit_net+0x73/0x90 net/ipv4/ip_fragment.c:695 ops_exit_list.isra.0+0xaa/0x150 net/core/net_namespace.c:154 cleanup_net+0x3fb/0x960 net/core/net_namespace.c:553 process_one_work+0x989/0x1790 kernel/workqueue.c:2269 worker_thread+0x98/0xe40 kernel/workqueue.c:2415 kthread+0x354/0x420 kernel/kthread.c:255 ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:352 The buggy address belongs to the object at ffff8880a6497b40 which belongs to the cache kmalloc-1k of size 1024 The buggy address is located 48 bytes inside of 1024-byte region [ffff8880a6497b40, ffff8880a6497f40) The buggy address belongs to the page: page:ffffea0002992580 refcount:1 mapcount:0 mapping:ffff8880aa400ac0 index:0xffff8880a64964c0 compound_mapcount: 0 flags: 0x1fffc0000010200(slab|head) raw: 01fffc0000010200 ffffea0002916e88 ffffea000218fe08 ffff8880aa400ac0 raw: ffff8880a64964c0 ffff8880a6496040 0000000100000005 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff8880a6497a00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880a6497a80: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc >ffff8880a6497b00: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb ^ ffff8880a6497b80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880a6497c00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb Fixes: 648700f76b03 ("inet: frags: use rhashtables for reassembly units") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-25 00:03:40 +08:00
count = del_timer_sync(&fq->timer) ? 1 : 0;
net: frag queue per hash bucket locking This patch implements per hash bucket locking for the frag queue hash. This removes two write locks, and the only remaining write lock is for protecting hash rebuild. This essentially reduce the readers-writer lock to a rebuild lock. This patch is part of "net: frag performance followup" http://thread.gmane.org/gmane.linux.network/263644 of which two patches have already been accepted: Same test setup as previous: (http://thread.gmane.org/gmane.linux.network/257155) Two 10G interfaces, on seperate NUMA nodes, are under-test, and uses Ethernet flow-control. A third interface is used for generating the DoS attack (with trafgen). Notice, I have changed the frag DoS generator script to be more efficient/deadly. Before it would only hit one RX queue, now its sending packets causing multi-queue RX, due to "better" RX hashing. Test types summary (netperf UDP_STREAM): Test-20G64K == 2x10G with 65K fragments Test-20G3F == 2x10G with 3x fragments (3*1472 bytes) Test-20G64K+DoS == Same as 20G64K with frag DoS Test-20G3F+DoS == Same as 20G3F with frag DoS Test-20G64K+MQ == Same as 20G64K with Multi-Queue frag DoS Test-20G3F+MQ == Same as 20G3F with Multi-Queue frag DoS When I rebased this-patch(03) (on top of net-next commit a210576c) and removed the _bh spinlock, I saw a performance regression. BUT this was caused by some unrelated change in-between. See tests below. Test (A) is what I reported before for patch-02, accepted in commit 1b5ab0de. Test (B) verifying-retest of commit 1b5ab0de corrospond to patch-02. Test (C) is what I reported before for this-patch Test (D) is net-next master HEAD (commit a210576c), which reveals some (unknown) performance regression (compared against test (B)). Test (D) function as a new base-test. Performance table summary (in Mbit/s): (#) Test-type: 20G64K 20G3F 20G64K+DoS 20G3F+DoS 20G64K+MQ 20G3F+MQ ---------- ------- ------- ---------- --------- -------- ------- (A) Patch-02 : 18848.7 13230.1 4103.04 5310.36 130.0 440.2 (B) 1b5ab0de : 18841.5 13156.8 4101.08 5314.57 129.0 424.2 (C) Patch-03v1: 18838.0 13490.5 4405.11 6814.72 196.6 461.6 (D) a210576c : 18321.5 11250.4 3635.34 5160.13 119.1 405.2 (E) with _bh : 17247.3 11492.6 3994.74 6405.29 166.7 413.6 (F) without bh: 17471.3 11298.7 3818.05 6102.11 165.7 406.3 Test (E) and (F) is this-patch(03), with(V1) and without(V2) the _bh spinlocks. I cannot explain the slow down for 20G64K (but its an artificial "lab-test" so I'm not worried). But the other results does show improvements. And test (E) "with _bh" version is slightly better. Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Acked-by: Eric Dumazet <edumazet@google.com> ---- V2: - By analysis from Hannes Frederic Sowa and Eric Dumazet, we don't need the spinlock _bh versions, as Netfilter currently does a local_bh_disable() before entering inet_fragment. - Fold-in desc from cover-mail V3: - Drop the chain_len counter per hash bucket. Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-04 07:38:16 +08:00
inet: frags: use rhashtables for reassembly units Some applications still rely on IP fragmentation, and to be fair linux reassembly unit is not working under any serious load. It uses static hash tables of 1024 buckets, and up to 128 items per bucket (!!!) A work queue is supposed to garbage collect items when host is under memory pressure, and doing a hash rebuild, changing seed used in hash computations. This work queue blocks softirqs for up to 25 ms when doing a hash rebuild, occurring every 5 seconds if host is under fire. Then there is the problem of sharing this hash table for all netns. It is time to switch to rhashtables, and allocate one of them per netns to speedup netns dismantle, since this is a critical metric these days. Lookup is now using RCU. A followup patch will even remove the refcount hold/release left from prior implementation and save a couple of atomic operations. Before this patch, 16 cpus (16 RX queue NIC) could not handle more than 1 Mpps frags DDOS. After the patch, I reach 9 Mpps without any tuning, and can use up to 2GB of storage for the fragments (exact number depends on frags being evicted after timeout) $ grep FRAG /proc/net/sockstat FRAG: inuse 1966916 memory 2140004608 A followup patch will change the limits for 64bit arches. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Florian Westphal <fw@strlen.de> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Alexander Aring <alex.aring@gmail.com> Cc: Stefan Schmidt <stefan@osg.samsung.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-01 03:58:49 +08:00
spin_lock_bh(&fq->lock);
if (!(fq->flags & INET_FRAG_COMPLETE)) {
fq->flags |= INET_FRAG_COMPLETE;
inet: frags: rework rhashtable dismantle syszbot found an interesting use-after-free [1] happening while IPv4 fragment rhashtable was destroyed at netns dismantle. While no insertions can possibly happen at the time a dismantling netns is destroying this rhashtable, timers can still fire and attempt to remove elements from this rhashtable. This is forbidden, since rhashtable_free_and_destroy() has no synchronization against concurrent inserts and deletes. Add a new fqdir->dead flag so that timers do not attempt a rhashtable_remove_fast() operation. We also have to respect an RCU grace period before starting the rhashtable_free_and_destroy() from process context, thus we use rcu_work infrastructure. This is a refinement of a prior rough attempt to fix this bug : https://marc.info/?l=linux-netdev&m=153845936820900&w=2 Since the rhashtable cleanup is now deferred to a work queue, netns dismantles should be slightly faster. [1] BUG: KASAN: use-after-free in __read_once_size include/linux/compiler.h:194 [inline] BUG: KASAN: use-after-free in rhashtable_last_table+0x162/0x180 lib/rhashtable.c:212 Read of size 8 at addr ffff8880a6497b70 by task kworker/0:0/5 CPU: 0 PID: 5 Comm: kworker/0:0 Not tainted 5.2.0-rc1+ #2 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: events rht_deferred_worker Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x172/0x1f0 lib/dump_stack.c:113 print_address_description.cold+0x7c/0x20d mm/kasan/report.c:188 __kasan_report.cold+0x1b/0x40 mm/kasan/report.c:317 kasan_report+0x12/0x20 mm/kasan/common.c:614 __asan_report_load8_noabort+0x14/0x20 mm/kasan/generic_report.c:132 __read_once_size include/linux/compiler.h:194 [inline] rhashtable_last_table+0x162/0x180 lib/rhashtable.c:212 rht_deferred_worker+0x111/0x2030 lib/rhashtable.c:411 process_one_work+0x989/0x1790 kernel/workqueue.c:2269 worker_thread+0x98/0xe40 kernel/workqueue.c:2415 kthread+0x354/0x420 kernel/kthread.c:255 ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:352 Allocated by task 32687: save_stack+0x23/0x90 mm/kasan/common.c:71 set_track mm/kasan/common.c:79 [inline] __kasan_kmalloc mm/kasan/common.c:489 [inline] __kasan_kmalloc.constprop.0+0xcf/0xe0 mm/kasan/common.c:462 kasan_kmalloc+0x9/0x10 mm/kasan/common.c:503 __do_kmalloc_node mm/slab.c:3620 [inline] __kmalloc_node+0x4e/0x70 mm/slab.c:3627 kmalloc_node include/linux/slab.h:590 [inline] kvmalloc_node+0x68/0x100 mm/util.c:431 kvmalloc include/linux/mm.h:637 [inline] kvzalloc include/linux/mm.h:645 [inline] bucket_table_alloc+0x90/0x480 lib/rhashtable.c:178 rhashtable_init+0x3f4/0x7b0 lib/rhashtable.c:1057 inet_frags_init_net include/net/inet_frag.h:109 [inline] ipv4_frags_init_net+0x182/0x410 net/ipv4/ip_fragment.c:683 ops_init+0xb3/0x410 net/core/net_namespace.c:130 setup_net+0x2d3/0x740 net/core/net_namespace.c:316 copy_net_ns+0x1df/0x340 net/core/net_namespace.c:439 create_new_namespaces+0x400/0x7b0 kernel/nsproxy.c:107 unshare_nsproxy_namespaces+0xc2/0x200 kernel/nsproxy.c:206 ksys_unshare+0x440/0x980 kernel/fork.c:2692 __do_sys_unshare kernel/fork.c:2760 [inline] __se_sys_unshare kernel/fork.c:2758 [inline] __x64_sys_unshare+0x31/0x40 kernel/fork.c:2758 do_syscall_64+0xfd/0x680 arch/x86/entry/common.c:301 entry_SYSCALL_64_after_hwframe+0x49/0xbe Freed by task 7: save_stack+0x23/0x90 mm/kasan/common.c:71 set_track mm/kasan/common.c:79 [inline] __kasan_slab_free+0x102/0x150 mm/kasan/common.c:451 kasan_slab_free+0xe/0x10 mm/kasan/common.c:459 __cache_free mm/slab.c:3432 [inline] kfree+0xcf/0x220 mm/slab.c:3755 kvfree+0x61/0x70 mm/util.c:460 bucket_table_free+0x69/0x150 lib/rhashtable.c:108 rhashtable_free_and_destroy+0x165/0x8b0 lib/rhashtable.c:1155 inet_frags_exit_net+0x3d/0x50 net/ipv4/inet_fragment.c:152 ipv4_frags_exit_net+0x73/0x90 net/ipv4/ip_fragment.c:695 ops_exit_list.isra.0+0xaa/0x150 net/core/net_namespace.c:154 cleanup_net+0x3fb/0x960 net/core/net_namespace.c:553 process_one_work+0x989/0x1790 kernel/workqueue.c:2269 worker_thread+0x98/0xe40 kernel/workqueue.c:2415 kthread+0x354/0x420 kernel/kthread.c:255 ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:352 The buggy address belongs to the object at ffff8880a6497b40 which belongs to the cache kmalloc-1k of size 1024 The buggy address is located 48 bytes inside of 1024-byte region [ffff8880a6497b40, ffff8880a6497f40) The buggy address belongs to the page: page:ffffea0002992580 refcount:1 mapcount:0 mapping:ffff8880aa400ac0 index:0xffff8880a64964c0 compound_mapcount: 0 flags: 0x1fffc0000010200(slab|head) raw: 01fffc0000010200 ffffea0002916e88 ffffea000218fe08 ffff8880aa400ac0 raw: ffff8880a64964c0 ffff8880a6496040 0000000100000005 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff8880a6497a00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880a6497a80: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc >ffff8880a6497b00: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb ^ ffff8880a6497b80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880a6497c00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb Fixes: 648700f76b03 ("inet: frags: use rhashtables for reassembly units") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-25 00:03:40 +08:00
count++;
} else if (fq->flags & INET_FRAG_HASH_DEAD) {
count++;
}
inet: frags: use rhashtables for reassembly units Some applications still rely on IP fragmentation, and to be fair linux reassembly unit is not working under any serious load. It uses static hash tables of 1024 buckets, and up to 128 items per bucket (!!!) A work queue is supposed to garbage collect items when host is under memory pressure, and doing a hash rebuild, changing seed used in hash computations. This work queue blocks softirqs for up to 25 ms when doing a hash rebuild, occurring every 5 seconds if host is under fire. Then there is the problem of sharing this hash table for all netns. It is time to switch to rhashtables, and allocate one of them per netns to speedup netns dismantle, since this is a critical metric these days. Lookup is now using RCU. A followup patch will even remove the refcount hold/release left from prior implementation and save a couple of atomic operations. Before this patch, 16 cpus (16 RX queue NIC) could not handle more than 1 Mpps frags DDOS. After the patch, I reach 9 Mpps without any tuning, and can use up to 2GB of storage for the fragments (exact number depends on frags being evicted after timeout) $ grep FRAG /proc/net/sockstat FRAG: inuse 1966916 memory 2140004608 A followup patch will change the limits for 64bit arches. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Florian Westphal <fw@strlen.de> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Alexander Aring <alex.aring@gmail.com> Cc: Stefan Schmidt <stefan@osg.samsung.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-01 03:58:49 +08:00
spin_unlock_bh(&fq->lock);
inet: frags: rework rhashtable dismantle syszbot found an interesting use-after-free [1] happening while IPv4 fragment rhashtable was destroyed at netns dismantle. While no insertions can possibly happen at the time a dismantling netns is destroying this rhashtable, timers can still fire and attempt to remove elements from this rhashtable. This is forbidden, since rhashtable_free_and_destroy() has no synchronization against concurrent inserts and deletes. Add a new fqdir->dead flag so that timers do not attempt a rhashtable_remove_fast() operation. We also have to respect an RCU grace period before starting the rhashtable_free_and_destroy() from process context, thus we use rcu_work infrastructure. This is a refinement of a prior rough attempt to fix this bug : https://marc.info/?l=linux-netdev&m=153845936820900&w=2 Since the rhashtable cleanup is now deferred to a work queue, netns dismantles should be slightly faster. [1] BUG: KASAN: use-after-free in __read_once_size include/linux/compiler.h:194 [inline] BUG: KASAN: use-after-free in rhashtable_last_table+0x162/0x180 lib/rhashtable.c:212 Read of size 8 at addr ffff8880a6497b70 by task kworker/0:0/5 CPU: 0 PID: 5 Comm: kworker/0:0 Not tainted 5.2.0-rc1+ #2 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: events rht_deferred_worker Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x172/0x1f0 lib/dump_stack.c:113 print_address_description.cold+0x7c/0x20d mm/kasan/report.c:188 __kasan_report.cold+0x1b/0x40 mm/kasan/report.c:317 kasan_report+0x12/0x20 mm/kasan/common.c:614 __asan_report_load8_noabort+0x14/0x20 mm/kasan/generic_report.c:132 __read_once_size include/linux/compiler.h:194 [inline] rhashtable_last_table+0x162/0x180 lib/rhashtable.c:212 rht_deferred_worker+0x111/0x2030 lib/rhashtable.c:411 process_one_work+0x989/0x1790 kernel/workqueue.c:2269 worker_thread+0x98/0xe40 kernel/workqueue.c:2415 kthread+0x354/0x420 kernel/kthread.c:255 ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:352 Allocated by task 32687: save_stack+0x23/0x90 mm/kasan/common.c:71 set_track mm/kasan/common.c:79 [inline] __kasan_kmalloc mm/kasan/common.c:489 [inline] __kasan_kmalloc.constprop.0+0xcf/0xe0 mm/kasan/common.c:462 kasan_kmalloc+0x9/0x10 mm/kasan/common.c:503 __do_kmalloc_node mm/slab.c:3620 [inline] __kmalloc_node+0x4e/0x70 mm/slab.c:3627 kmalloc_node include/linux/slab.h:590 [inline] kvmalloc_node+0x68/0x100 mm/util.c:431 kvmalloc include/linux/mm.h:637 [inline] kvzalloc include/linux/mm.h:645 [inline] bucket_table_alloc+0x90/0x480 lib/rhashtable.c:178 rhashtable_init+0x3f4/0x7b0 lib/rhashtable.c:1057 inet_frags_init_net include/net/inet_frag.h:109 [inline] ipv4_frags_init_net+0x182/0x410 net/ipv4/ip_fragment.c:683 ops_init+0xb3/0x410 net/core/net_namespace.c:130 setup_net+0x2d3/0x740 net/core/net_namespace.c:316 copy_net_ns+0x1df/0x340 net/core/net_namespace.c:439 create_new_namespaces+0x400/0x7b0 kernel/nsproxy.c:107 unshare_nsproxy_namespaces+0xc2/0x200 kernel/nsproxy.c:206 ksys_unshare+0x440/0x980 kernel/fork.c:2692 __do_sys_unshare kernel/fork.c:2760 [inline] __se_sys_unshare kernel/fork.c:2758 [inline] __x64_sys_unshare+0x31/0x40 kernel/fork.c:2758 do_syscall_64+0xfd/0x680 arch/x86/entry/common.c:301 entry_SYSCALL_64_after_hwframe+0x49/0xbe Freed by task 7: save_stack+0x23/0x90 mm/kasan/common.c:71 set_track mm/kasan/common.c:79 [inline] __kasan_slab_free+0x102/0x150 mm/kasan/common.c:451 kasan_slab_free+0xe/0x10 mm/kasan/common.c:459 __cache_free mm/slab.c:3432 [inline] kfree+0xcf/0x220 mm/slab.c:3755 kvfree+0x61/0x70 mm/util.c:460 bucket_table_free+0x69/0x150 lib/rhashtable.c:108 rhashtable_free_and_destroy+0x165/0x8b0 lib/rhashtable.c:1155 inet_frags_exit_net+0x3d/0x50 net/ipv4/inet_fragment.c:152 ipv4_frags_exit_net+0x73/0x90 net/ipv4/ip_fragment.c:695 ops_exit_list.isra.0+0xaa/0x150 net/core/net_namespace.c:154 cleanup_net+0x3fb/0x960 net/core/net_namespace.c:553 process_one_work+0x989/0x1790 kernel/workqueue.c:2269 worker_thread+0x98/0xe40 kernel/workqueue.c:2415 kthread+0x354/0x420 kernel/kthread.c:255 ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:352 The buggy address belongs to the object at ffff8880a6497b40 which belongs to the cache kmalloc-1k of size 1024 The buggy address is located 48 bytes inside of 1024-byte region [ffff8880a6497b40, ffff8880a6497f40) The buggy address belongs to the page: page:ffffea0002992580 refcount:1 mapcount:0 mapping:ffff8880aa400ac0 index:0xffff8880a64964c0 compound_mapcount: 0 flags: 0x1fffc0000010200(slab|head) raw: 01fffc0000010200 ffffea0002916e88 ffffea000218fe08 ffff8880aa400ac0 raw: ffff8880a64964c0 ffff8880a6496040 0000000100000005 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff8880a6497a00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880a6497a80: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc >ffff8880a6497b00: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb ^ ffff8880a6497b80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880a6497c00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb Fixes: 648700f76b03 ("inet: frags: use rhashtables for reassembly units") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-25 00:03:40 +08:00
if (refcount_sub_and_test(count, &fq->refcnt))
inet_frag_destroy(fq);
}
inet: frags: rework rhashtable dismantle syszbot found an interesting use-after-free [1] happening while IPv4 fragment rhashtable was destroyed at netns dismantle. While no insertions can possibly happen at the time a dismantling netns is destroying this rhashtable, timers can still fire and attempt to remove elements from this rhashtable. This is forbidden, since rhashtable_free_and_destroy() has no synchronization against concurrent inserts and deletes. Add a new fqdir->dead flag so that timers do not attempt a rhashtable_remove_fast() operation. We also have to respect an RCU grace period before starting the rhashtable_free_and_destroy() from process context, thus we use rcu_work infrastructure. This is a refinement of a prior rough attempt to fix this bug : https://marc.info/?l=linux-netdev&m=153845936820900&w=2 Since the rhashtable cleanup is now deferred to a work queue, netns dismantles should be slightly faster. [1] BUG: KASAN: use-after-free in __read_once_size include/linux/compiler.h:194 [inline] BUG: KASAN: use-after-free in rhashtable_last_table+0x162/0x180 lib/rhashtable.c:212 Read of size 8 at addr ffff8880a6497b70 by task kworker/0:0/5 CPU: 0 PID: 5 Comm: kworker/0:0 Not tainted 5.2.0-rc1+ #2 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: events rht_deferred_worker Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x172/0x1f0 lib/dump_stack.c:113 print_address_description.cold+0x7c/0x20d mm/kasan/report.c:188 __kasan_report.cold+0x1b/0x40 mm/kasan/report.c:317 kasan_report+0x12/0x20 mm/kasan/common.c:614 __asan_report_load8_noabort+0x14/0x20 mm/kasan/generic_report.c:132 __read_once_size include/linux/compiler.h:194 [inline] rhashtable_last_table+0x162/0x180 lib/rhashtable.c:212 rht_deferred_worker+0x111/0x2030 lib/rhashtable.c:411 process_one_work+0x989/0x1790 kernel/workqueue.c:2269 worker_thread+0x98/0xe40 kernel/workqueue.c:2415 kthread+0x354/0x420 kernel/kthread.c:255 ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:352 Allocated by task 32687: save_stack+0x23/0x90 mm/kasan/common.c:71 set_track mm/kasan/common.c:79 [inline] __kasan_kmalloc mm/kasan/common.c:489 [inline] __kasan_kmalloc.constprop.0+0xcf/0xe0 mm/kasan/common.c:462 kasan_kmalloc+0x9/0x10 mm/kasan/common.c:503 __do_kmalloc_node mm/slab.c:3620 [inline] __kmalloc_node+0x4e/0x70 mm/slab.c:3627 kmalloc_node include/linux/slab.h:590 [inline] kvmalloc_node+0x68/0x100 mm/util.c:431 kvmalloc include/linux/mm.h:637 [inline] kvzalloc include/linux/mm.h:645 [inline] bucket_table_alloc+0x90/0x480 lib/rhashtable.c:178 rhashtable_init+0x3f4/0x7b0 lib/rhashtable.c:1057 inet_frags_init_net include/net/inet_frag.h:109 [inline] ipv4_frags_init_net+0x182/0x410 net/ipv4/ip_fragment.c:683 ops_init+0xb3/0x410 net/core/net_namespace.c:130 setup_net+0x2d3/0x740 net/core/net_namespace.c:316 copy_net_ns+0x1df/0x340 net/core/net_namespace.c:439 create_new_namespaces+0x400/0x7b0 kernel/nsproxy.c:107 unshare_nsproxy_namespaces+0xc2/0x200 kernel/nsproxy.c:206 ksys_unshare+0x440/0x980 kernel/fork.c:2692 __do_sys_unshare kernel/fork.c:2760 [inline] __se_sys_unshare kernel/fork.c:2758 [inline] __x64_sys_unshare+0x31/0x40 kernel/fork.c:2758 do_syscall_64+0xfd/0x680 arch/x86/entry/common.c:301 entry_SYSCALL_64_after_hwframe+0x49/0xbe Freed by task 7: save_stack+0x23/0x90 mm/kasan/common.c:71 set_track mm/kasan/common.c:79 [inline] __kasan_slab_free+0x102/0x150 mm/kasan/common.c:451 kasan_slab_free+0xe/0x10 mm/kasan/common.c:459 __cache_free mm/slab.c:3432 [inline] kfree+0xcf/0x220 mm/slab.c:3755 kvfree+0x61/0x70 mm/util.c:460 bucket_table_free+0x69/0x150 lib/rhashtable.c:108 rhashtable_free_and_destroy+0x165/0x8b0 lib/rhashtable.c:1155 inet_frags_exit_net+0x3d/0x50 net/ipv4/inet_fragment.c:152 ipv4_frags_exit_net+0x73/0x90 net/ipv4/ip_fragment.c:695 ops_exit_list.isra.0+0xaa/0x150 net/core/net_namespace.c:154 cleanup_net+0x3fb/0x960 net/core/net_namespace.c:553 process_one_work+0x989/0x1790 kernel/workqueue.c:2269 worker_thread+0x98/0xe40 kernel/workqueue.c:2415 kthread+0x354/0x420 kernel/kthread.c:255 ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:352 The buggy address belongs to the object at ffff8880a6497b40 which belongs to the cache kmalloc-1k of size 1024 The buggy address is located 48 bytes inside of 1024-byte region [ffff8880a6497b40, ffff8880a6497f40) The buggy address belongs to the page: page:ffffea0002992580 refcount:1 mapcount:0 mapping:ffff8880aa400ac0 index:0xffff8880a64964c0 compound_mapcount: 0 flags: 0x1fffc0000010200(slab|head) raw: 01fffc0000010200 ffffea0002916e88 ffffea000218fe08 ffff8880aa400ac0 raw: ffff8880a64964c0 ffff8880a6496040 0000000100000005 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff8880a6497a00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880a6497a80: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc >ffff8880a6497b00: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb ^ ffff8880a6497b80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880a6497c00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb Fixes: 648700f76b03 ("inet: frags: use rhashtables for reassembly units") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-25 00:03:40 +08:00
static void fqdir_rwork_fn(struct work_struct *work)
{
inet: frags: rework rhashtable dismantle syszbot found an interesting use-after-free [1] happening while IPv4 fragment rhashtable was destroyed at netns dismantle. While no insertions can possibly happen at the time a dismantling netns is destroying this rhashtable, timers can still fire and attempt to remove elements from this rhashtable. This is forbidden, since rhashtable_free_and_destroy() has no synchronization against concurrent inserts and deletes. Add a new fqdir->dead flag so that timers do not attempt a rhashtable_remove_fast() operation. We also have to respect an RCU grace period before starting the rhashtable_free_and_destroy() from process context, thus we use rcu_work infrastructure. This is a refinement of a prior rough attempt to fix this bug : https://marc.info/?l=linux-netdev&m=153845936820900&w=2 Since the rhashtable cleanup is now deferred to a work queue, netns dismantles should be slightly faster. [1] BUG: KASAN: use-after-free in __read_once_size include/linux/compiler.h:194 [inline] BUG: KASAN: use-after-free in rhashtable_last_table+0x162/0x180 lib/rhashtable.c:212 Read of size 8 at addr ffff8880a6497b70 by task kworker/0:0/5 CPU: 0 PID: 5 Comm: kworker/0:0 Not tainted 5.2.0-rc1+ #2 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: events rht_deferred_worker Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x172/0x1f0 lib/dump_stack.c:113 print_address_description.cold+0x7c/0x20d mm/kasan/report.c:188 __kasan_report.cold+0x1b/0x40 mm/kasan/report.c:317 kasan_report+0x12/0x20 mm/kasan/common.c:614 __asan_report_load8_noabort+0x14/0x20 mm/kasan/generic_report.c:132 __read_once_size include/linux/compiler.h:194 [inline] rhashtable_last_table+0x162/0x180 lib/rhashtable.c:212 rht_deferred_worker+0x111/0x2030 lib/rhashtable.c:411 process_one_work+0x989/0x1790 kernel/workqueue.c:2269 worker_thread+0x98/0xe40 kernel/workqueue.c:2415 kthread+0x354/0x420 kernel/kthread.c:255 ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:352 Allocated by task 32687: save_stack+0x23/0x90 mm/kasan/common.c:71 set_track mm/kasan/common.c:79 [inline] __kasan_kmalloc mm/kasan/common.c:489 [inline] __kasan_kmalloc.constprop.0+0xcf/0xe0 mm/kasan/common.c:462 kasan_kmalloc+0x9/0x10 mm/kasan/common.c:503 __do_kmalloc_node mm/slab.c:3620 [inline] __kmalloc_node+0x4e/0x70 mm/slab.c:3627 kmalloc_node include/linux/slab.h:590 [inline] kvmalloc_node+0x68/0x100 mm/util.c:431 kvmalloc include/linux/mm.h:637 [inline] kvzalloc include/linux/mm.h:645 [inline] bucket_table_alloc+0x90/0x480 lib/rhashtable.c:178 rhashtable_init+0x3f4/0x7b0 lib/rhashtable.c:1057 inet_frags_init_net include/net/inet_frag.h:109 [inline] ipv4_frags_init_net+0x182/0x410 net/ipv4/ip_fragment.c:683 ops_init+0xb3/0x410 net/core/net_namespace.c:130 setup_net+0x2d3/0x740 net/core/net_namespace.c:316 copy_net_ns+0x1df/0x340 net/core/net_namespace.c:439 create_new_namespaces+0x400/0x7b0 kernel/nsproxy.c:107 unshare_nsproxy_namespaces+0xc2/0x200 kernel/nsproxy.c:206 ksys_unshare+0x440/0x980 kernel/fork.c:2692 __do_sys_unshare kernel/fork.c:2760 [inline] __se_sys_unshare kernel/fork.c:2758 [inline] __x64_sys_unshare+0x31/0x40 kernel/fork.c:2758 do_syscall_64+0xfd/0x680 arch/x86/entry/common.c:301 entry_SYSCALL_64_after_hwframe+0x49/0xbe Freed by task 7: save_stack+0x23/0x90 mm/kasan/common.c:71 set_track mm/kasan/common.c:79 [inline] __kasan_slab_free+0x102/0x150 mm/kasan/common.c:451 kasan_slab_free+0xe/0x10 mm/kasan/common.c:459 __cache_free mm/slab.c:3432 [inline] kfree+0xcf/0x220 mm/slab.c:3755 kvfree+0x61/0x70 mm/util.c:460 bucket_table_free+0x69/0x150 lib/rhashtable.c:108 rhashtable_free_and_destroy+0x165/0x8b0 lib/rhashtable.c:1155 inet_frags_exit_net+0x3d/0x50 net/ipv4/inet_fragment.c:152 ipv4_frags_exit_net+0x73/0x90 net/ipv4/ip_fragment.c:695 ops_exit_list.isra.0+0xaa/0x150 net/core/net_namespace.c:154 cleanup_net+0x3fb/0x960 net/core/net_namespace.c:553 process_one_work+0x989/0x1790 kernel/workqueue.c:2269 worker_thread+0x98/0xe40 kernel/workqueue.c:2415 kthread+0x354/0x420 kernel/kthread.c:255 ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:352 The buggy address belongs to the object at ffff8880a6497b40 which belongs to the cache kmalloc-1k of size 1024 The buggy address is located 48 bytes inside of 1024-byte region [ffff8880a6497b40, ffff8880a6497f40) The buggy address belongs to the page: page:ffffea0002992580 refcount:1 mapcount:0 mapping:ffff8880aa400ac0 index:0xffff8880a64964c0 compound_mapcount: 0 flags: 0x1fffc0000010200(slab|head) raw: 01fffc0000010200 ffffea0002916e88 ffffea000218fe08 ffff8880aa400ac0 raw: ffff8880a64964c0 ffff8880a6496040 0000000100000005 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff8880a6497a00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880a6497a80: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc >ffff8880a6497b00: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb ^ ffff8880a6497b80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880a6497c00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb Fixes: 648700f76b03 ("inet: frags: use rhashtables for reassembly units") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-25 00:03:40 +08:00
struct fqdir *fqdir = container_of(to_rcu_work(work),
struct fqdir, destroy_rwork);
rhashtable_free_and_destroy(&fqdir->rhashtable, inet_frags_free_cb, NULL);
kfree(fqdir);
}
inet: frags: rework rhashtable dismantle syszbot found an interesting use-after-free [1] happening while IPv4 fragment rhashtable was destroyed at netns dismantle. While no insertions can possibly happen at the time a dismantling netns is destroying this rhashtable, timers can still fire and attempt to remove elements from this rhashtable. This is forbidden, since rhashtable_free_and_destroy() has no synchronization against concurrent inserts and deletes. Add a new fqdir->dead flag so that timers do not attempt a rhashtable_remove_fast() operation. We also have to respect an RCU grace period before starting the rhashtable_free_and_destroy() from process context, thus we use rcu_work infrastructure. This is a refinement of a prior rough attempt to fix this bug : https://marc.info/?l=linux-netdev&m=153845936820900&w=2 Since the rhashtable cleanup is now deferred to a work queue, netns dismantles should be slightly faster. [1] BUG: KASAN: use-after-free in __read_once_size include/linux/compiler.h:194 [inline] BUG: KASAN: use-after-free in rhashtable_last_table+0x162/0x180 lib/rhashtable.c:212 Read of size 8 at addr ffff8880a6497b70 by task kworker/0:0/5 CPU: 0 PID: 5 Comm: kworker/0:0 Not tainted 5.2.0-rc1+ #2 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: events rht_deferred_worker Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x172/0x1f0 lib/dump_stack.c:113 print_address_description.cold+0x7c/0x20d mm/kasan/report.c:188 __kasan_report.cold+0x1b/0x40 mm/kasan/report.c:317 kasan_report+0x12/0x20 mm/kasan/common.c:614 __asan_report_load8_noabort+0x14/0x20 mm/kasan/generic_report.c:132 __read_once_size include/linux/compiler.h:194 [inline] rhashtable_last_table+0x162/0x180 lib/rhashtable.c:212 rht_deferred_worker+0x111/0x2030 lib/rhashtable.c:411 process_one_work+0x989/0x1790 kernel/workqueue.c:2269 worker_thread+0x98/0xe40 kernel/workqueue.c:2415 kthread+0x354/0x420 kernel/kthread.c:255 ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:352 Allocated by task 32687: save_stack+0x23/0x90 mm/kasan/common.c:71 set_track mm/kasan/common.c:79 [inline] __kasan_kmalloc mm/kasan/common.c:489 [inline] __kasan_kmalloc.constprop.0+0xcf/0xe0 mm/kasan/common.c:462 kasan_kmalloc+0x9/0x10 mm/kasan/common.c:503 __do_kmalloc_node mm/slab.c:3620 [inline] __kmalloc_node+0x4e/0x70 mm/slab.c:3627 kmalloc_node include/linux/slab.h:590 [inline] kvmalloc_node+0x68/0x100 mm/util.c:431 kvmalloc include/linux/mm.h:637 [inline] kvzalloc include/linux/mm.h:645 [inline] bucket_table_alloc+0x90/0x480 lib/rhashtable.c:178 rhashtable_init+0x3f4/0x7b0 lib/rhashtable.c:1057 inet_frags_init_net include/net/inet_frag.h:109 [inline] ipv4_frags_init_net+0x182/0x410 net/ipv4/ip_fragment.c:683 ops_init+0xb3/0x410 net/core/net_namespace.c:130 setup_net+0x2d3/0x740 net/core/net_namespace.c:316 copy_net_ns+0x1df/0x340 net/core/net_namespace.c:439 create_new_namespaces+0x400/0x7b0 kernel/nsproxy.c:107 unshare_nsproxy_namespaces+0xc2/0x200 kernel/nsproxy.c:206 ksys_unshare+0x440/0x980 kernel/fork.c:2692 __do_sys_unshare kernel/fork.c:2760 [inline] __se_sys_unshare kernel/fork.c:2758 [inline] __x64_sys_unshare+0x31/0x40 kernel/fork.c:2758 do_syscall_64+0xfd/0x680 arch/x86/entry/common.c:301 entry_SYSCALL_64_after_hwframe+0x49/0xbe Freed by task 7: save_stack+0x23/0x90 mm/kasan/common.c:71 set_track mm/kasan/common.c:79 [inline] __kasan_slab_free+0x102/0x150 mm/kasan/common.c:451 kasan_slab_free+0xe/0x10 mm/kasan/common.c:459 __cache_free mm/slab.c:3432 [inline] kfree+0xcf/0x220 mm/slab.c:3755 kvfree+0x61/0x70 mm/util.c:460 bucket_table_free+0x69/0x150 lib/rhashtable.c:108 rhashtable_free_and_destroy+0x165/0x8b0 lib/rhashtable.c:1155 inet_frags_exit_net+0x3d/0x50 net/ipv4/inet_fragment.c:152 ipv4_frags_exit_net+0x73/0x90 net/ipv4/ip_fragment.c:695 ops_exit_list.isra.0+0xaa/0x150 net/core/net_namespace.c:154 cleanup_net+0x3fb/0x960 net/core/net_namespace.c:553 process_one_work+0x989/0x1790 kernel/workqueue.c:2269 worker_thread+0x98/0xe40 kernel/workqueue.c:2415 kthread+0x354/0x420 kernel/kthread.c:255 ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:352 The buggy address belongs to the object at ffff8880a6497b40 which belongs to the cache kmalloc-1k of size 1024 The buggy address is located 48 bytes inside of 1024-byte region [ffff8880a6497b40, ffff8880a6497f40) The buggy address belongs to the page: page:ffffea0002992580 refcount:1 mapcount:0 mapping:ffff8880aa400ac0 index:0xffff8880a64964c0 compound_mapcount: 0 flags: 0x1fffc0000010200(slab|head) raw: 01fffc0000010200 ffffea0002916e88 ffffea000218fe08 ffff8880aa400ac0 raw: ffff8880a64964c0 ffff8880a6496040 0000000100000005 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff8880a6497a00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880a6497a80: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc >ffff8880a6497b00: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb ^ ffff8880a6497b80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880a6497c00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb Fixes: 648700f76b03 ("inet: frags: use rhashtables for reassembly units") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-25 00:03:40 +08:00
void fqdir_exit(struct fqdir *fqdir)
{
fqdir->high_thresh = 0; /* prevent creation of new frags */
/* paired with READ_ONCE() in inet_frag_kill() :
* We want to prevent rhashtable_remove_fast() calls
*/
smp_store_release(&fqdir->dead, true);
INIT_RCU_WORK(&fqdir->destroy_rwork, fqdir_rwork_fn);
queue_rcu_work(system_wq, &fqdir->destroy_rwork);
}
EXPORT_SYMBOL(fqdir_exit);
void inet_frag_kill(struct inet_frag_queue *fq)
{
if (del_timer(&fq->timer))
refcount_dec(&fq->refcnt);
if (!(fq->flags & INET_FRAG_COMPLETE)) {
struct fqdir *fqdir = fq->fqdir;
inet: frags: use rhashtables for reassembly units Some applications still rely on IP fragmentation, and to be fair linux reassembly unit is not working under any serious load. It uses static hash tables of 1024 buckets, and up to 128 items per bucket (!!!) A work queue is supposed to garbage collect items when host is under memory pressure, and doing a hash rebuild, changing seed used in hash computations. This work queue blocks softirqs for up to 25 ms when doing a hash rebuild, occurring every 5 seconds if host is under fire. Then there is the problem of sharing this hash table for all netns. It is time to switch to rhashtables, and allocate one of them per netns to speedup netns dismantle, since this is a critical metric these days. Lookup is now using RCU. A followup patch will even remove the refcount hold/release left from prior implementation and save a couple of atomic operations. Before this patch, 16 cpus (16 RX queue NIC) could not handle more than 1 Mpps frags DDOS. After the patch, I reach 9 Mpps without any tuning, and can use up to 2GB of storage for the fragments (exact number depends on frags being evicted after timeout) $ grep FRAG /proc/net/sockstat FRAG: inuse 1966916 memory 2140004608 A followup patch will change the limits for 64bit arches. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Florian Westphal <fw@strlen.de> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Alexander Aring <alex.aring@gmail.com> Cc: Stefan Schmidt <stefan@osg.samsung.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-01 03:58:49 +08:00
fq->flags |= INET_FRAG_COMPLETE;
inet: frags: rework rhashtable dismantle syszbot found an interesting use-after-free [1] happening while IPv4 fragment rhashtable was destroyed at netns dismantle. While no insertions can possibly happen at the time a dismantling netns is destroying this rhashtable, timers can still fire and attempt to remove elements from this rhashtable. This is forbidden, since rhashtable_free_and_destroy() has no synchronization against concurrent inserts and deletes. Add a new fqdir->dead flag so that timers do not attempt a rhashtable_remove_fast() operation. We also have to respect an RCU grace period before starting the rhashtable_free_and_destroy() from process context, thus we use rcu_work infrastructure. This is a refinement of a prior rough attempt to fix this bug : https://marc.info/?l=linux-netdev&m=153845936820900&w=2 Since the rhashtable cleanup is now deferred to a work queue, netns dismantles should be slightly faster. [1] BUG: KASAN: use-after-free in __read_once_size include/linux/compiler.h:194 [inline] BUG: KASAN: use-after-free in rhashtable_last_table+0x162/0x180 lib/rhashtable.c:212 Read of size 8 at addr ffff8880a6497b70 by task kworker/0:0/5 CPU: 0 PID: 5 Comm: kworker/0:0 Not tainted 5.2.0-rc1+ #2 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: events rht_deferred_worker Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x172/0x1f0 lib/dump_stack.c:113 print_address_description.cold+0x7c/0x20d mm/kasan/report.c:188 __kasan_report.cold+0x1b/0x40 mm/kasan/report.c:317 kasan_report+0x12/0x20 mm/kasan/common.c:614 __asan_report_load8_noabort+0x14/0x20 mm/kasan/generic_report.c:132 __read_once_size include/linux/compiler.h:194 [inline] rhashtable_last_table+0x162/0x180 lib/rhashtable.c:212 rht_deferred_worker+0x111/0x2030 lib/rhashtable.c:411 process_one_work+0x989/0x1790 kernel/workqueue.c:2269 worker_thread+0x98/0xe40 kernel/workqueue.c:2415 kthread+0x354/0x420 kernel/kthread.c:255 ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:352 Allocated by task 32687: save_stack+0x23/0x90 mm/kasan/common.c:71 set_track mm/kasan/common.c:79 [inline] __kasan_kmalloc mm/kasan/common.c:489 [inline] __kasan_kmalloc.constprop.0+0xcf/0xe0 mm/kasan/common.c:462 kasan_kmalloc+0x9/0x10 mm/kasan/common.c:503 __do_kmalloc_node mm/slab.c:3620 [inline] __kmalloc_node+0x4e/0x70 mm/slab.c:3627 kmalloc_node include/linux/slab.h:590 [inline] kvmalloc_node+0x68/0x100 mm/util.c:431 kvmalloc include/linux/mm.h:637 [inline] kvzalloc include/linux/mm.h:645 [inline] bucket_table_alloc+0x90/0x480 lib/rhashtable.c:178 rhashtable_init+0x3f4/0x7b0 lib/rhashtable.c:1057 inet_frags_init_net include/net/inet_frag.h:109 [inline] ipv4_frags_init_net+0x182/0x410 net/ipv4/ip_fragment.c:683 ops_init+0xb3/0x410 net/core/net_namespace.c:130 setup_net+0x2d3/0x740 net/core/net_namespace.c:316 copy_net_ns+0x1df/0x340 net/core/net_namespace.c:439 create_new_namespaces+0x400/0x7b0 kernel/nsproxy.c:107 unshare_nsproxy_namespaces+0xc2/0x200 kernel/nsproxy.c:206 ksys_unshare+0x440/0x980 kernel/fork.c:2692 __do_sys_unshare kernel/fork.c:2760 [inline] __se_sys_unshare kernel/fork.c:2758 [inline] __x64_sys_unshare+0x31/0x40 kernel/fork.c:2758 do_syscall_64+0xfd/0x680 arch/x86/entry/common.c:301 entry_SYSCALL_64_after_hwframe+0x49/0xbe Freed by task 7: save_stack+0x23/0x90 mm/kasan/common.c:71 set_track mm/kasan/common.c:79 [inline] __kasan_slab_free+0x102/0x150 mm/kasan/common.c:451 kasan_slab_free+0xe/0x10 mm/kasan/common.c:459 __cache_free mm/slab.c:3432 [inline] kfree+0xcf/0x220 mm/slab.c:3755 kvfree+0x61/0x70 mm/util.c:460 bucket_table_free+0x69/0x150 lib/rhashtable.c:108 rhashtable_free_and_destroy+0x165/0x8b0 lib/rhashtable.c:1155 inet_frags_exit_net+0x3d/0x50 net/ipv4/inet_fragment.c:152 ipv4_frags_exit_net+0x73/0x90 net/ipv4/ip_fragment.c:695 ops_exit_list.isra.0+0xaa/0x150 net/core/net_namespace.c:154 cleanup_net+0x3fb/0x960 net/core/net_namespace.c:553 process_one_work+0x989/0x1790 kernel/workqueue.c:2269 worker_thread+0x98/0xe40 kernel/workqueue.c:2415 kthread+0x354/0x420 kernel/kthread.c:255 ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:352 The buggy address belongs to the object at ffff8880a6497b40 which belongs to the cache kmalloc-1k of size 1024 The buggy address is located 48 bytes inside of 1024-byte region [ffff8880a6497b40, ffff8880a6497f40) The buggy address belongs to the page: page:ffffea0002992580 refcount:1 mapcount:0 mapping:ffff8880aa400ac0 index:0xffff8880a64964c0 compound_mapcount: 0 flags: 0x1fffc0000010200(slab|head) raw: 01fffc0000010200 ffffea0002916e88 ffffea000218fe08 ffff8880aa400ac0 raw: ffff8880a64964c0 ffff8880a6496040 0000000100000005 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff8880a6497a00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880a6497a80: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc >ffff8880a6497b00: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb ^ ffff8880a6497b80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880a6497c00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb Fixes: 648700f76b03 ("inet: frags: use rhashtables for reassembly units") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-25 00:03:40 +08:00
rcu_read_lock();
/* This READ_ONCE() is paired with smp_store_release()
* in inet_frags_exit_net().
*/
if (!READ_ONCE(fqdir->dead)) {
rhashtable_remove_fast(&fqdir->rhashtable, &fq->node,
fqdir->f->rhash_params);
refcount_dec(&fq->refcnt);
} else {
fq->flags |= INET_FRAG_HASH_DEAD;
}
rcu_read_unlock();
}
}
EXPORT_SYMBOL(inet_frag_kill);
inet: frags: use rhashtables for reassembly units Some applications still rely on IP fragmentation, and to be fair linux reassembly unit is not working under any serious load. It uses static hash tables of 1024 buckets, and up to 128 items per bucket (!!!) A work queue is supposed to garbage collect items when host is under memory pressure, and doing a hash rebuild, changing seed used in hash computations. This work queue blocks softirqs for up to 25 ms when doing a hash rebuild, occurring every 5 seconds if host is under fire. Then there is the problem of sharing this hash table for all netns. It is time to switch to rhashtables, and allocate one of them per netns to speedup netns dismantle, since this is a critical metric these days. Lookup is now using RCU. A followup patch will even remove the refcount hold/release left from prior implementation and save a couple of atomic operations. Before this patch, 16 cpus (16 RX queue NIC) could not handle more than 1 Mpps frags DDOS. After the patch, I reach 9 Mpps without any tuning, and can use up to 2GB of storage for the fragments (exact number depends on frags being evicted after timeout) $ grep FRAG /proc/net/sockstat FRAG: inuse 1966916 memory 2140004608 A followup patch will change the limits for 64bit arches. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Florian Westphal <fw@strlen.de> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Alexander Aring <alex.aring@gmail.com> Cc: Stefan Schmidt <stefan@osg.samsung.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-01 03:58:49 +08:00
static void inet_frag_destroy_rcu(struct rcu_head *head)
{
struct inet_frag_queue *q = container_of(head, struct inet_frag_queue,
rcu);
struct inet_frags *f = q->fqdir->f;
inet: frags: use rhashtables for reassembly units Some applications still rely on IP fragmentation, and to be fair linux reassembly unit is not working under any serious load. It uses static hash tables of 1024 buckets, and up to 128 items per bucket (!!!) A work queue is supposed to garbage collect items when host is under memory pressure, and doing a hash rebuild, changing seed used in hash computations. This work queue blocks softirqs for up to 25 ms when doing a hash rebuild, occurring every 5 seconds if host is under fire. Then there is the problem of sharing this hash table for all netns. It is time to switch to rhashtables, and allocate one of them per netns to speedup netns dismantle, since this is a critical metric these days. Lookup is now using RCU. A followup patch will even remove the refcount hold/release left from prior implementation and save a couple of atomic operations. Before this patch, 16 cpus (16 RX queue NIC) could not handle more than 1 Mpps frags DDOS. After the patch, I reach 9 Mpps without any tuning, and can use up to 2GB of storage for the fragments (exact number depends on frags being evicted after timeout) $ grep FRAG /proc/net/sockstat FRAG: inuse 1966916 memory 2140004608 A followup patch will change the limits for 64bit arches. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Florian Westphal <fw@strlen.de> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Alexander Aring <alex.aring@gmail.com> Cc: Stefan Schmidt <stefan@osg.samsung.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-01 03:58:49 +08:00
if (f->destructor)
f->destructor(q);
kmem_cache_free(f->frags_cachep, q);
}
unsigned int inet_frag_rbtree_purge(struct rb_root *root)
{
struct rb_node *p = rb_first(root);
unsigned int sum = 0;
while (p) {
struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
p = rb_next(p);
rb_erase(&skb->rbnode, root);
while (skb) {
struct sk_buff *next = FRAG_CB(skb)->next_frag;
sum += skb->truesize;
kfree_skb(skb);
skb = next;
}
}
return sum;
}
EXPORT_SYMBOL(inet_frag_rbtree_purge);
void inet_frag_destroy(struct inet_frag_queue *q)
{
struct fqdir *fqdir;
unsigned int sum, sum_truesize = 0;
struct inet_frags *f;
WARN_ON(!(q->flags & INET_FRAG_COMPLETE));
WARN_ON(del_timer(&q->timer) != 0);
/* Release all fragment data. */
fqdir = q->fqdir;
f = fqdir->f;
sum_truesize = inet_frag_rbtree_purge(&q->rb_fragments);
sum = sum_truesize + f->qsize;
inet: frags: use rhashtables for reassembly units Some applications still rely on IP fragmentation, and to be fair linux reassembly unit is not working under any serious load. It uses static hash tables of 1024 buckets, and up to 128 items per bucket (!!!) A work queue is supposed to garbage collect items when host is under memory pressure, and doing a hash rebuild, changing seed used in hash computations. This work queue blocks softirqs for up to 25 ms when doing a hash rebuild, occurring every 5 seconds if host is under fire. Then there is the problem of sharing this hash table for all netns. It is time to switch to rhashtables, and allocate one of them per netns to speedup netns dismantle, since this is a critical metric these days. Lookup is now using RCU. A followup patch will even remove the refcount hold/release left from prior implementation and save a couple of atomic operations. Before this patch, 16 cpus (16 RX queue NIC) could not handle more than 1 Mpps frags DDOS. After the patch, I reach 9 Mpps without any tuning, and can use up to 2GB of storage for the fragments (exact number depends on frags being evicted after timeout) $ grep FRAG /proc/net/sockstat FRAG: inuse 1966916 memory 2140004608 A followup patch will change the limits for 64bit arches. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Florian Westphal <fw@strlen.de> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Alexander Aring <alex.aring@gmail.com> Cc: Stefan Schmidt <stefan@osg.samsung.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-01 03:58:49 +08:00
call_rcu(&q->rcu, inet_frag_destroy_rcu);
sub_frag_mem_limit(fqdir, sum);
}
EXPORT_SYMBOL(inet_frag_destroy);
static struct inet_frag_queue *inet_frag_alloc(struct fqdir *fqdir,
struct inet_frags *f,
void *arg)
{
struct inet_frag_queue *q;
q = kmem_cache_zalloc(f->frags_cachep, GFP_ATOMIC);
if (!q)
return NULL;
q->fqdir = fqdir;
f->constructor(q, arg);
add_frag_mem_limit(fqdir, f->qsize);
timer_setup(&q->timer, f->frag_expire, 0);
spin_lock_init(&q->lock);
inet: frags: use rhashtables for reassembly units Some applications still rely on IP fragmentation, and to be fair linux reassembly unit is not working under any serious load. It uses static hash tables of 1024 buckets, and up to 128 items per bucket (!!!) A work queue is supposed to garbage collect items when host is under memory pressure, and doing a hash rebuild, changing seed used in hash computations. This work queue blocks softirqs for up to 25 ms when doing a hash rebuild, occurring every 5 seconds if host is under fire. Then there is the problem of sharing this hash table for all netns. It is time to switch to rhashtables, and allocate one of them per netns to speedup netns dismantle, since this is a critical metric these days. Lookup is now using RCU. A followup patch will even remove the refcount hold/release left from prior implementation and save a couple of atomic operations. Before this patch, 16 cpus (16 RX queue NIC) could not handle more than 1 Mpps frags DDOS. After the patch, I reach 9 Mpps without any tuning, and can use up to 2GB of storage for the fragments (exact number depends on frags being evicted after timeout) $ grep FRAG /proc/net/sockstat FRAG: inuse 1966916 memory 2140004608 A followup patch will change the limits for 64bit arches. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Florian Westphal <fw@strlen.de> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Alexander Aring <alex.aring@gmail.com> Cc: Stefan Schmidt <stefan@osg.samsung.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-01 03:58:49 +08:00
refcount_set(&q->refcnt, 3);
return q;
}
static struct inet_frag_queue *inet_frag_create(struct fqdir *fqdir,
void *arg,
struct inet_frag_queue **prev)
{
struct inet_frags *f = fqdir->f;
struct inet_frag_queue *q;
q = inet_frag_alloc(fqdir, f, arg);
if (!q) {
*prev = ERR_PTR(-ENOMEM);
return NULL;
}
mod_timer(&q->timer, jiffies + fqdir->timeout);
inet: frags: use rhashtables for reassembly units Some applications still rely on IP fragmentation, and to be fair linux reassembly unit is not working under any serious load. It uses static hash tables of 1024 buckets, and up to 128 items per bucket (!!!) A work queue is supposed to garbage collect items when host is under memory pressure, and doing a hash rebuild, changing seed used in hash computations. This work queue blocks softirqs for up to 25 ms when doing a hash rebuild, occurring every 5 seconds if host is under fire. Then there is the problem of sharing this hash table for all netns. It is time to switch to rhashtables, and allocate one of them per netns to speedup netns dismantle, since this is a critical metric these days. Lookup is now using RCU. A followup patch will even remove the refcount hold/release left from prior implementation and save a couple of atomic operations. Before this patch, 16 cpus (16 RX queue NIC) could not handle more than 1 Mpps frags DDOS. After the patch, I reach 9 Mpps without any tuning, and can use up to 2GB of storage for the fragments (exact number depends on frags being evicted after timeout) $ grep FRAG /proc/net/sockstat FRAG: inuse 1966916 memory 2140004608 A followup patch will change the limits for 64bit arches. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Florian Westphal <fw@strlen.de> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Alexander Aring <alex.aring@gmail.com> Cc: Stefan Schmidt <stefan@osg.samsung.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-01 03:58:49 +08:00
*prev = rhashtable_lookup_get_insert_key(&fqdir->rhashtable, &q->key,
&q->node, f->rhash_params);
if (*prev) {
inet: frags: use rhashtables for reassembly units Some applications still rely on IP fragmentation, and to be fair linux reassembly unit is not working under any serious load. It uses static hash tables of 1024 buckets, and up to 128 items per bucket (!!!) A work queue is supposed to garbage collect items when host is under memory pressure, and doing a hash rebuild, changing seed used in hash computations. This work queue blocks softirqs for up to 25 ms when doing a hash rebuild, occurring every 5 seconds if host is under fire. Then there is the problem of sharing this hash table for all netns. It is time to switch to rhashtables, and allocate one of them per netns to speedup netns dismantle, since this is a critical metric these days. Lookup is now using RCU. A followup patch will even remove the refcount hold/release left from prior implementation and save a couple of atomic operations. Before this patch, 16 cpus (16 RX queue NIC) could not handle more than 1 Mpps frags DDOS. After the patch, I reach 9 Mpps without any tuning, and can use up to 2GB of storage for the fragments (exact number depends on frags being evicted after timeout) $ grep FRAG /proc/net/sockstat FRAG: inuse 1966916 memory 2140004608 A followup patch will change the limits for 64bit arches. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Florian Westphal <fw@strlen.de> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Alexander Aring <alex.aring@gmail.com> Cc: Stefan Schmidt <stefan@osg.samsung.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-01 03:58:49 +08:00
q->flags |= INET_FRAG_COMPLETE;
inet_frag_kill(q);
inet_frag_destroy(q);
return NULL;
}
return q;
}
inet: frags: use rhashtables for reassembly units Some applications still rely on IP fragmentation, and to be fair linux reassembly unit is not working under any serious load. It uses static hash tables of 1024 buckets, and up to 128 items per bucket (!!!) A work queue is supposed to garbage collect items when host is under memory pressure, and doing a hash rebuild, changing seed used in hash computations. This work queue blocks softirqs for up to 25 ms when doing a hash rebuild, occurring every 5 seconds if host is under fire. Then there is the problem of sharing this hash table for all netns. It is time to switch to rhashtables, and allocate one of them per netns to speedup netns dismantle, since this is a critical metric these days. Lookup is now using RCU. A followup patch will even remove the refcount hold/release left from prior implementation and save a couple of atomic operations. Before this patch, 16 cpus (16 RX queue NIC) could not handle more than 1 Mpps frags DDOS. After the patch, I reach 9 Mpps without any tuning, and can use up to 2GB of storage for the fragments (exact number depends on frags being evicted after timeout) $ grep FRAG /proc/net/sockstat FRAG: inuse 1966916 memory 2140004608 A followup patch will change the limits for 64bit arches. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Florian Westphal <fw@strlen.de> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Alexander Aring <alex.aring@gmail.com> Cc: Stefan Schmidt <stefan@osg.samsung.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-01 03:58:49 +08:00
/* TODO : call from rcu_read_lock() and no longer use refcount_inc_not_zero() */
struct inet_frag_queue *inet_frag_find(struct fqdir *fqdir, void *key)
{
struct inet_frag_queue *fq = NULL, *prev;
if (!fqdir->high_thresh || frag_mem_limit(fqdir) > fqdir->high_thresh)
return NULL;
inet: frags: use rhashtables for reassembly units Some applications still rely on IP fragmentation, and to be fair linux reassembly unit is not working under any serious load. It uses static hash tables of 1024 buckets, and up to 128 items per bucket (!!!) A work queue is supposed to garbage collect items when host is under memory pressure, and doing a hash rebuild, changing seed used in hash computations. This work queue blocks softirqs for up to 25 ms when doing a hash rebuild, occurring every 5 seconds if host is under fire. Then there is the problem of sharing this hash table for all netns. It is time to switch to rhashtables, and allocate one of them per netns to speedup netns dismantle, since this is a critical metric these days. Lookup is now using RCU. A followup patch will even remove the refcount hold/release left from prior implementation and save a couple of atomic operations. Before this patch, 16 cpus (16 RX queue NIC) could not handle more than 1 Mpps frags DDOS. After the patch, I reach 9 Mpps without any tuning, and can use up to 2GB of storage for the fragments (exact number depends on frags being evicted after timeout) $ grep FRAG /proc/net/sockstat FRAG: inuse 1966916 memory 2140004608 A followup patch will change the limits for 64bit arches. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Florian Westphal <fw@strlen.de> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Alexander Aring <alex.aring@gmail.com> Cc: Stefan Schmidt <stefan@osg.samsung.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-01 03:58:49 +08:00
rcu_read_lock();
prev = rhashtable_lookup(&fqdir->rhashtable, key, fqdir->f->rhash_params);
if (!prev)
fq = inet_frag_create(fqdir, key, &prev);
if (prev && !IS_ERR(prev)) {
fq = prev;
inet: frags: use rhashtables for reassembly units Some applications still rely on IP fragmentation, and to be fair linux reassembly unit is not working under any serious load. It uses static hash tables of 1024 buckets, and up to 128 items per bucket (!!!) A work queue is supposed to garbage collect items when host is under memory pressure, and doing a hash rebuild, changing seed used in hash computations. This work queue blocks softirqs for up to 25 ms when doing a hash rebuild, occurring every 5 seconds if host is under fire. Then there is the problem of sharing this hash table for all netns. It is time to switch to rhashtables, and allocate one of them per netns to speedup netns dismantle, since this is a critical metric these days. Lookup is now using RCU. A followup patch will even remove the refcount hold/release left from prior implementation and save a couple of atomic operations. Before this patch, 16 cpus (16 RX queue NIC) could not handle more than 1 Mpps frags DDOS. After the patch, I reach 9 Mpps without any tuning, and can use up to 2GB of storage for the fragments (exact number depends on frags being evicted after timeout) $ grep FRAG /proc/net/sockstat FRAG: inuse 1966916 memory 2140004608 A followup patch will change the limits for 64bit arches. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Florian Westphal <fw@strlen.de> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Alexander Aring <alex.aring@gmail.com> Cc: Stefan Schmidt <stefan@osg.samsung.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-01 03:58:49 +08:00
if (!refcount_inc_not_zero(&fq->refcnt))
fq = NULL;
}
inet: frags: use rhashtables for reassembly units Some applications still rely on IP fragmentation, and to be fair linux reassembly unit is not working under any serious load. It uses static hash tables of 1024 buckets, and up to 128 items per bucket (!!!) A work queue is supposed to garbage collect items when host is under memory pressure, and doing a hash rebuild, changing seed used in hash computations. This work queue blocks softirqs for up to 25 ms when doing a hash rebuild, occurring every 5 seconds if host is under fire. Then there is the problem of sharing this hash table for all netns. It is time to switch to rhashtables, and allocate one of them per netns to speedup netns dismantle, since this is a critical metric these days. Lookup is now using RCU. A followup patch will even remove the refcount hold/release left from prior implementation and save a couple of atomic operations. Before this patch, 16 cpus (16 RX queue NIC) could not handle more than 1 Mpps frags DDOS. After the patch, I reach 9 Mpps without any tuning, and can use up to 2GB of storage for the fragments (exact number depends on frags being evicted after timeout) $ grep FRAG /proc/net/sockstat FRAG: inuse 1966916 memory 2140004608 A followup patch will change the limits for 64bit arches. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Florian Westphal <fw@strlen.de> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Alexander Aring <alex.aring@gmail.com> Cc: Stefan Schmidt <stefan@osg.samsung.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-01 03:58:49 +08:00
rcu_read_unlock();
return fq;
}
EXPORT_SYMBOL(inet_frag_find);
int inet_frag_queue_insert(struct inet_frag_queue *q, struct sk_buff *skb,
int offset, int end)
{
struct sk_buff *last = q->fragments_tail;
/* RFC5722, Section 4, amended by Errata ID : 3089
* When reassembling an IPv6 datagram, if
* one or more its constituent fragments is determined to be an
* overlapping fragment, the entire datagram (and any constituent
* fragments) MUST be silently discarded.
*
* Duplicates, however, should be ignored (i.e. skb dropped, but the
* queue/fragments kept for later reassembly).
*/
if (!last)
fragrun_create(q, skb); /* First fragment. */
else if (last->ip_defrag_offset + last->len < end) {
/* This is the common case: skb goes to the end. */
/* Detect and discard overlaps. */
if (offset < last->ip_defrag_offset + last->len)
return IPFRAG_OVERLAP;
if (offset == last->ip_defrag_offset + last->len)
fragrun_append_to_last(q, skb);
else
fragrun_create(q, skb);
} else {
/* Binary search. Note that skb can become the first fragment,
* but not the last (covered above).
*/
struct rb_node **rbn, *parent;
rbn = &q->rb_fragments.rb_node;
do {
struct sk_buff *curr;
int curr_run_end;
parent = *rbn;
curr = rb_to_skb(parent);
curr_run_end = curr->ip_defrag_offset +
FRAG_CB(curr)->frag_run_len;
if (end <= curr->ip_defrag_offset)
rbn = &parent->rb_left;
else if (offset >= curr_run_end)
rbn = &parent->rb_right;
else if (offset >= curr->ip_defrag_offset &&
end <= curr_run_end)
return IPFRAG_DUP;
else
return IPFRAG_OVERLAP;
} while (*rbn);
/* Here we have parent properly set, and rbn pointing to
* one of its NULL left/right children. Insert skb.
*/
fragcb_clear(skb);
rb_link_node(&skb->rbnode, parent, rbn);
rb_insert_color(&skb->rbnode, &q->rb_fragments);
}
skb->ip_defrag_offset = offset;
return IPFRAG_OK;
}
EXPORT_SYMBOL(inet_frag_queue_insert);
void *inet_frag_reasm_prepare(struct inet_frag_queue *q, struct sk_buff *skb,
struct sk_buff *parent)
{
struct sk_buff *fp, *head = skb_rb_first(&q->rb_fragments);
struct sk_buff **nextp;
int delta;
if (head != skb) {
fp = skb_clone(skb, GFP_ATOMIC);
if (!fp)
return NULL;
FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag;
if (RB_EMPTY_NODE(&skb->rbnode))
FRAG_CB(parent)->next_frag = fp;
else
rb_replace_node(&skb->rbnode, &fp->rbnode,
&q->rb_fragments);
if (q->fragments_tail == skb)
q->fragments_tail = fp;
skb_morph(skb, head);
FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag;
rb_replace_node(&head->rbnode, &skb->rbnode,
&q->rb_fragments);
consume_skb(head);
head = skb;
}
WARN_ON(head->ip_defrag_offset != 0);
delta = -head->truesize;
/* Head of list must not be cloned. */
if (skb_unclone(head, GFP_ATOMIC))
return NULL;
delta += head->truesize;
if (delta)
add_frag_mem_limit(q->fqdir, delta);
/* If the first fragment is fragmented itself, we split
* it to two chunks: the first with data and paged part
* and the second, holding only fragments.
*/
if (skb_has_frag_list(head)) {
struct sk_buff *clone;
int i, plen = 0;
clone = alloc_skb(0, GFP_ATOMIC);
if (!clone)
return NULL;
skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
skb_frag_list_init(head);
for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
clone->data_len = head->data_len - plen;
clone->len = clone->data_len;
head->truesize += clone->truesize;
clone->csum = 0;
clone->ip_summed = head->ip_summed;
add_frag_mem_limit(q->fqdir, clone->truesize);
skb_shinfo(head)->frag_list = clone;
nextp = &clone->next;
} else {
nextp = &skb_shinfo(head)->frag_list;
}
return nextp;
}
EXPORT_SYMBOL(inet_frag_reasm_prepare);
void inet_frag_reasm_finish(struct inet_frag_queue *q, struct sk_buff *head,
void *reasm_data)
{
struct sk_buff **nextp = (struct sk_buff **)reasm_data;
struct rb_node *rbn;
struct sk_buff *fp;
skb_push(head, head->data - skb_network_header(head));
/* Traverse the tree in order, to build frag_list. */
fp = FRAG_CB(head)->next_frag;
rbn = rb_next(&head->rbnode);
rb_erase(&head->rbnode, &q->rb_fragments);
while (rbn || fp) {
/* fp points to the next sk_buff in the current run;
* rbn points to the next run.
*/
/* Go through the current run. */
while (fp) {
*nextp = fp;
nextp = &fp->next;
fp->prev = NULL;
memset(&fp->rbnode, 0, sizeof(fp->rbnode));
fp->sk = NULL;
head->data_len += fp->len;
head->len += fp->len;
if (head->ip_summed != fp->ip_summed)
head->ip_summed = CHECKSUM_NONE;
else if (head->ip_summed == CHECKSUM_COMPLETE)
head->csum = csum_add(head->csum, fp->csum);
head->truesize += fp->truesize;
fp = FRAG_CB(fp)->next_frag;
}
/* Move to the next run. */
if (rbn) {
struct rb_node *rbnext = rb_next(rbn);
fp = rb_to_skb(rbn);
rb_erase(rbn, &q->rb_fragments);
rbn = rbnext;
}
}
sub_frag_mem_limit(q->fqdir, head->truesize);
*nextp = NULL;
skb_mark_not_on_list(head);
head->prev = NULL;
head->tstamp = q->stamp;
}
EXPORT_SYMBOL(inet_frag_reasm_finish);
struct sk_buff *inet_frag_pull_head(struct inet_frag_queue *q)
{
struct sk_buff *head, *skb;
head = skb_rb_first(&q->rb_fragments);
if (!head)
return NULL;
skb = FRAG_CB(head)->next_frag;
if (skb)
rb_replace_node(&head->rbnode, &skb->rbnode,
&q->rb_fragments);
else
rb_erase(&head->rbnode, &q->rb_fragments);
memset(&head->rbnode, 0, sizeof(head->rbnode));
barrier();
if (head == q->fragments_tail)
q->fragments_tail = NULL;
sub_frag_mem_limit(q->fqdir, head->truesize);
return head;
}
EXPORT_SYMBOL(inet_frag_pull_head);