OpenCloudOS-Kernel/include/linux/irqdesc.h

268 lines
7.8 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_IRQDESC_H
#define _LINUX_IRQDESC_H
#include <linux/rcupdate.h>
#include <linux/kobject.h>
#include <linux/mutex.h>
/*
* Core internal functions to deal with irq descriptors
*/
struct irq_affinity_notify;
struct proc_dir_entry;
struct module;
struct irq_desc;
genirq: Add irq_domain-aware core IRQ handler Calling irq_find_mapping from outside a irq_{enter,exit} section is unsafe and produces ugly messages if CONFIG_PROVE_RCU is enabled: If coming from the idle state, the rcu_read_lock call in irq_find_mapping will generate an unpleasant warning: <quote> =============================== [ INFO: suspicious RCU usage. ] 3.16.0-rc1+ #135 Not tainted ------------------------------- include/linux/rcupdate.h:871 rcu_read_lock() used illegally while idle! other info that might help us debug this: RCU used illegally from idle CPU! rcu_scheduler_active = 1, debug_locks = 0 RCU used illegally from extended quiescent state! 1 lock held by swapper/0/0: #0: (rcu_read_lock){......}, at: [<ffffffc00010206c>] irq_find_mapping+0x4c/0x198 </quote> As this issue is fairly widespread and involves at least three different architectures, a possible solution is to add a new handle_domain_irq entry point into the generic IRQ code that the interrupt controller code can call. This new function takes an irq_domain, and calls into irq_find_domain inside the irq_{enter,exit} block. An additional "lookup" parameter is used to allow non-domain architecture code to be replaced by this as well. Interrupt controllers can then be updated to use the new mechanism. This code is sitting behind a new CONFIG_HANDLE_DOMAIN_IRQ, as not all architectures implement set_irq_regs (yes, mn10300, I'm looking at you...). Reported-by: Vladimir Murzin <vladimir.murzin@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Link: https://lkml.kernel.org/r/1409047421-27649-2-git-send-email-marc.zyngier@arm.com Signed-off-by: Jason Cooper <jason@lakedaemon.net>
2014-08-26 18:03:16 +08:00
struct irq_domain;
struct pt_regs;
/**
* struct irq_desc - interrupt descriptor
* @irq_common_data: per irq and chip data passed down to chip functions
* @kstat_irqs: irq stats per cpu
* @handle_irq: highlevel irq-events handler
* @action: the irq action chain
* @status_use_accessors: status information
* @core_internal_state__do_not_mess_with_it: core internal status information
* @depth: disable-depth, for nested irq_disable() calls
* @wake_depth: enable depth, for multiple irq_set_irq_wake() callers
* @tot_count: stats field for non-percpu irqs
* @irq_count: stats field to detect stalled irqs
* @last_unhandled: aging timer for unhandled count
* @irqs_unhandled: stats field for spurious unhandled interrupts
genirq: Sanitize spurious interrupt detection of threaded irqs Till reported that the spurious interrupt detection of threaded interrupts is broken in two ways: - note_interrupt() is called for each action thread of a shared interrupt line. That's wrong as we are only interested whether none of the device drivers felt responsible for the interrupt, but by calling multiple times for a single interrupt line we account IRQ_NONE even if one of the drivers felt responsible. - note_interrupt() when called from the thread handler is not serialized. That leaves the members of irq_desc which are used for the spurious detection unprotected. To solve this we need to defer the spurious detection of a threaded interrupt to the next hardware interrupt context where we have implicit serialization. If note_interrupt is called with action_ret == IRQ_WAKE_THREAD, we check whether the previous interrupt requested a deferred check. If not, we request a deferred check for the next hardware interrupt and return. If set, we check whether one of the interrupt threads signaled success. Depending on this information we feed the result into the spurious detector. If one primary handler of a shared interrupt returns IRQ_HANDLED we disable the deferred check of irq threads on the same line, as we have found at least one device driver who cared. Reported-by: Till Straumann <strauman@slac.stanford.edu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Austin Schuh <austin@peloton-tech.com> Cc: Oliver Hartkopp <socketcan@hartkopp.net> Cc: Wolfgang Grandegger <wg@grandegger.com> Cc: Pavel Pisa <pisa@cmp.felk.cvut.cz> Cc: Marc Kleine-Budde <mkl@pengutronix.de> Cc: linux-can@vger.kernel.org Cc: stable@vger.kernel.org Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1303071450130.22263@ionos
2013-03-07 21:53:45 +08:00
* @threads_handled: stats field for deferred spurious detection of threaded handlers
* @threads_handled_last: comparator field for deferred spurious detection of theraded handlers
* @lock: locking for SMP
* @affinity_hint: hint to user space for preferred irq affinity
* @affinity_notify: context for notification of affinity changes
* @pending_mask: pending rebalanced interrupts
* @threads_oneshot: bitfield to handle shared oneshot threads
* @threads_active: number of irqaction threads currently running
* @wait_for_threads: wait queue for sync_irq to wait for threaded handlers
* @nr_actions: number of installed actions on this descriptor
* @no_suspend_depth: number of irqactions on a irq descriptor with
* IRQF_NO_SUSPEND set
* @force_resume_depth: number of irqactions on a irq descriptor with
* IRQF_FORCE_RESUME set
* @rcu: rcu head for delayed free
* @kobj: kobject used to represent this struct in sysfs
* @request_mutex: mutex to protect request/free before locking desc->lock
* @dir: /proc/irq/ procfs entry
genirq/debugfs: Add proper debugfs interface Debugging (hierarchical) interupt domains is tedious as there is no information about the hierarchy and no information about states of interrupts in the various domain levels. Add a debugfs directory 'irq' and subdirectories 'domains' and 'irqs'. The domains directory contains the domain files. The content is information about the domain. If the domain is part of a hierarchy then the parent domains are printed as well. # ls /sys/kernel/debug/irq/domains/ default INTEL-IR-2 INTEL-IR-MSI-2 IO-APIC-IR-2 PCI-MSI DMAR-MSI INTEL-IR-3 INTEL-IR-MSI-3 IO-APIC-IR-3 unknown-1 INTEL-IR-0 INTEL-IR-MSI-0 IO-APIC-IR-0 IO-APIC-IR-4 VECTOR INTEL-IR-1 INTEL-IR-MSI-1 IO-APIC-IR-1 PCI-HT # cat /sys/kernel/debug/irq/domains/VECTOR name: VECTOR size: 0 mapped: 216 flags: 0x00000041 # cat /sys/kernel/debug/irq/domains/IO-APIC-IR-0 name: IO-APIC-IR-0 size: 24 mapped: 19 flags: 0x00000041 parent: INTEL-IR-3 name: INTEL-IR-3 size: 65536 mapped: 167 flags: 0x00000041 parent: VECTOR name: VECTOR size: 0 mapped: 216 flags: 0x00000041 Unfortunately there is no per cpu information about the VECTOR domain (yet). The irqs directory contains detailed information about mapped interrupts. # cat /sys/kernel/debug/irq/irqs/3 handler: handle_edge_irq status: 0x00004000 istate: 0x00000000 ddepth: 1 wdepth: 0 dstate: 0x01018000 IRQD_IRQ_DISABLED IRQD_SINGLE_TARGET IRQD_MOVE_PCNTXT node: 0 affinity: 0-143 effectiv: 0 pending: domain: IO-APIC-IR-0 hwirq: 0x3 chip: IR-IO-APIC flags: 0x10 IRQCHIP_SKIP_SET_WAKE parent: domain: INTEL-IR-3 hwirq: 0x20000 chip: INTEL-IR flags: 0x0 parent: domain: VECTOR hwirq: 0x3 chip: APIC flags: 0x0 This was developed to simplify the debugging of the managed affinity changes. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Keith Busch <keith.busch@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Christoph Hellwig <hch@lst.de> Link: http://lkml.kernel.org/r/20170619235444.537566163@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-06-20 07:37:17 +08:00
* @debugfs_file: dentry for the debugfs file
* @name: flow handler name for /proc/interrupts output
*/
struct irq_desc {
struct irq_common_data irq_common_data;
struct irq_data irq_data;
unsigned int __percpu *kstat_irqs;
irq_flow_handler_t handle_irq;
struct irqaction *action; /* IRQ action list */
unsigned int status_use_accessors;
unsigned int core_internal_state__do_not_mess_with_it;
unsigned int depth; /* nested irq disables */
unsigned int wake_depth; /* nested wake enables */
genirq: Avoid summation loops for /proc/stat Waiman reported that on large systems with a large amount of interrupts the readout of /proc/stat takes a long time to sum up the interrupt statistics. In principle this is not a problem. but for unknown reasons some enterprise quality software reads /proc/stat with a high frequency. The reason for this is that interrupt statistics are accounted per cpu. So the /proc/stat logic has to sum up the interrupt stats for each interrupt. This can be largely avoided for interrupts which are not marked as 'PER_CPU' interrupts by simply adding a per interrupt summation counter which is incremented along with the per interrupt per cpu counter. The PER_CPU interrupts need to avoid that and use only per cpu accounting because they share the interrupt number and the interrupt descriptor and concurrent updates would conflict or require unwanted synchronization. Reported-by: Waiman Long <longman@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Waiman Long <longman@redhat.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Davidlohr Bueso <dbueso@suse.de> Cc: Matthew Wilcox <willy@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Kees Cook <keescook@chromium.org> Cc: linux-fsdevel@vger.kernel.org Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Daniel Colascione <dancol@google.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Randy Dunlap <rdunlap@infradead.org> Link: https://lkml.kernel.org/r/20190208135020.925487496@linutronix.de 8<------------- v2: Undo the unintentional layout change of struct irq_desc. include/linux/irqdesc.h | 1 + kernel/irq/chip.c | 12 ++++++++++-- kernel/irq/internals.h | 8 +++++++- kernel/irq/irqdesc.c | 7 ++++++- 4 files changed, 24 insertions(+), 4 deletions(-)
2019-02-08 21:48:03 +08:00
unsigned int tot_count;
unsigned int irq_count; /* For detecting broken IRQs */
unsigned long last_unhandled; /* Aging timer for unhandled count */
unsigned int irqs_unhandled;
genirq: Sanitize spurious interrupt detection of threaded irqs Till reported that the spurious interrupt detection of threaded interrupts is broken in two ways: - note_interrupt() is called for each action thread of a shared interrupt line. That's wrong as we are only interested whether none of the device drivers felt responsible for the interrupt, but by calling multiple times for a single interrupt line we account IRQ_NONE even if one of the drivers felt responsible. - note_interrupt() when called from the thread handler is not serialized. That leaves the members of irq_desc which are used for the spurious detection unprotected. To solve this we need to defer the spurious detection of a threaded interrupt to the next hardware interrupt context where we have implicit serialization. If note_interrupt is called with action_ret == IRQ_WAKE_THREAD, we check whether the previous interrupt requested a deferred check. If not, we request a deferred check for the next hardware interrupt and return. If set, we check whether one of the interrupt threads signaled success. Depending on this information we feed the result into the spurious detector. If one primary handler of a shared interrupt returns IRQ_HANDLED we disable the deferred check of irq threads on the same line, as we have found at least one device driver who cared. Reported-by: Till Straumann <strauman@slac.stanford.edu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Austin Schuh <austin@peloton-tech.com> Cc: Oliver Hartkopp <socketcan@hartkopp.net> Cc: Wolfgang Grandegger <wg@grandegger.com> Cc: Pavel Pisa <pisa@cmp.felk.cvut.cz> Cc: Marc Kleine-Budde <mkl@pengutronix.de> Cc: linux-can@vger.kernel.org Cc: stable@vger.kernel.org Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1303071450130.22263@ionos
2013-03-07 21:53:45 +08:00
atomic_t threads_handled;
int threads_handled_last;
raw_spinlock_t lock;
genirq: Add support for per-cpu dev_id interrupts The ARM GIC interrupt controller offers per CPU interrupts (PPIs), which are usually used to connect local timers to each core. Each CPU has its own private interface to the GIC, and only sees the PPIs that are directly connect to it. While these timers are separate devices and have a separate interrupt line to a core, they all use the same IRQ number. For these devices, request_irq() is not the right API as it assumes that an IRQ number is visible by a number of CPUs (through the affinity setting), but makes it very awkward to express that an IRQ number can be handled by all CPUs, and yet be a different interrupt line on each CPU, requiring a different dev_id cookie to be passed back to the handler. The *_percpu_irq() functions is designed to overcome these limitations, by providing a per-cpu dev_id vector: int request_percpu_irq(unsigned int irq, irq_handler_t handler, const char *devname, void __percpu *percpu_dev_id); void free_percpu_irq(unsigned int, void __percpu *); int setup_percpu_irq(unsigned int irq, struct irqaction *new); void remove_percpu_irq(unsigned int irq, struct irqaction *act); void enable_percpu_irq(unsigned int irq); void disable_percpu_irq(unsigned int irq); The API has a number of limitations: - no interrupt sharing - no threading - common handler across all the CPUs Once the interrupt is requested using setup_percpu_irq() or request_percpu_irq(), it must be enabled by each core that wishes its local interrupt to be delivered. Based on an initial patch by Thomas Gleixner. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Cc: linux-arm-kernel@lists.infradead.org Link: http://lkml.kernel.org/r/1316793788-14500-2-git-send-email-marc.zyngier@arm.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2011-09-24 00:03:06 +08:00
struct cpumask *percpu_enabled;
const struct cpumask *percpu_affinity;
#ifdef CONFIG_SMP
const struct cpumask *affinity_hint;
struct irq_affinity_notify *affinity_notify;
#ifdef CONFIG_GENERIC_PENDING_IRQ
cpumask_var_t pending_mask;
#endif
#endif
unsigned long threads_oneshot;
atomic_t threads_active;
wait_queue_head_t wait_for_threads;
#ifdef CONFIG_PM_SLEEP
unsigned int nr_actions;
unsigned int no_suspend_depth;
genirq / PM: Add flag for shared NO_SUSPEND interrupt lines It currently is required that all users of NO_SUSPEND interrupt lines pass the IRQF_NO_SUSPEND flag when requesting the IRQ or the WARN_ON_ONCE() in irq_pm_install_action() will trigger. That is done to warn about situations in which unprepared interrupt handlers may be run unnecessarily for suspended devices and may attempt to access those devices by mistake. However, it may cause drivers that have no technical reasons for using IRQF_NO_SUSPEND to set that flag just because they happen to share the interrupt line with something like a timer. Moreover, the generic handling of wakeup interrupts introduced by commit 9ce7a25849e8 (genirq: Simplify wakeup mechanism) only works for IRQs without any NO_SUSPEND users, so the drivers of wakeup devices needing to use shared NO_SUSPEND interrupt lines for signaling system wakeup generally have to detect wakeup in their interrupt handlers. Thus if they happen to share an interrupt line with a NO_SUSPEND user, they also need to request that their interrupt handlers be run after suspend_device_irqs(). In both cases the reason for using IRQF_NO_SUSPEND is not because the driver in question has a genuine need to run its interrupt handler after suspend_device_irqs(), but because it happens to share the line with some other NO_SUSPEND user. Otherwise, the driver would do without IRQF_NO_SUSPEND just fine. To make it possible to specify that condition explicitly, introduce a new IRQ action handler flag for shared IRQs, IRQF_COND_SUSPEND, that, when set, will indicate to the IRQ core that the interrupt user is generally fine with suspending the IRQ, but it also can tolerate handler invocations after suspend_device_irqs() and, in particular, it is capable of detecting system wakeup and triggering it as appropriate from its interrupt handler. That will allow us to work around a problem with a shared timer interrupt line on at91 platforms. Link: http://marc.info/?l=linux-kernel&m=142252777602084&w=2 Link: http://marc.info/?t=142252775300011&r=1&w=2 Link: https://lkml.org/lkml/2014/12/15/552 Reported-by: Boris Brezillon <boris.brezillon@free-electrons.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Mark Rutland <mark.rutland@arm.com>
2015-02-27 07:07:55 +08:00
unsigned int cond_suspend_depth;
unsigned int force_resume_depth;
#endif
#ifdef CONFIG_PROC_FS
struct proc_dir_entry *dir;
#endif
genirq/debugfs: Add proper debugfs interface Debugging (hierarchical) interupt domains is tedious as there is no information about the hierarchy and no information about states of interrupts in the various domain levels. Add a debugfs directory 'irq' and subdirectories 'domains' and 'irqs'. The domains directory contains the domain files. The content is information about the domain. If the domain is part of a hierarchy then the parent domains are printed as well. # ls /sys/kernel/debug/irq/domains/ default INTEL-IR-2 INTEL-IR-MSI-2 IO-APIC-IR-2 PCI-MSI DMAR-MSI INTEL-IR-3 INTEL-IR-MSI-3 IO-APIC-IR-3 unknown-1 INTEL-IR-0 INTEL-IR-MSI-0 IO-APIC-IR-0 IO-APIC-IR-4 VECTOR INTEL-IR-1 INTEL-IR-MSI-1 IO-APIC-IR-1 PCI-HT # cat /sys/kernel/debug/irq/domains/VECTOR name: VECTOR size: 0 mapped: 216 flags: 0x00000041 # cat /sys/kernel/debug/irq/domains/IO-APIC-IR-0 name: IO-APIC-IR-0 size: 24 mapped: 19 flags: 0x00000041 parent: INTEL-IR-3 name: INTEL-IR-3 size: 65536 mapped: 167 flags: 0x00000041 parent: VECTOR name: VECTOR size: 0 mapped: 216 flags: 0x00000041 Unfortunately there is no per cpu information about the VECTOR domain (yet). The irqs directory contains detailed information about mapped interrupts. # cat /sys/kernel/debug/irq/irqs/3 handler: handle_edge_irq status: 0x00004000 istate: 0x00000000 ddepth: 1 wdepth: 0 dstate: 0x01018000 IRQD_IRQ_DISABLED IRQD_SINGLE_TARGET IRQD_MOVE_PCNTXT node: 0 affinity: 0-143 effectiv: 0 pending: domain: IO-APIC-IR-0 hwirq: 0x3 chip: IR-IO-APIC flags: 0x10 IRQCHIP_SKIP_SET_WAKE parent: domain: INTEL-IR-3 hwirq: 0x20000 chip: INTEL-IR flags: 0x0 parent: domain: VECTOR hwirq: 0x3 chip: APIC flags: 0x0 This was developed to simplify the debugging of the managed affinity changes. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Keith Busch <keith.busch@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Christoph Hellwig <hch@lst.de> Link: http://lkml.kernel.org/r/20170619235444.537566163@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-06-20 07:37:17 +08:00
#ifdef CONFIG_GENERIC_IRQ_DEBUGFS
struct dentry *debugfs_file;
const char *dev_name;
genirq/debugfs: Add proper debugfs interface Debugging (hierarchical) interupt domains is tedious as there is no information about the hierarchy and no information about states of interrupts in the various domain levels. Add a debugfs directory 'irq' and subdirectories 'domains' and 'irqs'. The domains directory contains the domain files. The content is information about the domain. If the domain is part of a hierarchy then the parent domains are printed as well. # ls /sys/kernel/debug/irq/domains/ default INTEL-IR-2 INTEL-IR-MSI-2 IO-APIC-IR-2 PCI-MSI DMAR-MSI INTEL-IR-3 INTEL-IR-MSI-3 IO-APIC-IR-3 unknown-1 INTEL-IR-0 INTEL-IR-MSI-0 IO-APIC-IR-0 IO-APIC-IR-4 VECTOR INTEL-IR-1 INTEL-IR-MSI-1 IO-APIC-IR-1 PCI-HT # cat /sys/kernel/debug/irq/domains/VECTOR name: VECTOR size: 0 mapped: 216 flags: 0x00000041 # cat /sys/kernel/debug/irq/domains/IO-APIC-IR-0 name: IO-APIC-IR-0 size: 24 mapped: 19 flags: 0x00000041 parent: INTEL-IR-3 name: INTEL-IR-3 size: 65536 mapped: 167 flags: 0x00000041 parent: VECTOR name: VECTOR size: 0 mapped: 216 flags: 0x00000041 Unfortunately there is no per cpu information about the VECTOR domain (yet). The irqs directory contains detailed information about mapped interrupts. # cat /sys/kernel/debug/irq/irqs/3 handler: handle_edge_irq status: 0x00004000 istate: 0x00000000 ddepth: 1 wdepth: 0 dstate: 0x01018000 IRQD_IRQ_DISABLED IRQD_SINGLE_TARGET IRQD_MOVE_PCNTXT node: 0 affinity: 0-143 effectiv: 0 pending: domain: IO-APIC-IR-0 hwirq: 0x3 chip: IR-IO-APIC flags: 0x10 IRQCHIP_SKIP_SET_WAKE parent: domain: INTEL-IR-3 hwirq: 0x20000 chip: INTEL-IR flags: 0x0 parent: domain: VECTOR hwirq: 0x3 chip: APIC flags: 0x0 This was developed to simplify the debugging of the managed affinity changes. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Keith Busch <keith.busch@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Christoph Hellwig <hch@lst.de> Link: http://lkml.kernel.org/r/20170619235444.537566163@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-06-20 07:37:17 +08:00
#endif
#ifdef CONFIG_SPARSE_IRQ
struct rcu_head rcu;
struct kobject kobj;
#endif
struct mutex request_mutex;
int parent_irq;
struct module *owner;
const char *name;
} ____cacheline_internodealigned_in_smp;
hotplug: Prevent alloc/free of irq descriptors during cpu up/down When a cpu goes up some architectures (e.g. x86) have to walk the irq space to set up the vector space for the cpu. While this needs extra protection at the architecture level we can avoid a few race conditions by preventing the concurrent allocation/free of irq descriptors and the associated data. When a cpu goes down it moves the interrupts which are targeted to this cpu away by reassigning the affinities. While this happens interrupts can be allocated and freed, which opens a can of race conditions in the code which reassignes the affinities because interrupt descriptors might be freed underneath. Example: CPU1 CPU2 cpu_up/down irq_desc = irq_to_desc(irq); remove_from_radix_tree(desc); raw_spin_lock(&desc->lock); free(desc); We could protect the irq descriptors with RCU, but that would require a full tree change of all accesses to interrupt descriptors. But fortunately these kind of race conditions are rather limited to a few things like cpu hotplug. The normal setup/teardown is very well serialized. So the simpler and obvious solution is: Prevent allocation and freeing of interrupt descriptors accross cpu hotplug. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: xiao jin <jin.xiao@intel.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Borislav Petkov <bp@suse.de> Cc: Yanmin Zhang <yanmin_zhang@linux.intel.com> Link: http://lkml.kernel.org/r/20150705171102.063519515@linutronix.de
2015-07-06 01:12:30 +08:00
#ifdef CONFIG_SPARSE_IRQ
extern void irq_lock_sparse(void);
extern void irq_unlock_sparse(void);
#else
static inline void irq_lock_sparse(void) { }
static inline void irq_unlock_sparse(void) { }
extern struct irq_desc irq_desc[NR_IRQS];
#endif
static inline struct irq_desc *irq_data_to_desc(struct irq_data *data)
{
return container_of(data->common, struct irq_desc, irq_common_data);
}
static inline unsigned int irq_desc_get_irq(struct irq_desc *desc)
{
return desc->irq_data.irq;
}
static inline struct irq_data *irq_desc_get_irq_data(struct irq_desc *desc)
{
return &desc->irq_data;
}
static inline struct irq_chip *irq_desc_get_chip(struct irq_desc *desc)
{
return desc->irq_data.chip;
}
static inline void *irq_desc_get_chip_data(struct irq_desc *desc)
{
return desc->irq_data.chip_data;
}
static inline void *irq_desc_get_handler_data(struct irq_desc *desc)
{
return desc->irq_common_data.handler_data;
}
/*
* Architectures call this to let the generic IRQ layer
* handle an interrupt.
*/
static inline void generic_handle_irq_desc(struct irq_desc *desc)
{
desc->handle_irq(desc);
}
int generic_handle_irq(unsigned int irq);
genirq: Add irq_domain-aware core IRQ handler Calling irq_find_mapping from outside a irq_{enter,exit} section is unsafe and produces ugly messages if CONFIG_PROVE_RCU is enabled: If coming from the idle state, the rcu_read_lock call in irq_find_mapping will generate an unpleasant warning: <quote> =============================== [ INFO: suspicious RCU usage. ] 3.16.0-rc1+ #135 Not tainted ------------------------------- include/linux/rcupdate.h:871 rcu_read_lock() used illegally while idle! other info that might help us debug this: RCU used illegally from idle CPU! rcu_scheduler_active = 1, debug_locks = 0 RCU used illegally from extended quiescent state! 1 lock held by swapper/0/0: #0: (rcu_read_lock){......}, at: [<ffffffc00010206c>] irq_find_mapping+0x4c/0x198 </quote> As this issue is fairly widespread and involves at least three different architectures, a possible solution is to add a new handle_domain_irq entry point into the generic IRQ code that the interrupt controller code can call. This new function takes an irq_domain, and calls into irq_find_domain inside the irq_{enter,exit} block. An additional "lookup" parameter is used to allow non-domain architecture code to be replaced by this as well. Interrupt controllers can then be updated to use the new mechanism. This code is sitting behind a new CONFIG_HANDLE_DOMAIN_IRQ, as not all architectures implement set_irq_regs (yes, mn10300, I'm looking at you...). Reported-by: Vladimir Murzin <vladimir.murzin@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Link: https://lkml.kernel.org/r/1409047421-27649-2-git-send-email-marc.zyngier@arm.com Signed-off-by: Jason Cooper <jason@lakedaemon.net>
2014-08-26 18:03:16 +08:00
#ifdef CONFIG_HANDLE_DOMAIN_IRQ
/*
* Convert a HW interrupt number to a logical one using a IRQ domain,
* and handle the result interrupt number. Return -EINVAL if
* conversion failed. Providing a NULL domain indicates that the
* conversion has already been done.
*/
int __handle_domain_irq(struct irq_domain *domain, unsigned int hwirq,
bool lookup, struct pt_regs *regs);
static inline int handle_domain_irq(struct irq_domain *domain,
unsigned int hwirq, struct pt_regs *regs)
{
return __handle_domain_irq(domain, hwirq, true, regs);
}
#ifdef CONFIG_IRQ_DOMAIN
int handle_domain_nmi(struct irq_domain *domain, unsigned int hwirq,
struct pt_regs *regs);
#endif
genirq: Add irq_domain-aware core IRQ handler Calling irq_find_mapping from outside a irq_{enter,exit} section is unsafe and produces ugly messages if CONFIG_PROVE_RCU is enabled: If coming from the idle state, the rcu_read_lock call in irq_find_mapping will generate an unpleasant warning: <quote> =============================== [ INFO: suspicious RCU usage. ] 3.16.0-rc1+ #135 Not tainted ------------------------------- include/linux/rcupdate.h:871 rcu_read_lock() used illegally while idle! other info that might help us debug this: RCU used illegally from idle CPU! rcu_scheduler_active = 1, debug_locks = 0 RCU used illegally from extended quiescent state! 1 lock held by swapper/0/0: #0: (rcu_read_lock){......}, at: [<ffffffc00010206c>] irq_find_mapping+0x4c/0x198 </quote> As this issue is fairly widespread and involves at least three different architectures, a possible solution is to add a new handle_domain_irq entry point into the generic IRQ code that the interrupt controller code can call. This new function takes an irq_domain, and calls into irq_find_domain inside the irq_{enter,exit} block. An additional "lookup" parameter is used to allow non-domain architecture code to be replaced by this as well. Interrupt controllers can then be updated to use the new mechanism. This code is sitting behind a new CONFIG_HANDLE_DOMAIN_IRQ, as not all architectures implement set_irq_regs (yes, mn10300, I'm looking at you...). Reported-by: Vladimir Murzin <vladimir.murzin@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Link: https://lkml.kernel.org/r/1409047421-27649-2-git-send-email-marc.zyngier@arm.com Signed-off-by: Jason Cooper <jason@lakedaemon.net>
2014-08-26 18:03:16 +08:00
#endif
/* Test to see if a driver has successfully requested an irq */
static inline int irq_desc_has_action(struct irq_desc *desc)
{
return desc->action != NULL;
}
static inline int irq_has_action(unsigned int irq)
{
return irq_desc_has_action(irq_to_desc(irq));
}
/**
* irq_set_handler_locked - Set irq handler from a locked region
* @data: Pointer to the irq_data structure which identifies the irq
* @handler: Flow control handler function for this interrupt
*
* Sets the handler in the irq descriptor associated to @data.
*
* Must be called with irq_desc locked and valid parameters. Typical
* call site is the irq_set_type() callback.
*/
static inline void irq_set_handler_locked(struct irq_data *data,
irq_flow_handler_t handler)
{
struct irq_desc *desc = irq_data_to_desc(data);
desc->handle_irq = handler;
}
/**
* irq_set_chip_handler_name_locked - Set chip, handler and name from a locked region
* @data: Pointer to the irq_data structure for which the chip is set
* @chip: Pointer to the new irq chip
* @handler: Flow control handler function for this interrupt
* @name: Name of the interrupt
*
* Replace the irq chip at the proper hierarchy level in @data and
* sets the handler and name in the associated irq descriptor.
*
* Must be called with irq_desc locked and valid parameters.
*/
static inline void
irq_set_chip_handler_name_locked(struct irq_data *data, struct irq_chip *chip,
irq_flow_handler_t handler, const char *name)
{
struct irq_desc *desc = irq_data_to_desc(data);
desc->handle_irq = handler;
desc->name = name;
data->chip = chip;
}
irqdesc: Use bool return type instead of int The irq_balancing_disabled and irq_is_percpu{,_devid} functions are clearly intended to return bool like the functions in kernel/irq/settings.h, but actually return an int containing a masked value of desc->status_use_accessors. This can lead to subtle breakage if, for example, the return value is subsequently truncated when assigned to a narrower type. As Linus points out: | In particular, what can (and _has_ happened) is that people end up | using these functions that return true or false, and they assign the | result to something like a bitfield (or a char) or whatever. | | And the code looks *obviously* correct, when you have things like | | dev->percpu = irq_is_percpu_devid(dev->irq); | | and that "percpu" thing is just one status bit among many. It may even | *work*, because maybe that "percpu" flag ends up not being all that | important, or it just happens to never be set on the particular | hardware that people end up testing. | | But while it looks obviously correct, and might even work, it's really | fundamentally broken. Because that "true or false" function didn't | actually return 0/1, it returned 0 or 0x20000. | | And 0x20000 may not fit in a bitmask or a "char" or whatever. Fix the problem by consistently using bool as the return type for these functions. Reported-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: marc.zyngier@arm.com Link: https://lkml.kernel.org/r/1512142179-24616-1-git-send-email-will.deacon@arm.com
2017-12-01 23:29:39 +08:00
static inline bool irq_balancing_disabled(unsigned int irq)
{
struct irq_desc *desc;
desc = irq_to_desc(irq);
return desc->status_use_accessors & IRQ_NO_BALANCING_MASK;
}
irqdesc: Use bool return type instead of int The irq_balancing_disabled and irq_is_percpu{,_devid} functions are clearly intended to return bool like the functions in kernel/irq/settings.h, but actually return an int containing a masked value of desc->status_use_accessors. This can lead to subtle breakage if, for example, the return value is subsequently truncated when assigned to a narrower type. As Linus points out: | In particular, what can (and _has_ happened) is that people end up | using these functions that return true or false, and they assign the | result to something like a bitfield (or a char) or whatever. | | And the code looks *obviously* correct, when you have things like | | dev->percpu = irq_is_percpu_devid(dev->irq); | | and that "percpu" thing is just one status bit among many. It may even | *work*, because maybe that "percpu" flag ends up not being all that | important, or it just happens to never be set on the particular | hardware that people end up testing. | | But while it looks obviously correct, and might even work, it's really | fundamentally broken. Because that "true or false" function didn't | actually return 0/1, it returned 0 or 0x20000. | | And 0x20000 may not fit in a bitmask or a "char" or whatever. Fix the problem by consistently using bool as the return type for these functions. Reported-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: marc.zyngier@arm.com Link: https://lkml.kernel.org/r/1512142179-24616-1-git-send-email-will.deacon@arm.com
2017-12-01 23:29:39 +08:00
static inline bool irq_is_percpu(unsigned int irq)
{
struct irq_desc *desc;
desc = irq_to_desc(irq);
return desc->status_use_accessors & IRQ_PER_CPU;
}
irqdesc: Use bool return type instead of int The irq_balancing_disabled and irq_is_percpu{,_devid} functions are clearly intended to return bool like the functions in kernel/irq/settings.h, but actually return an int containing a masked value of desc->status_use_accessors. This can lead to subtle breakage if, for example, the return value is subsequently truncated when assigned to a narrower type. As Linus points out: | In particular, what can (and _has_ happened) is that people end up | using these functions that return true or false, and they assign the | result to something like a bitfield (or a char) or whatever. | | And the code looks *obviously* correct, when you have things like | | dev->percpu = irq_is_percpu_devid(dev->irq); | | and that "percpu" thing is just one status bit among many. It may even | *work*, because maybe that "percpu" flag ends up not being all that | important, or it just happens to never be set on the particular | hardware that people end up testing. | | But while it looks obviously correct, and might even work, it's really | fundamentally broken. Because that "true or false" function didn't | actually return 0/1, it returned 0 or 0x20000. | | And 0x20000 may not fit in a bitmask or a "char" or whatever. Fix the problem by consistently using bool as the return type for these functions. Reported-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: marc.zyngier@arm.com Link: https://lkml.kernel.org/r/1512142179-24616-1-git-send-email-will.deacon@arm.com
2017-12-01 23:29:39 +08:00
static inline bool irq_is_percpu_devid(unsigned int irq)
{
struct irq_desc *desc;
desc = irq_to_desc(irq);
return desc->status_use_accessors & IRQ_PER_CPU_DEVID;
}
static inline void
irq_set_lockdep_class(unsigned int irq, struct lock_class_key *lock_class,
struct lock_class_key *request_class)
{
struct irq_desc *desc = irq_to_desc(irq);
if (desc) {
lockdep_set_class(&desc->lock, lock_class);
lockdep_set_class(&desc->request_mutex, request_class);
}
}
#endif