OpenCloudOS-Kernel/sound/firewire/fcp.c

402 lines
10 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Function Control Protocol (IEC 61883-1) helper functions
*
* Copyright (c) Clemens Ladisch <clemens@ladisch.de>
*/
#include <linux/device.h>
#include <linux/firewire.h>
#include <linux/firewire-constants.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/wait.h>
#include <linux/delay.h>
#include "fcp.h"
#include "lib.h"
#include "amdtp-stream.h"
#define CTS_AVC 0x00
#define ERROR_RETRIES 3
#define ERROR_DELAY_MS 5
#define FCP_TIMEOUT_MS 125
int avc_general_set_sig_fmt(struct fw_unit *unit, unsigned int rate,
enum avc_general_plug_dir dir,
unsigned short pid)
{
unsigned int sfc;
u8 *buf;
bool flag;
int err;
flag = false;
for (sfc = 0; sfc < CIP_SFC_COUNT; sfc++) {
if (amdtp_rate_table[sfc] == rate) {
flag = true;
break;
}
}
if (!flag)
return -EINVAL;
buf = kzalloc(8, GFP_KERNEL);
if (buf == NULL)
return -ENOMEM;
buf[0] = 0x00; /* AV/C CONTROL */
buf[1] = 0xff; /* UNIT */
if (dir == AVC_GENERAL_PLUG_DIR_IN)
buf[2] = 0x19; /* INPUT PLUG SIGNAL FORMAT */
else
buf[2] = 0x18; /* OUTPUT PLUG SIGNAL FORMAT */
buf[3] = 0xff & pid; /* plug id */
buf[4] = 0x90; /* EOH_1, Form_1, FMT. AM824 */
buf[5] = 0x07 & sfc; /* FDF-hi. AM824, frequency */
buf[6] = 0xff; /* FDF-mid. AM824, SYT hi (not used)*/
buf[7] = 0xff; /* FDF-low. AM824, SYT lo (not used) */
/* do transaction and check buf[1-5] are the same against command */
err = fcp_avc_transaction(unit, buf, 8, buf, 8,
BIT(1) | BIT(2) | BIT(3) | BIT(4) | BIT(5));
if (err < 0)
;
else if (err < 8)
err = -EIO;
else if (buf[0] == 0x08) /* NOT IMPLEMENTED */
err = -ENOSYS;
else if (buf[0] == 0x0a) /* REJECTED */
err = -EINVAL;
if (err < 0)
goto end;
err = 0;
end:
kfree(buf);
return err;
}
EXPORT_SYMBOL(avc_general_set_sig_fmt);
int avc_general_get_sig_fmt(struct fw_unit *unit, unsigned int *rate,
enum avc_general_plug_dir dir,
unsigned short pid)
{
unsigned int sfc;
u8 *buf;
int err;
buf = kzalloc(8, GFP_KERNEL);
if (buf == NULL)
return -ENOMEM;
buf[0] = 0x01; /* AV/C STATUS */
buf[1] = 0xff; /* Unit */
if (dir == AVC_GENERAL_PLUG_DIR_IN)
buf[2] = 0x19; /* INPUT PLUG SIGNAL FORMAT */
else
buf[2] = 0x18; /* OUTPUT PLUG SIGNAL FORMAT */
buf[3] = 0xff & pid; /* plug id */
buf[4] = 0x90; /* EOH_1, Form_1, FMT. AM824 */
buf[5] = 0xff; /* FDF-hi. AM824, frequency */
buf[6] = 0xff; /* FDF-mid. AM824, SYT hi (not used) */
buf[7] = 0xff; /* FDF-low. AM824, SYT lo (not used) */
/* do transaction and check buf[1-4] are the same against command */
err = fcp_avc_transaction(unit, buf, 8, buf, 8,
BIT(1) | BIT(2) | BIT(3) | BIT(4));
if (err < 0)
;
else if (err < 8)
err = -EIO;
else if (buf[0] == 0x08) /* NOT IMPLEMENTED */
err = -ENOSYS;
else if (buf[0] == 0x0a) /* REJECTED */
err = -EINVAL;
else if (buf[0] == 0x0b) /* IN TRANSITION */
err = -EAGAIN;
if (err < 0)
goto end;
/* check sfc field and pick up rate */
sfc = 0x07 & buf[5];
if (sfc >= CIP_SFC_COUNT) {
err = -EAGAIN; /* also in transition */
goto end;
}
*rate = amdtp_rate_table[sfc];
err = 0;
end:
kfree(buf);
return err;
}
EXPORT_SYMBOL(avc_general_get_sig_fmt);
int avc_general_get_plug_info(struct fw_unit *unit, unsigned int subunit_type,
unsigned int subunit_id, unsigned int subfunction,
u8 info[AVC_PLUG_INFO_BUF_BYTES])
{
u8 *buf;
int err;
/* extended subunit in spec.4.2 is not supported */
if ((subunit_type == 0x1E) || (subunit_id == 5))
return -EINVAL;
buf = kzalloc(8, GFP_KERNEL);
if (buf == NULL)
return -ENOMEM;
buf[0] = 0x01; /* AV/C STATUS */
/* UNIT or Subunit, Functionblock */
buf[1] = ((subunit_type & 0x1f) << 3) | (subunit_id & 0x7);
buf[2] = 0x02; /* PLUG INFO */
buf[3] = 0xff & subfunction;
err = fcp_avc_transaction(unit, buf, 8, buf, 8, BIT(1) | BIT(2));
if (err < 0)
;
else if (err < 8)
err = -EIO;
else if (buf[0] == 0x08) /* NOT IMPLEMENTED */
err = -ENOSYS;
else if (buf[0] == 0x0a) /* REJECTED */
err = -EINVAL;
else if (buf[0] == 0x0b) /* IN TRANSITION */
err = -EAGAIN;
if (err < 0)
goto end;
info[0] = buf[4];
info[1] = buf[5];
info[2] = buf[6];
info[3] = buf[7];
err = 0;
end:
kfree(buf);
return err;
}
EXPORT_SYMBOL(avc_general_get_plug_info);
static DEFINE_SPINLOCK(transactions_lock);
static LIST_HEAD(transactions);
enum fcp_state {
STATE_PENDING,
STATE_BUS_RESET,
STATE_COMPLETE,
STATE_DEFERRED,
};
struct fcp_transaction {
struct list_head list;
struct fw_unit *unit;
void *response_buffer;
unsigned int response_size;
unsigned int response_match_bytes;
enum fcp_state state;
wait_queue_head_t wait;
bool deferrable;
};
/**
* fcp_avc_transaction - send an AV/C command and wait for its response
* @unit: a unit on the target device
* @command: a buffer containing the command frame; must be DMA-able
* @command_size: the size of @command
* @response: a buffer for the response frame
* @response_size: the maximum size of @response
* @response_match_bytes: a bitmap specifying the bytes used to detect the
* correct response frame
*
* This function sends a FCP command frame to the target and waits for the
* corresponding response frame to be returned.
*
* Because it is possible for multiple FCP transactions to be active at the
* same time, the correct response frame is detected by the value of certain
* bytes. These bytes must be set in @response before calling this function,
* and the corresponding bits must be set in @response_match_bytes.
*
* @command and @response can point to the same buffer.
*
* Returns the actual size of the response frame, or a negative error code.
*/
int fcp_avc_transaction(struct fw_unit *unit,
const void *command, unsigned int command_size,
void *response, unsigned int response_size,
unsigned int response_match_bytes)
{
struct fcp_transaction t;
int tcode, ret, tries = 0;
t.unit = unit;
t.response_buffer = response;
t.response_size = response_size;
t.response_match_bytes = response_match_bytes;
t.state = STATE_PENDING;
init_waitqueue_head(&t.wait);
t.deferrable = (*(const u8 *)command == 0x00 || *(const u8 *)command == 0x03);
spin_lock_irq(&transactions_lock);
list_add_tail(&t.list, &transactions);
spin_unlock_irq(&transactions_lock);
for (;;) {
tcode = command_size == 4 ? TCODE_WRITE_QUADLET_REQUEST
: TCODE_WRITE_BLOCK_REQUEST;
ret = snd_fw_transaction(t.unit, tcode,
CSR_REGISTER_BASE + CSR_FCP_COMMAND,
(void *)command, command_size, 0);
if (ret < 0)
break;
deferred:
wait_event_timeout(t.wait, t.state != STATE_PENDING,
msecs_to_jiffies(FCP_TIMEOUT_MS));
if (t.state == STATE_DEFERRED) {
/*
* 'AV/C General Specification' define no time limit
* on command completion once an INTERIM response has
* been sent. but we promise to finish this function
* for a caller. Here we use FCP_TIMEOUT_MS for next
* interval. This is not in the specification.
*/
t.state = STATE_PENDING;
goto deferred;
} else if (t.state == STATE_COMPLETE) {
ret = t.response_size;
break;
} else if (t.state == STATE_BUS_RESET) {
msleep(ERROR_DELAY_MS);
} else if (++tries >= ERROR_RETRIES) {
dev_err(&t.unit->device, "FCP command timed out\n");
ret = -EIO;
break;
}
}
spin_lock_irq(&transactions_lock);
list_del(&t.list);
spin_unlock_irq(&transactions_lock);
return ret;
}
EXPORT_SYMBOL(fcp_avc_transaction);
/**
* fcp_bus_reset - inform the target handler about a bus reset
* @unit: the unit that might be used by fcp_avc_transaction()
*
* This function must be called from the driver's .update handler to inform
* the FCP transaction handler that a bus reset has happened. Any pending FCP
* transactions are retried.
*/
void fcp_bus_reset(struct fw_unit *unit)
{
struct fcp_transaction *t;
spin_lock_irq(&transactions_lock);
list_for_each_entry(t, &transactions, list) {
if (t->unit == unit &&
(t->state == STATE_PENDING ||
t->state == STATE_DEFERRED)) {
t->state = STATE_BUS_RESET;
wake_up(&t->wait);
}
}
spin_unlock_irq(&transactions_lock);
}
EXPORT_SYMBOL(fcp_bus_reset);
/* checks whether the response matches the masked bytes in response_buffer */
static bool is_matching_response(struct fcp_transaction *transaction,
const void *response, size_t length)
{
const u8 *p1, *p2;
unsigned int mask, i;
p1 = response;
p2 = transaction->response_buffer;
mask = transaction->response_match_bytes;
for (i = 0; ; ++i) {
if ((mask & 1) && p1[i] != p2[i])
return false;
mask >>= 1;
if (!mask)
return true;
if (--length == 0)
return false;
}
}
static void fcp_response(struct fw_card *card, struct fw_request *request,
int tcode, int destination, int source,
int generation, unsigned long long offset,
void *data, size_t length, void *callback_data)
{
struct fcp_transaction *t;
unsigned long flags;
if (length < 1 || (*(const u8 *)data & 0xf0) != CTS_AVC)
return;
spin_lock_irqsave(&transactions_lock, flags);
list_for_each_entry(t, &transactions, list) {
struct fw_device *device = fw_parent_device(t->unit);
if (device->card != card ||
device->generation != generation)
continue;
smp_rmb(); /* node_id vs. generation */
if (device->node_id != source)
continue;
if (t->state == STATE_PENDING &&
is_matching_response(t, data, length)) {
if (t->deferrable && *(const u8 *)data == 0x0f) {
t->state = STATE_DEFERRED;
} else {
t->state = STATE_COMPLETE;
t->response_size = min_t(unsigned int, length,
t->response_size);
memcpy(t->response_buffer, data,
t->response_size);
}
wake_up(&t->wait);
}
}
spin_unlock_irqrestore(&transactions_lock, flags);
}
static struct fw_address_handler response_register_handler = {
.length = 0x200,
.address_callback = fcp_response,
};
static int __init fcp_module_init(void)
{
static const struct fw_address_region response_register_region = {
.start = CSR_REGISTER_BASE + CSR_FCP_RESPONSE,
.end = CSR_REGISTER_BASE + CSR_FCP_END,
};
fw_core_add_address_handler(&response_register_handler,
&response_register_region);
return 0;
}
static void __exit fcp_module_exit(void)
{
WARN_ON(!list_empty(&transactions));
fw_core_remove_address_handler(&response_register_handler);
}
module_init(fcp_module_init);
module_exit(fcp_module_exit);