OpenCloudOS-Kernel/arch/mips/kvm/mmu.c

1271 lines
33 KiB
C
Raw Normal View History

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* KVM/MIPS MMU handling in the KVM module.
*
* Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
* Authors: Sanjay Lal <sanjayl@kymasys.com>
*/
#include <linux/highmem.h>
#include <linux/kvm_host.h>
#include <linux/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/pgalloc.h>
/*
* KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels
* for which pages need to be cached.
*/
#if defined(__PAGETABLE_PMD_FOLDED)
#define KVM_MMU_CACHE_MIN_PAGES 1
#else
#define KVM_MMU_CACHE_MIN_PAGES 2
#endif
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
int min, int max)
{
void *page;
BUG_ON(max > KVM_NR_MEM_OBJS);
if (cache->nobjs >= min)
return 0;
while (cache->nobjs < max) {
page = (void *)__get_free_page(GFP_KERNEL);
if (!page)
return -ENOMEM;
cache->objects[cache->nobjs++] = page;
}
return 0;
}
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
{
while (mc->nobjs)
free_page((unsigned long)mc->objects[--mc->nobjs]);
}
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
{
void *p;
BUG_ON(!mc || !mc->nobjs);
p = mc->objects[--mc->nobjs];
return p;
}
void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
}
/**
* kvm_pgd_init() - Initialise KVM GPA page directory.
* @page: Pointer to page directory (PGD) for KVM GPA.
*
* Initialise a KVM GPA page directory with pointers to the invalid table, i.e.
* representing no mappings. This is similar to pgd_init(), however it
* initialises all the page directory pointers, not just the ones corresponding
* to the userland address space (since it is for the guest physical address
* space rather than a virtual address space).
*/
static void kvm_pgd_init(void *page)
{
unsigned long *p, *end;
unsigned long entry;
#ifdef __PAGETABLE_PMD_FOLDED
entry = (unsigned long)invalid_pte_table;
#else
entry = (unsigned long)invalid_pmd_table;
#endif
p = (unsigned long *)page;
end = p + PTRS_PER_PGD;
do {
p[0] = entry;
p[1] = entry;
p[2] = entry;
p[3] = entry;
p[4] = entry;
p += 8;
p[-3] = entry;
p[-2] = entry;
p[-1] = entry;
} while (p != end);
}
/**
* kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory.
*
* Allocate a blank KVM GPA page directory (PGD) for representing guest physical
* to host physical page mappings.
*
* Returns: Pointer to new KVM GPA page directory.
* NULL on allocation failure.
*/
pgd_t *kvm_pgd_alloc(void)
{
pgd_t *ret;
ret = (pgd_t *)__get_free_pages(GFP_KERNEL, PGD_ORDER);
if (ret)
kvm_pgd_init(ret);
return ret;
}
/**
* kvm_mips_walk_pgd() - Walk page table with optional allocation.
* @pgd: Page directory pointer.
* @addr: Address to index page table using.
* @cache: MMU page cache to allocate new page tables from, or NULL.
*
* Walk the page tables pointed to by @pgd to find the PTE corresponding to the
* address @addr. If page tables don't exist for @addr, they will be created
* from the MMU cache if @cache is not NULL.
*
* Returns: Pointer to pte_t corresponding to @addr.
* NULL if a page table doesn't exist for @addr and !@cache.
* NULL if a page table allocation failed.
*/
static pte_t *kvm_mips_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache,
unsigned long addr)
{
pud_t *pud;
pmd_t *pmd;
pgd += pgd_index(addr);
if (pgd_none(*pgd)) {
/* Not used on MIPS yet */
BUG();
return NULL;
}
pud = pud_offset(pgd, addr);
if (pud_none(*pud)) {
pmd_t *new_pmd;
if (!cache)
return NULL;
new_pmd = mmu_memory_cache_alloc(cache);
pmd_init((unsigned long)new_pmd,
(unsigned long)invalid_pte_table);
pud_populate(NULL, pud, new_pmd);
}
pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd)) {
pte_t *new_pte;
if (!cache)
return NULL;
new_pte = mmu_memory_cache_alloc(cache);
clear_page(new_pte);
pmd_populate_kernel(NULL, pmd, new_pte);
}
return pte_offset(pmd, addr);
}
/* Caller must hold kvm->mm_lock */
static pte_t *kvm_mips_pte_for_gpa(struct kvm *kvm,
struct kvm_mmu_memory_cache *cache,
unsigned long addr)
{
return kvm_mips_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr);
}
/*
* kvm_mips_flush_gpa_{pte,pmd,pud,pgd,pt}.
* Flush a range of guest physical address space from the VM's GPA page tables.
*/
static bool kvm_mips_flush_gpa_pte(pte_t *pte, unsigned long start_gpa,
unsigned long end_gpa)
{
int i_min = __pte_offset(start_gpa);
int i_max = __pte_offset(end_gpa);
bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
int i;
for (i = i_min; i <= i_max; ++i) {
if (!pte_present(pte[i]))
continue;
set_pte(pte + i, __pte(0));
}
return safe_to_remove;
}
static bool kvm_mips_flush_gpa_pmd(pmd_t *pmd, unsigned long start_gpa,
unsigned long end_gpa)
{
pte_t *pte;
unsigned long end = ~0ul;
int i_min = __pmd_offset(start_gpa);
int i_max = __pmd_offset(end_gpa);
bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
int i;
for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
if (!pmd_present(pmd[i]))
continue;
pte = pte_offset(pmd + i, 0);
if (i == i_max)
end = end_gpa;
if (kvm_mips_flush_gpa_pte(pte, start_gpa, end)) {
pmd_clear(pmd + i);
pte_free_kernel(NULL, pte);
} else {
safe_to_remove = false;
}
}
return safe_to_remove;
}
static bool kvm_mips_flush_gpa_pud(pud_t *pud, unsigned long start_gpa,
unsigned long end_gpa)
{
pmd_t *pmd;
unsigned long end = ~0ul;
int i_min = __pud_offset(start_gpa);
int i_max = __pud_offset(end_gpa);
bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
int i;
for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
if (!pud_present(pud[i]))
continue;
pmd = pmd_offset(pud + i, 0);
if (i == i_max)
end = end_gpa;
if (kvm_mips_flush_gpa_pmd(pmd, start_gpa, end)) {
pud_clear(pud + i);
pmd_free(NULL, pmd);
} else {
safe_to_remove = false;
}
}
return safe_to_remove;
}
static bool kvm_mips_flush_gpa_pgd(pgd_t *pgd, unsigned long start_gpa,
unsigned long end_gpa)
{
pud_t *pud;
unsigned long end = ~0ul;
int i_min = pgd_index(start_gpa);
int i_max = pgd_index(end_gpa);
bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
int i;
for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
if (!pgd_present(pgd[i]))
continue;
pud = pud_offset(pgd + i, 0);
if (i == i_max)
end = end_gpa;
if (kvm_mips_flush_gpa_pud(pud, start_gpa, end)) {
pgd_clear(pgd + i);
pud_free(NULL, pud);
} else {
safe_to_remove = false;
}
}
return safe_to_remove;
}
/**
* kvm_mips_flush_gpa_pt() - Flush a range of guest physical addresses.
* @kvm: KVM pointer.
* @start_gfn: Guest frame number of first page in GPA range to flush.
* @end_gfn: Guest frame number of last page in GPA range to flush.
*
* Flushes a range of GPA mappings from the GPA page tables.
*
* The caller must hold the @kvm->mmu_lock spinlock.
*
* Returns: Whether its safe to remove the top level page directory because
* all lower levels have been removed.
*/
bool kvm_mips_flush_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
{
return kvm_mips_flush_gpa_pgd(kvm->arch.gpa_mm.pgd,
start_gfn << PAGE_SHIFT,
end_gfn << PAGE_SHIFT);
}
#define BUILD_PTE_RANGE_OP(name, op) \
static int kvm_mips_##name##_pte(pte_t *pte, unsigned long start, \
unsigned long end) \
{ \
int ret = 0; \
int i_min = __pte_offset(start); \
int i_max = __pte_offset(end); \
int i; \
pte_t old, new; \
\
for (i = i_min; i <= i_max; ++i) { \
if (!pte_present(pte[i])) \
continue; \
\
old = pte[i]; \
new = op(old); \
if (pte_val(new) == pte_val(old)) \
continue; \
set_pte(pte + i, new); \
ret = 1; \
} \
return ret; \
} \
\
/* returns true if anything was done */ \
static int kvm_mips_##name##_pmd(pmd_t *pmd, unsigned long start, \
unsigned long end) \
{ \
int ret = 0; \
pte_t *pte; \
unsigned long cur_end = ~0ul; \
int i_min = __pmd_offset(start); \
int i_max = __pmd_offset(end); \
int i; \
\
for (i = i_min; i <= i_max; ++i, start = 0) { \
if (!pmd_present(pmd[i])) \
continue; \
\
pte = pte_offset(pmd + i, 0); \
if (i == i_max) \
cur_end = end; \
\
ret |= kvm_mips_##name##_pte(pte, start, cur_end); \
} \
return ret; \
} \
\
static int kvm_mips_##name##_pud(pud_t *pud, unsigned long start, \
unsigned long end) \
{ \
int ret = 0; \
pmd_t *pmd; \
unsigned long cur_end = ~0ul; \
int i_min = __pud_offset(start); \
int i_max = __pud_offset(end); \
int i; \
\
for (i = i_min; i <= i_max; ++i, start = 0) { \
if (!pud_present(pud[i])) \
continue; \
\
pmd = pmd_offset(pud + i, 0); \
if (i == i_max) \
cur_end = end; \
\
ret |= kvm_mips_##name##_pmd(pmd, start, cur_end); \
} \
return ret; \
} \
\
static int kvm_mips_##name##_pgd(pgd_t *pgd, unsigned long start, \
unsigned long end) \
{ \
int ret = 0; \
pud_t *pud; \
unsigned long cur_end = ~0ul; \
int i_min = pgd_index(start); \
int i_max = pgd_index(end); \
int i; \
\
for (i = i_min; i <= i_max; ++i, start = 0) { \
if (!pgd_present(pgd[i])) \
continue; \
\
pud = pud_offset(pgd + i, 0); \
if (i == i_max) \
cur_end = end; \
\
ret |= kvm_mips_##name##_pud(pud, start, cur_end); \
} \
return ret; \
}
/*
* kvm_mips_mkclean_gpa_pt.
* Mark a range of guest physical address space clean (writes fault) in the VM's
* GPA page table to allow dirty page tracking.
*/
BUILD_PTE_RANGE_OP(mkclean, pte_mkclean)
/**
* kvm_mips_mkclean_gpa_pt() - Make a range of guest physical addresses clean.
* @kvm: KVM pointer.
* @start_gfn: Guest frame number of first page in GPA range to flush.
* @end_gfn: Guest frame number of last page in GPA range to flush.
*
* Make a range of GPA mappings clean so that guest writes will fault and
* trigger dirty page logging.
*
* The caller must hold the @kvm->mmu_lock spinlock.
*
* Returns: Whether any GPA mappings were modified, which would require
* derived mappings (GVA page tables & TLB enties) to be
* invalidated.
*/
int kvm_mips_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
{
return kvm_mips_mkclean_pgd(kvm->arch.gpa_mm.pgd,
start_gfn << PAGE_SHIFT,
end_gfn << PAGE_SHIFT);
}
/**
* kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages
* @kvm: The KVM pointer
* @slot: The memory slot associated with mask
* @gfn_offset: The gfn offset in memory slot
* @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
* slot to be write protected
*
* Walks bits set in mask write protects the associated pte's. Caller must
* acquire @kvm->mmu_lock.
*/
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
struct kvm_memory_slot *slot,
gfn_t gfn_offset, unsigned long mask)
{
gfn_t base_gfn = slot->base_gfn + gfn_offset;
gfn_t start = base_gfn + __ffs(mask);
gfn_t end = base_gfn + __fls(mask);
kvm_mips_mkclean_gpa_pt(kvm, start, end);
}
KVM: MIPS/MMU: Implement KVM_CAP_SYNC_MMU Implement the SYNC_MMU capability for KVM MIPS, allowing changes in the underlying user host virtual address (HVA) mappings to be promptly reflected in the corresponding guest physical address (GPA) mappings. This allows for several features to work with guest RAM which require mappings to be altered or protected, such as copy-on-write, KSM (Kernel Samepage Merging), idle page tracking, memory swapping, and guest memory ballooning. There are two main aspects of this change, described below. The KVM MMU notifier architecture callbacks are implemented so we can be notified of changes in the HVA mappings. These arrange for the guest physical address (GPA) page tables to be modified and possibly for derived mappings (GVA page tables and TLBs) to be flushed. - kvm_unmap_hva[_range]() - These deal with HVA mappings being removed, for example before a copy-on-write takes place, which requires the corresponding GPA page table mappings to be removed too. - kvm_set_spte_hva() - These update a GPA page table entry to match the new HVA entry, but must be careful to respect KVM specific configuration such as not dirtying a clean guest page which is dirty to the host, and write protecting writable pages in read only memslots (which will soon be supported). - kvm[_test]_age_hva() - These update GPA page table entries to be old (invalid) so that access can be tracked, making them young again. The GPA page fault handling (kvm_mips_map_page) is updated to use gfn_to_pfn_prot() (which may provide read-only pages), to handle asynchronous page table invalidation from MMU notifier callbacks, and to handle more cases in the fast path. - mmu_notifier_seq is used to detect asynchronous page table invalidations while we're holding a pfn from gfn_to_pfn_prot() outside of kvm->mmu_lock, retrying if invalidations have taken place, e.g. a COW or a KSM page merge. - The fast path (_kvm_mips_map_page_fast) now handles marking old pages as young / accessed, and disallowing dirtying of clean pages that aren't actually writable (e.g. shared pages that should COW, and read-only memory regions when they are enabled in a future patch). - Due to the use of MMU notifications we no longer need to keep the page references after we've updated the GPA page tables. Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Radim Krčmář" <rkrcmar@redhat.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: linux-mips@linux-mips.org Cc: kvm@vger.kernel.org
2016-12-14 00:32:39 +08:00
/*
* kvm_mips_mkold_gpa_pt.
* Mark a range of guest physical address space old (all accesses fault) in the
* VM's GPA page table to allow detection of commonly used pages.
*/
BUILD_PTE_RANGE_OP(mkold, pte_mkold)
static int kvm_mips_mkold_gpa_pt(struct kvm *kvm, gfn_t start_gfn,
gfn_t end_gfn)
{
return kvm_mips_mkold_pgd(kvm->arch.gpa_mm.pgd,
start_gfn << PAGE_SHIFT,
end_gfn << PAGE_SHIFT);
}
static int handle_hva_to_gpa(struct kvm *kvm,
unsigned long start,
unsigned long end,
int (*handler)(struct kvm *kvm, gfn_t gfn,
gpa_t gfn_end,
struct kvm_memory_slot *memslot,
void *data),
void *data)
{
struct kvm_memslots *slots;
struct kvm_memory_slot *memslot;
int ret = 0;
slots = kvm_memslots(kvm);
/* we only care about the pages that the guest sees */
kvm_for_each_memslot(memslot, slots) {
unsigned long hva_start, hva_end;
gfn_t gfn, gfn_end;
hva_start = max(start, memslot->userspace_addr);
hva_end = min(end, memslot->userspace_addr +
(memslot->npages << PAGE_SHIFT));
if (hva_start >= hva_end)
continue;
/*
* {gfn(page) | page intersects with [hva_start, hva_end)} =
* {gfn_start, gfn_start+1, ..., gfn_end-1}.
*/
gfn = hva_to_gfn_memslot(hva_start, memslot);
gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
ret |= handler(kvm, gfn, gfn_end, memslot, data);
}
return ret;
}
static int kvm_unmap_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
struct kvm_memory_slot *memslot, void *data)
{
kvm_mips_flush_gpa_pt(kvm, gfn, gfn_end);
return 1;
}
int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
unsigned long end = hva + PAGE_SIZE;
handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
kvm_mips_callbacks->flush_shadow_all(kvm);
return 0;
}
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
kvm_mips_callbacks->flush_shadow_all(kvm);
return 0;
}
static int kvm_set_spte_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
struct kvm_memory_slot *memslot, void *data)
{
gpa_t gpa = gfn << PAGE_SHIFT;
pte_t hva_pte = *(pte_t *)data;
pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
pte_t old_pte;
if (!gpa_pte)
return 0;
/* Mapping may need adjusting depending on memslot flags */
old_pte = *gpa_pte;
if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES && !pte_dirty(old_pte))
hva_pte = pte_mkclean(hva_pte);
else if (memslot->flags & KVM_MEM_READONLY)
hva_pte = pte_wrprotect(hva_pte);
set_pte(gpa_pte, hva_pte);
/* Replacing an absent or old page doesn't need flushes */
if (!pte_present(old_pte) || !pte_young(old_pte))
return 0;
/* Pages swapped, aged, moved, or cleaned require flushes */
return !pte_present(hva_pte) ||
!pte_young(hva_pte) ||
pte_pfn(old_pte) != pte_pfn(hva_pte) ||
(pte_dirty(old_pte) && !pte_dirty(hva_pte));
}
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
unsigned long end = hva + PAGE_SIZE;
int ret;
ret = handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &pte);
if (ret)
kvm_mips_callbacks->flush_shadow_all(kvm);
}
static int kvm_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
struct kvm_memory_slot *memslot, void *data)
{
return kvm_mips_mkold_gpa_pt(kvm, gfn, gfn_end);
}
static int kvm_test_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
struct kvm_memory_slot *memslot, void *data)
{
gpa_t gpa = gfn << PAGE_SHIFT;
pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
if (!gpa_pte)
return 0;
return pte_young(*gpa_pte);
}
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
{
return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
}
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
}
/**
* _kvm_mips_map_page_fast() - Fast path GPA fault handler.
* @vcpu: VCPU pointer.
* @gpa: Guest physical address of fault.
* @write_fault: Whether the fault was due to a write.
* @out_entry: New PTE for @gpa (written on success unless NULL).
* @out_buddy: New PTE for @gpa's buddy (written on success unless
* NULL).
*
* Perform fast path GPA fault handling, doing all that can be done without
KVM: MIPS/MMU: Implement KVM_CAP_SYNC_MMU Implement the SYNC_MMU capability for KVM MIPS, allowing changes in the underlying user host virtual address (HVA) mappings to be promptly reflected in the corresponding guest physical address (GPA) mappings. This allows for several features to work with guest RAM which require mappings to be altered or protected, such as copy-on-write, KSM (Kernel Samepage Merging), idle page tracking, memory swapping, and guest memory ballooning. There are two main aspects of this change, described below. The KVM MMU notifier architecture callbacks are implemented so we can be notified of changes in the HVA mappings. These arrange for the guest physical address (GPA) page tables to be modified and possibly for derived mappings (GVA page tables and TLBs) to be flushed. - kvm_unmap_hva[_range]() - These deal with HVA mappings being removed, for example before a copy-on-write takes place, which requires the corresponding GPA page table mappings to be removed too. - kvm_set_spte_hva() - These update a GPA page table entry to match the new HVA entry, but must be careful to respect KVM specific configuration such as not dirtying a clean guest page which is dirty to the host, and write protecting writable pages in read only memslots (which will soon be supported). - kvm[_test]_age_hva() - These update GPA page table entries to be old (invalid) so that access can be tracked, making them young again. The GPA page fault handling (kvm_mips_map_page) is updated to use gfn_to_pfn_prot() (which may provide read-only pages), to handle asynchronous page table invalidation from MMU notifier callbacks, and to handle more cases in the fast path. - mmu_notifier_seq is used to detect asynchronous page table invalidations while we're holding a pfn from gfn_to_pfn_prot() outside of kvm->mmu_lock, retrying if invalidations have taken place, e.g. a COW or a KSM page merge. - The fast path (_kvm_mips_map_page_fast) now handles marking old pages as young / accessed, and disallowing dirtying of clean pages that aren't actually writable (e.g. shared pages that should COW, and read-only memory regions when they are enabled in a future patch). - Due to the use of MMU notifications we no longer need to keep the page references after we've updated the GPA page tables. Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Radim Krčmář" <rkrcmar@redhat.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: linux-mips@linux-mips.org Cc: kvm@vger.kernel.org
2016-12-14 00:32:39 +08:00
* calling into KVM. This handles marking old pages young (for idle page
* tracking), and dirtying of clean pages (for dirty page logging).
*
* Returns: 0 on success, in which case we can update derived mappings and
* resume guest execution.
* -EFAULT on failure due to absent GPA mapping or write to
* read-only page, in which case KVM must be consulted.
*/
static int _kvm_mips_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa,
bool write_fault,
pte_t *out_entry, pte_t *out_buddy)
{
struct kvm *kvm = vcpu->kvm;
gfn_t gfn = gpa >> PAGE_SHIFT;
pte_t *ptep;
KVM: MIPS/MMU: Implement KVM_CAP_SYNC_MMU Implement the SYNC_MMU capability for KVM MIPS, allowing changes in the underlying user host virtual address (HVA) mappings to be promptly reflected in the corresponding guest physical address (GPA) mappings. This allows for several features to work with guest RAM which require mappings to be altered or protected, such as copy-on-write, KSM (Kernel Samepage Merging), idle page tracking, memory swapping, and guest memory ballooning. There are two main aspects of this change, described below. The KVM MMU notifier architecture callbacks are implemented so we can be notified of changes in the HVA mappings. These arrange for the guest physical address (GPA) page tables to be modified and possibly for derived mappings (GVA page tables and TLBs) to be flushed. - kvm_unmap_hva[_range]() - These deal with HVA mappings being removed, for example before a copy-on-write takes place, which requires the corresponding GPA page table mappings to be removed too. - kvm_set_spte_hva() - These update a GPA page table entry to match the new HVA entry, but must be careful to respect KVM specific configuration such as not dirtying a clean guest page which is dirty to the host, and write protecting writable pages in read only memslots (which will soon be supported). - kvm[_test]_age_hva() - These update GPA page table entries to be old (invalid) so that access can be tracked, making them young again. The GPA page fault handling (kvm_mips_map_page) is updated to use gfn_to_pfn_prot() (which may provide read-only pages), to handle asynchronous page table invalidation from MMU notifier callbacks, and to handle more cases in the fast path. - mmu_notifier_seq is used to detect asynchronous page table invalidations while we're holding a pfn from gfn_to_pfn_prot() outside of kvm->mmu_lock, retrying if invalidations have taken place, e.g. a COW or a KSM page merge. - The fast path (_kvm_mips_map_page_fast) now handles marking old pages as young / accessed, and disallowing dirtying of clean pages that aren't actually writable (e.g. shared pages that should COW, and read-only memory regions when they are enabled in a future patch). - Due to the use of MMU notifications we no longer need to keep the page references after we've updated the GPA page tables. Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Radim Krčmář" <rkrcmar@redhat.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: linux-mips@linux-mips.org Cc: kvm@vger.kernel.org
2016-12-14 00:32:39 +08:00
kvm_pfn_t pfn = 0; /* silence bogus GCC warning */
bool pfn_valid = false;
int ret = 0;
spin_lock(&kvm->mmu_lock);
/* Fast path - just check GPA page table for an existing entry */
ptep = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
if (!ptep || !pte_present(*ptep)) {
ret = -EFAULT;
goto out;
}
KVM: MIPS/MMU: Implement KVM_CAP_SYNC_MMU Implement the SYNC_MMU capability for KVM MIPS, allowing changes in the underlying user host virtual address (HVA) mappings to be promptly reflected in the corresponding guest physical address (GPA) mappings. This allows for several features to work with guest RAM which require mappings to be altered or protected, such as copy-on-write, KSM (Kernel Samepage Merging), idle page tracking, memory swapping, and guest memory ballooning. There are two main aspects of this change, described below. The KVM MMU notifier architecture callbacks are implemented so we can be notified of changes in the HVA mappings. These arrange for the guest physical address (GPA) page tables to be modified and possibly for derived mappings (GVA page tables and TLBs) to be flushed. - kvm_unmap_hva[_range]() - These deal with HVA mappings being removed, for example before a copy-on-write takes place, which requires the corresponding GPA page table mappings to be removed too. - kvm_set_spte_hva() - These update a GPA page table entry to match the new HVA entry, but must be careful to respect KVM specific configuration such as not dirtying a clean guest page which is dirty to the host, and write protecting writable pages in read only memslots (which will soon be supported). - kvm[_test]_age_hva() - These update GPA page table entries to be old (invalid) so that access can be tracked, making them young again. The GPA page fault handling (kvm_mips_map_page) is updated to use gfn_to_pfn_prot() (which may provide read-only pages), to handle asynchronous page table invalidation from MMU notifier callbacks, and to handle more cases in the fast path. - mmu_notifier_seq is used to detect asynchronous page table invalidations while we're holding a pfn from gfn_to_pfn_prot() outside of kvm->mmu_lock, retrying if invalidations have taken place, e.g. a COW or a KSM page merge. - The fast path (_kvm_mips_map_page_fast) now handles marking old pages as young / accessed, and disallowing dirtying of clean pages that aren't actually writable (e.g. shared pages that should COW, and read-only memory regions when they are enabled in a future patch). - Due to the use of MMU notifications we no longer need to keep the page references after we've updated the GPA page tables. Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Radim Krčmář" <rkrcmar@redhat.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: linux-mips@linux-mips.org Cc: kvm@vger.kernel.org
2016-12-14 00:32:39 +08:00
/* Track access to pages marked old */
if (!pte_young(*ptep)) {
set_pte(ptep, pte_mkyoung(*ptep));
pfn = pte_pfn(*ptep);
pfn_valid = true;
/* call kvm_set_pfn_accessed() after unlock */
}
if (write_fault && !pte_dirty(*ptep)) {
KVM: MIPS/MMU: Implement KVM_CAP_SYNC_MMU Implement the SYNC_MMU capability for KVM MIPS, allowing changes in the underlying user host virtual address (HVA) mappings to be promptly reflected in the corresponding guest physical address (GPA) mappings. This allows for several features to work with guest RAM which require mappings to be altered or protected, such as copy-on-write, KSM (Kernel Samepage Merging), idle page tracking, memory swapping, and guest memory ballooning. There are two main aspects of this change, described below. The KVM MMU notifier architecture callbacks are implemented so we can be notified of changes in the HVA mappings. These arrange for the guest physical address (GPA) page tables to be modified and possibly for derived mappings (GVA page tables and TLBs) to be flushed. - kvm_unmap_hva[_range]() - These deal with HVA mappings being removed, for example before a copy-on-write takes place, which requires the corresponding GPA page table mappings to be removed too. - kvm_set_spte_hva() - These update a GPA page table entry to match the new HVA entry, but must be careful to respect KVM specific configuration such as not dirtying a clean guest page which is dirty to the host, and write protecting writable pages in read only memslots (which will soon be supported). - kvm[_test]_age_hva() - These update GPA page table entries to be old (invalid) so that access can be tracked, making them young again. The GPA page fault handling (kvm_mips_map_page) is updated to use gfn_to_pfn_prot() (which may provide read-only pages), to handle asynchronous page table invalidation from MMU notifier callbacks, and to handle more cases in the fast path. - mmu_notifier_seq is used to detect asynchronous page table invalidations while we're holding a pfn from gfn_to_pfn_prot() outside of kvm->mmu_lock, retrying if invalidations have taken place, e.g. a COW or a KSM page merge. - The fast path (_kvm_mips_map_page_fast) now handles marking old pages as young / accessed, and disallowing dirtying of clean pages that aren't actually writable (e.g. shared pages that should COW, and read-only memory regions when they are enabled in a future patch). - Due to the use of MMU notifications we no longer need to keep the page references after we've updated the GPA page tables. Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Radim Krčmář" <rkrcmar@redhat.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: linux-mips@linux-mips.org Cc: kvm@vger.kernel.org
2016-12-14 00:32:39 +08:00
if (!pte_write(*ptep)) {
ret = -EFAULT;
goto out;
}
/* Track dirtying of writeable pages */
set_pte(ptep, pte_mkdirty(*ptep));
KVM: MIPS/MMU: Implement KVM_CAP_SYNC_MMU Implement the SYNC_MMU capability for KVM MIPS, allowing changes in the underlying user host virtual address (HVA) mappings to be promptly reflected in the corresponding guest physical address (GPA) mappings. This allows for several features to work with guest RAM which require mappings to be altered or protected, such as copy-on-write, KSM (Kernel Samepage Merging), idle page tracking, memory swapping, and guest memory ballooning. There are two main aspects of this change, described below. The KVM MMU notifier architecture callbacks are implemented so we can be notified of changes in the HVA mappings. These arrange for the guest physical address (GPA) page tables to be modified and possibly for derived mappings (GVA page tables and TLBs) to be flushed. - kvm_unmap_hva[_range]() - These deal with HVA mappings being removed, for example before a copy-on-write takes place, which requires the corresponding GPA page table mappings to be removed too. - kvm_set_spte_hva() - These update a GPA page table entry to match the new HVA entry, but must be careful to respect KVM specific configuration such as not dirtying a clean guest page which is dirty to the host, and write protecting writable pages in read only memslots (which will soon be supported). - kvm[_test]_age_hva() - These update GPA page table entries to be old (invalid) so that access can be tracked, making them young again. The GPA page fault handling (kvm_mips_map_page) is updated to use gfn_to_pfn_prot() (which may provide read-only pages), to handle asynchronous page table invalidation from MMU notifier callbacks, and to handle more cases in the fast path. - mmu_notifier_seq is used to detect asynchronous page table invalidations while we're holding a pfn from gfn_to_pfn_prot() outside of kvm->mmu_lock, retrying if invalidations have taken place, e.g. a COW or a KSM page merge. - The fast path (_kvm_mips_map_page_fast) now handles marking old pages as young / accessed, and disallowing dirtying of clean pages that aren't actually writable (e.g. shared pages that should COW, and read-only memory regions when they are enabled in a future patch). - Due to the use of MMU notifications we no longer need to keep the page references after we've updated the GPA page tables. Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Radim Krčmář" <rkrcmar@redhat.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: linux-mips@linux-mips.org Cc: kvm@vger.kernel.org
2016-12-14 00:32:39 +08:00
pfn = pte_pfn(*ptep);
mark_page_dirty(kvm, gfn);
KVM: MIPS/MMU: Implement KVM_CAP_SYNC_MMU Implement the SYNC_MMU capability for KVM MIPS, allowing changes in the underlying user host virtual address (HVA) mappings to be promptly reflected in the corresponding guest physical address (GPA) mappings. This allows for several features to work with guest RAM which require mappings to be altered or protected, such as copy-on-write, KSM (Kernel Samepage Merging), idle page tracking, memory swapping, and guest memory ballooning. There are two main aspects of this change, described below. The KVM MMU notifier architecture callbacks are implemented so we can be notified of changes in the HVA mappings. These arrange for the guest physical address (GPA) page tables to be modified and possibly for derived mappings (GVA page tables and TLBs) to be flushed. - kvm_unmap_hva[_range]() - These deal with HVA mappings being removed, for example before a copy-on-write takes place, which requires the corresponding GPA page table mappings to be removed too. - kvm_set_spte_hva() - These update a GPA page table entry to match the new HVA entry, but must be careful to respect KVM specific configuration such as not dirtying a clean guest page which is dirty to the host, and write protecting writable pages in read only memslots (which will soon be supported). - kvm[_test]_age_hva() - These update GPA page table entries to be old (invalid) so that access can be tracked, making them young again. The GPA page fault handling (kvm_mips_map_page) is updated to use gfn_to_pfn_prot() (which may provide read-only pages), to handle asynchronous page table invalidation from MMU notifier callbacks, and to handle more cases in the fast path. - mmu_notifier_seq is used to detect asynchronous page table invalidations while we're holding a pfn from gfn_to_pfn_prot() outside of kvm->mmu_lock, retrying if invalidations have taken place, e.g. a COW or a KSM page merge. - The fast path (_kvm_mips_map_page_fast) now handles marking old pages as young / accessed, and disallowing dirtying of clean pages that aren't actually writable (e.g. shared pages that should COW, and read-only memory regions when they are enabled in a future patch). - Due to the use of MMU notifications we no longer need to keep the page references after we've updated the GPA page tables. Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Radim Krčmář" <rkrcmar@redhat.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: linux-mips@linux-mips.org Cc: kvm@vger.kernel.org
2016-12-14 00:32:39 +08:00
kvm_set_pfn_dirty(pfn);
}
if (out_entry)
*out_entry = *ptep;
if (out_buddy)
*out_buddy = *ptep_buddy(ptep);
out:
spin_unlock(&kvm->mmu_lock);
KVM: MIPS/MMU: Implement KVM_CAP_SYNC_MMU Implement the SYNC_MMU capability for KVM MIPS, allowing changes in the underlying user host virtual address (HVA) mappings to be promptly reflected in the corresponding guest physical address (GPA) mappings. This allows for several features to work with guest RAM which require mappings to be altered or protected, such as copy-on-write, KSM (Kernel Samepage Merging), idle page tracking, memory swapping, and guest memory ballooning. There are two main aspects of this change, described below. The KVM MMU notifier architecture callbacks are implemented so we can be notified of changes in the HVA mappings. These arrange for the guest physical address (GPA) page tables to be modified and possibly for derived mappings (GVA page tables and TLBs) to be flushed. - kvm_unmap_hva[_range]() - These deal with HVA mappings being removed, for example before a copy-on-write takes place, which requires the corresponding GPA page table mappings to be removed too. - kvm_set_spte_hva() - These update a GPA page table entry to match the new HVA entry, but must be careful to respect KVM specific configuration such as not dirtying a clean guest page which is dirty to the host, and write protecting writable pages in read only memslots (which will soon be supported). - kvm[_test]_age_hva() - These update GPA page table entries to be old (invalid) so that access can be tracked, making them young again. The GPA page fault handling (kvm_mips_map_page) is updated to use gfn_to_pfn_prot() (which may provide read-only pages), to handle asynchronous page table invalidation from MMU notifier callbacks, and to handle more cases in the fast path. - mmu_notifier_seq is used to detect asynchronous page table invalidations while we're holding a pfn from gfn_to_pfn_prot() outside of kvm->mmu_lock, retrying if invalidations have taken place, e.g. a COW or a KSM page merge. - The fast path (_kvm_mips_map_page_fast) now handles marking old pages as young / accessed, and disallowing dirtying of clean pages that aren't actually writable (e.g. shared pages that should COW, and read-only memory regions when they are enabled in a future patch). - Due to the use of MMU notifications we no longer need to keep the page references after we've updated the GPA page tables. Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Radim Krčmář" <rkrcmar@redhat.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: linux-mips@linux-mips.org Cc: kvm@vger.kernel.org
2016-12-14 00:32:39 +08:00
if (pfn_valid)
kvm_set_pfn_accessed(pfn);
return ret;
}
/**
* kvm_mips_map_page() - Map a guest physical page.
* @vcpu: VCPU pointer.
* @gpa: Guest physical address of fault.
* @write_fault: Whether the fault was due to a write.
* @out_entry: New PTE for @gpa (written on success unless NULL).
* @out_buddy: New PTE for @gpa's buddy (written on success unless
* NULL).
*
* Handle GPA faults by creating a new GPA mapping (or updating an existing
* one).
*
KVM: MIPS/MMU: Implement KVM_CAP_SYNC_MMU Implement the SYNC_MMU capability for KVM MIPS, allowing changes in the underlying user host virtual address (HVA) mappings to be promptly reflected in the corresponding guest physical address (GPA) mappings. This allows for several features to work with guest RAM which require mappings to be altered or protected, such as copy-on-write, KSM (Kernel Samepage Merging), idle page tracking, memory swapping, and guest memory ballooning. There are two main aspects of this change, described below. The KVM MMU notifier architecture callbacks are implemented so we can be notified of changes in the HVA mappings. These arrange for the guest physical address (GPA) page tables to be modified and possibly for derived mappings (GVA page tables and TLBs) to be flushed. - kvm_unmap_hva[_range]() - These deal with HVA mappings being removed, for example before a copy-on-write takes place, which requires the corresponding GPA page table mappings to be removed too. - kvm_set_spte_hva() - These update a GPA page table entry to match the new HVA entry, but must be careful to respect KVM specific configuration such as not dirtying a clean guest page which is dirty to the host, and write protecting writable pages in read only memslots (which will soon be supported). - kvm[_test]_age_hva() - These update GPA page table entries to be old (invalid) so that access can be tracked, making them young again. The GPA page fault handling (kvm_mips_map_page) is updated to use gfn_to_pfn_prot() (which may provide read-only pages), to handle asynchronous page table invalidation from MMU notifier callbacks, and to handle more cases in the fast path. - mmu_notifier_seq is used to detect asynchronous page table invalidations while we're holding a pfn from gfn_to_pfn_prot() outside of kvm->mmu_lock, retrying if invalidations have taken place, e.g. a COW or a KSM page merge. - The fast path (_kvm_mips_map_page_fast) now handles marking old pages as young / accessed, and disallowing dirtying of clean pages that aren't actually writable (e.g. shared pages that should COW, and read-only memory regions when they are enabled in a future patch). - Due to the use of MMU notifications we no longer need to keep the page references after we've updated the GPA page tables. Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Radim Krčmář" <rkrcmar@redhat.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: linux-mips@linux-mips.org Cc: kvm@vger.kernel.org
2016-12-14 00:32:39 +08:00
* This takes care of marking pages young or dirty (idle/dirty page tracking),
* asking KVM for the corresponding PFN, and creating a mapping in the GPA page
* tables. Derived mappings (GVA page tables and TLBs) must be handled by the
* caller.
*
* Returns: 0 on success, in which case the caller may use the @out_entry
* and @out_buddy PTEs to update derived mappings and resume guest
* execution.
* -EFAULT if there is no memory region at @gpa or a write was
* attempted to a read-only memory region. This is usually handled
* as an MMIO access.
*/
static int kvm_mips_map_page(struct kvm_vcpu *vcpu, unsigned long gpa,
bool write_fault,
pte_t *out_entry, pte_t *out_buddy)
{
struct kvm *kvm = vcpu->kvm;
struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
gfn_t gfn = gpa >> PAGE_SHIFT;
int srcu_idx, err;
kvm_pfn_t pfn;
pte_t *ptep, entry, old_pte;
KVM: MIPS/MMU: Implement KVM_CAP_SYNC_MMU Implement the SYNC_MMU capability for KVM MIPS, allowing changes in the underlying user host virtual address (HVA) mappings to be promptly reflected in the corresponding guest physical address (GPA) mappings. This allows for several features to work with guest RAM which require mappings to be altered or protected, such as copy-on-write, KSM (Kernel Samepage Merging), idle page tracking, memory swapping, and guest memory ballooning. There are two main aspects of this change, described below. The KVM MMU notifier architecture callbacks are implemented so we can be notified of changes in the HVA mappings. These arrange for the guest physical address (GPA) page tables to be modified and possibly for derived mappings (GVA page tables and TLBs) to be flushed. - kvm_unmap_hva[_range]() - These deal with HVA mappings being removed, for example before a copy-on-write takes place, which requires the corresponding GPA page table mappings to be removed too. - kvm_set_spte_hva() - These update a GPA page table entry to match the new HVA entry, but must be careful to respect KVM specific configuration such as not dirtying a clean guest page which is dirty to the host, and write protecting writable pages in read only memslots (which will soon be supported). - kvm[_test]_age_hva() - These update GPA page table entries to be old (invalid) so that access can be tracked, making them young again. The GPA page fault handling (kvm_mips_map_page) is updated to use gfn_to_pfn_prot() (which may provide read-only pages), to handle asynchronous page table invalidation from MMU notifier callbacks, and to handle more cases in the fast path. - mmu_notifier_seq is used to detect asynchronous page table invalidations while we're holding a pfn from gfn_to_pfn_prot() outside of kvm->mmu_lock, retrying if invalidations have taken place, e.g. a COW or a KSM page merge. - The fast path (_kvm_mips_map_page_fast) now handles marking old pages as young / accessed, and disallowing dirtying of clean pages that aren't actually writable (e.g. shared pages that should COW, and read-only memory regions when they are enabled in a future patch). - Due to the use of MMU notifications we no longer need to keep the page references after we've updated the GPA page tables. Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Radim Krčmář" <rkrcmar@redhat.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: linux-mips@linux-mips.org Cc: kvm@vger.kernel.org
2016-12-14 00:32:39 +08:00
bool writeable;
unsigned long prot_bits;
KVM: MIPS/MMU: Implement KVM_CAP_SYNC_MMU Implement the SYNC_MMU capability for KVM MIPS, allowing changes in the underlying user host virtual address (HVA) mappings to be promptly reflected in the corresponding guest physical address (GPA) mappings. This allows for several features to work with guest RAM which require mappings to be altered or protected, such as copy-on-write, KSM (Kernel Samepage Merging), idle page tracking, memory swapping, and guest memory ballooning. There are two main aspects of this change, described below. The KVM MMU notifier architecture callbacks are implemented so we can be notified of changes in the HVA mappings. These arrange for the guest physical address (GPA) page tables to be modified and possibly for derived mappings (GVA page tables and TLBs) to be flushed. - kvm_unmap_hva[_range]() - These deal with HVA mappings being removed, for example before a copy-on-write takes place, which requires the corresponding GPA page table mappings to be removed too. - kvm_set_spte_hva() - These update a GPA page table entry to match the new HVA entry, but must be careful to respect KVM specific configuration such as not dirtying a clean guest page which is dirty to the host, and write protecting writable pages in read only memslots (which will soon be supported). - kvm[_test]_age_hva() - These update GPA page table entries to be old (invalid) so that access can be tracked, making them young again. The GPA page fault handling (kvm_mips_map_page) is updated to use gfn_to_pfn_prot() (which may provide read-only pages), to handle asynchronous page table invalidation from MMU notifier callbacks, and to handle more cases in the fast path. - mmu_notifier_seq is used to detect asynchronous page table invalidations while we're holding a pfn from gfn_to_pfn_prot() outside of kvm->mmu_lock, retrying if invalidations have taken place, e.g. a COW or a KSM page merge. - The fast path (_kvm_mips_map_page_fast) now handles marking old pages as young / accessed, and disallowing dirtying of clean pages that aren't actually writable (e.g. shared pages that should COW, and read-only memory regions when they are enabled in a future patch). - Due to the use of MMU notifications we no longer need to keep the page references after we've updated the GPA page tables. Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Radim Krčmář" <rkrcmar@redhat.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: linux-mips@linux-mips.org Cc: kvm@vger.kernel.org
2016-12-14 00:32:39 +08:00
unsigned long mmu_seq;
KVM: MIPS/MMU: Implement KVM_CAP_SYNC_MMU Implement the SYNC_MMU capability for KVM MIPS, allowing changes in the underlying user host virtual address (HVA) mappings to be promptly reflected in the corresponding guest physical address (GPA) mappings. This allows for several features to work with guest RAM which require mappings to be altered or protected, such as copy-on-write, KSM (Kernel Samepage Merging), idle page tracking, memory swapping, and guest memory ballooning. There are two main aspects of this change, described below. The KVM MMU notifier architecture callbacks are implemented so we can be notified of changes in the HVA mappings. These arrange for the guest physical address (GPA) page tables to be modified and possibly for derived mappings (GVA page tables and TLBs) to be flushed. - kvm_unmap_hva[_range]() - These deal with HVA mappings being removed, for example before a copy-on-write takes place, which requires the corresponding GPA page table mappings to be removed too. - kvm_set_spte_hva() - These update a GPA page table entry to match the new HVA entry, but must be careful to respect KVM specific configuration such as not dirtying a clean guest page which is dirty to the host, and write protecting writable pages in read only memslots (which will soon be supported). - kvm[_test]_age_hva() - These update GPA page table entries to be old (invalid) so that access can be tracked, making them young again. The GPA page fault handling (kvm_mips_map_page) is updated to use gfn_to_pfn_prot() (which may provide read-only pages), to handle asynchronous page table invalidation from MMU notifier callbacks, and to handle more cases in the fast path. - mmu_notifier_seq is used to detect asynchronous page table invalidations while we're holding a pfn from gfn_to_pfn_prot() outside of kvm->mmu_lock, retrying if invalidations have taken place, e.g. a COW or a KSM page merge. - The fast path (_kvm_mips_map_page_fast) now handles marking old pages as young / accessed, and disallowing dirtying of clean pages that aren't actually writable (e.g. shared pages that should COW, and read-only memory regions when they are enabled in a future patch). - Due to the use of MMU notifications we no longer need to keep the page references after we've updated the GPA page tables. Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Radim Krčmář" <rkrcmar@redhat.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: linux-mips@linux-mips.org Cc: kvm@vger.kernel.org
2016-12-14 00:32:39 +08:00
/* Try the fast path to handle old / clean pages */
srcu_idx = srcu_read_lock(&kvm->srcu);
err = _kvm_mips_map_page_fast(vcpu, gpa, write_fault, out_entry,
out_buddy);
if (!err)
goto out;
/* We need a minimum of cached pages ready for page table creation */
err = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
KVM_NR_MEM_OBJS);
if (err)
goto out;
KVM: MIPS/MMU: Implement KVM_CAP_SYNC_MMU Implement the SYNC_MMU capability for KVM MIPS, allowing changes in the underlying user host virtual address (HVA) mappings to be promptly reflected in the corresponding guest physical address (GPA) mappings. This allows for several features to work with guest RAM which require mappings to be altered or protected, such as copy-on-write, KSM (Kernel Samepage Merging), idle page tracking, memory swapping, and guest memory ballooning. There are two main aspects of this change, described below. The KVM MMU notifier architecture callbacks are implemented so we can be notified of changes in the HVA mappings. These arrange for the guest physical address (GPA) page tables to be modified and possibly for derived mappings (GVA page tables and TLBs) to be flushed. - kvm_unmap_hva[_range]() - These deal with HVA mappings being removed, for example before a copy-on-write takes place, which requires the corresponding GPA page table mappings to be removed too. - kvm_set_spte_hva() - These update a GPA page table entry to match the new HVA entry, but must be careful to respect KVM specific configuration such as not dirtying a clean guest page which is dirty to the host, and write protecting writable pages in read only memslots (which will soon be supported). - kvm[_test]_age_hva() - These update GPA page table entries to be old (invalid) so that access can be tracked, making them young again. The GPA page fault handling (kvm_mips_map_page) is updated to use gfn_to_pfn_prot() (which may provide read-only pages), to handle asynchronous page table invalidation from MMU notifier callbacks, and to handle more cases in the fast path. - mmu_notifier_seq is used to detect asynchronous page table invalidations while we're holding a pfn from gfn_to_pfn_prot() outside of kvm->mmu_lock, retrying if invalidations have taken place, e.g. a COW or a KSM page merge. - The fast path (_kvm_mips_map_page_fast) now handles marking old pages as young / accessed, and disallowing dirtying of clean pages that aren't actually writable (e.g. shared pages that should COW, and read-only memory regions when they are enabled in a future patch). - Due to the use of MMU notifications we no longer need to keep the page references after we've updated the GPA page tables. Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Radim Krčmář" <rkrcmar@redhat.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: linux-mips@linux-mips.org Cc: kvm@vger.kernel.org
2016-12-14 00:32:39 +08:00
retry:
/*
* Used to check for invalidations in progress, of the pfn that is
* returned by pfn_to_pfn_prot below.
*/
mmu_seq = kvm->mmu_notifier_seq;
/*
* Ensure the read of mmu_notifier_seq isn't reordered with PTE reads in
* gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't
* risk the page we get a reference to getting unmapped before we have a
* chance to grab the mmu_lock without mmu_notifier_retry() noticing.
*
* This smp_rmb() pairs with the effective smp_wmb() of the combination
* of the pte_unmap_unlock() after the PTE is zapped, and the
* spin_lock() in kvm_mmu_notifier_invalidate_<page|range_end>() before
* mmu_notifier_seq is incremented.
*/
smp_rmb();
KVM: MIPS/MMU: Implement KVM_CAP_SYNC_MMU Implement the SYNC_MMU capability for KVM MIPS, allowing changes in the underlying user host virtual address (HVA) mappings to be promptly reflected in the corresponding guest physical address (GPA) mappings. This allows for several features to work with guest RAM which require mappings to be altered or protected, such as copy-on-write, KSM (Kernel Samepage Merging), idle page tracking, memory swapping, and guest memory ballooning. There are two main aspects of this change, described below. The KVM MMU notifier architecture callbacks are implemented so we can be notified of changes in the HVA mappings. These arrange for the guest physical address (GPA) page tables to be modified and possibly for derived mappings (GVA page tables and TLBs) to be flushed. - kvm_unmap_hva[_range]() - These deal with HVA mappings being removed, for example before a copy-on-write takes place, which requires the corresponding GPA page table mappings to be removed too. - kvm_set_spte_hva() - These update a GPA page table entry to match the new HVA entry, but must be careful to respect KVM specific configuration such as not dirtying a clean guest page which is dirty to the host, and write protecting writable pages in read only memslots (which will soon be supported). - kvm[_test]_age_hva() - These update GPA page table entries to be old (invalid) so that access can be tracked, making them young again. The GPA page fault handling (kvm_mips_map_page) is updated to use gfn_to_pfn_prot() (which may provide read-only pages), to handle asynchronous page table invalidation from MMU notifier callbacks, and to handle more cases in the fast path. - mmu_notifier_seq is used to detect asynchronous page table invalidations while we're holding a pfn from gfn_to_pfn_prot() outside of kvm->mmu_lock, retrying if invalidations have taken place, e.g. a COW or a KSM page merge. - The fast path (_kvm_mips_map_page_fast) now handles marking old pages as young / accessed, and disallowing dirtying of clean pages that aren't actually writable (e.g. shared pages that should COW, and read-only memory regions when they are enabled in a future patch). - Due to the use of MMU notifications we no longer need to keep the page references after we've updated the GPA page tables. Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Radim Krčmář" <rkrcmar@redhat.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: linux-mips@linux-mips.org Cc: kvm@vger.kernel.org
2016-12-14 00:32:39 +08:00
/* Slow path - ask KVM core whether we can access this GPA */
pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writeable);
if (is_error_noslot_pfn(pfn)) {
err = -EFAULT;
goto out;
}
spin_lock(&kvm->mmu_lock);
KVM: MIPS/MMU: Implement KVM_CAP_SYNC_MMU Implement the SYNC_MMU capability for KVM MIPS, allowing changes in the underlying user host virtual address (HVA) mappings to be promptly reflected in the corresponding guest physical address (GPA) mappings. This allows for several features to work with guest RAM which require mappings to be altered or protected, such as copy-on-write, KSM (Kernel Samepage Merging), idle page tracking, memory swapping, and guest memory ballooning. There are two main aspects of this change, described below. The KVM MMU notifier architecture callbacks are implemented so we can be notified of changes in the HVA mappings. These arrange for the guest physical address (GPA) page tables to be modified and possibly for derived mappings (GVA page tables and TLBs) to be flushed. - kvm_unmap_hva[_range]() - These deal with HVA mappings being removed, for example before a copy-on-write takes place, which requires the corresponding GPA page table mappings to be removed too. - kvm_set_spte_hva() - These update a GPA page table entry to match the new HVA entry, but must be careful to respect KVM specific configuration such as not dirtying a clean guest page which is dirty to the host, and write protecting writable pages in read only memslots (which will soon be supported). - kvm[_test]_age_hva() - These update GPA page table entries to be old (invalid) so that access can be tracked, making them young again. The GPA page fault handling (kvm_mips_map_page) is updated to use gfn_to_pfn_prot() (which may provide read-only pages), to handle asynchronous page table invalidation from MMU notifier callbacks, and to handle more cases in the fast path. - mmu_notifier_seq is used to detect asynchronous page table invalidations while we're holding a pfn from gfn_to_pfn_prot() outside of kvm->mmu_lock, retrying if invalidations have taken place, e.g. a COW or a KSM page merge. - The fast path (_kvm_mips_map_page_fast) now handles marking old pages as young / accessed, and disallowing dirtying of clean pages that aren't actually writable (e.g. shared pages that should COW, and read-only memory regions when they are enabled in a future patch). - Due to the use of MMU notifications we no longer need to keep the page references after we've updated the GPA page tables. Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Radim Krčmář" <rkrcmar@redhat.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: linux-mips@linux-mips.org Cc: kvm@vger.kernel.org
2016-12-14 00:32:39 +08:00
/* Check if an invalidation has taken place since we got pfn */
if (mmu_notifier_retry(kvm, mmu_seq)) {
/*
* This can happen when mappings are changed asynchronously, but
* also synchronously if a COW is triggered by
* gfn_to_pfn_prot().
*/
spin_unlock(&kvm->mmu_lock);
kvm_release_pfn_clean(pfn);
goto retry;
}
/* Ensure page tables are allocated */
ptep = kvm_mips_pte_for_gpa(kvm, memcache, gpa);
/* Set up the PTE */
KVM: MIPS/MMU: Implement KVM_CAP_SYNC_MMU Implement the SYNC_MMU capability for KVM MIPS, allowing changes in the underlying user host virtual address (HVA) mappings to be promptly reflected in the corresponding guest physical address (GPA) mappings. This allows for several features to work with guest RAM which require mappings to be altered or protected, such as copy-on-write, KSM (Kernel Samepage Merging), idle page tracking, memory swapping, and guest memory ballooning. There are two main aspects of this change, described below. The KVM MMU notifier architecture callbacks are implemented so we can be notified of changes in the HVA mappings. These arrange for the guest physical address (GPA) page tables to be modified and possibly for derived mappings (GVA page tables and TLBs) to be flushed. - kvm_unmap_hva[_range]() - These deal with HVA mappings being removed, for example before a copy-on-write takes place, which requires the corresponding GPA page table mappings to be removed too. - kvm_set_spte_hva() - These update a GPA page table entry to match the new HVA entry, but must be careful to respect KVM specific configuration such as not dirtying a clean guest page which is dirty to the host, and write protecting writable pages in read only memslots (which will soon be supported). - kvm[_test]_age_hva() - These update GPA page table entries to be old (invalid) so that access can be tracked, making them young again. The GPA page fault handling (kvm_mips_map_page) is updated to use gfn_to_pfn_prot() (which may provide read-only pages), to handle asynchronous page table invalidation from MMU notifier callbacks, and to handle more cases in the fast path. - mmu_notifier_seq is used to detect asynchronous page table invalidations while we're holding a pfn from gfn_to_pfn_prot() outside of kvm->mmu_lock, retrying if invalidations have taken place, e.g. a COW or a KSM page merge. - The fast path (_kvm_mips_map_page_fast) now handles marking old pages as young / accessed, and disallowing dirtying of clean pages that aren't actually writable (e.g. shared pages that should COW, and read-only memory regions when they are enabled in a future patch). - Due to the use of MMU notifications we no longer need to keep the page references after we've updated the GPA page tables. Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Radim Krčmář" <rkrcmar@redhat.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: linux-mips@linux-mips.org Cc: kvm@vger.kernel.org
2016-12-14 00:32:39 +08:00
prot_bits = _PAGE_PRESENT | __READABLE | _page_cachable_default;
if (writeable) {
prot_bits |= _PAGE_WRITE;
if (write_fault) {
prot_bits |= __WRITEABLE;
mark_page_dirty(kvm, gfn);
kvm_set_pfn_dirty(pfn);
}
}
entry = pfn_pte(pfn, __pgprot(prot_bits));
/* Write the PTE */
old_pte = *ptep;
set_pte(ptep, entry);
err = 0;
if (out_entry)
*out_entry = *ptep;
if (out_buddy)
*out_buddy = *ptep_buddy(ptep);
spin_unlock(&kvm->mmu_lock);
KVM: MIPS/MMU: Implement KVM_CAP_SYNC_MMU Implement the SYNC_MMU capability for KVM MIPS, allowing changes in the underlying user host virtual address (HVA) mappings to be promptly reflected in the corresponding guest physical address (GPA) mappings. This allows for several features to work with guest RAM which require mappings to be altered or protected, such as copy-on-write, KSM (Kernel Samepage Merging), idle page tracking, memory swapping, and guest memory ballooning. There are two main aspects of this change, described below. The KVM MMU notifier architecture callbacks are implemented so we can be notified of changes in the HVA mappings. These arrange for the guest physical address (GPA) page tables to be modified and possibly for derived mappings (GVA page tables and TLBs) to be flushed. - kvm_unmap_hva[_range]() - These deal with HVA mappings being removed, for example before a copy-on-write takes place, which requires the corresponding GPA page table mappings to be removed too. - kvm_set_spte_hva() - These update a GPA page table entry to match the new HVA entry, but must be careful to respect KVM specific configuration such as not dirtying a clean guest page which is dirty to the host, and write protecting writable pages in read only memslots (which will soon be supported). - kvm[_test]_age_hva() - These update GPA page table entries to be old (invalid) so that access can be tracked, making them young again. The GPA page fault handling (kvm_mips_map_page) is updated to use gfn_to_pfn_prot() (which may provide read-only pages), to handle asynchronous page table invalidation from MMU notifier callbacks, and to handle more cases in the fast path. - mmu_notifier_seq is used to detect asynchronous page table invalidations while we're holding a pfn from gfn_to_pfn_prot() outside of kvm->mmu_lock, retrying if invalidations have taken place, e.g. a COW or a KSM page merge. - The fast path (_kvm_mips_map_page_fast) now handles marking old pages as young / accessed, and disallowing dirtying of clean pages that aren't actually writable (e.g. shared pages that should COW, and read-only memory regions when they are enabled in a future patch). - Due to the use of MMU notifications we no longer need to keep the page references after we've updated the GPA page tables. Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Radim Krčmář" <rkrcmar@redhat.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: linux-mips@linux-mips.org Cc: kvm@vger.kernel.org
2016-12-14 00:32:39 +08:00
kvm_release_pfn_clean(pfn);
kvm_set_pfn_accessed(pfn);
out:
srcu_read_unlock(&kvm->srcu, srcu_idx);
return err;
}
static pte_t *kvm_trap_emul_pte_for_gva(struct kvm_vcpu *vcpu,
unsigned long addr)
{
struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
pgd_t *pgdp;
int ret;
/* We need a minimum of cached pages ready for page table creation */
ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
KVM_NR_MEM_OBJS);
if (ret)
return NULL;
if (KVM_GUEST_KERNEL_MODE(vcpu))
pgdp = vcpu->arch.guest_kernel_mm.pgd;
else
pgdp = vcpu->arch.guest_user_mm.pgd;
return kvm_mips_walk_pgd(pgdp, memcache, addr);
}
void kvm_trap_emul_invalidate_gva(struct kvm_vcpu *vcpu, unsigned long addr,
bool user)
{
pgd_t *pgdp;
pte_t *ptep;
addr &= PAGE_MASK << 1;
pgdp = vcpu->arch.guest_kernel_mm.pgd;
ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
if (ptep) {
ptep[0] = pfn_pte(0, __pgprot(0));
ptep[1] = pfn_pte(0, __pgprot(0));
}
if (user) {
pgdp = vcpu->arch.guest_user_mm.pgd;
ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
if (ptep) {
ptep[0] = pfn_pte(0, __pgprot(0));
ptep[1] = pfn_pte(0, __pgprot(0));
}
}
}
/*
* kvm_mips_flush_gva_{pte,pmd,pud,pgd,pt}.
* Flush a range of guest physical address space from the VM's GPA page tables.
*/
static bool kvm_mips_flush_gva_pte(pte_t *pte, unsigned long start_gva,
unsigned long end_gva)
{
int i_min = __pte_offset(start_gva);
int i_max = __pte_offset(end_gva);
bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
int i;
/*
* There's no freeing to do, so there's no point clearing individual
* entries unless only part of the last level page table needs flushing.
*/
if (safe_to_remove)
return true;
for (i = i_min; i <= i_max; ++i) {
if (!pte_present(pte[i]))
continue;
set_pte(pte + i, __pte(0));
}
return false;
}
static bool kvm_mips_flush_gva_pmd(pmd_t *pmd, unsigned long start_gva,
unsigned long end_gva)
{
pte_t *pte;
unsigned long end = ~0ul;
int i_min = __pmd_offset(start_gva);
int i_max = __pmd_offset(end_gva);
bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
int i;
for (i = i_min; i <= i_max; ++i, start_gva = 0) {
if (!pmd_present(pmd[i]))
continue;
pte = pte_offset(pmd + i, 0);
if (i == i_max)
end = end_gva;
if (kvm_mips_flush_gva_pte(pte, start_gva, end)) {
pmd_clear(pmd + i);
pte_free_kernel(NULL, pte);
} else {
safe_to_remove = false;
}
}
return safe_to_remove;
}
static bool kvm_mips_flush_gva_pud(pud_t *pud, unsigned long start_gva,
unsigned long end_gva)
{
pmd_t *pmd;
unsigned long end = ~0ul;
int i_min = __pud_offset(start_gva);
int i_max = __pud_offset(end_gva);
bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
int i;
for (i = i_min; i <= i_max; ++i, start_gva = 0) {
if (!pud_present(pud[i]))
continue;
pmd = pmd_offset(pud + i, 0);
if (i == i_max)
end = end_gva;
if (kvm_mips_flush_gva_pmd(pmd, start_gva, end)) {
pud_clear(pud + i);
pmd_free(NULL, pmd);
} else {
safe_to_remove = false;
}
}
return safe_to_remove;
}
static bool kvm_mips_flush_gva_pgd(pgd_t *pgd, unsigned long start_gva,
unsigned long end_gva)
{
pud_t *pud;
unsigned long end = ~0ul;
int i_min = pgd_index(start_gva);
int i_max = pgd_index(end_gva);
bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
int i;
for (i = i_min; i <= i_max; ++i, start_gva = 0) {
if (!pgd_present(pgd[i]))
continue;
pud = pud_offset(pgd + i, 0);
if (i == i_max)
end = end_gva;
if (kvm_mips_flush_gva_pud(pud, start_gva, end)) {
pgd_clear(pgd + i);
pud_free(NULL, pud);
} else {
safe_to_remove = false;
}
}
return safe_to_remove;
}
void kvm_mips_flush_gva_pt(pgd_t *pgd, enum kvm_mips_flush flags)
{
if (flags & KMF_GPA) {
/* all of guest virtual address space could be affected */
if (flags & KMF_KERN)
/* useg, kseg0, seg2/3 */
kvm_mips_flush_gva_pgd(pgd, 0, 0x7fffffff);
else
/* useg */
kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
} else {
/* useg */
kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
/* kseg2/3 */
if (flags & KMF_KERN)
kvm_mips_flush_gva_pgd(pgd, 0x60000000, 0x7fffffff);
}
}
static pte_t kvm_mips_gpa_pte_to_gva_unmapped(pte_t pte)
{
/*
* Don't leak writeable but clean entries from GPA page tables. We don't
* want the normal Linux tlbmod handler to handle dirtying when KVM
* accesses guest memory.
*/
if (!pte_dirty(pte))
pte = pte_wrprotect(pte);
return pte;
}
static pte_t kvm_mips_gpa_pte_to_gva_mapped(pte_t pte, long entrylo)
{
/* Guest EntryLo overrides host EntryLo */
if (!(entrylo & ENTRYLO_D))
pte = pte_mkclean(pte);
return kvm_mips_gpa_pte_to_gva_unmapped(pte);
}
#ifdef CONFIG_KVM_MIPS_VZ
int kvm_mips_handle_vz_root_tlb_fault(unsigned long badvaddr,
struct kvm_vcpu *vcpu,
bool write_fault)
{
int ret;
ret = kvm_mips_map_page(vcpu, badvaddr, write_fault, NULL, NULL);
if (ret)
return ret;
/* Invalidate this entry in the TLB */
return kvm_vz_host_tlb_inv(vcpu, badvaddr);
}
#endif
/* XXXKYMA: Must be called with interrupts disabled */
int kvm_mips_handle_kseg0_tlb_fault(unsigned long badvaddr,
struct kvm_vcpu *vcpu,
bool write_fault)
{
unsigned long gpa;
pte_t pte_gpa[2], *ptep_gva;
int idx;
if (KVM_GUEST_KSEGX(badvaddr) != KVM_GUEST_KSEG0) {
kvm_err("%s: Invalid BadVaddr: %#lx\n", __func__, badvaddr);
kvm_mips_dump_host_tlbs();
return -1;
}
/* Get the GPA page table entry */
gpa = KVM_GUEST_CPHYSADDR(badvaddr);
idx = (badvaddr >> PAGE_SHIFT) & 1;
if (kvm_mips_map_page(vcpu, gpa, write_fault, &pte_gpa[idx],
&pte_gpa[!idx]) < 0)
return -1;
/* Get the GVA page table entry */
ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, badvaddr & ~PAGE_SIZE);
if (!ptep_gva) {
kvm_err("No ptep for gva %lx\n", badvaddr);
return -1;
}
/* Copy a pair of entries from GPA page table to GVA page table */
ptep_gva[0] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[0]);
ptep_gva[1] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[1]);
/* Invalidate this entry in the TLB, guest kernel ASID only */
kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
return 0;
}
int kvm_mips_handle_mapped_seg_tlb_fault(struct kvm_vcpu *vcpu,
struct kvm_mips_tlb *tlb,
unsigned long gva,
bool write_fault)
{
struct kvm *kvm = vcpu->kvm;
long tlb_lo[2];
pte_t pte_gpa[2], *ptep_buddy, *ptep_gva;
unsigned int idx = TLB_LO_IDX(*tlb, gva);
bool kernel = KVM_GUEST_KERNEL_MODE(vcpu);
tlb_lo[0] = tlb->tlb_lo[0];
tlb_lo[1] = tlb->tlb_lo[1];
/*
* The commpage address must not be mapped to anything else if the guest
* TLB contains entries nearby, or commpage accesses will break.
*/
if (!((gva ^ KVM_GUEST_COMMPAGE_ADDR) & VPN2_MASK & (PAGE_MASK << 1)))
tlb_lo[TLB_LO_IDX(*tlb, KVM_GUEST_COMMPAGE_ADDR)] = 0;
/* Get the GPA page table entry */
if (kvm_mips_map_page(vcpu, mips3_tlbpfn_to_paddr(tlb_lo[idx]),
write_fault, &pte_gpa[idx], NULL) < 0)
return -1;
/* And its GVA buddy's GPA page table entry if it also exists */
pte_gpa[!idx] = pfn_pte(0, __pgprot(0));
if (tlb_lo[!idx] & ENTRYLO_V) {
spin_lock(&kvm->mmu_lock);
ptep_buddy = kvm_mips_pte_for_gpa(kvm, NULL,
mips3_tlbpfn_to_paddr(tlb_lo[!idx]));
if (ptep_buddy)
pte_gpa[!idx] = *ptep_buddy;
spin_unlock(&kvm->mmu_lock);
}
/* Get the GVA page table entry pair */
ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, gva & ~PAGE_SIZE);
if (!ptep_gva) {
kvm_err("No ptep for gva %lx\n", gva);
return -1;
}
/* Copy a pair of entries from GPA page table to GVA page table */
ptep_gva[0] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[0], tlb_lo[0]);
ptep_gva[1] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[1], tlb_lo[1]);
/* Invalidate this entry in the TLB, current guest mode ASID only */
kvm_mips_host_tlb_inv(vcpu, gva, !kernel, kernel);
kvm_debug("@ %#lx tlb_lo0: 0x%08lx tlb_lo1: 0x%08lx\n", vcpu->arch.pc,
tlb->tlb_lo[0], tlb->tlb_lo[1]);
return 0;
}
int kvm_mips_handle_commpage_tlb_fault(unsigned long badvaddr,
struct kvm_vcpu *vcpu)
{
kvm_pfn_t pfn;
pte_t *ptep;
ptep = kvm_trap_emul_pte_for_gva(vcpu, badvaddr);
if (!ptep) {
kvm_err("No ptep for commpage %lx\n", badvaddr);
return -1;
}
pfn = PFN_DOWN(virt_to_phys(vcpu->arch.kseg0_commpage));
/* Also set valid and dirty, so refill handler doesn't have to */
*ptep = pte_mkyoung(pte_mkdirty(pfn_pte(pfn, PAGE_SHARED)));
/* Invalidate this entry in the TLB, guest kernel ASID only */
kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
return 0;
}
/**
* kvm_mips_migrate_count() - Migrate timer.
* @vcpu: Virtual CPU.
*
* Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it
* if it was running prior to being cancelled.
*
* Must be called when the VCPU is migrated to a different CPU to ensure that
* timer expiry during guest execution interrupts the guest and causes the
* interrupt to be delivered in a timely manner.
*/
static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu)
{
if (hrtimer_cancel(&vcpu->arch.comparecount_timer))
hrtimer_restart(&vcpu->arch.comparecount_timer);
}
/* Restore ASID once we are scheduled back after preemption */
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
unsigned long flags;
kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu);
local_irq_save(flags);
vcpu->cpu = cpu;
if (vcpu->arch.last_sched_cpu != cpu) {
kvm_debug("[%d->%d]KVM VCPU[%d] switch\n",
vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id);
/*
* Migrate the timer interrupt to the current CPU so that it
* always interrupts the guest and synchronously triggers a
* guest timer interrupt.
*/
kvm_mips_migrate_count(vcpu);
}
/* restore guest state to registers */
kvm_mips_callbacks->vcpu_load(vcpu, cpu);
local_irq_restore(flags);
}
/* ASID can change if another task is scheduled during preemption */
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
unsigned long flags;
int cpu;
local_irq_save(flags);
cpu = smp_processor_id();
vcpu->arch.last_sched_cpu = cpu;
vcpu->cpu = -1;
/* save guest state in registers */
kvm_mips_callbacks->vcpu_put(vcpu, cpu);
local_irq_restore(flags);
}
/**
* kvm_trap_emul_gva_fault() - Safely attempt to handle a GVA access fault.
* @vcpu: Virtual CPU.
* @gva: Guest virtual address to be accessed.
* @write: True if write attempted (must be dirtied and made writable).
*
* Safely attempt to handle a GVA fault, mapping GVA pages if necessary, and
* dirtying the page if @write so that guest instructions can be modified.
*
* Returns: KVM_MIPS_MAPPED on success.
* KVM_MIPS_GVA if bad guest virtual address.
* KVM_MIPS_GPA if bad guest physical address.
* KVM_MIPS_TLB if guest TLB not present.
* KVM_MIPS_TLBINV if guest TLB present but not valid.
* KVM_MIPS_TLBMOD if guest TLB read only.
*/
enum kvm_mips_fault_result kvm_trap_emul_gva_fault(struct kvm_vcpu *vcpu,
unsigned long gva,
bool write)
{
struct mips_coproc *cop0 = vcpu->arch.cop0;
struct kvm_mips_tlb *tlb;
int index;
if (KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG0) {
if (kvm_mips_handle_kseg0_tlb_fault(gva, vcpu, write) < 0)
return KVM_MIPS_GPA;
} else if ((KVM_GUEST_KSEGX(gva) < KVM_GUEST_KSEG0) ||
KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG23) {
/* Address should be in the guest TLB */
index = kvm_mips_guest_tlb_lookup(vcpu, (gva & VPN2_MASK) |
(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID));
if (index < 0)
return KVM_MIPS_TLB;
tlb = &vcpu->arch.guest_tlb[index];
/* Entry should be valid, and dirty for writes */
if (!TLB_IS_VALID(*tlb, gva))
return KVM_MIPS_TLBINV;
if (write && !TLB_IS_DIRTY(*tlb, gva))
return KVM_MIPS_TLBMOD;
if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, gva, write))
return KVM_MIPS_GPA;
} else {
return KVM_MIPS_GVA;
}
return KVM_MIPS_MAPPED;
}
int kvm_get_inst(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
{
int err;
if (WARN(IS_ENABLED(CONFIG_KVM_MIPS_VZ),
"Expect BadInstr/BadInstrP registers to be used with VZ\n"))
return -EINVAL;
retry:
kvm_trap_emul_gva_lockless_begin(vcpu);
err = get_user(*out, opc);
kvm_trap_emul_gva_lockless_end(vcpu);
if (unlikely(err)) {
/*
* Try to handle the fault, maybe we just raced with a GVA
* invalidation.
*/
err = kvm_trap_emul_gva_fault(vcpu, (unsigned long)opc,
false);
if (unlikely(err)) {
kvm_err("%s: illegal address: %p\n",
__func__, opc);
return -EFAULT;
}
/* Hopefully it'll work now */
goto retry;
}
return 0;
}