OpenCloudOS-Kernel/drivers/gpu/drm/mgag200/mgag200_mode.c

1655 lines
39 KiB
C
Raw Normal View History

/*
* Copyright 2010 Matt Turner.
* Copyright 2012 Red Hat
*
* This file is subject to the terms and conditions of the GNU General
* Public License version 2. See the file COPYING in the main
* directory of this archive for more details.
*
* Authors: Matthew Garrett
* Matt Turner
* Dave Airlie
*/
#include <linux/delay.h>
#include <drm/drmP.h>
#include <drm/drm_crtc_helper.h>
#include "mgag200_drv.h"
#define MGAG200_LUT_SIZE 256
/*
* This file contains setup code for the CRTC.
*/
static void mga_crtc_load_lut(struct drm_crtc *crtc)
{
struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct mga_device *mdev = dev->dev_private;
int i;
if (!crtc->enabled)
return;
WREG8(DAC_INDEX + MGA1064_INDEX, 0);
for (i = 0; i < MGAG200_LUT_SIZE; i++) {
/* VGA registers */
WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_r[i]);
WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_g[i]);
WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_b[i]);
}
}
static inline void mga_wait_vsync(struct mga_device *mdev)
{
unsigned long timeout = jiffies + HZ/10;
unsigned int status = 0;
do {
status = RREG32(MGAREG_Status);
} while ((status & 0x08) && time_before(jiffies, timeout));
timeout = jiffies + HZ/10;
status = 0;
do {
status = RREG32(MGAREG_Status);
} while (!(status & 0x08) && time_before(jiffies, timeout));
}
static inline void mga_wait_busy(struct mga_device *mdev)
{
unsigned long timeout = jiffies + HZ;
unsigned int status = 0;
do {
status = RREG8(MGAREG_Status + 2);
} while ((status & 0x01) && time_before(jiffies, timeout));
}
/*
* The core passes the desired mode to the CRTC code to see whether any
* CRTC-specific modifications need to be made to it. We're in a position
* to just pass that straight through, so this does nothing
*/
static bool mga_crtc_mode_fixup(struct drm_crtc *crtc,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
return true;
}
static int mga_g200se_set_plls(struct mga_device *mdev, long clock)
{
unsigned int vcomax, vcomin, pllreffreq;
unsigned int delta, tmpdelta, permitteddelta;
unsigned int testp, testm, testn;
unsigned int p, m, n;
unsigned int computed;
m = n = p = 0;
vcomax = 320000;
vcomin = 160000;
pllreffreq = 25000;
delta = 0xffffffff;
permitteddelta = clock * 5 / 1000;
for (testp = 8; testp > 0; testp /= 2) {
if (clock * testp > vcomax)
continue;
if (clock * testp < vcomin)
continue;
for (testn = 17; testn < 256; testn++) {
for (testm = 1; testm < 32; testm++) {
computed = (pllreffreq * testn) /
(testm * testp);
if (computed > clock)
tmpdelta = computed - clock;
else
tmpdelta = clock - computed;
if (tmpdelta < delta) {
delta = tmpdelta;
m = testm - 1;
n = testn - 1;
p = testp - 1;
}
}
}
}
if (delta > permitteddelta) {
printk(KERN_WARNING "PLL delta too large\n");
return 1;
}
WREG_DAC(MGA1064_PIX_PLLC_M, m);
WREG_DAC(MGA1064_PIX_PLLC_N, n);
WREG_DAC(MGA1064_PIX_PLLC_P, p);
return 0;
}
static int mga_g200wb_set_plls(struct mga_device *mdev, long clock)
{
unsigned int vcomax, vcomin, pllreffreq;
unsigned int delta, tmpdelta, permitteddelta;
unsigned int testp, testm, testn;
unsigned int p, m, n;
unsigned int computed;
int i, j, tmpcount, vcount;
bool pll_locked = false;
u8 tmp;
m = n = p = 0;
vcomax = 550000;
vcomin = 150000;
pllreffreq = 48000;
delta = 0xffffffff;
permitteddelta = clock * 5 / 1000;
for (testp = 1; testp < 9; testp++) {
if (clock * testp > vcomax)
continue;
if (clock * testp < vcomin)
continue;
for (testm = 1; testm < 17; testm++) {
for (testn = 1; testn < 151; testn++) {
computed = (pllreffreq * testn) /
(testm * testp);
if (computed > clock)
tmpdelta = computed - clock;
else
tmpdelta = clock - computed;
if (tmpdelta < delta) {
delta = tmpdelta;
n = testn - 1;
m = (testm - 1) | ((n >> 1) & 0x80);
p = testp - 1;
}
}
}
}
for (i = 0; i <= 32 && pll_locked == false; i++) {
if (i > 0) {
WREG8(MGAREG_CRTC_INDEX, 0x1e);
tmp = RREG8(MGAREG_CRTC_DATA);
if (tmp < 0xff)
WREG8(MGAREG_CRTC_DATA, tmp+1);
}
/* set pixclkdis to 1 */
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
WREG8(DAC_DATA, tmp);
WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
tmp = RREG8(DAC_DATA);
tmp |= MGA1064_REMHEADCTL_CLKDIS;
WREG8(DAC_DATA, tmp);
/* select PLL Set C */
tmp = RREG8(MGAREG_MEM_MISC_READ);
tmp |= 0x3 << 2;
WREG8(MGAREG_MEM_MISC_WRITE, tmp);
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN | 0x80;
WREG8(DAC_DATA, tmp);
udelay(500);
/* reset the PLL */
WREG8(DAC_INDEX, MGA1064_VREF_CTL);
tmp = RREG8(DAC_DATA);
tmp &= ~0x04;
WREG8(DAC_DATA, tmp);
udelay(50);
/* program pixel pll register */
WREG_DAC(MGA1064_WB_PIX_PLLC_N, n);
WREG_DAC(MGA1064_WB_PIX_PLLC_M, m);
WREG_DAC(MGA1064_WB_PIX_PLLC_P, p);
udelay(50);
/* turn pll on */
WREG8(DAC_INDEX, MGA1064_VREF_CTL);
tmp = RREG8(DAC_DATA);
tmp |= 0x04;
WREG_DAC(MGA1064_VREF_CTL, tmp);
udelay(500);
/* select the pixel pll */
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
WREG8(DAC_DATA, tmp);
WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
tmp = RREG8(DAC_DATA);
tmp &= ~MGA1064_REMHEADCTL_CLKSL_MSK;
tmp |= MGA1064_REMHEADCTL_CLKSL_PLL;
WREG8(DAC_DATA, tmp);
/* reset dotclock rate bit */
WREG8(MGAREG_SEQ_INDEX, 1);
tmp = RREG8(MGAREG_SEQ_DATA);
tmp &= ~0x8;
WREG8(MGAREG_SEQ_DATA, tmp);
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
WREG8(DAC_DATA, tmp);
vcount = RREG8(MGAREG_VCOUNT);
for (j = 0; j < 30 && pll_locked == false; j++) {
tmpcount = RREG8(MGAREG_VCOUNT);
if (tmpcount < vcount)
vcount = 0;
if ((tmpcount - vcount) > 2)
pll_locked = true;
else
udelay(5);
}
}
WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
tmp = RREG8(DAC_DATA);
tmp &= ~MGA1064_REMHEADCTL_CLKDIS;
WREG_DAC(MGA1064_REMHEADCTL, tmp);
return 0;
}
static int mga_g200ev_set_plls(struct mga_device *mdev, long clock)
{
unsigned int vcomax, vcomin, pllreffreq;
unsigned int delta, tmpdelta, permitteddelta;
unsigned int testp, testm, testn;
unsigned int p, m, n;
unsigned int computed;
u8 tmp;
m = n = p = 0;
vcomax = 550000;
vcomin = 150000;
pllreffreq = 50000;
delta = 0xffffffff;
permitteddelta = clock * 5 / 1000;
for (testp = 16; testp > 0; testp--) {
if (clock * testp > vcomax)
continue;
if (clock * testp < vcomin)
continue;
for (testn = 1; testn < 257; testn++) {
for (testm = 1; testm < 17; testm++) {
computed = (pllreffreq * testn) /
(testm * testp);
if (computed > clock)
tmpdelta = computed - clock;
else
tmpdelta = clock - computed;
if (tmpdelta < delta) {
delta = tmpdelta;
n = testn - 1;
m = testm - 1;
p = testp - 1;
}
}
}
}
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
WREG8(DAC_DATA, tmp);
tmp = RREG8(MGAREG_MEM_MISC_READ);
tmp |= 0x3 << 2;
WREG8(MGAREG_MEM_MISC_WRITE, tmp);
WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT);
tmp = RREG8(DAC_DATA);
WREG8(DAC_DATA, tmp & ~0x40);
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
WREG8(DAC_DATA, tmp);
WREG_DAC(MGA1064_EV_PIX_PLLC_M, m);
WREG_DAC(MGA1064_EV_PIX_PLLC_N, n);
WREG_DAC(MGA1064_EV_PIX_PLLC_P, p);
udelay(50);
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
WREG8(DAC_DATA, tmp);
udelay(500);
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
WREG8(DAC_DATA, tmp);
WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT);
tmp = RREG8(DAC_DATA);
WREG8(DAC_DATA, tmp | 0x40);
tmp = RREG8(MGAREG_MEM_MISC_READ);
tmp |= (0x3 << 2);
WREG8(MGAREG_MEM_MISC_WRITE, tmp);
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
WREG8(DAC_DATA, tmp);
return 0;
}
static int mga_g200eh_set_plls(struct mga_device *mdev, long clock)
{
unsigned int vcomax, vcomin, pllreffreq;
unsigned int delta, tmpdelta, permitteddelta;
unsigned int testp, testm, testn;
unsigned int p, m, n;
unsigned int computed;
int i, j, tmpcount, vcount;
u8 tmp;
bool pll_locked = false;
m = n = p = 0;
vcomax = 800000;
vcomin = 400000;
pllreffreq = 33333;
delta = 0xffffffff;
permitteddelta = clock * 5 / 1000;
for (testp = 16; testp > 0; testp >>= 1) {
if (clock * testp > vcomax)
continue;
if (clock * testp < vcomin)
continue;
for (testm = 1; testm < 33; testm++) {
for (testn = 17; testn < 257; testn++) {
computed = (pllreffreq * testn) /
(testm * testp);
if (computed > clock)
tmpdelta = computed - clock;
else
tmpdelta = clock - computed;
if (tmpdelta < delta) {
delta = tmpdelta;
n = testn - 1;
m = (testm - 1);
p = testp - 1;
}
if ((clock * testp) >= 600000)
p |= 0x80;
}
}
}
for (i = 0; i <= 32 && pll_locked == false; i++) {
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
WREG8(DAC_DATA, tmp);
tmp = RREG8(MGAREG_MEM_MISC_READ);
tmp |= 0x3 << 2;
WREG8(MGAREG_MEM_MISC_WRITE, tmp);
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
WREG8(DAC_DATA, tmp);
udelay(500);
WREG_DAC(MGA1064_EH_PIX_PLLC_M, m);
WREG_DAC(MGA1064_EH_PIX_PLLC_N, n);
WREG_DAC(MGA1064_EH_PIX_PLLC_P, p);
udelay(500);
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
WREG8(DAC_DATA, tmp);
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
WREG8(DAC_DATA, tmp);
vcount = RREG8(MGAREG_VCOUNT);
for (j = 0; j < 30 && pll_locked == false; j++) {
tmpcount = RREG8(MGAREG_VCOUNT);
if (tmpcount < vcount)
vcount = 0;
if ((tmpcount - vcount) > 2)
pll_locked = true;
else
udelay(5);
}
}
return 0;
}
static int mga_g200er_set_plls(struct mga_device *mdev, long clock)
{
unsigned int vcomax, vcomin, pllreffreq;
unsigned int delta, tmpdelta;
int testr, testn, testm, testo;
unsigned int p, m, n;
unsigned int computed, vco;
int tmp;
const unsigned int m_div_val[] = { 1, 2, 4, 8 };
m = n = p = 0;
vcomax = 1488000;
vcomin = 1056000;
pllreffreq = 48000;
delta = 0xffffffff;
for (testr = 0; testr < 4; testr++) {
if (delta == 0)
break;
for (testn = 5; testn < 129; testn++) {
if (delta == 0)
break;
for (testm = 3; testm >= 0; testm--) {
if (delta == 0)
break;
for (testo = 5; testo < 33; testo++) {
vco = pllreffreq * (testn + 1) /
(testr + 1);
if (vco < vcomin)
continue;
if (vco > vcomax)
continue;
computed = vco / (m_div_val[testm] * (testo + 1));
if (computed > clock)
tmpdelta = computed - clock;
else
tmpdelta = clock - computed;
if (tmpdelta < delta) {
delta = tmpdelta;
m = testm | (testo << 3);
n = testn;
p = testr | (testr << 3);
}
}
}
}
}
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
WREG8(DAC_DATA, tmp);
WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
tmp = RREG8(DAC_DATA);
tmp |= MGA1064_REMHEADCTL_CLKDIS;
WREG8(DAC_DATA, tmp);
tmp = RREG8(MGAREG_MEM_MISC_READ);
tmp |= (0x3<<2) | 0xc0;
WREG8(MGAREG_MEM_MISC_WRITE, tmp);
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
WREG8(DAC_DATA, tmp);
udelay(500);
WREG_DAC(MGA1064_ER_PIX_PLLC_N, n);
WREG_DAC(MGA1064_ER_PIX_PLLC_M, m);
WREG_DAC(MGA1064_ER_PIX_PLLC_P, p);
udelay(50);
return 0;
}
static int mga_crtc_set_plls(struct mga_device *mdev, long clock)
{
switch(mdev->type) {
case G200_SE_A:
case G200_SE_B:
return mga_g200se_set_plls(mdev, clock);
break;
case G200_WB:
return mga_g200wb_set_plls(mdev, clock);
break;
case G200_EV:
return mga_g200ev_set_plls(mdev, clock);
break;
case G200_EH:
return mga_g200eh_set_plls(mdev, clock);
break;
case G200_ER:
return mga_g200er_set_plls(mdev, clock);
break;
}
return 0;
}
static void mga_g200wb_prepare(struct drm_crtc *crtc)
{
struct mga_device *mdev = crtc->dev->dev_private;
u8 tmp;
int iter_max;
/* 1- The first step is to warn the BMC of an upcoming mode change.
* We are putting the misc<0> to output.*/
WREG8(DAC_INDEX, MGA1064_GEN_IO_CTL);
tmp = RREG8(DAC_DATA);
tmp |= 0x10;
WREG_DAC(MGA1064_GEN_IO_CTL, tmp);
/* we are putting a 1 on the misc<0> line */
WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
tmp = RREG8(DAC_DATA);
tmp |= 0x10;
WREG_DAC(MGA1064_GEN_IO_DATA, tmp);
/* 2- Second step to mask and further scan request
* This will be done by asserting the remfreqmsk bit (XSPAREREG<7>)
*/
WREG8(DAC_INDEX, MGA1064_SPAREREG);
tmp = RREG8(DAC_DATA);
tmp |= 0x80;
WREG_DAC(MGA1064_SPAREREG, tmp);
/* 3a- the third step is to verifu if there is an active scan
* We are searching for a 0 on remhsyncsts <XSPAREREG<0>)
*/
iter_max = 300;
while (!(tmp & 0x1) && iter_max) {
WREG8(DAC_INDEX, MGA1064_SPAREREG);
tmp = RREG8(DAC_DATA);
udelay(1000);
iter_max--;
}
/* 3b- this step occurs only if the remove is actually scanning
* we are waiting for the end of the frame which is a 1 on
* remvsyncsts (XSPAREREG<1>)
*/
if (iter_max) {
iter_max = 300;
while ((tmp & 0x2) && iter_max) {
WREG8(DAC_INDEX, MGA1064_SPAREREG);
tmp = RREG8(DAC_DATA);
udelay(1000);
iter_max--;
}
}
}
static void mga_g200wb_commit(struct drm_crtc *crtc)
{
u8 tmp;
struct mga_device *mdev = crtc->dev->dev_private;
/* 1- The first step is to ensure that the vrsten and hrsten are set */
WREG8(MGAREG_CRTCEXT_INDEX, 1);
tmp = RREG8(MGAREG_CRTCEXT_DATA);
WREG8(MGAREG_CRTCEXT_DATA, tmp | 0x88);
/* 2- second step is to assert the rstlvl2 */
WREG8(DAC_INDEX, MGA1064_REMHEADCTL2);
tmp = RREG8(DAC_DATA);
tmp |= 0x8;
WREG8(DAC_DATA, tmp);
/* wait 10 us */
udelay(10);
/* 3- deassert rstlvl2 */
tmp &= ~0x08;
WREG8(DAC_INDEX, MGA1064_REMHEADCTL2);
WREG8(DAC_DATA, tmp);
/* 4- remove mask of scan request */
WREG8(DAC_INDEX, MGA1064_SPAREREG);
tmp = RREG8(DAC_DATA);
tmp &= ~0x80;
WREG8(DAC_DATA, tmp);
/* 5- put back a 0 on the misc<0> line */
WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
tmp = RREG8(DAC_DATA);
tmp &= ~0x10;
WREG_DAC(MGA1064_GEN_IO_DATA, tmp);
}
/*
This is how the framebuffer base address is stored in g200 cards:
* Assume @offset is the gpu_addr variable of the framebuffer object
* Then addr is the number of _pixels_ (not bytes) from the start of
VRAM to the first pixel we want to display. (divided by 2 for 32bit
framebuffers)
* addr is stored in the CRTCEXT0, CRTCC and CRTCD registers
addr<20> -> CRTCEXT0<6>
addr<19-16> -> CRTCEXT0<3-0>
addr<15-8> -> CRTCC<7-0>
addr<7-0> -> CRTCD<7-0>
CRTCEXT0 has to be programmed last to trigger an update and make the
new addr variable take effect.
*/
void mga_set_start_address(struct drm_crtc *crtc, unsigned offset)
{
struct mga_device *mdev = crtc->dev->dev_private;
u32 addr;
int count;
u8 crtcext0;
while (RREG8(0x1fda) & 0x08);
while (!(RREG8(0x1fda) & 0x08));
count = RREG8(MGAREG_VCOUNT) + 2;
while (RREG8(MGAREG_VCOUNT) < count);
WREG8(MGAREG_CRTCEXT_INDEX, 0);
crtcext0 = RREG8(MGAREG_CRTCEXT_DATA);
crtcext0 &= 0xB0;
addr = offset / 8;
/* Can't store addresses any higher than that...
but we also don't have more than 16MB of memory, so it should be fine. */
WARN_ON(addr > 0x1fffff);
crtcext0 |= (!!(addr & (1<<20)))<<6;
WREG_CRT(0x0d, (u8)(addr & 0xff));
WREG_CRT(0x0c, (u8)(addr >> 8) & 0xff);
WREG_ECRT(0x0, ((u8)(addr >> 16) & 0xf) | crtcext0);
}
/* ast is different - we will force move buffers out of VRAM */
static int mga_crtc_do_set_base(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
int x, int y, int atomic)
{
struct mga_device *mdev = crtc->dev->dev_private;
struct drm_gem_object *obj;
struct mga_framebuffer *mga_fb;
struct mgag200_bo *bo;
int ret;
u64 gpu_addr;
/* push the previous fb to system ram */
if (!atomic && fb) {
mga_fb = to_mga_framebuffer(fb);
obj = mga_fb->obj;
bo = gem_to_mga_bo(obj);
ret = mgag200_bo_reserve(bo, false);
if (ret)
return ret;
mgag200_bo_push_sysram(bo);
mgag200_bo_unreserve(bo);
}
mga_fb = to_mga_framebuffer(crtc->fb);
obj = mga_fb->obj;
bo = gem_to_mga_bo(obj);
ret = mgag200_bo_reserve(bo, false);
if (ret)
return ret;
ret = mgag200_bo_pin(bo, TTM_PL_FLAG_VRAM, &gpu_addr);
if (ret) {
mgag200_bo_unreserve(bo);
return ret;
}
if (&mdev->mfbdev->mfb == mga_fb) {
/* if pushing console in kmap it */
ret = ttm_bo_kmap(&bo->bo, 0, bo->bo.num_pages, &bo->kmap);
if (ret)
DRM_ERROR("failed to kmap fbcon\n");
}
mgag200_bo_unreserve(bo);
DRM_INFO("mga base %llx\n", gpu_addr);
mga_set_start_address(crtc, (u32)gpu_addr);
return 0;
}
static int mga_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
struct drm_framebuffer *old_fb)
{
return mga_crtc_do_set_base(crtc, old_fb, x, y, 0);
}
static int mga_crtc_mode_set(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode,
int x, int y, struct drm_framebuffer *old_fb)
{
struct drm_device *dev = crtc->dev;
struct mga_device *mdev = dev->dev_private;
int hdisplay, hsyncstart, hsyncend, htotal;
int vdisplay, vsyncstart, vsyncend, vtotal;
int pitch;
int option = 0, option2 = 0;
int i;
unsigned char misc = 0;
unsigned char ext_vga[6];
u8 bppshift;
static unsigned char dacvalue[] = {
/* 0x00: */ 0, 0, 0, 0, 0, 0, 0x00, 0,
/* 0x08: */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x10: */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x18: */ 0x00, 0, 0xC9, 0xFF, 0xBF, 0x20, 0x1F, 0x20,
/* 0x20: */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 0x28: */ 0x00, 0x00, 0x00, 0x00, 0, 0, 0, 0x40,
/* 0x30: */ 0x00, 0xB0, 0x00, 0xC2, 0x34, 0x14, 0x02, 0x83,
/* 0x38: */ 0x00, 0x93, 0x00, 0x77, 0x00, 0x00, 0x00, 0x3A,
/* 0x40: */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x48: */ 0, 0, 0, 0, 0, 0, 0, 0
};
bppshift = mdev->bpp_shifts[(crtc->fb->bits_per_pixel >> 3) - 1];
switch (mdev->type) {
case G200_SE_A:
case G200_SE_B:
dacvalue[MGA1064_VREF_CTL] = 0x03;
dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL;
dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_DAC_EN |
MGA1064_MISC_CTL_VGA8 |
MGA1064_MISC_CTL_DAC_RAM_CS;
if (mdev->has_sdram)
option = 0x40049120;
else
option = 0x4004d120;
option2 = 0x00008000;
break;
case G200_WB:
dacvalue[MGA1064_VREF_CTL] = 0x07;
option = 0x41049120;
option2 = 0x0000b000;
break;
case G200_EV:
dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL;
dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 |
MGA1064_MISC_CTL_DAC_RAM_CS;
option = 0x00000120;
option2 = 0x0000b000;
break;
case G200_EH:
dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 |
MGA1064_MISC_CTL_DAC_RAM_CS;
option = 0x00000120;
option2 = 0x0000b000;
break;
case G200_ER:
break;
}
switch (crtc->fb->bits_per_pixel) {
case 8:
dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_8bits;
break;
case 16:
if (crtc->fb->depth == 15)
dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_15bits;
else
dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_16bits;
break;
case 24:
dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_24bits;
break;
case 32:
dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_32_24bits;
break;
}
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
misc |= 0x40;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
misc |= 0x80;
for (i = 0; i < sizeof(dacvalue); i++) {
if ((i <= 0x17) ||
(i == 0x1b) ||
(i == 0x1c) ||
((i >= 0x1f) && (i <= 0x29)) ||
((i >= 0x30) && (i <= 0x37)))
continue;
if (IS_G200_SE(mdev) &&
((i == 0x2c) || (i == 0x2d) || (i == 0x2e)))
continue;
if ((mdev->type == G200_EV || mdev->type == G200_WB || mdev->type == G200_EH) &&
(i >= 0x44) && (i <= 0x4e))
continue;
WREG_DAC(i, dacvalue[i]);
}
if (mdev->type == G200_ER)
WREG_DAC(0x90, 0);
if (option)
pci_write_config_dword(dev->pdev, PCI_MGA_OPTION, option);
if (option2)
pci_write_config_dword(dev->pdev, PCI_MGA_OPTION2, option2);
WREG_SEQ(2, 0xf);
WREG_SEQ(3, 0);
WREG_SEQ(4, 0xe);
pitch = crtc->fb->pitches[0] / (crtc->fb->bits_per_pixel / 8);
if (crtc->fb->bits_per_pixel == 24)
pitch = pitch >> (4 - bppshift);
else
pitch = pitch >> (4 - bppshift);
hdisplay = mode->hdisplay / 8 - 1;
hsyncstart = mode->hsync_start / 8 - 1;
hsyncend = mode->hsync_end / 8 - 1;
htotal = mode->htotal / 8 - 1;
/* Work around hardware quirk */
if ((htotal & 0x07) == 0x06 || (htotal & 0x07) == 0x04)
htotal++;
vdisplay = mode->vdisplay - 1;
vsyncstart = mode->vsync_start - 1;
vsyncend = mode->vsync_end - 1;
vtotal = mode->vtotal - 2;
WREG_GFX(0, 0);
WREG_GFX(1, 0);
WREG_GFX(2, 0);
WREG_GFX(3, 0);
WREG_GFX(4, 0);
WREG_GFX(5, 0x40);
WREG_GFX(6, 0x5);
WREG_GFX(7, 0xf);
WREG_GFX(8, 0xf);
WREG_CRT(0, htotal - 4);
WREG_CRT(1, hdisplay);
WREG_CRT(2, hdisplay);
WREG_CRT(3, (htotal & 0x1F) | 0x80);
WREG_CRT(4, hsyncstart);
WREG_CRT(5, ((htotal & 0x20) << 2) | (hsyncend & 0x1F));
WREG_CRT(6, vtotal & 0xFF);
WREG_CRT(7, ((vtotal & 0x100) >> 8) |
((vdisplay & 0x100) >> 7) |
((vsyncstart & 0x100) >> 6) |
((vdisplay & 0x100) >> 5) |
((vdisplay & 0x100) >> 4) | /* linecomp */
((vtotal & 0x200) >> 4)|
((vdisplay & 0x200) >> 3) |
((vsyncstart & 0x200) >> 2));
WREG_CRT(9, ((vdisplay & 0x200) >> 4) |
((vdisplay & 0x200) >> 3));
WREG_CRT(10, 0);
WREG_CRT(11, 0);
WREG_CRT(12, 0);
WREG_CRT(13, 0);
WREG_CRT(14, 0);
WREG_CRT(15, 0);
WREG_CRT(16, vsyncstart & 0xFF);
WREG_CRT(17, (vsyncend & 0x0F) | 0x20);
WREG_CRT(18, vdisplay & 0xFF);
WREG_CRT(19, pitch & 0xFF);
WREG_CRT(20, 0);
WREG_CRT(21, vdisplay & 0xFF);
WREG_CRT(22, (vtotal + 1) & 0xFF);
WREG_CRT(23, 0xc3);
WREG_CRT(24, vdisplay & 0xFF);
ext_vga[0] = 0;
ext_vga[5] = 0;
/* TODO interlace */
ext_vga[0] |= (pitch & 0x300) >> 4;
ext_vga[1] = (((htotal - 4) & 0x100) >> 8) |
((hdisplay & 0x100) >> 7) |
((hsyncstart & 0x100) >> 6) |
(htotal & 0x40);
ext_vga[2] = ((vtotal & 0xc00) >> 10) |
((vdisplay & 0x400) >> 8) |
((vdisplay & 0xc00) >> 7) |
((vsyncstart & 0xc00) >> 5) |
((vdisplay & 0x400) >> 3);
if (crtc->fb->bits_per_pixel == 24)
ext_vga[3] = (((1 << bppshift) * 3) - 1) | 0x80;
else
ext_vga[3] = ((1 << bppshift) - 1) | 0x80;
ext_vga[4] = 0;
if (mdev->type == G200_WB)
ext_vga[1] |= 0x88;
/* Set pixel clocks */
misc = 0x2d;
WREG8(MGA_MISC_OUT, misc);
mga_crtc_set_plls(mdev, mode->clock);
for (i = 0; i < 6; i++) {
WREG_ECRT(i, ext_vga[i]);
}
if (mdev->type == G200_ER)
WREG_ECRT(0x24, 0x5);
if (mdev->type == G200_EV) {
WREG_ECRT(6, 0);
}
WREG_ECRT(0, ext_vga[0]);
/* Enable mga pixel clock */
misc = 0x2d;
WREG8(MGA_MISC_OUT, misc);
if (adjusted_mode)
memcpy(&mdev->mode, mode, sizeof(struct drm_display_mode));
mga_crtc_do_set_base(crtc, old_fb, x, y, 0);
/* reset tagfifo */
if (mdev->type == G200_ER) {
u32 mem_ctl = RREG32(MGAREG_MEMCTL);
u8 seq1;
/* screen off */
WREG8(MGAREG_SEQ_INDEX, 0x01);
seq1 = RREG8(MGAREG_SEQ_DATA) | 0x20;
WREG8(MGAREG_SEQ_DATA, seq1);
WREG32(MGAREG_MEMCTL, mem_ctl | 0x00200000);
udelay(1000);
WREG32(MGAREG_MEMCTL, mem_ctl & ~0x00200000);
WREG8(MGAREG_SEQ_DATA, seq1 & ~0x20);
}
if (IS_G200_SE(mdev)) {
if (mdev->unique_rev_id >= 0x02) {
u8 hi_pri_lvl;
u32 bpp;
u32 mb;
if (crtc->fb->bits_per_pixel > 16)
bpp = 32;
else if (crtc->fb->bits_per_pixel > 8)
bpp = 16;
else
bpp = 8;
mb = (mode->clock * bpp) / 1000;
if (mb > 3100)
hi_pri_lvl = 0;
else if (mb > 2600)
hi_pri_lvl = 1;
else if (mb > 1900)
hi_pri_lvl = 2;
else if (mb > 1160)
hi_pri_lvl = 3;
else if (mb > 440)
hi_pri_lvl = 4;
else
hi_pri_lvl = 5;
WREG8(MGAREG_CRTCEXT_INDEX, 0x06);
WREG8(MGAREG_CRTCEXT_DATA, hi_pri_lvl);
} else {
WREG8(MGAREG_CRTCEXT_INDEX, 0x06);
if (mdev->unique_rev_id >= 0x01)
WREG8(MGAREG_CRTCEXT_DATA, 0x03);
else
WREG8(MGAREG_CRTCEXT_DATA, 0x04);
}
}
return 0;
}
#if 0 /* code from mjg to attempt D3 on crtc dpms off - revisit later */
static int mga_suspend(struct drm_crtc *crtc)
{
struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct mga_device *mdev = dev->dev_private;
struct pci_dev *pdev = dev->pdev;
int option;
if (mdev->suspended)
return 0;
WREG_SEQ(1, 0x20);
WREG_ECRT(1, 0x30);
/* Disable the pixel clock */
WREG_DAC(0x1a, 0x05);
/* Power down the DAC */
WREG_DAC(0x1e, 0x18);
/* Power down the pixel PLL */
WREG_DAC(0x1a, 0x0d);
/* Disable PLLs and clocks */
pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
option &= ~(0x1F8024);
pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
pci_set_power_state(pdev, PCI_D3hot);
pci_disable_device(pdev);
mdev->suspended = true;
return 0;
}
static int mga_resume(struct drm_crtc *crtc)
{
struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct mga_device *mdev = dev->dev_private;
struct pci_dev *pdev = dev->pdev;
int option;
if (!mdev->suspended)
return 0;
pci_set_power_state(pdev, PCI_D0);
pci_enable_device(pdev);
/* Disable sysclk */
pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
option &= ~(0x4);
pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
mdev->suspended = false;
return 0;
}
#endif
static void mga_crtc_dpms(struct drm_crtc *crtc, int mode)
{
struct drm_device *dev = crtc->dev;
struct mga_device *mdev = dev->dev_private;
u8 seq1 = 0, crtcext1 = 0;
switch (mode) {
case DRM_MODE_DPMS_ON:
seq1 = 0;
crtcext1 = 0;
mga_crtc_load_lut(crtc);
break;
case DRM_MODE_DPMS_STANDBY:
seq1 = 0x20;
crtcext1 = 0x10;
break;
case DRM_MODE_DPMS_SUSPEND:
seq1 = 0x20;
crtcext1 = 0x20;
break;
case DRM_MODE_DPMS_OFF:
seq1 = 0x20;
crtcext1 = 0x30;
break;
}
#if 0
if (mode == DRM_MODE_DPMS_OFF) {
mga_suspend(crtc);
}
#endif
WREG8(MGAREG_SEQ_INDEX, 0x01);
seq1 |= RREG8(MGAREG_SEQ_DATA) & ~0x20;
mga_wait_vsync(mdev);
mga_wait_busy(mdev);
WREG8(MGAREG_SEQ_DATA, seq1);
msleep(20);
WREG8(MGAREG_CRTCEXT_INDEX, 0x01);
crtcext1 |= RREG8(MGAREG_CRTCEXT_DATA) & ~0x30;
WREG8(MGAREG_CRTCEXT_DATA, crtcext1);
#if 0
if (mode == DRM_MODE_DPMS_ON && mdev->suspended == true) {
mga_resume(crtc);
drm_helper_resume_force_mode(dev);
}
#endif
}
/*
* This is called before a mode is programmed. A typical use might be to
* enable DPMS during the programming to avoid seeing intermediate stages,
* but that's not relevant to us
*/
static void mga_crtc_prepare(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct mga_device *mdev = dev->dev_private;
u8 tmp;
/* mga_resume(crtc);*/
WREG8(MGAREG_CRTC_INDEX, 0x11);
tmp = RREG8(MGAREG_CRTC_DATA);
WREG_CRT(0x11, tmp | 0x80);
if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) {
WREG_SEQ(0, 1);
msleep(50);
WREG_SEQ(1, 0x20);
msleep(20);
} else {
WREG8(MGAREG_SEQ_INDEX, 0x1);
tmp = RREG8(MGAREG_SEQ_DATA);
/* start sync reset */
WREG_SEQ(0, 1);
WREG_SEQ(1, tmp | 0x20);
}
if (mdev->type == G200_WB)
mga_g200wb_prepare(crtc);
WREG_CRT(17, 0);
}
/*
* This is called after a mode is programmed. It should reverse anything done
* by the prepare function
*/
static void mga_crtc_commit(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct mga_device *mdev = dev->dev_private;
struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
u8 tmp;
if (mdev->type == G200_WB)
mga_g200wb_commit(crtc);
if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) {
msleep(50);
WREG_SEQ(1, 0x0);
msleep(20);
WREG_SEQ(0, 0x3);
} else {
WREG8(MGAREG_SEQ_INDEX, 0x1);
tmp = RREG8(MGAREG_SEQ_DATA);
tmp &= ~0x20;
WREG_SEQ(0x1, tmp);
WREG_SEQ(0, 3);
}
crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
}
/*
* The core can pass us a set of gamma values to program. We actually only
* use this for 8-bit mode so can't perform smooth fades on deeper modes,
* but it's a requirement that we provide the function
*/
static void mga_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
u16 *blue, uint32_t start, uint32_t size)
{
struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
int end = (start + size > MGAG200_LUT_SIZE) ? MGAG200_LUT_SIZE : start + size;
int i;
for (i = start; i < end; i++) {
mga_crtc->lut_r[i] = red[i] >> 8;
mga_crtc->lut_g[i] = green[i] >> 8;
mga_crtc->lut_b[i] = blue[i] >> 8;
}
mga_crtc_load_lut(crtc);
}
/* Simple cleanup function */
static void mga_crtc_destroy(struct drm_crtc *crtc)
{
struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
drm_crtc_cleanup(crtc);
kfree(mga_crtc);
}
static void mga_crtc_disable(struct drm_crtc *crtc)
{
int ret;
DRM_DEBUG_KMS("\n");
mga_crtc_dpms(crtc, DRM_MODE_DPMS_OFF);
if (crtc->fb) {
struct mga_framebuffer *mga_fb = to_mga_framebuffer(crtc->fb);
struct drm_gem_object *obj = mga_fb->obj;
struct mgag200_bo *bo = gem_to_mga_bo(obj);
ret = mgag200_bo_reserve(bo, false);
if (ret)
return;
mgag200_bo_push_sysram(bo);
mgag200_bo_unreserve(bo);
}
crtc->fb = NULL;
}
/* These provide the minimum set of functions required to handle a CRTC */
static const struct drm_crtc_funcs mga_crtc_funcs = {
drm/mgag200: Hardware cursor support G200 cards support, at best, 16 colour palleted images for the cursor so we do a conversion in the cursor_set function, and reject cursors with more than 16 colours, or cursors with partial transparency. Xorg falls back gracefully to software cursors in this case. We can't disable/enable the cursor hardware without causing momentary corruption around the cursor. Instead, once the cursor is on we leave it on, and simulate turning the cursor off by moving it offscreen. This works well. Since we can't disable -> update -> enable the cursors, we double buffer cursor icons, then just move the base address that points to the old cursor, to the new. This also works well, but uses an extra page of memory. The cursor buffers are lazily-allocated on first cursor_set. This is to make sure they don't take priority over any framebuffers in case of limited memory. Here is a representation of how the bitmap for the cursor is mapped in G200 memory : Each line of color cursor use 6 Slices of 8 bytes. Slices 0 to 3 are used for the 4bpp bitmap, slice 4 for XOR mask and slice 5 for AND mask. Each line has the following format: // Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 // // S0: P00-01 P02-03 P04-05 P06-07 P08-09 P10-11 P12-13 P14-15 // S1: P16-17 P18-19 P20-21 P22-23 P24-25 P26-27 P28-29 P30-31 // S2: P32-33 P34-35 P36-37 P38-39 P40-41 P42-43 P44-45 P46-47 // S3: P48-49 P50-51 P52-53 P54-55 P56-57 P58-59 P60-61 P62-63 // S4: X63-56 X55-48 X47-40 X39-32 X31-24 X23-16 X15-08 X07-00 // S5: A63-56 A55-48 A47-40 A39-32 A31-24 A23-16 A15-08 A07-00 // // S0 to S5 = Slices 0 to 5 // P00 to P63 = Bitmap - pixels 0 to 63 // X00 to X63 = always 0 - pixels 0 to 63 // A00 to A63 = transparent markers - pixels 0 to 63 // 1 means colour, 0 means transparent Signed-off-by: Christopher Harvey <charvey@matrox.com> Signed-off-by: Mathieu Larouche <mathieu.larouche@matrox.com> Acked-by: Julia Lemire <jlemire@matrox.com> Tested-by: Julia Lemire <jlemire@matrox.com> Signed-off-by: Dave Airlie <airlied@gmail.com>
2013-06-06 03:24:26 +08:00
.cursor_set = mga_crtc_cursor_set,
.cursor_move = mga_crtc_cursor_move,
.gamma_set = mga_crtc_gamma_set,
.set_config = drm_crtc_helper_set_config,
.destroy = mga_crtc_destroy,
};
static const struct drm_crtc_helper_funcs mga_helper_funcs = {
.disable = mga_crtc_disable,
.dpms = mga_crtc_dpms,
.mode_fixup = mga_crtc_mode_fixup,
.mode_set = mga_crtc_mode_set,
.mode_set_base = mga_crtc_mode_set_base,
.prepare = mga_crtc_prepare,
.commit = mga_crtc_commit,
.load_lut = mga_crtc_load_lut,
};
/* CRTC setup */
static void mga_crtc_init(struct mga_device *mdev)
{
struct mga_crtc *mga_crtc;
int i;
mga_crtc = kzalloc(sizeof(struct mga_crtc) +
(MGAG200FB_CONN_LIMIT * sizeof(struct drm_connector *)),
GFP_KERNEL);
if (mga_crtc == NULL)
return;
drm_crtc_init(mdev->dev, &mga_crtc->base, &mga_crtc_funcs);
drm_mode_crtc_set_gamma_size(&mga_crtc->base, MGAG200_LUT_SIZE);
mdev->mode_info.crtc = mga_crtc;
for (i = 0; i < MGAG200_LUT_SIZE; i++) {
mga_crtc->lut_r[i] = i;
mga_crtc->lut_g[i] = i;
mga_crtc->lut_b[i] = i;
}
drm_crtc_helper_add(&mga_crtc->base, &mga_helper_funcs);
}
/** Sets the color ramps on behalf of fbcon */
void mga_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
u16 blue, int regno)
{
struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
mga_crtc->lut_r[regno] = red >> 8;
mga_crtc->lut_g[regno] = green >> 8;
mga_crtc->lut_b[regno] = blue >> 8;
}
/** Gets the color ramps on behalf of fbcon */
void mga_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
u16 *blue, int regno)
{
struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
*red = (u16)mga_crtc->lut_r[regno] << 8;
*green = (u16)mga_crtc->lut_g[regno] << 8;
*blue = (u16)mga_crtc->lut_b[regno] << 8;
}
/*
* The encoder comes after the CRTC in the output pipeline, but before
* the connector. It's responsible for ensuring that the digital
* stream is appropriately converted into the output format. Setup is
* very simple in this case - all we have to do is inform qemu of the
* colour depth in order to ensure that it displays appropriately
*/
/*
* These functions are analagous to those in the CRTC code, but are intended
* to handle any encoder-specific limitations
*/
static bool mga_encoder_mode_fixup(struct drm_encoder *encoder,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
return true;
}
static void mga_encoder_mode_set(struct drm_encoder *encoder,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
}
static void mga_encoder_dpms(struct drm_encoder *encoder, int state)
{
return;
}
static void mga_encoder_prepare(struct drm_encoder *encoder)
{
}
static void mga_encoder_commit(struct drm_encoder *encoder)
{
}
void mga_encoder_destroy(struct drm_encoder *encoder)
{
struct mga_encoder *mga_encoder = to_mga_encoder(encoder);
drm_encoder_cleanup(encoder);
kfree(mga_encoder);
}
static const struct drm_encoder_helper_funcs mga_encoder_helper_funcs = {
.dpms = mga_encoder_dpms,
.mode_fixup = mga_encoder_mode_fixup,
.mode_set = mga_encoder_mode_set,
.prepare = mga_encoder_prepare,
.commit = mga_encoder_commit,
};
static const struct drm_encoder_funcs mga_encoder_encoder_funcs = {
.destroy = mga_encoder_destroy,
};
static struct drm_encoder *mga_encoder_init(struct drm_device *dev)
{
struct drm_encoder *encoder;
struct mga_encoder *mga_encoder;
mga_encoder = kzalloc(sizeof(struct mga_encoder), GFP_KERNEL);
if (!mga_encoder)
return NULL;
encoder = &mga_encoder->base;
encoder->possible_crtcs = 0x1;
drm_encoder_init(dev, encoder, &mga_encoder_encoder_funcs,
DRM_MODE_ENCODER_DAC);
drm_encoder_helper_add(encoder, &mga_encoder_helper_funcs);
return encoder;
}
static int mga_vga_get_modes(struct drm_connector *connector)
{
struct mga_connector *mga_connector = to_mga_connector(connector);
struct edid *edid;
int ret = 0;
edid = drm_get_edid(connector, &mga_connector->i2c->adapter);
if (edid) {
drm_mode_connector_update_edid_property(connector, edid);
ret = drm_add_edid_modes(connector, edid);
kfree(edid);
}
return ret;
}
static uint32_t mga_vga_calculate_mode_bandwidth(struct drm_display_mode *mode,
int bits_per_pixel)
{
uint32_t total_area, divisor;
int64_t active_area, pixels_per_second, bandwidth;
uint64_t bytes_per_pixel = (bits_per_pixel + 7) / 8;
divisor = 1024;
if (!mode->htotal || !mode->vtotal || !mode->clock)
return 0;
active_area = mode->hdisplay * mode->vdisplay;
total_area = mode->htotal * mode->vtotal;
pixels_per_second = active_area * mode->clock * 1000;
do_div(pixels_per_second, total_area);
bandwidth = pixels_per_second * bytes_per_pixel * 100;
do_div(bandwidth, divisor);
return (uint32_t)(bandwidth);
}
#define MODE_BANDWIDTH MODE_BAD
static int mga_vga_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
struct drm_device *dev = connector->dev;
struct mga_device *mdev = (struct mga_device*)dev->dev_private;
struct mga_fbdev *mfbdev = mdev->mfbdev;
struct drm_fb_helper *fb_helper = &mfbdev->helper;
struct drm_fb_helper_connector *fb_helper_conn = NULL;
int bpp = 32;
int i = 0;
if (IS_G200_SE(mdev)) {
if (mdev->unique_rev_id == 0x01) {
if (mode->hdisplay > 1600)
return MODE_VIRTUAL_X;
if (mode->vdisplay > 1200)
return MODE_VIRTUAL_Y;
if (mga_vga_calculate_mode_bandwidth(mode, bpp)
> (24400 * 1024))
return MODE_BANDWIDTH;
} else if (mdev->unique_rev_id >= 0x02) {
if (mode->hdisplay > 1920)
return MODE_VIRTUAL_X;
if (mode->vdisplay > 1200)
return MODE_VIRTUAL_Y;
if (mga_vga_calculate_mode_bandwidth(mode, bpp)
> (30100 * 1024))
return MODE_BANDWIDTH;
}
} else if (mdev->type == G200_WB) {
if (mode->hdisplay > 1280)
return MODE_VIRTUAL_X;
if (mode->vdisplay > 1024)
return MODE_VIRTUAL_Y;
if (mga_vga_calculate_mode_bandwidth(mode,
bpp > (31877 * 1024)))
return MODE_BANDWIDTH;
} else if (mdev->type == G200_EV &&
(mga_vga_calculate_mode_bandwidth(mode, bpp)
> (32700 * 1024))) {
return MODE_BANDWIDTH;
} else if (mode->type == G200_EH &&
(mga_vga_calculate_mode_bandwidth(mode, bpp)
> (37500 * 1024))) {
return MODE_BANDWIDTH;
} else if (mode->type == G200_ER &&
(mga_vga_calculate_mode_bandwidth(mode,
bpp) > (55000 * 1024))) {
return MODE_BANDWIDTH;
}
if (mode->crtc_hdisplay > 2048 || mode->crtc_hsync_start > 4096 ||
mode->crtc_hsync_end > 4096 || mode->crtc_htotal > 4096 ||
mode->crtc_vdisplay > 2048 || mode->crtc_vsync_start > 4096 ||
mode->crtc_vsync_end > 4096 || mode->crtc_vtotal > 4096) {
return MODE_BAD;
}
/* Validate the mode input by the user */
for (i = 0; i < fb_helper->connector_count; i++) {
if (fb_helper->connector_info[i]->connector == connector) {
/* Found the helper for this connector */
fb_helper_conn = fb_helper->connector_info[i];
if (fb_helper_conn->cmdline_mode.specified) {
if (fb_helper_conn->cmdline_mode.bpp_specified) {
bpp = fb_helper_conn->cmdline_mode.bpp;
}
}
}
}
if ((mode->hdisplay * mode->vdisplay * (bpp/8)) > mdev->mc.vram_size) {
if (fb_helper_conn)
fb_helper_conn->cmdline_mode.specified = false;
return MODE_BAD;
}
return MODE_OK;
}
struct drm_encoder *mga_connector_best_encoder(struct drm_connector
*connector)
{
int enc_id = connector->encoder_ids[0];
struct drm_mode_object *obj;
struct drm_encoder *encoder;
/* pick the encoder ids */
if (enc_id) {
obj =
drm_mode_object_find(connector->dev, enc_id,
DRM_MODE_OBJECT_ENCODER);
if (!obj)
return NULL;
encoder = obj_to_encoder(obj);
return encoder;
}
return NULL;
}
static enum drm_connector_status mga_vga_detect(struct drm_connector
*connector, bool force)
{
return connector_status_connected;
}
static void mga_connector_destroy(struct drm_connector *connector)
{
struct mga_connector *mga_connector = to_mga_connector(connector);
mgag200_i2c_destroy(mga_connector->i2c);
drm_connector_cleanup(connector);
kfree(connector);
}
struct drm_connector_helper_funcs mga_vga_connector_helper_funcs = {
.get_modes = mga_vga_get_modes,
.mode_valid = mga_vga_mode_valid,
.best_encoder = mga_connector_best_encoder,
};
struct drm_connector_funcs mga_vga_connector_funcs = {
.dpms = drm_helper_connector_dpms,
.detect = mga_vga_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = mga_connector_destroy,
};
static struct drm_connector *mga_vga_init(struct drm_device *dev)
{
struct drm_connector *connector;
struct mga_connector *mga_connector;
mga_connector = kzalloc(sizeof(struct mga_connector), GFP_KERNEL);
if (!mga_connector)
return NULL;
connector = &mga_connector->base;
drm_connector_init(dev, connector,
&mga_vga_connector_funcs, DRM_MODE_CONNECTOR_VGA);
drm_connector_helper_add(connector, &mga_vga_connector_helper_funcs);
drm_sysfs_connector_add(connector);
mga_connector->i2c = mgag200_i2c_create(dev);
if (!mga_connector->i2c)
DRM_ERROR("failed to add ddc bus\n");
return connector;
}
int mgag200_modeset_init(struct mga_device *mdev)
{
struct drm_encoder *encoder;
struct drm_connector *connector;
int ret;
mdev->mode_info.mode_config_initialized = true;
mdev->dev->mode_config.max_width = MGAG200_MAX_FB_WIDTH;
mdev->dev->mode_config.max_height = MGAG200_MAX_FB_HEIGHT;
mdev->dev->mode_config.fb_base = mdev->mc.vram_base;
mga_crtc_init(mdev);
encoder = mga_encoder_init(mdev->dev);
if (!encoder) {
DRM_ERROR("mga_encoder_init failed\n");
return -1;
}
connector = mga_vga_init(mdev->dev);
if (!connector) {
DRM_ERROR("mga_vga_init failed\n");
return -1;
}
drm_mode_connector_attach_encoder(connector, encoder);
ret = mgag200_fbdev_init(mdev);
if (ret) {
DRM_ERROR("mga_fbdev_init failed\n");
return ret;
}
return 0;
}
void mgag200_modeset_fini(struct mga_device *mdev)
{
}