OpenCloudOS-Kernel/drivers/gpu/drm/i915/intel_display.c

1632 lines
45 KiB
C
Raw Normal View History

/*
* Copyright © 2006-2007 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*/
#include <linux/i2c.h>
#include "drmP.h"
#include "intel_drv.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include "drm_crtc_helper.h"
bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
typedef struct {
/* given values */
int n;
int m1, m2;
int p1, p2;
/* derived values */
int dot;
int vco;
int m;
int p;
} intel_clock_t;
typedef struct {
int min, max;
} intel_range_t;
typedef struct {
int dot_limit;
int p2_slow, p2_fast;
} intel_p2_t;
#define INTEL_P2_NUM 2
typedef struct {
intel_range_t dot, vco, n, m, m1, m2, p, p1;
intel_p2_t p2;
} intel_limit_t;
#define I8XX_DOT_MIN 25000
#define I8XX_DOT_MAX 350000
#define I8XX_VCO_MIN 930000
#define I8XX_VCO_MAX 1400000
#define I8XX_N_MIN 3
#define I8XX_N_MAX 16
#define I8XX_M_MIN 96
#define I8XX_M_MAX 140
#define I8XX_M1_MIN 18
#define I8XX_M1_MAX 26
#define I8XX_M2_MIN 6
#define I8XX_M2_MAX 16
#define I8XX_P_MIN 4
#define I8XX_P_MAX 128
#define I8XX_P1_MIN 2
#define I8XX_P1_MAX 33
#define I8XX_P1_LVDS_MIN 1
#define I8XX_P1_LVDS_MAX 6
#define I8XX_P2_SLOW 4
#define I8XX_P2_FAST 2
#define I8XX_P2_LVDS_SLOW 14
#define I8XX_P2_LVDS_FAST 14 /* No fast option */
#define I8XX_P2_SLOW_LIMIT 165000
#define I9XX_DOT_MIN 20000
#define I9XX_DOT_MAX 400000
#define I9XX_VCO_MIN 1400000
#define I9XX_VCO_MAX 2800000
#define I9XX_N_MIN 3
#define I9XX_N_MAX 8
#define I9XX_M_MIN 70
#define I9XX_M_MAX 120
#define I9XX_M1_MIN 10
#define I9XX_M1_MAX 20
#define I9XX_M2_MIN 5
#define I9XX_M2_MAX 9
#define I9XX_P_SDVO_DAC_MIN 5
#define I9XX_P_SDVO_DAC_MAX 80
#define I9XX_P_LVDS_MIN 7
#define I9XX_P_LVDS_MAX 98
#define I9XX_P1_MIN 1
#define I9XX_P1_MAX 8
#define I9XX_P2_SDVO_DAC_SLOW 10
#define I9XX_P2_SDVO_DAC_FAST 5
#define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
#define I9XX_P2_LVDS_SLOW 14
#define I9XX_P2_LVDS_FAST 7
#define I9XX_P2_LVDS_SLOW_LIMIT 112000
#define INTEL_LIMIT_I8XX_DVO_DAC 0
#define INTEL_LIMIT_I8XX_LVDS 1
#define INTEL_LIMIT_I9XX_SDVO_DAC 2
#define INTEL_LIMIT_I9XX_LVDS 3
static const intel_limit_t intel_limits[] = {
{ /* INTEL_LIMIT_I8XX_DVO_DAC */
.dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
.vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
.n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
.m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
.m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
.m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
.p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
.p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
.p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
.p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
},
{ /* INTEL_LIMIT_I8XX_LVDS */
.dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
.vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
.n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
.m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
.m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
.m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
.p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
.p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
.p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
.p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
},
{ /* INTEL_LIMIT_I9XX_SDVO_DAC */
.dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
.vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
.n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
.m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
.m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
.m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
.p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
.p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
.p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
.p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
},
{ /* INTEL_LIMIT_I9XX_LVDS */
.dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
.vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
.n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
.m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
.m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
.m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
.p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
.p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
/* The single-channel range is 25-112Mhz, and dual-channel
* is 80-224Mhz. Prefer single channel as much as possible.
*/
.p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
.p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
},
};
static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
const intel_limit_t *limit;
if (IS_I9XX(dev)) {
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
limit = &intel_limits[INTEL_LIMIT_I9XX_LVDS];
else
limit = &intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
} else {
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
limit = &intel_limits[INTEL_LIMIT_I8XX_LVDS];
else
limit = &intel_limits[INTEL_LIMIT_I8XX_DVO_DAC];
}
return limit;
}
/** Derive the pixel clock for the given refclk and divisors for 8xx chips. */
static void i8xx_clock(int refclk, intel_clock_t *clock)
{
clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
clock->p = clock->p1 * clock->p2;
clock->vco = refclk * clock->m / (clock->n + 2);
clock->dot = clock->vco / clock->p;
}
/** Derive the pixel clock for the given refclk and divisors for 9xx chips. */
static void i9xx_clock(int refclk, intel_clock_t *clock)
{
clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
clock->p = clock->p1 * clock->p2;
clock->vco = refclk * clock->m / (clock->n + 2);
clock->dot = clock->vco / clock->p;
}
static void intel_clock(struct drm_device *dev, int refclk,
intel_clock_t *clock)
{
if (IS_I9XX(dev))
i9xx_clock (refclk, clock);
else
i8xx_clock (refclk, clock);
}
/**
* Returns whether any output on the specified pipe is of the specified type
*/
bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
{
struct drm_device *dev = crtc->dev;
struct drm_mode_config *mode_config = &dev->mode_config;
struct drm_connector *l_entry;
list_for_each_entry(l_entry, &mode_config->connector_list, head) {
if (l_entry->encoder &&
l_entry->encoder->crtc == crtc) {
struct intel_output *intel_output = to_intel_output(l_entry);
if (intel_output->type == type)
return true;
}
}
return false;
}
#define INTELPllInvalid(s) { /* ErrorF (s) */; return false; }
/**
* Returns whether the given set of divisors are valid for a given refclk with
* the given connectors.
*/
static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
{
const intel_limit_t *limit = intel_limit (crtc);
if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
INTELPllInvalid ("p1 out of range\n");
if (clock->p < limit->p.min || limit->p.max < clock->p)
INTELPllInvalid ("p out of range\n");
if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
INTELPllInvalid ("m2 out of range\n");
if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
INTELPllInvalid ("m1 out of range\n");
if (clock->m1 <= clock->m2)
INTELPllInvalid ("m1 <= m2\n");
if (clock->m < limit->m.min || limit->m.max < clock->m)
INTELPllInvalid ("m out of range\n");
if (clock->n < limit->n.min || limit->n.max < clock->n)
INTELPllInvalid ("n out of range\n");
if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
INTELPllInvalid ("vco out of range\n");
/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
* connector, etc., rather than just a single range.
*/
if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
INTELPllInvalid ("dot out of range\n");
return true;
}
/**
* Returns a set of divisors for the desired target clock with the given
* refclk, or FALSE. The returned values represent the clock equation:
* reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
*/
static bool intel_find_best_PLL(struct drm_crtc *crtc, int target,
int refclk, intel_clock_t *best_clock)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
intel_clock_t clock;
const intel_limit_t *limit = intel_limit(crtc);
int err = target;
if (IS_I9XX(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
(I915_READ(LVDS) & LVDS_PORT_EN) != 0) {
/*
* For LVDS, if the panel is on, just rely on its current
* settings for dual-channel. We haven't figured out how to
* reliably set up different single/dual channel state, if we
* even can.
*/
if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
LVDS_CLKB_POWER_UP)
clock.p2 = limit->p2.p2_fast;
else
clock.p2 = limit->p2.p2_slow;
} else {
if (target < limit->p2.dot_limit)
clock.p2 = limit->p2.p2_slow;
else
clock.p2 = limit->p2.p2_fast;
}
memset (best_clock, 0, sizeof (*best_clock));
for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
for (clock.m2 = limit->m2.min; clock.m2 < clock.m1 &&
clock.m2 <= limit->m2.max; clock.m2++) {
for (clock.n = limit->n.min; clock.n <= limit->n.max;
clock.n++) {
for (clock.p1 = limit->p1.min;
clock.p1 <= limit->p1.max; clock.p1++) {
int this_err;
intel_clock(dev, refclk, &clock);
if (!intel_PLL_is_valid(crtc, &clock))
continue;
this_err = abs(clock.dot - target);
if (this_err < err) {
*best_clock = clock;
err = this_err;
}
}
}
}
}
return (err != target);
}
void
intel_wait_for_vblank(struct drm_device *dev)
{
/* Wait for 20ms, i.e. one cycle at 50hz. */
udelay(20000);
}
static void
intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
struct drm_framebuffer *old_fb)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_master_private *master_priv;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_framebuffer *intel_fb;
struct drm_i915_gem_object *obj_priv;
struct drm_gem_object *obj;
int pipe = intel_crtc->pipe;
unsigned long Start, Offset;
int dspbase = (pipe == 0 ? DSPAADDR : DSPBADDR);
int dspsurf = (pipe == 0 ? DSPASURF : DSPBSURF);
int dspstride = (pipe == 0) ? DSPASTRIDE : DSPBSTRIDE;
int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
u32 dspcntr, alignment;
/* no fb bound */
if (!crtc->fb) {
DRM_DEBUG("No FB bound\n");
return;
}
intel_fb = to_intel_framebuffer(crtc->fb);
obj = intel_fb->obj;
obj_priv = obj->driver_private;
switch (obj_priv->tiling_mode) {
case I915_TILING_NONE:
alignment = 64 * 1024;
break;
case I915_TILING_X:
if (IS_I9XX(dev))
alignment = 1024 * 1024;
else
alignment = 512 * 1024;
break;
case I915_TILING_Y:
/* FIXME: Is this true? */
DRM_ERROR("Y tiled not allowed for scan out buffers\n");
return;
default:
BUG();
}
if (i915_gem_object_pin(intel_fb->obj, alignment))
return;
i915_gem_object_set_to_gtt_domain(intel_fb->obj, 1);
Start = obj_priv->gtt_offset;
Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
I915_WRITE(dspstride, crtc->fb->pitch);
dspcntr = I915_READ(dspcntr_reg);
switch (crtc->fb->bits_per_pixel) {
case 8:
dspcntr |= DISPPLANE_8BPP;
break;
case 16:
if (crtc->fb->depth == 15)
dspcntr |= DISPPLANE_15_16BPP;
else
dspcntr |= DISPPLANE_16BPP;
break;
case 24:
case 32:
dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
break;
default:
DRM_ERROR("Unknown color depth\n");
return;
}
I915_WRITE(dspcntr_reg, dspcntr);
DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
if (IS_I965G(dev)) {
I915_WRITE(dspbase, Offset);
I915_READ(dspbase);
I915_WRITE(dspsurf, Start);
I915_READ(dspsurf);
} else {
I915_WRITE(dspbase, Start + Offset);
I915_READ(dspbase);
}
intel_wait_for_vblank(dev);
if (old_fb) {
intel_fb = to_intel_framebuffer(old_fb);
i915_gem_object_unpin(intel_fb->obj);
}
if (!dev->primary->master)
return;
master_priv = dev->primary->master->driver_priv;
if (!master_priv->sarea_priv)
return;
switch (pipe) {
case 0:
master_priv->sarea_priv->pipeA_x = x;
master_priv->sarea_priv->pipeA_y = y;
break;
case 1:
master_priv->sarea_priv->pipeB_x = x;
master_priv->sarea_priv->pipeB_y = y;
break;
default:
DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
break;
}
}
/**
* Sets the power management mode of the pipe and plane.
*
* This code should probably grow support for turning the cursor off and back
* on appropriately at the same time as we're turning the pipe off/on.
*/
static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_master_private *master_priv;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
int dspbase_reg = (pipe == 0) ? DSPAADDR : DSPBADDR;
int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
u32 temp;
bool enabled;
/* XXX: When our outputs are all unaware of DPMS modes other than off
* and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
*/
switch (mode) {
case DRM_MODE_DPMS_ON:
case DRM_MODE_DPMS_STANDBY:
case DRM_MODE_DPMS_SUSPEND:
/* Enable the DPLL */
temp = I915_READ(dpll_reg);
if ((temp & DPLL_VCO_ENABLE) == 0) {
I915_WRITE(dpll_reg, temp);
I915_READ(dpll_reg);
/* Wait for the clocks to stabilize. */
udelay(150);
I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
I915_READ(dpll_reg);
/* Wait for the clocks to stabilize. */
udelay(150);
I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
I915_READ(dpll_reg);
/* Wait for the clocks to stabilize. */
udelay(150);
}
/* Enable the pipe */
temp = I915_READ(pipeconf_reg);
if ((temp & PIPEACONF_ENABLE) == 0)
I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
/* Enable the plane */
temp = I915_READ(dspcntr_reg);
if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
/* Flush the plane changes */
I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
}
intel_crtc_load_lut(crtc);
/* Give the overlay scaler a chance to enable if it's on this pipe */
//intel_crtc_dpms_video(crtc, true); TODO
break;
case DRM_MODE_DPMS_OFF:
/* Give the overlay scaler a chance to disable if it's on this pipe */
//intel_crtc_dpms_video(crtc, FALSE); TODO
/* Disable the VGA plane that we never use */
I915_WRITE(VGACNTRL, VGA_DISP_DISABLE);
/* Disable display plane */
temp = I915_READ(dspcntr_reg);
if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
/* Flush the plane changes */
I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
I915_READ(dspbase_reg);
}
if (!IS_I9XX(dev)) {
/* Wait for vblank for the disable to take effect */
intel_wait_for_vblank(dev);
}
/* Next, disable display pipes */
temp = I915_READ(pipeconf_reg);
if ((temp & PIPEACONF_ENABLE) != 0) {
I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
I915_READ(pipeconf_reg);
}
/* Wait for vblank for the disable to take effect. */
intel_wait_for_vblank(dev);
temp = I915_READ(dpll_reg);
if ((temp & DPLL_VCO_ENABLE) != 0) {
I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
I915_READ(dpll_reg);
}
/* Wait for the clocks to turn off. */
udelay(150);
break;
}
if (!dev->primary->master)
return;
master_priv = dev->primary->master->driver_priv;
if (!master_priv->sarea_priv)
return;
enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
switch (pipe) {
case 0:
master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
break;
case 1:
master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
break;
default:
DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
break;
}
intel_crtc->dpms_mode = mode;
}
static void intel_crtc_prepare (struct drm_crtc *crtc)
{
struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
}
static void intel_crtc_commit (struct drm_crtc *crtc)
{
struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
}
void intel_encoder_prepare (struct drm_encoder *encoder)
{
struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
/* lvds has its own version of prepare see intel_lvds_prepare */
encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
}
void intel_encoder_commit (struct drm_encoder *encoder)
{
struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
/* lvds has its own version of commit see intel_lvds_commit */
encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
}
static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
return true;
}
/** Returns the core display clock speed for i830 - i945 */
static int intel_get_core_clock_speed(struct drm_device *dev)
{
/* Core clock values taken from the published datasheets.
* The 830 may go up to 166 Mhz, which we should check.
*/
if (IS_I945G(dev))
return 400000;
else if (IS_I915G(dev))
return 333000;
else if (IS_I945GM(dev) || IS_845G(dev))
return 200000;
else if (IS_I915GM(dev)) {
u16 gcfgc = 0;
pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
return 133000;
else {
switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
case GC_DISPLAY_CLOCK_333_MHZ:
return 333000;
default:
case GC_DISPLAY_CLOCK_190_200_MHZ:
return 190000;
}
}
} else if (IS_I865G(dev))
return 266000;
else if (IS_I855(dev)) {
u16 hpllcc = 0;
/* Assume that the hardware is in the high speed state. This
* should be the default.
*/
switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
case GC_CLOCK_133_200:
case GC_CLOCK_100_200:
return 200000;
case GC_CLOCK_166_250:
return 250000;
case GC_CLOCK_100_133:
return 133000;
}
} else /* 852, 830 */
return 133000;
return 0; /* Silence gcc warning */
}
/**
* Return the pipe currently connected to the panel fitter,
* or -1 if the panel fitter is not present or not in use
*/
static int intel_panel_fitter_pipe (struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 pfit_control;
/* i830 doesn't have a panel fitter */
if (IS_I830(dev))
return -1;
pfit_control = I915_READ(PFIT_CONTROL);
/* See if the panel fitter is in use */
if ((pfit_control & PFIT_ENABLE) == 0)
return -1;
/* 965 can place panel fitter on either pipe */
if (IS_I965G(dev))
return (pfit_control >> 29) & 0x3;
/* older chips can only use pipe 1 */
return 1;
}
static void intel_crtc_mode_set(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode,
int x, int y,
struct drm_framebuffer *old_fb)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int fp_reg = (pipe == 0) ? FPA0 : FPB0;
int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
int dspsize_reg = (pipe == 0) ? DSPASIZE : DSPBSIZE;
int dsppos_reg = (pipe == 0) ? DSPAPOS : DSPBPOS;
int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
int refclk;
intel_clock_t clock;
u32 dpll = 0, fp = 0, dspcntr, pipeconf;
bool ok, is_sdvo = false, is_dvo = false;
bool is_crt = false, is_lvds = false, is_tv = false;
struct drm_mode_config *mode_config = &dev->mode_config;
struct drm_connector *connector;
drm_vblank_pre_modeset(dev, pipe);
list_for_each_entry(connector, &mode_config->connector_list, head) {
struct intel_output *intel_output = to_intel_output(connector);
if (!connector->encoder || connector->encoder->crtc != crtc)
continue;
switch (intel_output->type) {
case INTEL_OUTPUT_LVDS:
is_lvds = true;
break;
case INTEL_OUTPUT_SDVO:
is_sdvo = true;
break;
case INTEL_OUTPUT_DVO:
is_dvo = true;
break;
case INTEL_OUTPUT_TVOUT:
is_tv = true;
break;
case INTEL_OUTPUT_ANALOG:
is_crt = true;
break;
}
}
if (IS_I9XX(dev)) {
refclk = 96000;
} else {
refclk = 48000;
}
ok = intel_find_best_PLL(crtc, adjusted_mode->clock, refclk, &clock);
if (!ok) {
DRM_ERROR("Couldn't find PLL settings for mode!\n");
return;
}
fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
dpll = DPLL_VGA_MODE_DIS;
if (IS_I9XX(dev)) {
if (is_lvds)
dpll |= DPLLB_MODE_LVDS;
else
dpll |= DPLLB_MODE_DAC_SERIAL;
if (is_sdvo) {
dpll |= DPLL_DVO_HIGH_SPEED;
if (IS_I945G(dev) || IS_I945GM(dev)) {
int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
}
}
/* compute bitmask from p1 value */
dpll |= (1 << (clock.p1 - 1)) << 16;
switch (clock.p2) {
case 5:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
break;
case 7:
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
break;
case 10:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
break;
case 14:
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
break;
}
if (IS_I965G(dev))
dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
} else {
if (is_lvds) {
dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
} else {
if (clock.p1 == 2)
dpll |= PLL_P1_DIVIDE_BY_TWO;
else
dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
if (clock.p2 == 4)
dpll |= PLL_P2_DIVIDE_BY_4;
}
}
if (is_tv) {
/* XXX: just matching BIOS for now */
/* dpll |= PLL_REF_INPUT_TVCLKINBC; */
dpll |= 3;
}
else
dpll |= PLL_REF_INPUT_DREFCLK;
/* setup pipeconf */
pipeconf = I915_READ(pipeconf_reg);
/* Set up the display plane register */
dspcntr = DISPPLANE_GAMMA_ENABLE;
if (pipe == 0)
dspcntr |= DISPPLANE_SEL_PIPE_A;
else
dspcntr |= DISPPLANE_SEL_PIPE_B;
if (pipe == 0 && !IS_I965G(dev)) {
/* Enable pixel doubling when the dot clock is > 90% of the (display)
* core speed.
*
* XXX: No double-wide on 915GM pipe B. Is that the only reason for the
* pipe == 0 check?
*/
if (mode->clock > intel_get_core_clock_speed(dev) * 9 / 10)
pipeconf |= PIPEACONF_DOUBLE_WIDE;
else
pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
}
dspcntr |= DISPLAY_PLANE_ENABLE;
pipeconf |= PIPEACONF_ENABLE;
dpll |= DPLL_VCO_ENABLE;
/* Disable the panel fitter if it was on our pipe */
if (intel_panel_fitter_pipe(dev) == pipe)
I915_WRITE(PFIT_CONTROL, 0);
DRM_DEBUG("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
drm_mode_debug_printmodeline(mode);
if (dpll & DPLL_VCO_ENABLE) {
I915_WRITE(fp_reg, fp);
I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
I915_READ(dpll_reg);
udelay(150);
}
/* The LVDS pin pair needs to be on before the DPLLs are enabled.
* This is an exception to the general rule that mode_set doesn't turn
* things on.
*/
if (is_lvds) {
u32 lvds = I915_READ(LVDS);
lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
/* Set the B0-B3 data pairs corresponding to whether we're going to
* set the DPLLs for dual-channel mode or not.
*/
if (clock.p2 == 7)
lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
else
lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
* appropriately here, but we need to look more thoroughly into how
* panels behave in the two modes.
*/
I915_WRITE(LVDS, lvds);
I915_READ(LVDS);
}
I915_WRITE(fp_reg, fp);
I915_WRITE(dpll_reg, dpll);
I915_READ(dpll_reg);
/* Wait for the clocks to stabilize. */
udelay(150);
if (IS_I965G(dev)) {
int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
} else {
/* write it again -- the BIOS does, after all */
I915_WRITE(dpll_reg, dpll);
}
I915_READ(dpll_reg);
/* Wait for the clocks to stabilize. */
udelay(150);
I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
((adjusted_mode->crtc_htotal - 1) << 16));
I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
((adjusted_mode->crtc_hblank_end - 1) << 16));
I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
((adjusted_mode->crtc_hsync_end - 1) << 16));
I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
((adjusted_mode->crtc_vtotal - 1) << 16));
I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
((adjusted_mode->crtc_vblank_end - 1) << 16));
I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
((adjusted_mode->crtc_vsync_end - 1) << 16));
/* pipesrc and dspsize control the size that is scaled from, which should
* always be the user's requested size.
*/
I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
I915_WRITE(dsppos_reg, 0);
I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
I915_WRITE(pipeconf_reg, pipeconf);
I915_READ(pipeconf_reg);
intel_wait_for_vblank(dev);
I915_WRITE(dspcntr_reg, dspcntr);
/* Flush the plane changes */
intel_pipe_set_base(crtc, x, y, old_fb);
drm_vblank_post_modeset(dev, pipe);
}
/** Loads the palette/gamma unit for the CRTC with the prepared values */
void intel_crtc_load_lut(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
int i;
/* The clocks have to be on to load the palette. */
if (!crtc->enabled)
return;
for (i = 0; i < 256; i++) {
I915_WRITE(palreg + 4 * i,
(intel_crtc->lut_r[i] << 16) |
(intel_crtc->lut_g[i] << 8) |
intel_crtc->lut_b[i]);
}
}
static int intel_crtc_cursor_set(struct drm_crtc *crtc,
struct drm_file *file_priv,
uint32_t handle,
uint32_t width, uint32_t height)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_gem_object *bo;
struct drm_i915_gem_object *obj_priv;
int pipe = intel_crtc->pipe;
uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
uint32_t temp;
size_t addr;
int ret;
DRM_DEBUG("\n");
/* if we want to turn off the cursor ignore width and height */
if (!handle) {
DRM_DEBUG("cursor off\n");
temp = CURSOR_MODE_DISABLE;
addr = 0;
bo = NULL;
goto finish;
}
/* Currently we only support 64x64 cursors */
if (width != 64 || height != 64) {
DRM_ERROR("we currently only support 64x64 cursors\n");
return -EINVAL;
}
bo = drm_gem_object_lookup(dev, file_priv, handle);
if (!bo)
return -ENOENT;
obj_priv = bo->driver_private;
if (bo->size < width * height * 4) {
DRM_ERROR("buffer is to small\n");
drm_gem_object_unreference(bo);
return -ENOMEM;
}
if (dev_priv->cursor_needs_physical) {
addr = dev->agp->base + obj_priv->gtt_offset;
} else {
addr = obj_priv->gtt_offset;
}
ret = i915_gem_object_pin(bo, PAGE_SIZE);
if (ret) {
DRM_ERROR("failed to pin cursor bo\n");
drm_gem_object_unreference(bo);
return ret;
}
temp = 0;
/* set the pipe for the cursor */
temp |= (pipe << 28);
temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
finish:
I915_WRITE(control, temp);
I915_WRITE(base, addr);
if (intel_crtc->cursor_bo) {
i915_gem_object_unpin(intel_crtc->cursor_bo);
drm_gem_object_unreference(intel_crtc->cursor_bo);
}
intel_crtc->cursor_addr = addr;
intel_crtc->cursor_bo = bo;
return 0;
}
static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
uint32_t temp = 0;
uint32_t adder;
if (x < 0) {
temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT);
x = -x;
}
if (y < 0) {
temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT);
y = -y;
}
temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT);
temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
adder = intel_crtc->cursor_addr;
I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
return 0;
}
/** Sets the color ramps on behalf of RandR */
void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
u16 blue, int regno)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
intel_crtc->lut_r[regno] = red >> 8;
intel_crtc->lut_g[regno] = green >> 8;
intel_crtc->lut_b[regno] = blue >> 8;
}
static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
u16 *blue, uint32_t size)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int i;
if (size != 256)
return;
for (i = 0; i < 256; i++) {
intel_crtc->lut_r[i] = red[i] >> 8;
intel_crtc->lut_g[i] = green[i] >> 8;
intel_crtc->lut_b[i] = blue[i] >> 8;
}
intel_crtc_load_lut(crtc);
}
/**
* Get a pipe with a simple mode set on it for doing load-based monitor
* detection.
*
* It will be up to the load-detect code to adjust the pipe as appropriate for
* its requirements. The pipe will be connected to no other outputs.
*
* Currently this code will only succeed if there is a pipe with no outputs
* configured for it. In the future, it could choose to temporarily disable
* some outputs to free up a pipe for its use.
*
* \return crtc, or NULL if no pipes are available.
*/
/* VESA 640x480x72Hz mode to set on the pipe */
static struct drm_display_mode load_detect_mode = {
DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
};
struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
struct drm_display_mode *mode,
int *dpms_mode)
{
struct intel_crtc *intel_crtc;
struct drm_crtc *possible_crtc;
struct drm_crtc *supported_crtc =NULL;
struct drm_encoder *encoder = &intel_output->enc;
struct drm_crtc *crtc = NULL;
struct drm_device *dev = encoder->dev;
struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
struct drm_crtc_helper_funcs *crtc_funcs;
int i = -1;
/*
* Algorithm gets a little messy:
* - if the connector already has an assigned crtc, use it (but make
* sure it's on first)
* - try to find the first unused crtc that can drive this connector,
* and use that if we find one
* - if there are no unused crtcs available, try to use the first
* one we found that supports the connector
*/
/* See if we already have a CRTC for this connector */
if (encoder->crtc) {
crtc = encoder->crtc;
/* Make sure the crtc and connector are running */
intel_crtc = to_intel_crtc(crtc);
*dpms_mode = intel_crtc->dpms_mode;
if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
crtc_funcs = crtc->helper_private;
crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
}
return crtc;
}
/* Find an unused one (if possible) */
list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
i++;
if (!(encoder->possible_crtcs & (1 << i)))
continue;
if (!possible_crtc->enabled) {
crtc = possible_crtc;
break;
}
if (!supported_crtc)
supported_crtc = possible_crtc;
}
/*
* If we didn't find an unused CRTC, don't use any.
*/
if (!crtc) {
return NULL;
}
encoder->crtc = crtc;
intel_output->load_detect_temp = true;
intel_crtc = to_intel_crtc(crtc);
*dpms_mode = intel_crtc->dpms_mode;
if (!crtc->enabled) {
if (!mode)
mode = &load_detect_mode;
drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
} else {
if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
crtc_funcs = crtc->helper_private;
crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
}
/* Add this connector to the crtc */
encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
encoder_funcs->commit(encoder);
}
/* let the connector get through one full cycle before testing */
intel_wait_for_vblank(dev);
return crtc;
}
void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
{
struct drm_encoder *encoder = &intel_output->enc;
struct drm_device *dev = encoder->dev;
struct drm_crtc *crtc = encoder->crtc;
struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
if (intel_output->load_detect_temp) {
encoder->crtc = NULL;
intel_output->load_detect_temp = false;
crtc->enabled = drm_helper_crtc_in_use(crtc);
drm_helper_disable_unused_functions(dev);
}
/* Switch crtc and output back off if necessary */
if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
if (encoder->crtc == crtc)
encoder_funcs->dpms(encoder, dpms_mode);
crtc_funcs->dpms(crtc, dpms_mode);
}
}
/* Returns the clock of the currently programmed mode of the given pipe. */
static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
u32 fp;
intel_clock_t clock;
if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
else
fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
if (IS_I9XX(dev)) {
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
DPLL_FPA01_P1_POST_DIV_SHIFT);
switch (dpll & DPLL_MODE_MASK) {
case DPLLB_MODE_DAC_SERIAL:
clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5 : 10;
break;
case DPLLB_MODE_LVDS:
clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7 : 14;
break;
default:
DRM_DEBUG("Unknown DPLL mode %08x in programmed "
"mode\n", (int)(dpll & DPLL_MODE_MASK));
return 0;
}
/* XXX: Handle the 100Mhz refclk */
i9xx_clock(96000, &clock);
} else {
bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
if (is_lvds) {
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
DPLL_FPA01_P1_POST_DIV_SHIFT);
clock.p2 = 14;
if ((dpll & PLL_REF_INPUT_MASK) ==
PLLB_REF_INPUT_SPREADSPECTRUMIN) {
/* XXX: might not be 66MHz */
i8xx_clock(66000, &clock);
} else
i8xx_clock(48000, &clock);
} else {
if (dpll & PLL_P1_DIVIDE_BY_TWO)
clock.p1 = 2;
else {
clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
}
if (dpll & PLL_P2_DIVIDE_BY_4)
clock.p2 = 4;
else
clock.p2 = 2;
i8xx_clock(48000, &clock);
}
}
/* XXX: It would be nice to validate the clocks, but we can't reuse
* i830PllIsValid() because it relies on the xf86_config connector
* configuration being accurate, which it isn't necessarily.
*/
return clock.dot;
}
/** Returns the currently programmed mode of the given pipe. */
struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
struct drm_display_mode *mode;
int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
mode = kzalloc(sizeof(*mode), GFP_KERNEL);
if (!mode)
return NULL;
mode->clock = intel_crtc_clock_get(dev, crtc);
mode->hdisplay = (htot & 0xffff) + 1;
mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
mode->hsync_start = (hsync & 0xffff) + 1;
mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
mode->vdisplay = (vtot & 0xffff) + 1;
mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
mode->vsync_start = (vsync & 0xffff) + 1;
mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
drm_mode_set_name(mode);
drm_mode_set_crtcinfo(mode, 0);
return mode;
}
static void intel_crtc_destroy(struct drm_crtc *crtc)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
drm_crtc_cleanup(crtc);
kfree(intel_crtc);
}
static const struct drm_crtc_helper_funcs intel_helper_funcs = {
.dpms = intel_crtc_dpms,
.mode_fixup = intel_crtc_mode_fixup,
.mode_set = intel_crtc_mode_set,
.mode_set_base = intel_pipe_set_base,
.prepare = intel_crtc_prepare,
.commit = intel_crtc_commit,
};
static const struct drm_crtc_funcs intel_crtc_funcs = {
.cursor_set = intel_crtc_cursor_set,
.cursor_move = intel_crtc_cursor_move,
.gamma_set = intel_crtc_gamma_set,
.set_config = drm_crtc_helper_set_config,
.destroy = intel_crtc_destroy,
};
static void intel_crtc_init(struct drm_device *dev, int pipe)
{
struct intel_crtc *intel_crtc;
int i;
intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
if (intel_crtc == NULL)
return;
drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
intel_crtc->pipe = pipe;
for (i = 0; i < 256; i++) {
intel_crtc->lut_r[i] = i;
intel_crtc->lut_g[i] = i;
intel_crtc->lut_b[i] = i;
}
intel_crtc->cursor_addr = 0;
intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
intel_crtc->mode_set.crtc = &intel_crtc->base;
intel_crtc->mode_set.connectors = (struct drm_connector **)(intel_crtc + 1);
intel_crtc->mode_set.num_connectors = 0;
if (i915_fbpercrtc) {
}
}
struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
{
struct drm_crtc *crtc = NULL;
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
if (intel_crtc->pipe == pipe)
break;
}
return crtc;
}
static int intel_connector_clones(struct drm_device *dev, int type_mask)
{
int index_mask = 0;
struct drm_connector *connector;
int entry = 0;
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
struct intel_output *intel_output = to_intel_output(connector);
if (type_mask & (1 << intel_output->type))
index_mask |= (1 << entry);
entry++;
}
return index_mask;
}
static void intel_setup_outputs(struct drm_device *dev)
{
struct drm_connector *connector;
intel_crt_init(dev);
/* Set up integrated LVDS */
if (IS_MOBILE(dev) && !IS_I830(dev))
intel_lvds_init(dev);
if (IS_I9XX(dev)) {
intel_sdvo_init(dev, SDVOB);
intel_sdvo_init(dev, SDVOC);
} else
intel_dvo_init(dev);
if (IS_I9XX(dev) && !IS_I915G(dev))
intel_tv_init(dev);
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
struct intel_output *intel_output = to_intel_output(connector);
struct drm_encoder *encoder = &intel_output->enc;
int crtc_mask = 0, clone_mask = 0;
/* valid crtcs */
switch(intel_output->type) {
case INTEL_OUTPUT_DVO:
case INTEL_OUTPUT_SDVO:
crtc_mask = ((1 << 0)|
(1 << 1));
clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
(1 << INTEL_OUTPUT_DVO) |
(1 << INTEL_OUTPUT_SDVO));
break;
case INTEL_OUTPUT_ANALOG:
crtc_mask = ((1 << 0)|
(1 << 1));
clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
(1 << INTEL_OUTPUT_DVO) |
(1 << INTEL_OUTPUT_SDVO));
break;
case INTEL_OUTPUT_LVDS:
crtc_mask = (1 << 1);
clone_mask = (1 << INTEL_OUTPUT_LVDS);
break;
case INTEL_OUTPUT_TVOUT:
crtc_mask = ((1 << 0) |
(1 << 1));
clone_mask = (1 << INTEL_OUTPUT_TVOUT);
break;
}
encoder->possible_crtcs = crtc_mask;
encoder->possible_clones = intel_connector_clones(dev, clone_mask);
}
}
static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
{
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
struct drm_device *dev = fb->dev;
if (fb->fbdev)
intelfb_remove(dev, fb);
drm_framebuffer_cleanup(fb);
mutex_lock(&dev->struct_mutex);
drm_gem_object_unreference(intel_fb->obj);
mutex_unlock(&dev->struct_mutex);
kfree(intel_fb);
}
static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
struct drm_file *file_priv,
unsigned int *handle)
{
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
struct drm_gem_object *object = intel_fb->obj;
return drm_gem_handle_create(file_priv, object, handle);
}
static const struct drm_framebuffer_funcs intel_fb_funcs = {
.destroy = intel_user_framebuffer_destroy,
.create_handle = intel_user_framebuffer_create_handle,
};
int intel_framebuffer_create(struct drm_device *dev,
struct drm_mode_fb_cmd *mode_cmd,
struct drm_framebuffer **fb,
struct drm_gem_object *obj)
{
struct intel_framebuffer *intel_fb;
int ret;
intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
if (!intel_fb)
return -ENOMEM;
ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
if (ret) {
DRM_ERROR("framebuffer init failed %d\n", ret);
return ret;
}
drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
intel_fb->obj = obj;
*fb = &intel_fb->base;
return 0;
}
static struct drm_framebuffer *
intel_user_framebuffer_create(struct drm_device *dev,
struct drm_file *filp,
struct drm_mode_fb_cmd *mode_cmd)
{
struct drm_gem_object *obj;
struct drm_framebuffer *fb;
int ret;
obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
if (!obj)
return NULL;
ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
if (ret) {
drm_gem_object_unreference(obj);
return NULL;
}
return fb;
}
static const struct drm_mode_config_funcs intel_mode_funcs = {
.fb_create = intel_user_framebuffer_create,
.fb_changed = intelfb_probe,
};
void intel_modeset_init(struct drm_device *dev)
{
int num_pipe;
int i;
drm_mode_config_init(dev);
dev->mode_config.min_width = 0;
dev->mode_config.min_height = 0;
dev->mode_config.funcs = (void *)&intel_mode_funcs;
if (IS_I965G(dev)) {
dev->mode_config.max_width = 8192;
dev->mode_config.max_height = 8192;
} else {
dev->mode_config.max_width = 2048;
dev->mode_config.max_height = 2048;
}
/* set memory base */
if (IS_I9XX(dev))
dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
else
dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
if (IS_MOBILE(dev) || IS_I9XX(dev))
num_pipe = 2;
else
num_pipe = 1;
DRM_DEBUG("%d display pipe%s available.\n",
num_pipe, num_pipe > 1 ? "s" : "");
for (i = 0; i < num_pipe; i++) {
intel_crtc_init(dev, i);
}
intel_setup_outputs(dev);
}
void intel_modeset_cleanup(struct drm_device *dev)
{
drm_mode_config_cleanup(dev);
}
/* current intel driver doesn't take advantage of encoders
always give back the encoder for the connector
*/
struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
{
struct intel_output *intel_output = to_intel_output(connector);
return &intel_output->enc;
}