OpenCloudOS-Kernel/arch/x86/events/intel/core.c

5215 lines
144 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
perf: Add support for supplementary event registers Change logs against Andi's original version: - Extends perf_event_attr:config to config{,1,2} (Peter Zijlstra) - Fixed a major event scheduling issue. There cannot be a ref++ on an event that has already done ref++ once and without calling put_constraint() in between. (Stephane Eranian) - Use thread_cpumask for percore allocation. (Lin Ming) - Use MSR names in the extra reg lists. (Lin Ming) - Remove redundant "c = NULL" in intel_percore_constraints - Fix comment of perf_event_attr::config1 Intel Nehalem/Westmere have a special OFFCORE_RESPONSE event that can be used to monitor any offcore accesses from a core. This is a very useful event for various tunings, and it's also needed to implement the generic LLC-* events correctly. Unfortunately this event requires programming a mask in a separate register. And worse this separate register is per core, not per CPU thread. This patch: - Teaches perf_events that OFFCORE_RESPONSE needs extra parameters. The extra parameters are passed by user space in the perf_event_attr::config1 field. - Adds support to the Intel perf_event core to schedule per core resources. This adds fairly generic infrastructure that can be also used for other per core resources. The basic code has is patterned after the similar AMD northbridge constraints code. Thanks to Stephane Eranian who pointed out some problems in the original version and suggested improvements. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1299119690-13991-2-git-send-email-ming.m.lin@intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-03-03 10:34:47 +08:00
/*
* Per core/cpu state
*
* Used to coordinate shared registers between HT threads or
* among events on a single PMU.
perf: Add support for supplementary event registers Change logs against Andi's original version: - Extends perf_event_attr:config to config{,1,2} (Peter Zijlstra) - Fixed a major event scheduling issue. There cannot be a ref++ on an event that has already done ref++ once and without calling put_constraint() in between. (Stephane Eranian) - Use thread_cpumask for percore allocation. (Lin Ming) - Use MSR names in the extra reg lists. (Lin Ming) - Remove redundant "c = NULL" in intel_percore_constraints - Fix comment of perf_event_attr::config1 Intel Nehalem/Westmere have a special OFFCORE_RESPONSE event that can be used to monitor any offcore accesses from a core. This is a very useful event for various tunings, and it's also needed to implement the generic LLC-* events correctly. Unfortunately this event requires programming a mask in a separate register. And worse this separate register is per core, not per CPU thread. This patch: - Teaches perf_events that OFFCORE_RESPONSE needs extra parameters. The extra parameters are passed by user space in the perf_event_attr::config1 field. - Adds support to the Intel perf_event core to schedule per core resources. This adds fairly generic infrastructure that can be also used for other per core resources. The basic code has is patterned after the similar AMD northbridge constraints code. Thanks to Stephane Eranian who pointed out some problems in the original version and suggested improvements. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1299119690-13991-2-git-send-email-ming.m.lin@intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-03-03 10:34:47 +08:00
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/stddef.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/nmi.h>
#include <asm/cpufeature.h>
#include <asm/hardirq.h>
#include <asm/intel-family.h>
#include <asm/intel_pt.h>
#include <asm/apic.h>
perf/x86/kvm: Avoid unnecessary work in guest filtering KVM added a workaround for PEBS events leaking into guests with commit: 26a4f3c08de4 ("perf/x86: disable PEBS on a guest entry.") This uses the VT entry/exit list to add an extra disable of the PEBS_ENABLE MSR. Intel also added a fix for this issue to microcode updates on Haswell/Broadwell/Skylake. It turns out using the MSR entry/exit list makes VM exits significantly slower. The list is only needed for disabling PEBS, because the GLOBAL_CTRL change gets optimized by KVM into changing the VMCS. Check for the microcode updates that have the microcode fix for leaking PEBS, and disable the extra entry/exit list entry for PEBS_ENABLE. In addition we always clear the GLOBAL_CTRL for the PEBS counter while running in the guest, which is enough to make them never fire at the wrong side of the host/guest transition. The overhead for VM exits with the filtering active with the patch is reduced from 8% to 4%. The microcode patch has already been merged into future platforms. This patch is one-off thing. The quirks is used here. For other old platforms which doesn't have microcode patch and quirks, extra disable of the PEBS_ENABLE MSR is still required. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: David Ahern <dsahern@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: bp@alien8.de Link: https://lkml.kernel.org/r/1549319013-4522-2-git-send-email-kan.liang@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-05 06:23:30 +08:00
#include <asm/cpu_device_id.h>
#include "../perf_event.h"
perf: Add support for supplementary event registers Change logs against Andi's original version: - Extends perf_event_attr:config to config{,1,2} (Peter Zijlstra) - Fixed a major event scheduling issue. There cannot be a ref++ on an event that has already done ref++ once and without calling put_constraint() in between. (Stephane Eranian) - Use thread_cpumask for percore allocation. (Lin Ming) - Use MSR names in the extra reg lists. (Lin Ming) - Remove redundant "c = NULL" in intel_percore_constraints - Fix comment of perf_event_attr::config1 Intel Nehalem/Westmere have a special OFFCORE_RESPONSE event that can be used to monitor any offcore accesses from a core. This is a very useful event for various tunings, and it's also needed to implement the generic LLC-* events correctly. Unfortunately this event requires programming a mask in a separate register. And worse this separate register is per core, not per CPU thread. This patch: - Teaches perf_events that OFFCORE_RESPONSE needs extra parameters. The extra parameters are passed by user space in the perf_event_attr::config1 field. - Adds support to the Intel perf_event core to schedule per core resources. This adds fairly generic infrastructure that can be also used for other per core resources. The basic code has is patterned after the similar AMD northbridge constraints code. Thanks to Stephane Eranian who pointed out some problems in the original version and suggested improvements. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1299119690-13991-2-git-send-email-ming.m.lin@intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-03-03 10:34:47 +08:00
/*
* Intel PerfMon, used on Core and later.
*/
static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
{
[PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
[PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
[PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
[PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
[PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
[PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
[PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
};
static struct event_constraint intel_core_event_constraints[] __read_mostly =
{
INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
EVENT_CONSTRAINT_END
};
static struct event_constraint intel_core2_event_constraints[] __read_mostly =
{
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
EVENT_CONSTRAINT_END
};
static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
{
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
EVENT_CONSTRAINT_END
};
static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
perf: Add support for supplementary event registers Change logs against Andi's original version: - Extends perf_event_attr:config to config{,1,2} (Peter Zijlstra) - Fixed a major event scheduling issue. There cannot be a ref++ on an event that has already done ref++ once and without calling put_constraint() in between. (Stephane Eranian) - Use thread_cpumask for percore allocation. (Lin Ming) - Use MSR names in the extra reg lists. (Lin Ming) - Remove redundant "c = NULL" in intel_percore_constraints - Fix comment of perf_event_attr::config1 Intel Nehalem/Westmere have a special OFFCORE_RESPONSE event that can be used to monitor any offcore accesses from a core. This is a very useful event for various tunings, and it's also needed to implement the generic LLC-* events correctly. Unfortunately this event requires programming a mask in a separate register. And worse this separate register is per core, not per CPU thread. This patch: - Teaches perf_events that OFFCORE_RESPONSE needs extra parameters. The extra parameters are passed by user space in the perf_event_attr::config1 field. - Adds support to the Intel perf_event core to schedule per core resources. This adds fairly generic infrastructure that can be also used for other per core resources. The basic code has is patterned after the similar AMD northbridge constraints code. Thanks to Stephane Eranian who pointed out some problems in the original version and suggested improvements. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1299119690-13991-2-git-send-email-ming.m.lin@intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-03-03 10:34:47 +08:00
{
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
perf: Add support for supplementary event registers Change logs against Andi's original version: - Extends perf_event_attr:config to config{,1,2} (Peter Zijlstra) - Fixed a major event scheduling issue. There cannot be a ref++ on an event that has already done ref++ once and without calling put_constraint() in between. (Stephane Eranian) - Use thread_cpumask for percore allocation. (Lin Ming) - Use MSR names in the extra reg lists. (Lin Ming) - Remove redundant "c = NULL" in intel_percore_constraints - Fix comment of perf_event_attr::config1 Intel Nehalem/Westmere have a special OFFCORE_RESPONSE event that can be used to monitor any offcore accesses from a core. This is a very useful event for various tunings, and it's also needed to implement the generic LLC-* events correctly. Unfortunately this event requires programming a mask in a separate register. And worse this separate register is per core, not per CPU thread. This patch: - Teaches perf_events that OFFCORE_RESPONSE needs extra parameters. The extra parameters are passed by user space in the perf_event_attr::config1 field. - Adds support to the Intel perf_event core to schedule per core resources. This adds fairly generic infrastructure that can be also used for other per core resources. The basic code has is patterned after the similar AMD northbridge constraints code. Thanks to Stephane Eranian who pointed out some problems in the original version and suggested improvements. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1299119690-13991-2-git-send-email-ming.m.lin@intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-03-03 10:34:47 +08:00
EVENT_EXTRA_END
};
static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
{
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
EVENT_CONSTRAINT_END
};
static struct event_constraint intel_snb_event_constraints[] __read_mostly =
{
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
/*
* When HT is off these events can only run on the bottom 4 counters
* When HT is on, they are impacted by the HT bug and require EXCL access
*/
INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
EVENT_CONSTRAINT_END
};
static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
{
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
/*
* When HT is off these events can only run on the bottom 4 counters
* When HT is on, they are impacted by the HT bug and require EXCL access
*/
INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
EVENT_CONSTRAINT_END
};
static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
perf: Add support for supplementary event registers Change logs against Andi's original version: - Extends perf_event_attr:config to config{,1,2} (Peter Zijlstra) - Fixed a major event scheduling issue. There cannot be a ref++ on an event that has already done ref++ once and without calling put_constraint() in between. (Stephane Eranian) - Use thread_cpumask for percore allocation. (Lin Ming) - Use MSR names in the extra reg lists. (Lin Ming) - Remove redundant "c = NULL" in intel_percore_constraints - Fix comment of perf_event_attr::config1 Intel Nehalem/Westmere have a special OFFCORE_RESPONSE event that can be used to monitor any offcore accesses from a core. This is a very useful event for various tunings, and it's also needed to implement the generic LLC-* events correctly. Unfortunately this event requires programming a mask in a separate register. And worse this separate register is per core, not per CPU thread. This patch: - Teaches perf_events that OFFCORE_RESPONSE needs extra parameters. The extra parameters are passed by user space in the perf_event_attr::config1 field. - Adds support to the Intel perf_event core to schedule per core resources. This adds fairly generic infrastructure that can be also used for other per core resources. The basic code has is patterned after the similar AMD northbridge constraints code. Thanks to Stephane Eranian who pointed out some problems in the original version and suggested improvements. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1299119690-13991-2-git-send-email-ming.m.lin@intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-03-03 10:34:47 +08:00
{
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
perf: Add support for supplementary event registers Change logs against Andi's original version: - Extends perf_event_attr:config to config{,1,2} (Peter Zijlstra) - Fixed a major event scheduling issue. There cannot be a ref++ on an event that has already done ref++ once and without calling put_constraint() in between. (Stephane Eranian) - Use thread_cpumask for percore allocation. (Lin Ming) - Use MSR names in the extra reg lists. (Lin Ming) - Remove redundant "c = NULL" in intel_percore_constraints - Fix comment of perf_event_attr::config1 Intel Nehalem/Westmere have a special OFFCORE_RESPONSE event that can be used to monitor any offcore accesses from a core. This is a very useful event for various tunings, and it's also needed to implement the generic LLC-* events correctly. Unfortunately this event requires programming a mask in a separate register. And worse this separate register is per core, not per CPU thread. This patch: - Teaches perf_events that OFFCORE_RESPONSE needs extra parameters. The extra parameters are passed by user space in the perf_event_attr::config1 field. - Adds support to the Intel perf_event core to schedule per core resources. This adds fairly generic infrastructure that can be also used for other per core resources. The basic code has is patterned after the similar AMD northbridge constraints code. Thanks to Stephane Eranian who pointed out some problems in the original version and suggested improvements. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1299119690-13991-2-git-send-email-ming.m.lin@intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-03-03 10:34:47 +08:00
EVENT_EXTRA_END
};
static struct event_constraint intel_v1_event_constraints[] __read_mostly =
{
EVENT_CONSTRAINT_END
};
static struct event_constraint intel_gen_event_constraints[] __read_mostly =
{
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
EVENT_CONSTRAINT_END
};
static struct event_constraint intel_slm_event_constraints[] __read_mostly =
{
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
EVENT_CONSTRAINT_END
};
static struct event_constraint intel_skl_event_constraints[] = {
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
/*
* when HT is off, these can only run on the bottom 4 counters
*/
INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
INTEL_EVENT_CONSTRAINT(0xc6, 0xf), /* FRONTEND_RETIRED.* */
EVENT_CONSTRAINT_END
};
2015-12-08 06:28:18 +08:00
static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
2015-12-08 06:28:18 +08:00
EVENT_EXTRA_END
};
static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
EVENT_EXTRA_END
};
static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
EVENT_EXTRA_END
};
static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
/*
* Note the low 8 bits eventsel code is not a continuous field, containing
* some #GPing bits. These are masked out.
*/
INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
EVENT_EXTRA_END
};
perf/x86/intel: Add Icelake support Add Icelake core PMU perf code, including constraint tables and the main enable code. Icelake expanded the generic counters to always 8 even with HT on, but a range of events cannot be scheduled on the extra 4 counters. Add new constraint ranges to describe this to the scheduler. The number of constraints that need to be checked is larger now than with earlier CPUs. At some point we may need a new data structure to look them up more efficiently than with linear search. So far it still seems to be acceptable however. Icelake added a new fixed counter SLOTS. Full support for it is added later in the patch series. The cache events table is identical to Skylake. Compare to PEBS instruction event on generic counter, fixed counter 0 has less skid. Force instruction:ppp always in fixed counter 0. Originally-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: jolsa@kernel.org Link: https://lkml.kernel.org/r/20190402194509.2832-9-kan.liang@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-03 03:45:05 +08:00
static struct event_constraint intel_icl_event_constraints[] = {
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
INTEL_UEVENT_CONSTRAINT(0x1c0, 0), /* INST_RETIRED.PREC_DIST */
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
INTEL_EVENT_CONSTRAINT(0x32, 0xf), /* SW_PREFETCH_ACCESS.* */
INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x54, 0xf),
INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff), /* CYCLE_ACTIVITY.STALLS_TOTAL */
INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff), /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
INTEL_EVENT_CONSTRAINT(0xa3, 0xf), /* CYCLE_ACTIVITY.* */
INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
EVENT_CONSTRAINT_END
};
static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
perf/x86/intel: Add Icelake support Add Icelake core PMU perf code, including constraint tables and the main enable code. Icelake expanded the generic counters to always 8 even with HT on, but a range of events cannot be scheduled on the extra 4 counters. Add new constraint ranges to describe this to the scheduler. The number of constraints that need to be checked is larger now than with earlier CPUs. At some point we may need a new data structure to look them up more efficiently than with linear search. So far it still seems to be acceptable however. Icelake added a new fixed counter SLOTS. Full support for it is added later in the patch series. The cache events table is identical to Skylake. Compare to PEBS instruction event on generic counter, fixed counter 0 has less skid. Force instruction:ppp always in fixed counter 0. Originally-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: jolsa@kernel.org Link: https://lkml.kernel.org/r/20190402194509.2832-9-kan.liang@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-03 03:45:05 +08:00
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
EVENT_EXTRA_END
};
EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
static struct attribute *nhm_mem_events_attrs[] = {
EVENT_PTR(mem_ld_nhm),
NULL,
};
perf/x86/intel: Add topdown events to Intel Core Add declarations for the events needed for topdown to the Intel big core CPUs starting with Sandy Bridge. We need to report different values if HyperThreading is on or off. The only thing this patch does is to export some events in sysfs. topdown level 1 uses a set of abstracted metrics which are generic to out of order CPU cores (although some CPUs may not implement all of them): topdown-total-slots Available slots in the pipeline topdown-slots-issued Slots issued into the pipeline topdown-slots-retired Slots successfully retired topdown-fetch-bubbles Pipeline gaps in the frontend topdown-recovery-bubbles Pipeline gaps during recovery from misspeculation A slot is a single operation in the CPU pipe line. These metrics then allow to compute four useful metrics: FrontendBound, BackendBound, Retiring, BadSpeculation. The formulas to compute the metrics are generic, they only change based on the availability on the abstracted input values. The kernel declares the events supported by the current CPU and their scaling factors (such as the pipeline width) and perf stat then computes the formulas based on the available metrics. This is similar how existing perf metrics, such as TSC metrics or IPC, are implemented. This abstracts all CPU pipe line specific knowledge in the kernel driver, but still avoids the need for larger scale perf interface changes. For HyperThreading the any bit is needed to get accurate values when both threads are executing. This implies that the events can only be collected as root or with perf_event_paranoid=-1 for now. The basic scheme is based on the following paper: Yasin, A Top Down Method for Performance analysis and Counter architecture ISPASS14 (pdf available via google) Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: jolsa@kernel.org Link: http://lkml.kernel.org/r/1463703002-19686-4-git-send-email-andi@firstfloor.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-20 08:09:57 +08:00
/*
* topdown events for Intel Core CPUs.
*
* The events are all in slots, which is a free slot in a 4 wide
* pipeline. Some events are already reported in slots, for cycle
* events we multiply by the pipeline width (4).
*
* With Hyper Threading on, topdown metrics are either summed or averaged
* between the threads of a core: (count_t0 + count_t1).
*
* For the average case the metric is always scaled to pipeline width,
* so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
*/
EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
"event=0x3c,umask=0x0", /* cpu_clk_unhalted.thread */
"event=0x3c,umask=0x0,any=1"); /* cpu_clk_unhalted.thread_any */
EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
"event=0xe,umask=0x1"); /* uops_issued.any */
EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
"event=0xc2,umask=0x2"); /* uops_retired.retire_slots */
EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
"event=0x9c,umask=0x1"); /* idq_uops_not_delivered_core */
EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
"event=0xd,umask=0x3,cmask=1", /* int_misc.recovery_cycles */
"event=0xd,umask=0x3,cmask=1,any=1"); /* int_misc.recovery_cycles_any */
EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
"4", "2");
static struct attribute *snb_events_attrs[] = {
perf/x86/intel: Add topdown events to Intel Core Add declarations for the events needed for topdown to the Intel big core CPUs starting with Sandy Bridge. We need to report different values if HyperThreading is on or off. The only thing this patch does is to export some events in sysfs. topdown level 1 uses a set of abstracted metrics which are generic to out of order CPU cores (although some CPUs may not implement all of them): topdown-total-slots Available slots in the pipeline topdown-slots-issued Slots issued into the pipeline topdown-slots-retired Slots successfully retired topdown-fetch-bubbles Pipeline gaps in the frontend topdown-recovery-bubbles Pipeline gaps during recovery from misspeculation A slot is a single operation in the CPU pipe line. These metrics then allow to compute four useful metrics: FrontendBound, BackendBound, Retiring, BadSpeculation. The formulas to compute the metrics are generic, they only change based on the availability on the abstracted input values. The kernel declares the events supported by the current CPU and their scaling factors (such as the pipeline width) and perf stat then computes the formulas based on the available metrics. This is similar how existing perf metrics, such as TSC metrics or IPC, are implemented. This abstracts all CPU pipe line specific knowledge in the kernel driver, but still avoids the need for larger scale perf interface changes. For HyperThreading the any bit is needed to get accurate values when both threads are executing. This implies that the events can only be collected as root or with perf_event_paranoid=-1 for now. The basic scheme is based on the following paper: Yasin, A Top Down Method for Performance analysis and Counter architecture ISPASS14 (pdf available via google) Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: jolsa@kernel.org Link: http://lkml.kernel.org/r/1463703002-19686-4-git-send-email-andi@firstfloor.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-20 08:09:57 +08:00
EVENT_PTR(td_slots_issued),
EVENT_PTR(td_slots_retired),
EVENT_PTR(td_fetch_bubbles),
EVENT_PTR(td_total_slots),
EVENT_PTR(td_total_slots_scale),
EVENT_PTR(td_recovery_bubbles),
EVENT_PTR(td_recovery_bubbles_scale),
NULL,
};
static struct attribute *snb_mem_events_attrs[] = {
EVENT_PTR(mem_ld_snb),
EVENT_PTR(mem_st_snb),
NULL,
};
static struct event_constraint intel_hsw_event_constraints[] = {
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
/*
* When HT is off these events can only run on the bottom 4 counters
* When HT is on, they are impacted by the HT bug and require EXCL access
*/
INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
EVENT_CONSTRAINT_END
};
static struct event_constraint intel_bdw_event_constraints[] = {
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
/*
* when HT is off, these can only run on the bottom 4 counters
*/
INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
EVENT_CONSTRAINT_END
};
static u64 intel_pmu_event_map(int hw_event)
{
return intel_perfmon_event_map[hw_event];
}
/*
* Notes on the events:
* - data reads do not include code reads (comparable to earlier tables)
* - data counts include speculative execution (except L1 write, dtlb, bpu)
* - remote node access includes remote memory, remote cache, remote mmio.
* - prefetches are not included in the counts.
* - icache miss does not include decoded icache
*/
#define SKL_DEMAND_DATA_RD BIT_ULL(0)
#define SKL_DEMAND_RFO BIT_ULL(1)
#define SKL_ANY_RESPONSE BIT_ULL(16)
#define SKL_SUPPLIER_NONE BIT_ULL(17)
#define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26)
#define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27)
#define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28)
#define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29)
#define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \
SKL_L3_MISS_REMOTE_HOP0_DRAM| \
SKL_L3_MISS_REMOTE_HOP1_DRAM| \
SKL_L3_MISS_REMOTE_HOP2P_DRAM)
#define SKL_SPL_HIT BIT_ULL(30)
#define SKL_SNOOP_NONE BIT_ULL(31)
#define SKL_SNOOP_NOT_NEEDED BIT_ULL(32)
#define SKL_SNOOP_MISS BIT_ULL(33)
#define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34)
#define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35)
#define SKL_SNOOP_HITM BIT_ULL(36)
#define SKL_SNOOP_NON_DRAM BIT_ULL(37)
#define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \
SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
#define SKL_DEMAND_READ SKL_DEMAND_DATA_RD
#define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \
SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
SKL_SNOOP_HITM|SKL_SPL_HIT)
#define SKL_DEMAND_WRITE SKL_DEMAND_RFO
#define SKL_LLC_ACCESS SKL_ANY_RESPONSE
#define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
SKL_L3_MISS_REMOTE_HOP1_DRAM| \
SKL_L3_MISS_REMOTE_HOP2P_DRAM)
static __initconst const u64 skl_hw_cache_event_ids
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(L1D ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
[ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
[ C(RESULT_MISS) ] = 0x0,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(L1I ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(LL ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(DTLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
[ C(RESULT_MISS) ] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
[ C(RESULT_MISS) ] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(ITLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */
[ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(BPU ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
[ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(NODE) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
};
static __initconst const u64 skl_hw_cache_extra_regs
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(LL ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
SKL_LLC_ACCESS|SKL_ANY_SNOOP,
[ C(RESULT_MISS) ] = SKL_DEMAND_READ|
SKL_L3_MISS|SKL_ANY_SNOOP|
SKL_SUPPLIER_NONE,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
SKL_LLC_ACCESS|SKL_ANY_SNOOP,
[ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
SKL_L3_MISS|SKL_ANY_SNOOP|
SKL_SUPPLIER_NONE,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(NODE) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
[ C(RESULT_MISS) ] = SKL_DEMAND_READ|
SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
[ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
};
#define SNB_DMND_DATA_RD (1ULL << 0)
#define SNB_DMND_RFO (1ULL << 1)
#define SNB_DMND_IFETCH (1ULL << 2)
#define SNB_DMND_WB (1ULL << 3)
#define SNB_PF_DATA_RD (1ULL << 4)
#define SNB_PF_RFO (1ULL << 5)
#define SNB_PF_IFETCH (1ULL << 6)
#define SNB_LLC_DATA_RD (1ULL << 7)
#define SNB_LLC_RFO (1ULL << 8)
#define SNB_LLC_IFETCH (1ULL << 9)
#define SNB_BUS_LOCKS (1ULL << 10)
#define SNB_STRM_ST (1ULL << 11)
#define SNB_OTHER (1ULL << 15)
#define SNB_RESP_ANY (1ULL << 16)
#define SNB_NO_SUPP (1ULL << 17)
#define SNB_LLC_HITM (1ULL << 18)
#define SNB_LLC_HITE (1ULL << 19)
#define SNB_LLC_HITS (1ULL << 20)
#define SNB_LLC_HITF (1ULL << 21)
#define SNB_LOCAL (1ULL << 22)
#define SNB_REMOTE (0xffULL << 23)
#define SNB_SNP_NONE (1ULL << 31)
#define SNB_SNP_NOT_NEEDED (1ULL << 32)
#define SNB_SNP_MISS (1ULL << 33)
#define SNB_NO_FWD (1ULL << 34)
#define SNB_SNP_FWD (1ULL << 35)
#define SNB_HITM (1ULL << 36)
#define SNB_NON_DRAM (1ULL << 37)
#define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
#define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
#define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
#define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
SNB_HITM)
#define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
#define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
#define SNB_L3_ACCESS SNB_RESP_ANY
#define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
static __initconst const u64 snb_hw_cache_extra_regs
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(LL ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
[ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
[ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
[ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
},
},
[ C(NODE) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
[ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
[ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
[ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
},
},
};
static __initconst const u64 snb_hw_cache_event_ids
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(L1D) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
[ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
[ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
},
},
[ C(L1I ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(LL ) ] = {
[ C(OP_READ) ] = {
/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
[ C(RESULT_ACCESS) ] = 0x01b7,
/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
[ C(RESULT_MISS) ] = 0x01b7,
},
[ C(OP_WRITE) ] = {
/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
[ C(RESULT_ACCESS) ] = 0x01b7,
/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
[ C(RESULT_MISS) ] = 0x01b7,
},
[ C(OP_PREFETCH) ] = {
/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
[ C(RESULT_ACCESS) ] = 0x01b7,
/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
[ C(RESULT_MISS) ] = 0x01b7,
},
},
[ C(DTLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
[ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
[ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(ITLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
[ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(BPU ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
[ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(NODE) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x01b7,
[ C(RESULT_MISS) ] = 0x01b7,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x01b7,
[ C(RESULT_MISS) ] = 0x01b7,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x01b7,
[ C(RESULT_MISS) ] = 0x01b7,
},
},
};
/*
* Notes on the events:
* - data reads do not include code reads (comparable to earlier tables)
* - data counts include speculative execution (except L1 write, dtlb, bpu)
* - remote node access includes remote memory, remote cache, remote mmio.
* - prefetches are not included in the counts because they are not
* reliably counted.
*/
#define HSW_DEMAND_DATA_RD BIT_ULL(0)
#define HSW_DEMAND_RFO BIT_ULL(1)
#define HSW_ANY_RESPONSE BIT_ULL(16)
#define HSW_SUPPLIER_NONE BIT_ULL(17)
#define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22)
#define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27)
#define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28)
#define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29)
#define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \
HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
HSW_L3_MISS_REMOTE_HOP2P)
#define HSW_SNOOP_NONE BIT_ULL(31)
#define HSW_SNOOP_NOT_NEEDED BIT_ULL(32)
#define HSW_SNOOP_MISS BIT_ULL(33)
#define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34)
#define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35)
#define HSW_SNOOP_HITM BIT_ULL(36)
#define HSW_SNOOP_NON_DRAM BIT_ULL(37)
#define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \
HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
#define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
#define HSW_DEMAND_READ HSW_DEMAND_DATA_RD
#define HSW_DEMAND_WRITE HSW_DEMAND_RFO
#define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\
HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
#define HSW_LLC_ACCESS HSW_ANY_RESPONSE
#define BDW_L3_MISS_LOCAL BIT(26)
#define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \
HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
HSW_L3_MISS_REMOTE_HOP2P)
static __initconst const u64 hsw_hw_cache_event_ids
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(L1D ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
[ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
[ C(RESULT_MISS) ] = 0x0,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(L1I ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(LL ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(DTLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
[ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
[ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(ITLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
[ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(BPU ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
[ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(NODE) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
};
static __initconst const u64 hsw_hw_cache_extra_regs
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(LL ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
HSW_LLC_ACCESS,
[ C(RESULT_MISS) ] = HSW_DEMAND_READ|
HSW_L3_MISS|HSW_ANY_SNOOP,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
HSW_LLC_ACCESS,
[ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
HSW_L3_MISS|HSW_ANY_SNOOP,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(NODE) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
HSW_L3_MISS_LOCAL_DRAM|
HSW_SNOOP_DRAM,
[ C(RESULT_MISS) ] = HSW_DEMAND_READ|
HSW_L3_MISS_REMOTE|
HSW_SNOOP_DRAM,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
HSW_L3_MISS_LOCAL_DRAM|
HSW_SNOOP_DRAM,
[ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
HSW_L3_MISS_REMOTE|
HSW_SNOOP_DRAM,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
};
static __initconst const u64 westmere_hw_cache_event_ids
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(L1D) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
[ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
[ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
[ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
},
},
[ C(L1I ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
[ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(LL ) ] = {
[ C(OP_READ) ] = {
/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
[ C(RESULT_ACCESS) ] = 0x01b7,
/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
[ C(RESULT_MISS) ] = 0x01b7,
},
/*
* Use RFO, not WRITEBACK, because a write miss would typically occur
* on RFO.
*/
[ C(OP_WRITE) ] = {
/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
[ C(RESULT_ACCESS) ] = 0x01b7,
/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
[ C(RESULT_MISS) ] = 0x01b7,
},
[ C(OP_PREFETCH) ] = {
/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
[ C(RESULT_ACCESS) ] = 0x01b7,
/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
[ C(RESULT_MISS) ] = 0x01b7,
},
},
[ C(DTLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
[ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
[ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(ITLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
[ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(BPU ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
[ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(NODE) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x01b7,
[ C(RESULT_MISS) ] = 0x01b7,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x01b7,
[ C(RESULT_MISS) ] = 0x01b7,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x01b7,
[ C(RESULT_MISS) ] = 0x01b7,
},
},
};
/*
* Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
* See IA32 SDM Vol 3B 30.6.1.3
*/
#define NHM_DMND_DATA_RD (1 << 0)
#define NHM_DMND_RFO (1 << 1)
#define NHM_DMND_IFETCH (1 << 2)
#define NHM_DMND_WB (1 << 3)
#define NHM_PF_DATA_RD (1 << 4)
#define NHM_PF_DATA_RFO (1 << 5)
#define NHM_PF_IFETCH (1 << 6)
#define NHM_OFFCORE_OTHER (1 << 7)
#define NHM_UNCORE_HIT (1 << 8)
#define NHM_OTHER_CORE_HIT_SNP (1 << 9)
#define NHM_OTHER_CORE_HITM (1 << 10)
/* reserved */
#define NHM_REMOTE_CACHE_FWD (1 << 12)
#define NHM_REMOTE_DRAM (1 << 13)
#define NHM_LOCAL_DRAM (1 << 14)
#define NHM_NON_DRAM (1 << 15)
perf/x86: Fix local vs remote memory events for NHM/WSM Verified using the below proglet.. before: [root@westmere ~]# perf stat -e node-stores -e node-store-misses ./numa 0 remote write Performance counter stats for './numa 0': 2,101,554 node-stores 2,096,931 node-store-misses 5.021546079 seconds time elapsed [root@westmere ~]# perf stat -e node-stores -e node-store-misses ./numa 1 local write Performance counter stats for './numa 1': 501,137 node-stores 199 node-store-misses 5.124451068 seconds time elapsed After: [root@westmere ~]# perf stat -e node-stores -e node-store-misses ./numa 0 remote write Performance counter stats for './numa 0': 2,107,516 node-stores 2,097,187 node-store-misses 5.012755149 seconds time elapsed [root@westmere ~]# perf stat -e node-stores -e node-store-misses ./numa 1 local write Performance counter stats for './numa 1': 2,063,355 node-stores 165 node-store-misses 5.082091494 seconds time elapsed #define _GNU_SOURCE #include <sched.h> #include <stdio.h> #include <errno.h> #include <sys/mman.h> #include <sys/types.h> #include <dirent.h> #include <signal.h> #include <unistd.h> #include <numaif.h> #include <stdlib.h> #define SIZE (32*1024*1024) volatile int done; void sig_done(int sig) { done = 1; } int main(int argc, char **argv) { cpu_set_t *mask, *mask2; size_t size; int i, err, t; int nrcpus = 1024; char *mem; unsigned long nodemask = 0x01; /* node 0 */ DIR *node; struct dirent *de; int read = 0; int local = 0; if (argc < 2) { printf("usage: %s [0-3]\n", argv[0]); printf(" bit0 - local/remote\n"); printf(" bit1 - read/write\n"); exit(0); } switch (atoi(argv[1])) { case 0: printf("remote write\n"); break; case 1: printf("local write\n"); local = 1; break; case 2: printf("remote read\n"); read = 1; break; case 3: printf("local read\n"); local = 1; read = 1; break; } mask = CPU_ALLOC(nrcpus); size = CPU_ALLOC_SIZE(nrcpus); CPU_ZERO_S(size, mask); node = opendir("/sys/devices/system/node/node0/"); if (!node) perror("opendir"); while ((de = readdir(node))) { int cpu; if (sscanf(de->d_name, "cpu%d", &cpu) == 1) CPU_SET_S(cpu, size, mask); } closedir(node); mask2 = CPU_ALLOC(nrcpus); CPU_ZERO_S(size, mask2); for (i = 0; i < size; i++) CPU_SET_S(i, size, mask2); CPU_XOR_S(size, mask2, mask2, mask); // invert if (!local) mask = mask2; err = sched_setaffinity(0, size, mask); if (err) perror("sched_setaffinity"); mem = mmap(0, SIZE, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); err = mbind(mem, SIZE, MPOL_BIND, &nodemask, 8*sizeof(nodemask), MPOL_MF_MOVE); if (err) perror("mbind"); signal(SIGALRM, sig_done); alarm(5); if (!read) { while (!done) { for (i = 0; i < SIZE; i++) mem[i] = 0x01; } } else { while (!done) { for (i = 0; i < SIZE; i++) t += *(volatile char *)(mem + i); } } return 0; } Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Stephane Eranian <eranian@google.com> Cc: <stable@kernel.org> Link: http://lkml.kernel.org/n/tip-tq73sxus35xmqpojf7ootxgs@git.kernel.org Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-03-06 06:59:25 +08:00
#define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
#define NHM_REMOTE (NHM_REMOTE_DRAM)
#define NHM_DMND_READ (NHM_DMND_DATA_RD)
#define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
#define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
#define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
perf/x86: Fix local vs remote memory events for NHM/WSM Verified using the below proglet.. before: [root@westmere ~]# perf stat -e node-stores -e node-store-misses ./numa 0 remote write Performance counter stats for './numa 0': 2,101,554 node-stores 2,096,931 node-store-misses 5.021546079 seconds time elapsed [root@westmere ~]# perf stat -e node-stores -e node-store-misses ./numa 1 local write Performance counter stats for './numa 1': 501,137 node-stores 199 node-store-misses 5.124451068 seconds time elapsed After: [root@westmere ~]# perf stat -e node-stores -e node-store-misses ./numa 0 remote write Performance counter stats for './numa 0': 2,107,516 node-stores 2,097,187 node-store-misses 5.012755149 seconds time elapsed [root@westmere ~]# perf stat -e node-stores -e node-store-misses ./numa 1 local write Performance counter stats for './numa 1': 2,063,355 node-stores 165 node-store-misses 5.082091494 seconds time elapsed #define _GNU_SOURCE #include <sched.h> #include <stdio.h> #include <errno.h> #include <sys/mman.h> #include <sys/types.h> #include <dirent.h> #include <signal.h> #include <unistd.h> #include <numaif.h> #include <stdlib.h> #define SIZE (32*1024*1024) volatile int done; void sig_done(int sig) { done = 1; } int main(int argc, char **argv) { cpu_set_t *mask, *mask2; size_t size; int i, err, t; int nrcpus = 1024; char *mem; unsigned long nodemask = 0x01; /* node 0 */ DIR *node; struct dirent *de; int read = 0; int local = 0; if (argc < 2) { printf("usage: %s [0-3]\n", argv[0]); printf(" bit0 - local/remote\n"); printf(" bit1 - read/write\n"); exit(0); } switch (atoi(argv[1])) { case 0: printf("remote write\n"); break; case 1: printf("local write\n"); local = 1; break; case 2: printf("remote read\n"); read = 1; break; case 3: printf("local read\n"); local = 1; read = 1; break; } mask = CPU_ALLOC(nrcpus); size = CPU_ALLOC_SIZE(nrcpus); CPU_ZERO_S(size, mask); node = opendir("/sys/devices/system/node/node0/"); if (!node) perror("opendir"); while ((de = readdir(node))) { int cpu; if (sscanf(de->d_name, "cpu%d", &cpu) == 1) CPU_SET_S(cpu, size, mask); } closedir(node); mask2 = CPU_ALLOC(nrcpus); CPU_ZERO_S(size, mask2); for (i = 0; i < size; i++) CPU_SET_S(i, size, mask2); CPU_XOR_S(size, mask2, mask2, mask); // invert if (!local) mask = mask2; err = sched_setaffinity(0, size, mask); if (err) perror("sched_setaffinity"); mem = mmap(0, SIZE, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); err = mbind(mem, SIZE, MPOL_BIND, &nodemask, 8*sizeof(nodemask), MPOL_MF_MOVE); if (err) perror("mbind"); signal(SIGALRM, sig_done); alarm(5); if (!read) { while (!done) { for (i = 0; i < SIZE; i++) mem[i] = 0x01; } } else { while (!done) { for (i = 0; i < SIZE; i++) t += *(volatile char *)(mem + i); } } return 0; } Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Stephane Eranian <eranian@google.com> Cc: <stable@kernel.org> Link: http://lkml.kernel.org/n/tip-tq73sxus35xmqpojf7ootxgs@git.kernel.org Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-03-06 06:59:25 +08:00
#define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
#define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
static __initconst const u64 nehalem_hw_cache_extra_regs
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(LL ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
[ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
[ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
[ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
},
},
[ C(NODE) ] = {
[ C(OP_READ) ] = {
perf/x86: Fix local vs remote memory events for NHM/WSM Verified using the below proglet.. before: [root@westmere ~]# perf stat -e node-stores -e node-store-misses ./numa 0 remote write Performance counter stats for './numa 0': 2,101,554 node-stores 2,096,931 node-store-misses 5.021546079 seconds time elapsed [root@westmere ~]# perf stat -e node-stores -e node-store-misses ./numa 1 local write Performance counter stats for './numa 1': 501,137 node-stores 199 node-store-misses 5.124451068 seconds time elapsed After: [root@westmere ~]# perf stat -e node-stores -e node-store-misses ./numa 0 remote write Performance counter stats for './numa 0': 2,107,516 node-stores 2,097,187 node-store-misses 5.012755149 seconds time elapsed [root@westmere ~]# perf stat -e node-stores -e node-store-misses ./numa 1 local write Performance counter stats for './numa 1': 2,063,355 node-stores 165 node-store-misses 5.082091494 seconds time elapsed #define _GNU_SOURCE #include <sched.h> #include <stdio.h> #include <errno.h> #include <sys/mman.h> #include <sys/types.h> #include <dirent.h> #include <signal.h> #include <unistd.h> #include <numaif.h> #include <stdlib.h> #define SIZE (32*1024*1024) volatile int done; void sig_done(int sig) { done = 1; } int main(int argc, char **argv) { cpu_set_t *mask, *mask2; size_t size; int i, err, t; int nrcpus = 1024; char *mem; unsigned long nodemask = 0x01; /* node 0 */ DIR *node; struct dirent *de; int read = 0; int local = 0; if (argc < 2) { printf("usage: %s [0-3]\n", argv[0]); printf(" bit0 - local/remote\n"); printf(" bit1 - read/write\n"); exit(0); } switch (atoi(argv[1])) { case 0: printf("remote write\n"); break; case 1: printf("local write\n"); local = 1; break; case 2: printf("remote read\n"); read = 1; break; case 3: printf("local read\n"); local = 1; read = 1; break; } mask = CPU_ALLOC(nrcpus); size = CPU_ALLOC_SIZE(nrcpus); CPU_ZERO_S(size, mask); node = opendir("/sys/devices/system/node/node0/"); if (!node) perror("opendir"); while ((de = readdir(node))) { int cpu; if (sscanf(de->d_name, "cpu%d", &cpu) == 1) CPU_SET_S(cpu, size, mask); } closedir(node); mask2 = CPU_ALLOC(nrcpus); CPU_ZERO_S(size, mask2); for (i = 0; i < size; i++) CPU_SET_S(i, size, mask2); CPU_XOR_S(size, mask2, mask2, mask); // invert if (!local) mask = mask2; err = sched_setaffinity(0, size, mask); if (err) perror("sched_setaffinity"); mem = mmap(0, SIZE, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); err = mbind(mem, SIZE, MPOL_BIND, &nodemask, 8*sizeof(nodemask), MPOL_MF_MOVE); if (err) perror("mbind"); signal(SIGALRM, sig_done); alarm(5); if (!read) { while (!done) { for (i = 0; i < SIZE; i++) mem[i] = 0x01; } } else { while (!done) { for (i = 0; i < SIZE; i++) t += *(volatile char *)(mem + i); } } return 0; } Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Stephane Eranian <eranian@google.com> Cc: <stable@kernel.org> Link: http://lkml.kernel.org/n/tip-tq73sxus35xmqpojf7ootxgs@git.kernel.org Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-03-06 06:59:25 +08:00
[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
[ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
},
[ C(OP_WRITE) ] = {
perf/x86: Fix local vs remote memory events for NHM/WSM Verified using the below proglet.. before: [root@westmere ~]# perf stat -e node-stores -e node-store-misses ./numa 0 remote write Performance counter stats for './numa 0': 2,101,554 node-stores 2,096,931 node-store-misses 5.021546079 seconds time elapsed [root@westmere ~]# perf stat -e node-stores -e node-store-misses ./numa 1 local write Performance counter stats for './numa 1': 501,137 node-stores 199 node-store-misses 5.124451068 seconds time elapsed After: [root@westmere ~]# perf stat -e node-stores -e node-store-misses ./numa 0 remote write Performance counter stats for './numa 0': 2,107,516 node-stores 2,097,187 node-store-misses 5.012755149 seconds time elapsed [root@westmere ~]# perf stat -e node-stores -e node-store-misses ./numa 1 local write Performance counter stats for './numa 1': 2,063,355 node-stores 165 node-store-misses 5.082091494 seconds time elapsed #define _GNU_SOURCE #include <sched.h> #include <stdio.h> #include <errno.h> #include <sys/mman.h> #include <sys/types.h> #include <dirent.h> #include <signal.h> #include <unistd.h> #include <numaif.h> #include <stdlib.h> #define SIZE (32*1024*1024) volatile int done; void sig_done(int sig) { done = 1; } int main(int argc, char **argv) { cpu_set_t *mask, *mask2; size_t size; int i, err, t; int nrcpus = 1024; char *mem; unsigned long nodemask = 0x01; /* node 0 */ DIR *node; struct dirent *de; int read = 0; int local = 0; if (argc < 2) { printf("usage: %s [0-3]\n", argv[0]); printf(" bit0 - local/remote\n"); printf(" bit1 - read/write\n"); exit(0); } switch (atoi(argv[1])) { case 0: printf("remote write\n"); break; case 1: printf("local write\n"); local = 1; break; case 2: printf("remote read\n"); read = 1; break; case 3: printf("local read\n"); local = 1; read = 1; break; } mask = CPU_ALLOC(nrcpus); size = CPU_ALLOC_SIZE(nrcpus); CPU_ZERO_S(size, mask); node = opendir("/sys/devices/system/node/node0/"); if (!node) perror("opendir"); while ((de = readdir(node))) { int cpu; if (sscanf(de->d_name, "cpu%d", &cpu) == 1) CPU_SET_S(cpu, size, mask); } closedir(node); mask2 = CPU_ALLOC(nrcpus); CPU_ZERO_S(size, mask2); for (i = 0; i < size; i++) CPU_SET_S(i, size, mask2); CPU_XOR_S(size, mask2, mask2, mask); // invert if (!local) mask = mask2; err = sched_setaffinity(0, size, mask); if (err) perror("sched_setaffinity"); mem = mmap(0, SIZE, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); err = mbind(mem, SIZE, MPOL_BIND, &nodemask, 8*sizeof(nodemask), MPOL_MF_MOVE); if (err) perror("mbind"); signal(SIGALRM, sig_done); alarm(5); if (!read) { while (!done) { for (i = 0; i < SIZE; i++) mem[i] = 0x01; } } else { while (!done) { for (i = 0; i < SIZE; i++) t += *(volatile char *)(mem + i); } } return 0; } Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Stephane Eranian <eranian@google.com> Cc: <stable@kernel.org> Link: http://lkml.kernel.org/n/tip-tq73sxus35xmqpojf7ootxgs@git.kernel.org Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-03-06 06:59:25 +08:00
[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
[ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
},
[ C(OP_PREFETCH) ] = {
perf/x86: Fix local vs remote memory events for NHM/WSM Verified using the below proglet.. before: [root@westmere ~]# perf stat -e node-stores -e node-store-misses ./numa 0 remote write Performance counter stats for './numa 0': 2,101,554 node-stores 2,096,931 node-store-misses 5.021546079 seconds time elapsed [root@westmere ~]# perf stat -e node-stores -e node-store-misses ./numa 1 local write Performance counter stats for './numa 1': 501,137 node-stores 199 node-store-misses 5.124451068 seconds time elapsed After: [root@westmere ~]# perf stat -e node-stores -e node-store-misses ./numa 0 remote write Performance counter stats for './numa 0': 2,107,516 node-stores 2,097,187 node-store-misses 5.012755149 seconds time elapsed [root@westmere ~]# perf stat -e node-stores -e node-store-misses ./numa 1 local write Performance counter stats for './numa 1': 2,063,355 node-stores 165 node-store-misses 5.082091494 seconds time elapsed #define _GNU_SOURCE #include <sched.h> #include <stdio.h> #include <errno.h> #include <sys/mman.h> #include <sys/types.h> #include <dirent.h> #include <signal.h> #include <unistd.h> #include <numaif.h> #include <stdlib.h> #define SIZE (32*1024*1024) volatile int done; void sig_done(int sig) { done = 1; } int main(int argc, char **argv) { cpu_set_t *mask, *mask2; size_t size; int i, err, t; int nrcpus = 1024; char *mem; unsigned long nodemask = 0x01; /* node 0 */ DIR *node; struct dirent *de; int read = 0; int local = 0; if (argc < 2) { printf("usage: %s [0-3]\n", argv[0]); printf(" bit0 - local/remote\n"); printf(" bit1 - read/write\n"); exit(0); } switch (atoi(argv[1])) { case 0: printf("remote write\n"); break; case 1: printf("local write\n"); local = 1; break; case 2: printf("remote read\n"); read = 1; break; case 3: printf("local read\n"); local = 1; read = 1; break; } mask = CPU_ALLOC(nrcpus); size = CPU_ALLOC_SIZE(nrcpus); CPU_ZERO_S(size, mask); node = opendir("/sys/devices/system/node/node0/"); if (!node) perror("opendir"); while ((de = readdir(node))) { int cpu; if (sscanf(de->d_name, "cpu%d", &cpu) == 1) CPU_SET_S(cpu, size, mask); } closedir(node); mask2 = CPU_ALLOC(nrcpus); CPU_ZERO_S(size, mask2); for (i = 0; i < size; i++) CPU_SET_S(i, size, mask2); CPU_XOR_S(size, mask2, mask2, mask); // invert if (!local) mask = mask2; err = sched_setaffinity(0, size, mask); if (err) perror("sched_setaffinity"); mem = mmap(0, SIZE, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); err = mbind(mem, SIZE, MPOL_BIND, &nodemask, 8*sizeof(nodemask), MPOL_MF_MOVE); if (err) perror("mbind"); signal(SIGALRM, sig_done); alarm(5); if (!read) { while (!done) { for (i = 0; i < SIZE; i++) mem[i] = 0x01; } } else { while (!done) { for (i = 0; i < SIZE; i++) t += *(volatile char *)(mem + i); } } return 0; } Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Stephane Eranian <eranian@google.com> Cc: <stable@kernel.org> Link: http://lkml.kernel.org/n/tip-tq73sxus35xmqpojf7ootxgs@git.kernel.org Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-03-06 06:59:25 +08:00
[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
[ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
},
},
};
static __initconst const u64 nehalem_hw_cache_event_ids
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(L1D) ] = {
[ C(OP_READ) ] = {
perf, x86: Update/fix Intel Nehalem cache events Change the Nehalem cache events to use retired memory instruction counters (similar to Westmere), this greatly improves the provided stats. Using: main () { int i; for (i = 0; i < 1000000000; i++) { asm("mov (%%rsp), %%rbx;" "mov %%rbx, (%%rsp);" : : : "rbx"); } } We find: $ perf stat --repeat 10 -e instructions:u -e l1-dcache-loads:u -e l1-dcache-stores:u ./loop_1b_loads+stores Performance counter stats for './loop_1b_loads+stores' (10 runs): 4,000,081,056 instructions:u # 0.000 IPC ( +- 0.000% ) 4,999,502,846 l1-dcache-loads:u ( +- 0.008% ) 1,000,034,832 l1-dcache-stores:u ( +- 0.000% ) 1.565184942 seconds time elapsed ( +- 0.005% ) The 5b is surprising - we'd expect 1b: $ perf stat --repeat 10 -e instructions:u -e r10b:u -e l1-dcache-stores:u ./loop_1b_loads+stores Performance counter stats for './loop_1b_loads+stores' (10 runs): 4,000,081,054 instructions:u # 0.000 IPC ( +- 0.000% ) 1,000,021,961 r10b:u ( +- 0.000% ) 1,000,030,951 l1-dcache-stores:u ( +- 0.000% ) 1.565055422 seconds time elapsed ( +- 0.003% ) Which this patch thus fixes. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Stephane Eranian <eranian@google.com> Cc: Lin Ming <ming.m.lin@intel.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Link: http://lkml.kernel.org/n/tip-q9rtru7b7840tws75xzboapv@git.kernel.org Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-04-22 19:39:56 +08:00
[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
[ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
},
[ C(OP_WRITE) ] = {
perf, x86: Update/fix Intel Nehalem cache events Change the Nehalem cache events to use retired memory instruction counters (similar to Westmere), this greatly improves the provided stats. Using: main () { int i; for (i = 0; i < 1000000000; i++) { asm("mov (%%rsp), %%rbx;" "mov %%rbx, (%%rsp);" : : : "rbx"); } } We find: $ perf stat --repeat 10 -e instructions:u -e l1-dcache-loads:u -e l1-dcache-stores:u ./loop_1b_loads+stores Performance counter stats for './loop_1b_loads+stores' (10 runs): 4,000,081,056 instructions:u # 0.000 IPC ( +- 0.000% ) 4,999,502,846 l1-dcache-loads:u ( +- 0.008% ) 1,000,034,832 l1-dcache-stores:u ( +- 0.000% ) 1.565184942 seconds time elapsed ( +- 0.005% ) The 5b is surprising - we'd expect 1b: $ perf stat --repeat 10 -e instructions:u -e r10b:u -e l1-dcache-stores:u ./loop_1b_loads+stores Performance counter stats for './loop_1b_loads+stores' (10 runs): 4,000,081,054 instructions:u # 0.000 IPC ( +- 0.000% ) 1,000,021,961 r10b:u ( +- 0.000% ) 1,000,030,951 l1-dcache-stores:u ( +- 0.000% ) 1.565055422 seconds time elapsed ( +- 0.003% ) Which this patch thus fixes. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Stephane Eranian <eranian@google.com> Cc: Lin Ming <ming.m.lin@intel.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Link: http://lkml.kernel.org/n/tip-q9rtru7b7840tws75xzboapv@git.kernel.org Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-04-22 19:39:56 +08:00
[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
[ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
[ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
},
},
[ C(L1I ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
[ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(LL ) ] = {
[ C(OP_READ) ] = {
/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
[ C(RESULT_ACCESS) ] = 0x01b7,
/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
[ C(RESULT_MISS) ] = 0x01b7,
},
/*
* Use RFO, not WRITEBACK, because a write miss would typically occur
* on RFO.
*/
[ C(OP_WRITE) ] = {
/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
[ C(RESULT_ACCESS) ] = 0x01b7,
/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
[ C(RESULT_MISS) ] = 0x01b7,
},
[ C(OP_PREFETCH) ] = {
/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
[ C(RESULT_ACCESS) ] = 0x01b7,
/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
[ C(RESULT_MISS) ] = 0x01b7,
},
},
[ C(DTLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
[ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
[ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(ITLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
[ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(BPU ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
[ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(NODE) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x01b7,
[ C(RESULT_MISS) ] = 0x01b7,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x01b7,
[ C(RESULT_MISS) ] = 0x01b7,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x01b7,
[ C(RESULT_MISS) ] = 0x01b7,
},
},
};
static __initconst const u64 core2_hw_cache_event_ids
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(L1D) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
[ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
[ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
[ C(RESULT_MISS) ] = 0,
},
},
[ C(L1I ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
[ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(LL ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
[ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
[ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(DTLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
[ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
[ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(ITLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
[ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(BPU ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
[ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
};
static __initconst const u64 atom_hw_cache_event_ids
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(L1D) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
[ C(RESULT_MISS) ] = 0,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
[ C(RESULT_MISS) ] = 0,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(L1I ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
[ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(LL ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
[ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
[ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(DTLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
[ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
[ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(ITLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
[ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(BPU ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
[ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
};
EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
/* no_alloc_cycles.not_delivered */
EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
"event=0xca,umask=0x50");
EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
/* uops_retired.all */
EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
"event=0xc2,umask=0x10");
/* uops_retired.all */
EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
"event=0xc2,umask=0x10");
static struct attribute *slm_events_attrs[] = {
EVENT_PTR(td_total_slots_slm),
EVENT_PTR(td_total_slots_scale_slm),
EVENT_PTR(td_fetch_bubbles_slm),
EVENT_PTR(td_fetch_bubbles_scale_slm),
EVENT_PTR(td_slots_issued_slm),
EVENT_PTR(td_slots_retired_slm),
NULL
};
static struct extra_reg intel_slm_extra_regs[] __read_mostly =
{
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
EVENT_EXTRA_END
};
#define SLM_DMND_READ SNB_DMND_DATA_RD
#define SLM_DMND_WRITE SNB_DMND_RFO
#define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
#define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
#define SLM_LLC_ACCESS SNB_RESP_ANY
#define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
static __initconst const u64 slm_hw_cache_extra_regs
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(LL ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
[ C(RESULT_MISS) ] = 0,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
[ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
[ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
},
},
};
static __initconst const u64 slm_hw_cache_event_ids
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(L1D) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(L1I ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
[ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(LL ) ] = {
[ C(OP_READ) ] = {
/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
[ C(RESULT_ACCESS) ] = 0x01b7,
[ C(RESULT_MISS) ] = 0,
},
[ C(OP_WRITE) ] = {
/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
[ C(RESULT_ACCESS) ] = 0x01b7,
/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
[ C(RESULT_MISS) ] = 0x01b7,
},
[ C(OP_PREFETCH) ] = {
/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
[ C(RESULT_ACCESS) ] = 0x01b7,
/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
[ C(RESULT_MISS) ] = 0x01b7,
},
},
[ C(DTLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(ITLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
[ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(BPU ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
[ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
};
EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
/* UOPS_NOT_DELIVERED.ANY */
EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
/* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
/* UOPS_RETIRED.ANY */
EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
/* UOPS_ISSUED.ANY */
EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
static struct attribute *glm_events_attrs[] = {
EVENT_PTR(td_total_slots_glm),
EVENT_PTR(td_total_slots_scale_glm),
EVENT_PTR(td_fetch_bubbles_glm),
EVENT_PTR(td_recovery_bubbles_glm),
EVENT_PTR(td_slots_issued_glm),
EVENT_PTR(td_slots_retired_glm),
NULL
};
static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
EVENT_EXTRA_END
};
#define GLM_DEMAND_DATA_RD BIT_ULL(0)
#define GLM_DEMAND_RFO BIT_ULL(1)
#define GLM_ANY_RESPONSE BIT_ULL(16)
#define GLM_SNP_NONE_OR_MISS BIT_ULL(33)
#define GLM_DEMAND_READ GLM_DEMAND_DATA_RD
#define GLM_DEMAND_WRITE GLM_DEMAND_RFO
#define GLM_DEMAND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
#define GLM_LLC_ACCESS GLM_ANY_RESPONSE
#define GLM_SNP_ANY (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
#define GLM_LLC_MISS (GLM_SNP_ANY|SNB_NON_DRAM)
static __initconst const u64 glm_hw_cache_event_ids
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(L1D)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
[C(RESULT_MISS)] = 0x0,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
[C(RESULT_MISS)] = 0x0,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = 0x0,
[C(RESULT_MISS)] = 0x0,
},
},
[C(L1I)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
[C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = -1,
[C(RESULT_MISS)] = -1,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = 0x0,
[C(RESULT_MISS)] = 0x0,
},
},
[C(LL)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
[C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
[C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
[C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
},
},
[C(DTLB)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
[C(RESULT_MISS)] = 0x0,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
[C(RESULT_MISS)] = 0x0,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = 0x0,
[C(RESULT_MISS)] = 0x0,
},
},
[C(ITLB)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
[C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = -1,
[C(RESULT_MISS)] = -1,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = -1,
[C(RESULT_MISS)] = -1,
},
},
[C(BPU)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
[C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = -1,
[C(RESULT_MISS)] = -1,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = -1,
[C(RESULT_MISS)] = -1,
},
},
};
static __initconst const u64 glm_hw_cache_extra_regs
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(LL)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = GLM_DEMAND_READ|
GLM_LLC_ACCESS,
[C(RESULT_MISS)] = GLM_DEMAND_READ|
GLM_LLC_MISS,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
GLM_LLC_ACCESS,
[C(RESULT_MISS)] = GLM_DEMAND_WRITE|
GLM_LLC_MISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = GLM_DEMAND_PREFETCH|
GLM_LLC_ACCESS,
[C(RESULT_MISS)] = GLM_DEMAND_PREFETCH|
GLM_LLC_MISS,
},
},
};
static __initconst const u64 glp_hw_cache_event_ids
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(L1D)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
[C(RESULT_MISS)] = 0x0,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
[C(RESULT_MISS)] = 0x0,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = 0x0,
[C(RESULT_MISS)] = 0x0,
},
},
[C(L1I)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
[C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = -1,
[C(RESULT_MISS)] = -1,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = 0x0,
[C(RESULT_MISS)] = 0x0,
},
},
[C(LL)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
[C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
[C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = 0x0,
[C(RESULT_MISS)] = 0x0,
},
},
[C(DTLB)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
[C(RESULT_MISS)] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
[C(RESULT_MISS)] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = 0x0,
[C(RESULT_MISS)] = 0x0,
},
},
[C(ITLB)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
[C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = -1,
[C(RESULT_MISS)] = -1,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = -1,
[C(RESULT_MISS)] = -1,
},
},
[C(BPU)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
[C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = -1,
[C(RESULT_MISS)] = -1,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = -1,
[C(RESULT_MISS)] = -1,
},
},
};
static __initconst const u64 glp_hw_cache_extra_regs
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(LL)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = GLM_DEMAND_READ|
GLM_LLC_ACCESS,
[C(RESULT_MISS)] = GLM_DEMAND_READ|
GLM_LLC_MISS,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
GLM_LLC_ACCESS,
[C(RESULT_MISS)] = GLM_DEMAND_WRITE|
GLM_LLC_MISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = 0x0,
[C(RESULT_MISS)] = 0x0,
},
},
};
#define TNT_LOCAL_DRAM BIT_ULL(26)
#define TNT_DEMAND_READ GLM_DEMAND_DATA_RD
#define TNT_DEMAND_WRITE GLM_DEMAND_RFO
#define TNT_LLC_ACCESS GLM_ANY_RESPONSE
#define TNT_SNP_ANY (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
#define TNT_LLC_MISS (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
static __initconst const u64 tnt_hw_cache_extra_regs
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(LL)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = TNT_DEMAND_READ|
TNT_LLC_ACCESS,
[C(RESULT_MISS)] = TNT_DEMAND_READ|
TNT_LLC_MISS,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = TNT_DEMAND_WRITE|
TNT_LLC_ACCESS,
[C(RESULT_MISS)] = TNT_DEMAND_WRITE|
TNT_LLC_MISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = 0x0,
[C(RESULT_MISS)] = 0x0,
},
},
};
static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffffff9fffull, RSP_0),
INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xffffff9fffull, RSP_1),
EVENT_EXTRA_END
};
2015-12-08 06:28:18 +08:00
#define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */
#define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */
#define KNL_MCDRAM_LOCAL BIT_ULL(21)
#define KNL_MCDRAM_FAR BIT_ULL(22)
#define KNL_DDR_LOCAL BIT_ULL(23)
#define KNL_DDR_FAR BIT_ULL(24)
#define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
KNL_DDR_LOCAL | KNL_DDR_FAR)
#define KNL_L2_READ SLM_DMND_READ
#define KNL_L2_WRITE SLM_DMND_WRITE
#define KNL_L2_PREFETCH SLM_DMND_PREFETCH
#define KNL_L2_ACCESS SLM_LLC_ACCESS
#define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
KNL_DRAM_ANY | SNB_SNP_ANY | \
SNB_NON_DRAM)
static __initconst const u64 knl_hw_cache_extra_regs
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(LL)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
[C(RESULT_MISS)] = 0,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
[C(RESULT_MISS)] = KNL_L2_WRITE | KNL_L2_MISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
[C(RESULT_MISS)] = KNL_L2_PREFETCH | KNL_L2_MISS,
},
},
};
/*
perf/x86/intel: Fix PEBS warning by only restoring active PMU in pmi This patch tries to fix a PEBS warning found in my stress test. The following perf command can easily trigger the pebs warning or spurious NMI error on Skylake/Broadwell/Haswell platforms: sudo perf record -e 'cpu/umask=0x04,event=0xc4/pp,cycles,branches,ref-cycles,cache-misses,cache-references' --call-graph fp -b -c1000 -a Also the NMI watchdog must be enabled. For this case, the events number is larger than counter number. So perf has to do multiplexing. In perf_mux_hrtimer_handler, it does perf_pmu_disable(), schedule out old events, rotate_ctx, schedule in new events and finally perf_pmu_enable(). If the old events include precise event, the MSR_IA32_PEBS_ENABLE should be cleared when perf_pmu_disable(). The MSR_IA32_PEBS_ENABLE should keep 0 until the perf_pmu_enable() is called and the new event is precise event. However, there is a corner case which could restore PEBS_ENABLE to stale value during the above period. In perf_pmu_disable(), GLOBAL_CTRL will be set to 0 to stop overflow and followed PMI. But there may be pending PMI from an earlier overflow, which cannot be stopped. So even GLOBAL_CTRL is cleared, the kernel still be possible to get PMI. At the end of the PMI handler, __intel_pmu_enable_all() will be called, which will restore the stale values if old events haven't scheduled out. Once the stale pebs value is set, it's impossible to be corrected if the new events are non-precise. Because the pebs_enabled will be set to 0. x86_pmu.enable_all() will ignore the MSR_IA32_PEBS_ENABLE setting. As a result, the following NMI with stale PEBS_ENABLE trigger pebs warning. The pending PMI after enabled=0 will become harmless if the NMI handler does not change the state. This patch checks cpuc->enabled in pmi and only restore the state when PMU is active. Here is the dump: Call Trace: <NMI> [<ffffffff813c3a2e>] dump_stack+0x63/0x85 [<ffffffff810a46f2>] warn_slowpath_common+0x82/0xc0 [<ffffffff810a483a>] warn_slowpath_null+0x1a/0x20 [<ffffffff8100fe2e>] intel_pmu_drain_pebs_nhm+0x2be/0x320 [<ffffffff8100caa9>] intel_pmu_handle_irq+0x279/0x460 [<ffffffff810639b6>] ? native_write_msr_safe+0x6/0x40 [<ffffffff811f290d>] ? vunmap_page_range+0x20d/0x330 [<ffffffff811f2f11>] ? unmap_kernel_range_noflush+0x11/0x20 [<ffffffff8148379f>] ? ghes_copy_tofrom_phys+0x10f/0x2a0 [<ffffffff814839c8>] ? ghes_read_estatus+0x98/0x170 [<ffffffff81005a7d>] perf_event_nmi_handler+0x2d/0x50 [<ffffffff810310b9>] nmi_handle+0x69/0x120 [<ffffffff810316f6>] default_do_nmi+0xe6/0x100 [<ffffffff810317f2>] do_nmi+0xe2/0x130 [<ffffffff817aea71>] end_repeat_nmi+0x1a/0x1e [<ffffffff810639b6>] ? native_write_msr_safe+0x6/0x40 [<ffffffff810639b6>] ? native_write_msr_safe+0x6/0x40 [<ffffffff810639b6>] ? native_write_msr_safe+0x6/0x40 <<EOE>> <IRQ> [<ffffffff81006df8>] ? x86_perf_event_set_period+0xd8/0x180 [<ffffffff81006eec>] x86_pmu_start+0x4c/0x100 [<ffffffff8100722d>] x86_pmu_enable+0x28d/0x300 [<ffffffff811994d7>] perf_pmu_enable.part.81+0x7/0x10 [<ffffffff8119cb70>] perf_mux_hrtimer_handler+0x200/0x280 [<ffffffff8119c970>] ? __perf_install_in_context+0xc0/0xc0 [<ffffffff8110f92d>] __hrtimer_run_queues+0xfd/0x280 [<ffffffff811100d8>] hrtimer_interrupt+0xa8/0x190 [<ffffffff81199080>] ? __perf_read_group_add.part.61+0x1a0/0x1a0 [<ffffffff81051bd8>] local_apic_timer_interrupt+0x38/0x60 [<ffffffff817af01d>] smp_apic_timer_interrupt+0x3d/0x50 [<ffffffff817ad15c>] apic_timer_interrupt+0x8c/0xa0 <EOI> [<ffffffff81199080>] ? __perf_read_group_add.part.61+0x1a0/0x1a0 [<ffffffff81123de5>] ? smp_call_function_single+0xd5/0x130 [<ffffffff81123ddb>] ? smp_call_function_single+0xcb/0x130 [<ffffffff81199080>] ? __perf_read_group_add.part.61+0x1a0/0x1a0 [<ffffffff8119765a>] event_function_call+0x10a/0x120 [<ffffffff8119c660>] ? ctx_resched+0x90/0x90 [<ffffffff811971e0>] ? cpu_clock_event_read+0x30/0x30 [<ffffffff811976d0>] ? _perf_event_disable+0x60/0x60 [<ffffffff8119772b>] _perf_event_enable+0x5b/0x70 [<ffffffff81197388>] perf_event_for_each_child+0x38/0xa0 [<ffffffff811976d0>] ? _perf_event_disable+0x60/0x60 [<ffffffff811a0ffd>] perf_ioctl+0x12d/0x3c0 [<ffffffff8134d855>] ? selinux_file_ioctl+0x95/0x1e0 [<ffffffff8124a3a1>] do_vfs_ioctl+0xa1/0x5a0 [<ffffffff81036d29>] ? sched_clock+0x9/0x10 [<ffffffff8124a919>] SyS_ioctl+0x79/0x90 [<ffffffff817ac4b2>] entry_SYSCALL_64_fastpath+0x1a/0xa4 ---[ end trace aef202839fe9a71d ]--- Uhhuh. NMI received for unknown reason 2d on CPU 2. Do you have a strange power saving mode enabled? Signed-off-by: Kan Liang <kan.liang@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: <stable@vger.kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Link: http://lkml.kernel.org/r/1457046448-6184-1-git-send-email-kan.liang@intel.com [ Fixed various typos and other small details. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-03-04 07:07:28 +08:00
* Used from PMIs where the LBRs are already disabled.
*
* This function could be called consecutively. It is required to remain in
* disabled state if called consecutively.
*
* During consecutive calls, the same disable value will be written to related
* registers, so the PMU state remains unchanged.
*
* intel_bts events don't coexist with intel PMU's BTS events because of
* x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
* disabled around intel PMU's event batching etc, only inside the PMI handler.
*/
static void __intel_pmu_disable_all(void)
{
x86: Replace __get_cpu_var uses __get_cpu_var() is used for multiple purposes in the kernel source. One of them is address calculation via the form &__get_cpu_var(x). This calculates the address for the instance of the percpu variable of the current processor based on an offset. Other use cases are for storing and retrieving data from the current processors percpu area. __get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment. __get_cpu_var() is defined as : #define __get_cpu_var(var) (*this_cpu_ptr(&(var))) __get_cpu_var() always only does an address determination. However, store and retrieve operations could use a segment prefix (or global register on other platforms) to avoid the address calculation. this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use optimized assembly code to read and write per cpu variables. This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr() or into a use of this_cpu operations that use the offset. Thereby address calculations are avoided and less registers are used when code is generated. Transformations done to __get_cpu_var() 1. Determine the address of the percpu instance of the current processor. DEFINE_PER_CPU(int, y); int *x = &__get_cpu_var(y); Converts to int *x = this_cpu_ptr(&y); 2. Same as #1 but this time an array structure is involved. DEFINE_PER_CPU(int, y[20]); int *x = __get_cpu_var(y); Converts to int *x = this_cpu_ptr(y); 3. Retrieve the content of the current processors instance of a per cpu variable. DEFINE_PER_CPU(int, y); int x = __get_cpu_var(y) Converts to int x = __this_cpu_read(y); 4. Retrieve the content of a percpu struct DEFINE_PER_CPU(struct mystruct, y); struct mystruct x = __get_cpu_var(y); Converts to memcpy(&x, this_cpu_ptr(&y), sizeof(x)); 5. Assignment to a per cpu variable DEFINE_PER_CPU(int, y) __get_cpu_var(y) = x; Converts to __this_cpu_write(y, x); 6. Increment/Decrement etc of a per cpu variable DEFINE_PER_CPU(int, y); __get_cpu_var(y)++ Converts to __this_cpu_inc(y) Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86@kernel.org Acked-by: H. Peter Anvin <hpa@linux.intel.com> Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-18 01:30:40 +08:00
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
intel_pmu_disable_bts();
intel_pmu_pebs_disable_all();
}
static void intel_pmu_disable_all(void)
{
__intel_pmu_disable_all();
intel_pmu_lbr_disable_all();
}
static void __intel_pmu_enable_all(int added, bool pmi)
{
x86: Replace __get_cpu_var uses __get_cpu_var() is used for multiple purposes in the kernel source. One of them is address calculation via the form &__get_cpu_var(x). This calculates the address for the instance of the percpu variable of the current processor based on an offset. Other use cases are for storing and retrieving data from the current processors percpu area. __get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment. __get_cpu_var() is defined as : #define __get_cpu_var(var) (*this_cpu_ptr(&(var))) __get_cpu_var() always only does an address determination. However, store and retrieve operations could use a segment prefix (or global register on other platforms) to avoid the address calculation. this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use optimized assembly code to read and write per cpu variables. This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr() or into a use of this_cpu operations that use the offset. Thereby address calculations are avoided and less registers are used when code is generated. Transformations done to __get_cpu_var() 1. Determine the address of the percpu instance of the current processor. DEFINE_PER_CPU(int, y); int *x = &__get_cpu_var(y); Converts to int *x = this_cpu_ptr(&y); 2. Same as #1 but this time an array structure is involved. DEFINE_PER_CPU(int, y[20]); int *x = __get_cpu_var(y); Converts to int *x = this_cpu_ptr(y); 3. Retrieve the content of the current processors instance of a per cpu variable. DEFINE_PER_CPU(int, y); int x = __get_cpu_var(y) Converts to int x = __this_cpu_read(y); 4. Retrieve the content of a percpu struct DEFINE_PER_CPU(struct mystruct, y); struct mystruct x = __get_cpu_var(y); Converts to memcpy(&x, this_cpu_ptr(&y), sizeof(x)); 5. Assignment to a per cpu variable DEFINE_PER_CPU(int, y) __get_cpu_var(y) = x; Converts to __this_cpu_write(y, x); 6. Increment/Decrement etc of a per cpu variable DEFINE_PER_CPU(int, y); __get_cpu_var(y)++ Converts to __this_cpu_inc(y) Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86@kernel.org Acked-by: H. Peter Anvin <hpa@linux.intel.com> Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-18 01:30:40 +08:00
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
intel_pmu_pebs_enable_all();
intel_pmu_lbr_enable_all(pmi);
wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
struct perf_event *event =
cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
if (WARN_ON_ONCE(!event))
return;
intel_pmu_enable_bts(event->hw.config);
}
}
static void intel_pmu_enable_all(int added)
{
__intel_pmu_enable_all(added, false);
}
/*
* Workaround for:
* Intel Errata AAK100 (model 26)
* Intel Errata AAP53 (model 30)
* Intel Errata BD53 (model 44)
*
* The official story:
* These chips need to be 'reset' when adding counters by programming the
* magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
* in sequence on the same PMC or on different PMCs.
*
* In practise it appears some of these events do in fact count, and
* we need to program all 4 events.
*/
static void intel_pmu_nhm_workaround(void)
{
x86: Replace __get_cpu_var uses __get_cpu_var() is used for multiple purposes in the kernel source. One of them is address calculation via the form &__get_cpu_var(x). This calculates the address for the instance of the percpu variable of the current processor based on an offset. Other use cases are for storing and retrieving data from the current processors percpu area. __get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment. __get_cpu_var() is defined as : #define __get_cpu_var(var) (*this_cpu_ptr(&(var))) __get_cpu_var() always only does an address determination. However, store and retrieve operations could use a segment prefix (or global register on other platforms) to avoid the address calculation. this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use optimized assembly code to read and write per cpu variables. This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr() or into a use of this_cpu operations that use the offset. Thereby address calculations are avoided and less registers are used when code is generated. Transformations done to __get_cpu_var() 1. Determine the address of the percpu instance of the current processor. DEFINE_PER_CPU(int, y); int *x = &__get_cpu_var(y); Converts to int *x = this_cpu_ptr(&y); 2. Same as #1 but this time an array structure is involved. DEFINE_PER_CPU(int, y[20]); int *x = __get_cpu_var(y); Converts to int *x = this_cpu_ptr(y); 3. Retrieve the content of the current processors instance of a per cpu variable. DEFINE_PER_CPU(int, y); int x = __get_cpu_var(y) Converts to int x = __this_cpu_read(y); 4. Retrieve the content of a percpu struct DEFINE_PER_CPU(struct mystruct, y); struct mystruct x = __get_cpu_var(y); Converts to memcpy(&x, this_cpu_ptr(&y), sizeof(x)); 5. Assignment to a per cpu variable DEFINE_PER_CPU(int, y) __get_cpu_var(y) = x; Converts to __this_cpu_write(y, x); 6. Increment/Decrement etc of a per cpu variable DEFINE_PER_CPU(int, y); __get_cpu_var(y)++ Converts to __this_cpu_inc(y) Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86@kernel.org Acked-by: H. Peter Anvin <hpa@linux.intel.com> Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-18 01:30:40 +08:00
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
static const unsigned long nhm_magic[4] = {
0x4300B5,
0x4300D2,
0x4300B1,
0x4300B1
};
struct perf_event *event;
int i;
/*
* The Errata requires below steps:
* 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
* 2) Configure 4 PERFEVTSELx with the magic events and clear
* the corresponding PMCx;
* 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
* 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
* 5) Clear 4 pairs of ERFEVTSELx and PMCx;
*/
/*
* The real steps we choose are a little different from above.
* A) To reduce MSR operations, we don't run step 1) as they
* are already cleared before this function is called;
* B) Call x86_perf_event_update to save PMCx before configuring
* PERFEVTSELx with magic number;
* C) With step 5), we do clear only when the PERFEVTSELx is
* not used currently.
* D) Call x86_perf_event_set_period to restore PMCx;
*/
/* We always operate 4 pairs of PERF Counters */
for (i = 0; i < 4; i++) {
event = cpuc->events[i];
if (event)
x86_perf_event_update(event);
}
for (i = 0; i < 4; i++) {
wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
}
wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
for (i = 0; i < 4; i++) {
event = cpuc->events[i];
if (event) {
x86_perf_event_set_period(event);
__x86_pmu_enable_event(&event->hw,
ARCH_PERFMON_EVENTSEL_ENABLE);
} else
wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
}
}
static void intel_pmu_nhm_enable_all(int added)
{
if (added)
intel_pmu_nhm_workaround();
intel_pmu_enable_all(added);
}
static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
{
u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
if (cpuc->tfa_shadow != val) {
cpuc->tfa_shadow = val;
wrmsrl(MSR_TSX_FORCE_ABORT, val);
}
}
static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
{
/*
* We're going to use PMC3, make sure TFA is set before we touch it.
*/
if (cntr == 3)
intel_set_tfa(cpuc, true);
}
static void intel_tfa_pmu_enable_all(int added)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
/*
* If we find PMC3 is no longer used when we enable the PMU, we can
* clear TFA.
*/
if (!test_bit(3, cpuc->active_mask))
intel_set_tfa(cpuc, false);
intel_pmu_enable_all(added);
}
perf/x86/intel: Add a separate Arch Perfmon v4 PMI handler Implements counter freezing for Arch Perfmon v4 (Skylake and newer). This allows to speed up the PMI handler by avoiding unnecessary MSR writes and make it more accurate. The Arch Perfmon v4 PMI handler is substantially different than the older PMI handler. Differences to the old handler: - It relies on counter freezing, which eliminates several MSR writes from the PMI handler and lowers the overhead significantly. It makes the PMI handler more accurate, as all counters get frozen atomically as soon as any counter overflows. So there is much less counting of the PMI handler itself. With the freezing we don't need to disable or enable counters or PEBS. Only BTS which does not support auto-freezing still needs to be explicitly managed. - The PMU acking is done at the end, not the beginning. This makes it possible to avoid manual enabling/disabling of the PMU, instead we just rely on the freezing/acking. - The APIC is acked before reenabling the PMU, which avoids problems with LBRs occasionally not getting unfreezed on Skylake. - Looping is only needed to workaround a corner case which several PMIs are very close to each other. For common cases, the counters are freezed during PMI handler. It doesn't need to do re-check. This patch: - Adds code to enable v4 counter freezing - Fork <=v3 and >=v4 PMI handlers into separate functions. - Add kernel parameter to disable counter freezing. It took some time to debug counter freezing, so in case there are new problems we added an option to turn it off. Would not expect this to be used until there are new bugs. - Only for big core. The patch for small core will be posted later separately. Performance: When profiling a kernel build on Kabylake with different perf options, measuring the length of all NMI handlers using the nmi handler trace point: V3 is without counter freezing. V4 is with counter freezing. The value is the average cost of the PMI handler. (lower is better) perf options ` V3(ns) V4(ns) delta -c 100000 1088 894 -18% -g -c 100000 1862 1646 -12% --call-graph lbr -c 100000 3649 3367 -8% --c.g. dwarf -c 100000 2248 1982 -12% Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Link: http://lkml.kernel.org/r/1533712328-2834-2-git-send-email-kan.liang@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-08-08 15:12:07 +08:00
static void enable_counter_freeze(void)
{
update_debugctlmsr(get_debugctlmsr() |
DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
}
static void disable_counter_freeze(void)
{
update_debugctlmsr(get_debugctlmsr() &
~DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
}
static inline u64 intel_pmu_get_status(void)
{
u64 status;
rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
return status;
}
static inline void intel_pmu_ack_status(u64 ack)
{
wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
}
static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
{
int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
u64 ctrl_val, mask;
mask = 0xfULL << (idx * 4);
rdmsrl(hwc->config_base, ctrl_val);
ctrl_val &= ~mask;
wrmsrl(hwc->config_base, ctrl_val);
}
static inline bool event_is_checkpointed(struct perf_event *event)
{
return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
}
static void intel_pmu_disable_event(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
x86: Replace __get_cpu_var uses __get_cpu_var() is used for multiple purposes in the kernel source. One of them is address calculation via the form &__get_cpu_var(x). This calculates the address for the instance of the percpu variable of the current processor based on an offset. Other use cases are for storing and retrieving data from the current processors percpu area. __get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment. __get_cpu_var() is defined as : #define __get_cpu_var(var) (*this_cpu_ptr(&(var))) __get_cpu_var() always only does an address determination. However, store and retrieve operations could use a segment prefix (or global register on other platforms) to avoid the address calculation. this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use optimized assembly code to read and write per cpu variables. This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr() or into a use of this_cpu operations that use the offset. Thereby address calculations are avoided and less registers are used when code is generated. Transformations done to __get_cpu_var() 1. Determine the address of the percpu instance of the current processor. DEFINE_PER_CPU(int, y); int *x = &__get_cpu_var(y); Converts to int *x = this_cpu_ptr(&y); 2. Same as #1 but this time an array structure is involved. DEFINE_PER_CPU(int, y[20]); int *x = __get_cpu_var(y); Converts to int *x = this_cpu_ptr(y); 3. Retrieve the content of the current processors instance of a per cpu variable. DEFINE_PER_CPU(int, y); int x = __get_cpu_var(y) Converts to int x = __this_cpu_read(y); 4. Retrieve the content of a percpu struct DEFINE_PER_CPU(struct mystruct, y); struct mystruct x = __get_cpu_var(y); Converts to memcpy(&x, this_cpu_ptr(&y), sizeof(x)); 5. Assignment to a per cpu variable DEFINE_PER_CPU(int, y) __get_cpu_var(y) = x; Converts to __this_cpu_write(y, x); 6. Increment/Decrement etc of a per cpu variable DEFINE_PER_CPU(int, y); __get_cpu_var(y)++ Converts to __this_cpu_inc(y) Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86@kernel.org Acked-by: H. Peter Anvin <hpa@linux.intel.com> Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-18 01:30:40 +08:00
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
intel_pmu_disable_bts();
intel_pmu_drain_bts_buffer();
return;
}
cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
cpuc->intel_cp_status &= ~(1ull << hwc->idx);
perf/x86/intel: Fix spurious NMI on fixed counter If a user first sample a PEBS event on a fixed counter, then sample a non-PEBS event on the same fixed counter on Icelake, it will trigger spurious NMI. For example: perf record -e 'cycles:p' -a perf record -e 'cycles' -a The error message for spurious NMI: [June 21 15:38] Uhhuh. NMI received for unknown reason 30 on CPU 2. [ +0.000000] Do you have a strange power saving mode enabled? [ +0.000000] Dazed and confused, but trying to continue The bug was introduced by the following commit: commit 6f55967ad9d9 ("perf/x86/intel: Fix race in intel_pmu_disable_event()") The commit moves the intel_pmu_pebs_disable() after intel_pmu_disable_fixed(), which returns immediately. The related bit of PEBS_ENABLE MSR will never be cleared for the fixed counter. Then a non-PEBS event runs on the fixed counter, but the bit on PEBS_ENABLE is still set, which triggers spurious NMIs. Check and disable PEBS for fixed counters after intel_pmu_disable_fixed(). Reported-by: Yi, Ammy <ammy.yi@intel.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Jiri Olsa <jolsa@kernel.org> Cc: <stable@vger.kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Fixes: 6f55967ad9d9 ("perf/x86/intel: Fix race in intel_pmu_disable_event()") Link: https://lkml.kernel.org/r/20190625142135.22112-1-kan.liang@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-25 22:21:35 +08:00
if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL))
intel_pmu_disable_fixed(hwc);
perf/x86/intel: Fix spurious NMI on fixed counter If a user first sample a PEBS event on a fixed counter, then sample a non-PEBS event on the same fixed counter on Icelake, it will trigger spurious NMI. For example: perf record -e 'cycles:p' -a perf record -e 'cycles' -a The error message for spurious NMI: [June 21 15:38] Uhhuh. NMI received for unknown reason 30 on CPU 2. [ +0.000000] Do you have a strange power saving mode enabled? [ +0.000000] Dazed and confused, but trying to continue The bug was introduced by the following commit: commit 6f55967ad9d9 ("perf/x86/intel: Fix race in intel_pmu_disable_event()") The commit moves the intel_pmu_pebs_disable() after intel_pmu_disable_fixed(), which returns immediately. The related bit of PEBS_ENABLE MSR will never be cleared for the fixed counter. Then a non-PEBS event runs on the fixed counter, but the bit on PEBS_ENABLE is still set, which triggers spurious NMIs. Check and disable PEBS for fixed counters after intel_pmu_disable_fixed(). Reported-by: Yi, Ammy <ammy.yi@intel.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Jiri Olsa <jolsa@kernel.org> Cc: <stable@vger.kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Fixes: 6f55967ad9d9 ("perf/x86/intel: Fix race in intel_pmu_disable_event()") Link: https://lkml.kernel.org/r/20190625142135.22112-1-kan.liang@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-25 22:21:35 +08:00
else
x86_pmu_disable_event(event);
perf/x86/intel: Fix race in intel_pmu_disable_event() New race in x86_pmu_stop() was introduced by replacing the atomic __test_and_clear_bit() of cpuc->active_mask by separate test_bit() and __clear_bit() calls in the following commit: 3966c3feca3f ("x86/perf/amd: Remove need to check "running" bit in NMI handler") The race causes panic for PEBS events with enabled callchains: BUG: unable to handle kernel NULL pointer dereference at 0000000000000000 ... RIP: 0010:perf_prepare_sample+0x8c/0x530 Call Trace: <NMI> perf_event_output_forward+0x2a/0x80 __perf_event_overflow+0x51/0xe0 handle_pmi_common+0x19e/0x240 intel_pmu_handle_irq+0xad/0x170 perf_event_nmi_handler+0x2e/0x50 nmi_handle+0x69/0x110 default_do_nmi+0x3e/0x100 do_nmi+0x11a/0x180 end_repeat_nmi+0x16/0x1a RIP: 0010:native_write_msr+0x6/0x20 ... </NMI> intel_pmu_disable_event+0x98/0xf0 x86_pmu_stop+0x6e/0xb0 x86_pmu_del+0x46/0x140 event_sched_out.isra.97+0x7e/0x160 ... The event is configured to make samples from PEBS drain code, but when it's disabled, we'll go through NMI path instead, where data->callchain will not get allocated and we'll crash: x86_pmu_stop test_bit(hwc->idx, cpuc->active_mask) intel_pmu_disable_event(event) { ... intel_pmu_pebs_disable(event); ... EVENT OVERFLOW -> <NMI> intel_pmu_handle_irq handle_pmi_common TEST PASSES -> test_bit(bit, cpuc->active_mask)) perf_event_overflow perf_prepare_sample { ... if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) data->callchain = perf_callchain(event, regs); CRASH -> size += data->callchain->nr; } </NMI> ... x86_pmu_disable_event(event) } __clear_bit(hwc->idx, cpuc->active_mask); Fixing this by disabling the event itself before setting off the PEBS bit. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: David Arcari <darcari@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Lendacky Thomas <Thomas.Lendacky@amd.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Fixes: 3966c3feca3f ("x86/perf/amd: Remove need to check "running" bit in NMI handler") Link: http://lkml.kernel.org/r/20190504151556.31031-1-jolsa@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-04 23:15:56 +08:00
/*
* Needs to be called after x86_pmu_disable_event,
* so we don't trigger the event without PEBS bit set.
*/
if (unlikely(event->attr.precise_ip))
intel_pmu_pebs_disable(event);
}
static void intel_pmu_del_event(struct perf_event *event)
{
if (needs_branch_stack(event))
intel_pmu_lbr_del(event);
if (event->attr.precise_ip)
intel_pmu_pebs_del(event);
}
static void intel_pmu_read_event(struct perf_event *event)
{
if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
intel_pmu_auto_reload_read(event);
else
x86_perf_event_update(event);
}
static void intel_pmu_enable_fixed(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
u64 ctrl_val, mask, bits = 0;
/*
* Enable IRQ generation (0x8), if not PEBS,
* and enable ring-3 counting (0x2) and ring-0 counting (0x1)
* if requested:
*/
if (!event->attr.precise_ip)
bits |= 0x8;
if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
bits |= 0x2;
if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
bits |= 0x1;
/*
* ANY bit is supported in v3 and up
*/
if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
bits |= 0x4;
bits <<= (idx * 4);
mask = 0xfULL << (idx * 4);
perf/x86/intel: Support adaptive PEBS v4 Adaptive PEBS is a new way to report PEBS sampling information. Instead of a fixed size record for all PEBS events it allows to configure the PEBS record to only include the information needed. Events can then opt in to use such an extended record, or stay with a basic record which only contains the IP. The major new feature is to support LBRs in PEBS record. Besides normal LBR, this allows (much faster) large PEBS, while still supporting callstacks through callstack LBR. So essentially a lot of profiling can now be done without frequent interrupts, dropping the overhead significantly. The main requirement still is to use a period, and not use frequency mode, because frequency mode requires reevaluating the frequency on each overflow. The floating point state (XMM) is also supported, which allows efficient profiling of FP function arguments. Introduce specific drain function to handle variable length records. Use a new callback to parse the new record format, and also handle the STATUS field now being at a different offset. Add code to set up the configuration register. Since there is only a single register, all events either get the full super set of all events, or only the basic record. Originally-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: jolsa@kernel.org Link: https://lkml.kernel.org/r/20190402194509.2832-6-kan.liang@linux.intel.com [ Renamed GPRS => GP. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-03 03:45:02 +08:00
if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
}
rdmsrl(hwc->config_base, ctrl_val);
ctrl_val &= ~mask;
ctrl_val |= bits;
wrmsrl(hwc->config_base, ctrl_val);
}
static void intel_pmu_enable_event(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
x86: Replace __get_cpu_var uses __get_cpu_var() is used for multiple purposes in the kernel source. One of them is address calculation via the form &__get_cpu_var(x). This calculates the address for the instance of the percpu variable of the current processor based on an offset. Other use cases are for storing and retrieving data from the current processors percpu area. __get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment. __get_cpu_var() is defined as : #define __get_cpu_var(var) (*this_cpu_ptr(&(var))) __get_cpu_var() always only does an address determination. However, store and retrieve operations could use a segment prefix (or global register on other platforms) to avoid the address calculation. this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use optimized assembly code to read and write per cpu variables. This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr() or into a use of this_cpu operations that use the offset. Thereby address calculations are avoided and less registers are used when code is generated. Transformations done to __get_cpu_var() 1. Determine the address of the percpu instance of the current processor. DEFINE_PER_CPU(int, y); int *x = &__get_cpu_var(y); Converts to int *x = this_cpu_ptr(&y); 2. Same as #1 but this time an array structure is involved. DEFINE_PER_CPU(int, y[20]); int *x = __get_cpu_var(y); Converts to int *x = this_cpu_ptr(y); 3. Retrieve the content of the current processors instance of a per cpu variable. DEFINE_PER_CPU(int, y); int x = __get_cpu_var(y) Converts to int x = __this_cpu_read(y); 4. Retrieve the content of a percpu struct DEFINE_PER_CPU(struct mystruct, y); struct mystruct x = __get_cpu_var(y); Converts to memcpy(&x, this_cpu_ptr(&y), sizeof(x)); 5. Assignment to a per cpu variable DEFINE_PER_CPU(int, y) __get_cpu_var(y) = x; Converts to __this_cpu_write(y, x); 6. Increment/Decrement etc of a per cpu variable DEFINE_PER_CPU(int, y); __get_cpu_var(y)++ Converts to __this_cpu_inc(y) Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86@kernel.org Acked-by: H. Peter Anvin <hpa@linux.intel.com> Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-18 01:30:40 +08:00
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
if (!__this_cpu_read(cpu_hw_events.enabled))
return;
intel_pmu_enable_bts(hwc->config);
return;
}
if (event->attr.exclude_host)
cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
if (event->attr.exclude_guest)
cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
if (unlikely(event_is_checkpointed(event)))
cpuc->intel_cp_status |= (1ull << hwc->idx);
if (unlikely(event->attr.precise_ip))
intel_pmu_pebs_enable(event);
if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
intel_pmu_enable_fixed(event);
return;
}
__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
}
static void intel_pmu_add_event(struct perf_event *event)
{
if (event->attr.precise_ip)
intel_pmu_pebs_add(event);
if (needs_branch_stack(event))
intel_pmu_lbr_add(event);
}
/*
* Save and restart an expired event. Called by NMI contexts,
* so it has to be careful about preempting normal event ops:
*/
int intel_pmu_save_and_restart(struct perf_event *event)
{
x86_perf_event_update(event);
/*
* For a checkpointed counter always reset back to 0. This
* avoids a situation where the counter overflows, aborts the
* transaction and is then set back to shortly before the
* overflow, and overflows and aborts again.
*/
if (unlikely(event_is_checkpointed(event))) {
/* No race with NMIs because the counter should not be armed */
wrmsrl(event->hw.event_base, 0);
local64_set(&event->hw.prev_count, 0);
}
return x86_perf_event_set_period(event);
}
static void intel_pmu_reset(void)
{
struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
unsigned long flags;
int idx;
if (!x86_pmu.num_counters)
return;
local_irq_save(flags);
pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
wrmsrl_safe(x86_pmu_event_addr(idx), 0ull);
}
for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
if (ds)
ds->bts_index = ds->bts_buffer_base;
/* Ack all overflows and disable fixed counters */
if (x86_pmu.version >= 2) {
intel_pmu_ack_status(intel_pmu_get_status());
wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
}
/* Reset LBRs and LBR freezing */
if (x86_pmu.lbr_nr) {
update_debugctlmsr(get_debugctlmsr() &
~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
}
local_irq_restore(flags);
}
static int handle_pmi_common(struct pt_regs *regs, u64 status)
{
struct perf_sample_data data;
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
int bit;
int handled = 0;
inc_irq_stat(apic_perf_irqs);
perf/x86/intel: ignore CondChgd bit to avoid false NMI handling Currently, any NMI is falsely handled by a NMI handler of NMI watchdog if CondChgd bit in MSR_CORE_PERF_GLOBAL_STATUS MSR is set. For example, we use external NMI to make system panic to get crash dump, but in this case, the external NMI is falsely handled do to the issue. This commit deals with the issue simply by ignoring CondChgd bit. Here is explanation in detail. On x86 NMI watchdog uses performance monitoring feature to periodically signal NMI each time performance counter gets overflowed. intel_pmu_handle_irq() is called as a NMI_LOCAL handler from a NMI handler of NMI watchdog, perf_event_nmi_handler(). It identifies an owner of a given NMI by looking at overflow status bits in MSR_CORE_PERF_GLOBAL_STATUS MSR. If some of the bits are set, then it handles the given NMI as its own NMI. The problem is that the intel_pmu_handle_irq() doesn't distinguish CondChgd bit from other bits. Unlike the other status bits, CondChgd bit doesn't represent overflow status for performance counters. Thus, CondChgd bit cannot be thought of as a mark indicating a given NMI is NMI watchdog's. As a result, if CondChgd bit is set, any NMI is falsely handled by the NMI handler of NMI watchdog. Also, if type of the falsely handled NMI is either NMI_UNKNOWN, NMI_SERR or NMI_IO_CHECK, the corresponding action is never performed until CondChgd bit is cleared. I noticed this behavior on systems with Ivy Bridge processors: Intel Xeon CPU E5-2630 v2 and Intel Xeon CPU E7-8890 v2. On both systems, CondChgd bit in MSR_CORE_PERF_GLOBAL_STATUS MSR has already been set in the beginning at boot. Then the CondChgd bit is immediately cleared by next wrmsr to MSR_CORE_PERF_GLOBAL_CTRL MSR and appears to remain 0. On the other hand, on older processors such as Nehalem, Xeon E7540, CondChgd bit is not set in the beginning at boot. I'm not sure about exact behavior of CondChgd bit, in particular when this bit is set. Although I read Intel System Programmer's Manual to figure out that, the descriptions I found are: In 18.9.1: "The MSR_PERF_GLOBAL_STATUS MSR also provides a ¡sticky bit¢ to indicate changes to the state of performancmonitoring hardware" In Table 35-2 IA-32 Architectural MSRs 63 CondChg: status bits of this register has changed. These are different from the bahviour I see on the actual system as I explained above. At least, I think ignoring CondChgd bit should be enough for NMI watchdog perspective. Signed-off-by: HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com> Acked-by: Don Zickus <dzickus@redhat.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: <stable@vger.kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20140625.103503.409316067.d.hatayama@jp.fujitsu.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-06-25 09:09:07 +08:00
/*
* Ignore a range of extra bits in status that do not indicate
* overflow by themselves.
perf/x86/intel: ignore CondChgd bit to avoid false NMI handling Currently, any NMI is falsely handled by a NMI handler of NMI watchdog if CondChgd bit in MSR_CORE_PERF_GLOBAL_STATUS MSR is set. For example, we use external NMI to make system panic to get crash dump, but in this case, the external NMI is falsely handled do to the issue. This commit deals with the issue simply by ignoring CondChgd bit. Here is explanation in detail. On x86 NMI watchdog uses performance monitoring feature to periodically signal NMI each time performance counter gets overflowed. intel_pmu_handle_irq() is called as a NMI_LOCAL handler from a NMI handler of NMI watchdog, perf_event_nmi_handler(). It identifies an owner of a given NMI by looking at overflow status bits in MSR_CORE_PERF_GLOBAL_STATUS MSR. If some of the bits are set, then it handles the given NMI as its own NMI. The problem is that the intel_pmu_handle_irq() doesn't distinguish CondChgd bit from other bits. Unlike the other status bits, CondChgd bit doesn't represent overflow status for performance counters. Thus, CondChgd bit cannot be thought of as a mark indicating a given NMI is NMI watchdog's. As a result, if CondChgd bit is set, any NMI is falsely handled by the NMI handler of NMI watchdog. Also, if type of the falsely handled NMI is either NMI_UNKNOWN, NMI_SERR or NMI_IO_CHECK, the corresponding action is never performed until CondChgd bit is cleared. I noticed this behavior on systems with Ivy Bridge processors: Intel Xeon CPU E5-2630 v2 and Intel Xeon CPU E7-8890 v2. On both systems, CondChgd bit in MSR_CORE_PERF_GLOBAL_STATUS MSR has already been set in the beginning at boot. Then the CondChgd bit is immediately cleared by next wrmsr to MSR_CORE_PERF_GLOBAL_CTRL MSR and appears to remain 0. On the other hand, on older processors such as Nehalem, Xeon E7540, CondChgd bit is not set in the beginning at boot. I'm not sure about exact behavior of CondChgd bit, in particular when this bit is set. Although I read Intel System Programmer's Manual to figure out that, the descriptions I found are: In 18.9.1: "The MSR_PERF_GLOBAL_STATUS MSR also provides a ¡sticky bit¢ to indicate changes to the state of performancmonitoring hardware" In Table 35-2 IA-32 Architectural MSRs 63 CondChg: status bits of this register has changed. These are different from the bahviour I see on the actual system as I explained above. At least, I think ignoring CondChgd bit should be enough for NMI watchdog perspective. Signed-off-by: HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com> Acked-by: Don Zickus <dzickus@redhat.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: <stable@vger.kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20140625.103503.409316067.d.hatayama@jp.fujitsu.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-06-25 09:09:07 +08:00
*/
status &= ~(GLOBAL_STATUS_COND_CHG |
GLOBAL_STATUS_ASIF |
GLOBAL_STATUS_LBRS_FROZEN);
if (!status)
return 0;
perf/x86/pebs: Fix handling of PEBS buffer overflows This patch solves a race condition between PEBS and the PMU handler. In case multiple PEBS events are sampled at the same time, it is possible to have GLOBAL_STATUS bit 62 set indicating PEBS buffer overflow and also seeing at most 3 PEBS counters having their bits set in the status register. This is a sign that there was at least one PEBS record pending at the time of the PMU interrupt. PEBS counters must only be processed via the drain_pebs() calls, and not via the regular sample processing loop coming after that the function, otherwise phony regular samples may be generated in the sampling buffer not marked with the EXACT tag. Another possibility is to have one PEBS event and at least one non-PEBS event whic hoverflows while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will not be set, yet the overflow status bit for the PEBS counter will be on Skylake. To avoid this problem, we systematically ignore the PEBS-enabled counters from the GLOBAL_STATUS mask and we always process PEBS events via drain_pebs(). The problem manifested itself by having non-exact samples when sampling only PEBS events, i.e., the PERF_SAMPLE_RECORD would not have the EXACT flag set. Note that this problem is only present on Skylake processor. This fix is harmless on older processors. Reported-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Stephane Eranian <eranian@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Link: http://lkml.kernel.org/r/1482395366-8992-1-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-12-22 16:29:26 +08:00
/*
* In case multiple PEBS events are sampled at the same time,
* it is possible to have GLOBAL_STATUS bit 62 set indicating
* PEBS buffer overflow and also seeing at most 3 PEBS counters
* having their bits set in the status register. This is a sign
* that there was at least one PEBS record pending at the time
* of the PMU interrupt. PEBS counters must only be processed
* via the drain_pebs() calls and not via the regular sample
* processing loop coming after that the function, otherwise
* phony regular samples may be generated in the sampling buffer
* not marked with the EXACT tag. Another possibility is to have
* one PEBS event and at least one non-PEBS event whic hoverflows
* while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
* not be set, yet the overflow status bit for the PEBS counter will
* be on Skylake.
*
* To avoid this problem, we systematically ignore the PEBS-enabled
* counters from the GLOBAL_STATUS mask and we always process PEBS
* events via drain_pebs().
*/
if (x86_pmu.flags & PMU_FL_PEBS_ALL)
status &= ~cpuc->pebs_enabled;
else
status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
perf/x86/intel: ignore CondChgd bit to avoid false NMI handling Currently, any NMI is falsely handled by a NMI handler of NMI watchdog if CondChgd bit in MSR_CORE_PERF_GLOBAL_STATUS MSR is set. For example, we use external NMI to make system panic to get crash dump, but in this case, the external NMI is falsely handled do to the issue. This commit deals with the issue simply by ignoring CondChgd bit. Here is explanation in detail. On x86 NMI watchdog uses performance monitoring feature to periodically signal NMI each time performance counter gets overflowed. intel_pmu_handle_irq() is called as a NMI_LOCAL handler from a NMI handler of NMI watchdog, perf_event_nmi_handler(). It identifies an owner of a given NMI by looking at overflow status bits in MSR_CORE_PERF_GLOBAL_STATUS MSR. If some of the bits are set, then it handles the given NMI as its own NMI. The problem is that the intel_pmu_handle_irq() doesn't distinguish CondChgd bit from other bits. Unlike the other status bits, CondChgd bit doesn't represent overflow status for performance counters. Thus, CondChgd bit cannot be thought of as a mark indicating a given NMI is NMI watchdog's. As a result, if CondChgd bit is set, any NMI is falsely handled by the NMI handler of NMI watchdog. Also, if type of the falsely handled NMI is either NMI_UNKNOWN, NMI_SERR or NMI_IO_CHECK, the corresponding action is never performed until CondChgd bit is cleared. I noticed this behavior on systems with Ivy Bridge processors: Intel Xeon CPU E5-2630 v2 and Intel Xeon CPU E7-8890 v2. On both systems, CondChgd bit in MSR_CORE_PERF_GLOBAL_STATUS MSR has already been set in the beginning at boot. Then the CondChgd bit is immediately cleared by next wrmsr to MSR_CORE_PERF_GLOBAL_CTRL MSR and appears to remain 0. On the other hand, on older processors such as Nehalem, Xeon E7540, CondChgd bit is not set in the beginning at boot. I'm not sure about exact behavior of CondChgd bit, in particular when this bit is set. Although I read Intel System Programmer's Manual to figure out that, the descriptions I found are: In 18.9.1: "The MSR_PERF_GLOBAL_STATUS MSR also provides a ¡sticky bit¢ to indicate changes to the state of performancmonitoring hardware" In Table 35-2 IA-32 Architectural MSRs 63 CondChg: status bits of this register has changed. These are different from the bahviour I see on the actual system as I explained above. At least, I think ignoring CondChgd bit should be enough for NMI watchdog perspective. Signed-off-by: HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com> Acked-by: Don Zickus <dzickus@redhat.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: <stable@vger.kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20140625.103503.409316067.d.hatayama@jp.fujitsu.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-06-25 09:09:07 +08:00
/*
* PEBS overflow sets bit 62 in the global status register
*/
if (__test_and_clear_bit(62, (unsigned long *)&status)) {
handled++;
x86_pmu.drain_pebs(regs);
perf/x86/pebs: Add workaround for broken OVFL status on HSW+ This patch fixes an issue with the GLOBAL_OVERFLOW_STATUS bits on Haswell, Broadwell and Skylake processors when using PEBS. The SDM stipulates that when the PEBS iterrupt threshold is crossed, an interrupt is posted and the kernel is interrupted. The kernel will find GLOBAL_OVF_SATUS bit 62 set indicating there are PEBS records to drain. But the bits corresponding to the actual counters should NOT be set. The kernel follows the SDM and assumes that all PEBS events are processed in the drain_pebs() callback. The kernel then checks for remaining overflows on any other (non-PEBS) events and processes these in the for_each_bit_set(&status) loop. As it turns out, under certain conditions on HSW and later processors, on PEBS buffer interrupt, bit 62 is set but the counter bits may be set as well. In that case, the kernel drains PEBS and generates SAMPLES with the EXACT tag, then it processes the counter bits, and generates normal (non-EXACT) SAMPLES. I ran into this problem by trying to understand why on HSW sampling on a PEBS event was sometimes returning SAMPLES without the EXACT tag. This should not happen on user level code because HSW has the eventing_ip which always point to the instruction that caused the event. The workaround in this patch simply ensures that the bits for the counters used for PEBS events are cleared after the PEBS buffer has been drained. With this fix 100% of the PEBS samples on my user code report the EXACT tag. Before: $ perf record -e cpu/event=0xd0,umask=0x81/upp ./multichase $ perf report -D | fgrep SAMPLES PERF_RECORD_SAMPLE(IP, 0x2): 11775/11775: 0x406de5 period: 73469 addr: 0 exact=Y \--- EXACT tag is missing After: $ perf record -e cpu/event=0xd0,umask=0x81/upp ./multichase $ perf report -D | fgrep SAMPLES PERF_RECORD_SAMPLE(IP, 0x4002): 11775/11775: 0x406de5 period: 73469 addr: 0 exact=Y \--- EXACT tag is set The problem tends to appear more often when multiple PEBS events are used. Signed-off-by: Stephane Eranian <eranian@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: <stable@vger.kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: adrian.hunter@intel.com Cc: kan.liang@intel.com Cc: namhyung@kernel.org Link: http://lkml.kernel.org/r/1457034642-21837-3-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-03-04 03:50:41 +08:00
status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
}
/*
* Intel PT
*/
if (__test_and_clear_bit(55, (unsigned long *)&status)) {
handled++;
if (unlikely(perf_guest_cbs && perf_guest_cbs->is_in_guest() &&
perf_guest_cbs->handle_intel_pt_intr))
perf_guest_cbs->handle_intel_pt_intr();
else
intel_pt_interrupt();
}
/*
* Checkpointed counters can lead to 'spurious' PMIs because the
* rollback caused by the PMI will have cleared the overflow status
* bit. Therefore always force probe these counters.
*/
status |= cpuc->intel_cp_status;
for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
struct perf_event *event = cpuc->events[bit];
handled++;
if (!test_bit(bit, cpuc->active_mask))
continue;
if (!intel_pmu_save_and_restart(event))
continue;
perf_sample_data_init(&data, 0, event->hw.last_period);
if (has_branch_stack(event))
data.br_stack = &cpuc->lbr_stack;
if (perf_event_overflow(event, &data, regs))
2010-06-16 20:37:10 +08:00
x86_pmu_stop(event, 0);
}
return handled;
}
static bool disable_counter_freezing = true;
perf/x86/intel: Add a separate Arch Perfmon v4 PMI handler Implements counter freezing for Arch Perfmon v4 (Skylake and newer). This allows to speed up the PMI handler by avoiding unnecessary MSR writes and make it more accurate. The Arch Perfmon v4 PMI handler is substantially different than the older PMI handler. Differences to the old handler: - It relies on counter freezing, which eliminates several MSR writes from the PMI handler and lowers the overhead significantly. It makes the PMI handler more accurate, as all counters get frozen atomically as soon as any counter overflows. So there is much less counting of the PMI handler itself. With the freezing we don't need to disable or enable counters or PEBS. Only BTS which does not support auto-freezing still needs to be explicitly managed. - The PMU acking is done at the end, not the beginning. This makes it possible to avoid manual enabling/disabling of the PMU, instead we just rely on the freezing/acking. - The APIC is acked before reenabling the PMU, which avoids problems with LBRs occasionally not getting unfreezed on Skylake. - Looping is only needed to workaround a corner case which several PMIs are very close to each other. For common cases, the counters are freezed during PMI handler. It doesn't need to do re-check. This patch: - Adds code to enable v4 counter freezing - Fork <=v3 and >=v4 PMI handlers into separate functions. - Add kernel parameter to disable counter freezing. It took some time to debug counter freezing, so in case there are new problems we added an option to turn it off. Would not expect this to be used until there are new bugs. - Only for big core. The patch for small core will be posted later separately. Performance: When profiling a kernel build on Kabylake with different perf options, measuring the length of all NMI handlers using the nmi handler trace point: V3 is without counter freezing. V4 is with counter freezing. The value is the average cost of the PMI handler. (lower is better) perf options ` V3(ns) V4(ns) delta -c 100000 1088 894 -18% -g -c 100000 1862 1646 -12% --call-graph lbr -c 100000 3649 3367 -8% --c.g. dwarf -c 100000 2248 1982 -12% Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Link: http://lkml.kernel.org/r/1533712328-2834-2-git-send-email-kan.liang@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-08-08 15:12:07 +08:00
static int __init intel_perf_counter_freezing_setup(char *s)
{
bool res;
if (kstrtobool(s, &res))
return -EINVAL;
disable_counter_freezing = !res;
perf/x86/intel: Add a separate Arch Perfmon v4 PMI handler Implements counter freezing for Arch Perfmon v4 (Skylake and newer). This allows to speed up the PMI handler by avoiding unnecessary MSR writes and make it more accurate. The Arch Perfmon v4 PMI handler is substantially different than the older PMI handler. Differences to the old handler: - It relies on counter freezing, which eliminates several MSR writes from the PMI handler and lowers the overhead significantly. It makes the PMI handler more accurate, as all counters get frozen atomically as soon as any counter overflows. So there is much less counting of the PMI handler itself. With the freezing we don't need to disable or enable counters or PEBS. Only BTS which does not support auto-freezing still needs to be explicitly managed. - The PMU acking is done at the end, not the beginning. This makes it possible to avoid manual enabling/disabling of the PMU, instead we just rely on the freezing/acking. - The APIC is acked before reenabling the PMU, which avoids problems with LBRs occasionally not getting unfreezed on Skylake. - Looping is only needed to workaround a corner case which several PMIs are very close to each other. For common cases, the counters are freezed during PMI handler. It doesn't need to do re-check. This patch: - Adds code to enable v4 counter freezing - Fork <=v3 and >=v4 PMI handlers into separate functions. - Add kernel parameter to disable counter freezing. It took some time to debug counter freezing, so in case there are new problems we added an option to turn it off. Would not expect this to be used until there are new bugs. - Only for big core. The patch for small core will be posted later separately. Performance: When profiling a kernel build on Kabylake with different perf options, measuring the length of all NMI handlers using the nmi handler trace point: V3 is without counter freezing. V4 is with counter freezing. The value is the average cost of the PMI handler. (lower is better) perf options ` V3(ns) V4(ns) delta -c 100000 1088 894 -18% -g -c 100000 1862 1646 -12% --call-graph lbr -c 100000 3649 3367 -8% --c.g. dwarf -c 100000 2248 1982 -12% Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Link: http://lkml.kernel.org/r/1533712328-2834-2-git-send-email-kan.liang@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-08-08 15:12:07 +08:00
return 1;
}
__setup("perf_v4_pmi=", intel_perf_counter_freezing_setup);
perf/x86/intel: Add a separate Arch Perfmon v4 PMI handler Implements counter freezing for Arch Perfmon v4 (Skylake and newer). This allows to speed up the PMI handler by avoiding unnecessary MSR writes and make it more accurate. The Arch Perfmon v4 PMI handler is substantially different than the older PMI handler. Differences to the old handler: - It relies on counter freezing, which eliminates several MSR writes from the PMI handler and lowers the overhead significantly. It makes the PMI handler more accurate, as all counters get frozen atomically as soon as any counter overflows. So there is much less counting of the PMI handler itself. With the freezing we don't need to disable or enable counters or PEBS. Only BTS which does not support auto-freezing still needs to be explicitly managed. - The PMU acking is done at the end, not the beginning. This makes it possible to avoid manual enabling/disabling of the PMU, instead we just rely on the freezing/acking. - The APIC is acked before reenabling the PMU, which avoids problems with LBRs occasionally not getting unfreezed on Skylake. - Looping is only needed to workaround a corner case which several PMIs are very close to each other. For common cases, the counters are freezed during PMI handler. It doesn't need to do re-check. This patch: - Adds code to enable v4 counter freezing - Fork <=v3 and >=v4 PMI handlers into separate functions. - Add kernel parameter to disable counter freezing. It took some time to debug counter freezing, so in case there are new problems we added an option to turn it off. Would not expect this to be used until there are new bugs. - Only for big core. The patch for small core will be posted later separately. Performance: When profiling a kernel build on Kabylake with different perf options, measuring the length of all NMI handlers using the nmi handler trace point: V3 is without counter freezing. V4 is with counter freezing. The value is the average cost of the PMI handler. (lower is better) perf options ` V3(ns) V4(ns) delta -c 100000 1088 894 -18% -g -c 100000 1862 1646 -12% --call-graph lbr -c 100000 3649 3367 -8% --c.g. dwarf -c 100000 2248 1982 -12% Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Link: http://lkml.kernel.org/r/1533712328-2834-2-git-send-email-kan.liang@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-08-08 15:12:07 +08:00
/*
* Simplified handler for Arch Perfmon v4:
* - We rely on counter freezing/unfreezing to enable/disable the PMU.
* This is done automatically on PMU ack.
* - Ack the PMU only after the APIC.
*/
static int intel_pmu_handle_irq_v4(struct pt_regs *regs)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
int handled = 0;
bool bts = false;
u64 status;
int pmu_enabled = cpuc->enabled;
int loops = 0;
/* PMU has been disabled because of counter freezing */
cpuc->enabled = 0;
if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
bts = true;
intel_bts_disable_local();
handled = intel_pmu_drain_bts_buffer();
handled += intel_bts_interrupt();
}
status = intel_pmu_get_status();
if (!status)
goto done;
again:
intel_pmu_lbr_read();
if (++loops > 100) {
static bool warned;
if (!warned) {
WARN(1, "perfevents: irq loop stuck!\n");
perf_event_print_debug();
warned = true;
}
intel_pmu_reset();
goto done;
}
handled += handle_pmi_common(regs, status);
done:
/* Ack the PMI in the APIC */
apic_write(APIC_LVTPC, APIC_DM_NMI);
/*
* The counters start counting immediately while ack the status.
* Make it as close as possible to IRET. This avoids bogus
* freezing on Skylake CPUs.
*/
if (status) {
intel_pmu_ack_status(status);
} else {
/*
* CPU may issues two PMIs very close to each other.
* When the PMI handler services the first one, the
* GLOBAL_STATUS is already updated to reflect both.
* When it IRETs, the second PMI is immediately
* handled and it sees clear status. At the meantime,
* there may be a third PMI, because the freezing bit
* isn't set since the ack in first PMI handlers.
* Double check if there is more work to be done.
*/
status = intel_pmu_get_status();
if (status)
goto again;
}
if (bts)
intel_bts_enable_local();
cpuc->enabled = pmu_enabled;
return handled;
}
/*
* This handler is triggered by the local APIC, so the APIC IRQ handling
* rules apply:
*/
static int intel_pmu_handle_irq(struct pt_regs *regs)
{
struct cpu_hw_events *cpuc;
int loops;
u64 status;
int handled;
int pmu_enabled;
cpuc = this_cpu_ptr(&cpu_hw_events);
/*
* Save the PMU state.
* It needs to be restored when leaving the handler.
*/
pmu_enabled = cpuc->enabled;
/*
* No known reason to not always do late ACK,
* but just in case do it opt-in.
*/
if (!x86_pmu.late_ack)
apic_write(APIC_LVTPC, APIC_DM_NMI);
intel_bts_disable_local();
cpuc->enabled = 0;
__intel_pmu_disable_all();
handled = intel_pmu_drain_bts_buffer();
handled += intel_bts_interrupt();
status = intel_pmu_get_status();
if (!status)
goto done;
loops = 0;
again:
intel_pmu_lbr_read();
intel_pmu_ack_status(status);
if (++loops > 100) {
static bool warned;
if (!warned) {
WARN(1, "perfevents: irq loop stuck!\n");
perf_event_print_debug();
warned = true;
}
intel_pmu_reset();
goto done;
}
handled += handle_pmi_common(regs, status);
/*
* Repeat if there is more work to be done:
*/
status = intel_pmu_get_status();
if (status)
goto again;
done:
perf/x86/intel: Fix PEBS warning by only restoring active PMU in pmi This patch tries to fix a PEBS warning found in my stress test. The following perf command can easily trigger the pebs warning or spurious NMI error on Skylake/Broadwell/Haswell platforms: sudo perf record -e 'cpu/umask=0x04,event=0xc4/pp,cycles,branches,ref-cycles,cache-misses,cache-references' --call-graph fp -b -c1000 -a Also the NMI watchdog must be enabled. For this case, the events number is larger than counter number. So perf has to do multiplexing. In perf_mux_hrtimer_handler, it does perf_pmu_disable(), schedule out old events, rotate_ctx, schedule in new events and finally perf_pmu_enable(). If the old events include precise event, the MSR_IA32_PEBS_ENABLE should be cleared when perf_pmu_disable(). The MSR_IA32_PEBS_ENABLE should keep 0 until the perf_pmu_enable() is called and the new event is precise event. However, there is a corner case which could restore PEBS_ENABLE to stale value during the above period. In perf_pmu_disable(), GLOBAL_CTRL will be set to 0 to stop overflow and followed PMI. But there may be pending PMI from an earlier overflow, which cannot be stopped. So even GLOBAL_CTRL is cleared, the kernel still be possible to get PMI. At the end of the PMI handler, __intel_pmu_enable_all() will be called, which will restore the stale values if old events haven't scheduled out. Once the stale pebs value is set, it's impossible to be corrected if the new events are non-precise. Because the pebs_enabled will be set to 0. x86_pmu.enable_all() will ignore the MSR_IA32_PEBS_ENABLE setting. As a result, the following NMI with stale PEBS_ENABLE trigger pebs warning. The pending PMI after enabled=0 will become harmless if the NMI handler does not change the state. This patch checks cpuc->enabled in pmi and only restore the state when PMU is active. Here is the dump: Call Trace: <NMI> [<ffffffff813c3a2e>] dump_stack+0x63/0x85 [<ffffffff810a46f2>] warn_slowpath_common+0x82/0xc0 [<ffffffff810a483a>] warn_slowpath_null+0x1a/0x20 [<ffffffff8100fe2e>] intel_pmu_drain_pebs_nhm+0x2be/0x320 [<ffffffff8100caa9>] intel_pmu_handle_irq+0x279/0x460 [<ffffffff810639b6>] ? native_write_msr_safe+0x6/0x40 [<ffffffff811f290d>] ? vunmap_page_range+0x20d/0x330 [<ffffffff811f2f11>] ? unmap_kernel_range_noflush+0x11/0x20 [<ffffffff8148379f>] ? ghes_copy_tofrom_phys+0x10f/0x2a0 [<ffffffff814839c8>] ? ghes_read_estatus+0x98/0x170 [<ffffffff81005a7d>] perf_event_nmi_handler+0x2d/0x50 [<ffffffff810310b9>] nmi_handle+0x69/0x120 [<ffffffff810316f6>] default_do_nmi+0xe6/0x100 [<ffffffff810317f2>] do_nmi+0xe2/0x130 [<ffffffff817aea71>] end_repeat_nmi+0x1a/0x1e [<ffffffff810639b6>] ? native_write_msr_safe+0x6/0x40 [<ffffffff810639b6>] ? native_write_msr_safe+0x6/0x40 [<ffffffff810639b6>] ? native_write_msr_safe+0x6/0x40 <<EOE>> <IRQ> [<ffffffff81006df8>] ? x86_perf_event_set_period+0xd8/0x180 [<ffffffff81006eec>] x86_pmu_start+0x4c/0x100 [<ffffffff8100722d>] x86_pmu_enable+0x28d/0x300 [<ffffffff811994d7>] perf_pmu_enable.part.81+0x7/0x10 [<ffffffff8119cb70>] perf_mux_hrtimer_handler+0x200/0x280 [<ffffffff8119c970>] ? __perf_install_in_context+0xc0/0xc0 [<ffffffff8110f92d>] __hrtimer_run_queues+0xfd/0x280 [<ffffffff811100d8>] hrtimer_interrupt+0xa8/0x190 [<ffffffff81199080>] ? __perf_read_group_add.part.61+0x1a0/0x1a0 [<ffffffff81051bd8>] local_apic_timer_interrupt+0x38/0x60 [<ffffffff817af01d>] smp_apic_timer_interrupt+0x3d/0x50 [<ffffffff817ad15c>] apic_timer_interrupt+0x8c/0xa0 <EOI> [<ffffffff81199080>] ? __perf_read_group_add.part.61+0x1a0/0x1a0 [<ffffffff81123de5>] ? smp_call_function_single+0xd5/0x130 [<ffffffff81123ddb>] ? smp_call_function_single+0xcb/0x130 [<ffffffff81199080>] ? __perf_read_group_add.part.61+0x1a0/0x1a0 [<ffffffff8119765a>] event_function_call+0x10a/0x120 [<ffffffff8119c660>] ? ctx_resched+0x90/0x90 [<ffffffff811971e0>] ? cpu_clock_event_read+0x30/0x30 [<ffffffff811976d0>] ? _perf_event_disable+0x60/0x60 [<ffffffff8119772b>] _perf_event_enable+0x5b/0x70 [<ffffffff81197388>] perf_event_for_each_child+0x38/0xa0 [<ffffffff811976d0>] ? _perf_event_disable+0x60/0x60 [<ffffffff811a0ffd>] perf_ioctl+0x12d/0x3c0 [<ffffffff8134d855>] ? selinux_file_ioctl+0x95/0x1e0 [<ffffffff8124a3a1>] do_vfs_ioctl+0xa1/0x5a0 [<ffffffff81036d29>] ? sched_clock+0x9/0x10 [<ffffffff8124a919>] SyS_ioctl+0x79/0x90 [<ffffffff817ac4b2>] entry_SYSCALL_64_fastpath+0x1a/0xa4 ---[ end trace aef202839fe9a71d ]--- Uhhuh. NMI received for unknown reason 2d on CPU 2. Do you have a strange power saving mode enabled? Signed-off-by: Kan Liang <kan.liang@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: <stable@vger.kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Link: http://lkml.kernel.org/r/1457046448-6184-1-git-send-email-kan.liang@intel.com [ Fixed various typos and other small details. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-03-04 07:07:28 +08:00
/* Only restore PMU state when it's active. See x86_pmu_disable(). */
cpuc->enabled = pmu_enabled;
if (pmu_enabled)
perf/x86/intel: Fix PEBS warning by only restoring active PMU in pmi This patch tries to fix a PEBS warning found in my stress test. The following perf command can easily trigger the pebs warning or spurious NMI error on Skylake/Broadwell/Haswell platforms: sudo perf record -e 'cpu/umask=0x04,event=0xc4/pp,cycles,branches,ref-cycles,cache-misses,cache-references' --call-graph fp -b -c1000 -a Also the NMI watchdog must be enabled. For this case, the events number is larger than counter number. So perf has to do multiplexing. In perf_mux_hrtimer_handler, it does perf_pmu_disable(), schedule out old events, rotate_ctx, schedule in new events and finally perf_pmu_enable(). If the old events include precise event, the MSR_IA32_PEBS_ENABLE should be cleared when perf_pmu_disable(). The MSR_IA32_PEBS_ENABLE should keep 0 until the perf_pmu_enable() is called and the new event is precise event. However, there is a corner case which could restore PEBS_ENABLE to stale value during the above period. In perf_pmu_disable(), GLOBAL_CTRL will be set to 0 to stop overflow and followed PMI. But there may be pending PMI from an earlier overflow, which cannot be stopped. So even GLOBAL_CTRL is cleared, the kernel still be possible to get PMI. At the end of the PMI handler, __intel_pmu_enable_all() will be called, which will restore the stale values if old events haven't scheduled out. Once the stale pebs value is set, it's impossible to be corrected if the new events are non-precise. Because the pebs_enabled will be set to 0. x86_pmu.enable_all() will ignore the MSR_IA32_PEBS_ENABLE setting. As a result, the following NMI with stale PEBS_ENABLE trigger pebs warning. The pending PMI after enabled=0 will become harmless if the NMI handler does not change the state. This patch checks cpuc->enabled in pmi and only restore the state when PMU is active. Here is the dump: Call Trace: <NMI> [<ffffffff813c3a2e>] dump_stack+0x63/0x85 [<ffffffff810a46f2>] warn_slowpath_common+0x82/0xc0 [<ffffffff810a483a>] warn_slowpath_null+0x1a/0x20 [<ffffffff8100fe2e>] intel_pmu_drain_pebs_nhm+0x2be/0x320 [<ffffffff8100caa9>] intel_pmu_handle_irq+0x279/0x460 [<ffffffff810639b6>] ? native_write_msr_safe+0x6/0x40 [<ffffffff811f290d>] ? vunmap_page_range+0x20d/0x330 [<ffffffff811f2f11>] ? unmap_kernel_range_noflush+0x11/0x20 [<ffffffff8148379f>] ? ghes_copy_tofrom_phys+0x10f/0x2a0 [<ffffffff814839c8>] ? ghes_read_estatus+0x98/0x170 [<ffffffff81005a7d>] perf_event_nmi_handler+0x2d/0x50 [<ffffffff810310b9>] nmi_handle+0x69/0x120 [<ffffffff810316f6>] default_do_nmi+0xe6/0x100 [<ffffffff810317f2>] do_nmi+0xe2/0x130 [<ffffffff817aea71>] end_repeat_nmi+0x1a/0x1e [<ffffffff810639b6>] ? native_write_msr_safe+0x6/0x40 [<ffffffff810639b6>] ? native_write_msr_safe+0x6/0x40 [<ffffffff810639b6>] ? native_write_msr_safe+0x6/0x40 <<EOE>> <IRQ> [<ffffffff81006df8>] ? x86_perf_event_set_period+0xd8/0x180 [<ffffffff81006eec>] x86_pmu_start+0x4c/0x100 [<ffffffff8100722d>] x86_pmu_enable+0x28d/0x300 [<ffffffff811994d7>] perf_pmu_enable.part.81+0x7/0x10 [<ffffffff8119cb70>] perf_mux_hrtimer_handler+0x200/0x280 [<ffffffff8119c970>] ? __perf_install_in_context+0xc0/0xc0 [<ffffffff8110f92d>] __hrtimer_run_queues+0xfd/0x280 [<ffffffff811100d8>] hrtimer_interrupt+0xa8/0x190 [<ffffffff81199080>] ? __perf_read_group_add.part.61+0x1a0/0x1a0 [<ffffffff81051bd8>] local_apic_timer_interrupt+0x38/0x60 [<ffffffff817af01d>] smp_apic_timer_interrupt+0x3d/0x50 [<ffffffff817ad15c>] apic_timer_interrupt+0x8c/0xa0 <EOI> [<ffffffff81199080>] ? __perf_read_group_add.part.61+0x1a0/0x1a0 [<ffffffff81123de5>] ? smp_call_function_single+0xd5/0x130 [<ffffffff81123ddb>] ? smp_call_function_single+0xcb/0x130 [<ffffffff81199080>] ? __perf_read_group_add.part.61+0x1a0/0x1a0 [<ffffffff8119765a>] event_function_call+0x10a/0x120 [<ffffffff8119c660>] ? ctx_resched+0x90/0x90 [<ffffffff811971e0>] ? cpu_clock_event_read+0x30/0x30 [<ffffffff811976d0>] ? _perf_event_disable+0x60/0x60 [<ffffffff8119772b>] _perf_event_enable+0x5b/0x70 [<ffffffff81197388>] perf_event_for_each_child+0x38/0xa0 [<ffffffff811976d0>] ? _perf_event_disable+0x60/0x60 [<ffffffff811a0ffd>] perf_ioctl+0x12d/0x3c0 [<ffffffff8134d855>] ? selinux_file_ioctl+0x95/0x1e0 [<ffffffff8124a3a1>] do_vfs_ioctl+0xa1/0x5a0 [<ffffffff81036d29>] ? sched_clock+0x9/0x10 [<ffffffff8124a919>] SyS_ioctl+0x79/0x90 [<ffffffff817ac4b2>] entry_SYSCALL_64_fastpath+0x1a/0xa4 ---[ end trace aef202839fe9a71d ]--- Uhhuh. NMI received for unknown reason 2d on CPU 2. Do you have a strange power saving mode enabled? Signed-off-by: Kan Liang <kan.liang@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: <stable@vger.kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Link: http://lkml.kernel.org/r/1457046448-6184-1-git-send-email-kan.liang@intel.com [ Fixed various typos and other small details. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-03-04 07:07:28 +08:00
__intel_pmu_enable_all(0, true);
intel_bts_enable_local();
perf/x86/intel: Fix PEBS warning by only restoring active PMU in pmi This patch tries to fix a PEBS warning found in my stress test. The following perf command can easily trigger the pebs warning or spurious NMI error on Skylake/Broadwell/Haswell platforms: sudo perf record -e 'cpu/umask=0x04,event=0xc4/pp,cycles,branches,ref-cycles,cache-misses,cache-references' --call-graph fp -b -c1000 -a Also the NMI watchdog must be enabled. For this case, the events number is larger than counter number. So perf has to do multiplexing. In perf_mux_hrtimer_handler, it does perf_pmu_disable(), schedule out old events, rotate_ctx, schedule in new events and finally perf_pmu_enable(). If the old events include precise event, the MSR_IA32_PEBS_ENABLE should be cleared when perf_pmu_disable(). The MSR_IA32_PEBS_ENABLE should keep 0 until the perf_pmu_enable() is called and the new event is precise event. However, there is a corner case which could restore PEBS_ENABLE to stale value during the above period. In perf_pmu_disable(), GLOBAL_CTRL will be set to 0 to stop overflow and followed PMI. But there may be pending PMI from an earlier overflow, which cannot be stopped. So even GLOBAL_CTRL is cleared, the kernel still be possible to get PMI. At the end of the PMI handler, __intel_pmu_enable_all() will be called, which will restore the stale values if old events haven't scheduled out. Once the stale pebs value is set, it's impossible to be corrected if the new events are non-precise. Because the pebs_enabled will be set to 0. x86_pmu.enable_all() will ignore the MSR_IA32_PEBS_ENABLE setting. As a result, the following NMI with stale PEBS_ENABLE trigger pebs warning. The pending PMI after enabled=0 will become harmless if the NMI handler does not change the state. This patch checks cpuc->enabled in pmi and only restore the state when PMU is active. Here is the dump: Call Trace: <NMI> [<ffffffff813c3a2e>] dump_stack+0x63/0x85 [<ffffffff810a46f2>] warn_slowpath_common+0x82/0xc0 [<ffffffff810a483a>] warn_slowpath_null+0x1a/0x20 [<ffffffff8100fe2e>] intel_pmu_drain_pebs_nhm+0x2be/0x320 [<ffffffff8100caa9>] intel_pmu_handle_irq+0x279/0x460 [<ffffffff810639b6>] ? native_write_msr_safe+0x6/0x40 [<ffffffff811f290d>] ? vunmap_page_range+0x20d/0x330 [<ffffffff811f2f11>] ? unmap_kernel_range_noflush+0x11/0x20 [<ffffffff8148379f>] ? ghes_copy_tofrom_phys+0x10f/0x2a0 [<ffffffff814839c8>] ? ghes_read_estatus+0x98/0x170 [<ffffffff81005a7d>] perf_event_nmi_handler+0x2d/0x50 [<ffffffff810310b9>] nmi_handle+0x69/0x120 [<ffffffff810316f6>] default_do_nmi+0xe6/0x100 [<ffffffff810317f2>] do_nmi+0xe2/0x130 [<ffffffff817aea71>] end_repeat_nmi+0x1a/0x1e [<ffffffff810639b6>] ? native_write_msr_safe+0x6/0x40 [<ffffffff810639b6>] ? native_write_msr_safe+0x6/0x40 [<ffffffff810639b6>] ? native_write_msr_safe+0x6/0x40 <<EOE>> <IRQ> [<ffffffff81006df8>] ? x86_perf_event_set_period+0xd8/0x180 [<ffffffff81006eec>] x86_pmu_start+0x4c/0x100 [<ffffffff8100722d>] x86_pmu_enable+0x28d/0x300 [<ffffffff811994d7>] perf_pmu_enable.part.81+0x7/0x10 [<ffffffff8119cb70>] perf_mux_hrtimer_handler+0x200/0x280 [<ffffffff8119c970>] ? __perf_install_in_context+0xc0/0xc0 [<ffffffff8110f92d>] __hrtimer_run_queues+0xfd/0x280 [<ffffffff811100d8>] hrtimer_interrupt+0xa8/0x190 [<ffffffff81199080>] ? __perf_read_group_add.part.61+0x1a0/0x1a0 [<ffffffff81051bd8>] local_apic_timer_interrupt+0x38/0x60 [<ffffffff817af01d>] smp_apic_timer_interrupt+0x3d/0x50 [<ffffffff817ad15c>] apic_timer_interrupt+0x8c/0xa0 <EOI> [<ffffffff81199080>] ? __perf_read_group_add.part.61+0x1a0/0x1a0 [<ffffffff81123de5>] ? smp_call_function_single+0xd5/0x130 [<ffffffff81123ddb>] ? smp_call_function_single+0xcb/0x130 [<ffffffff81199080>] ? __perf_read_group_add.part.61+0x1a0/0x1a0 [<ffffffff8119765a>] event_function_call+0x10a/0x120 [<ffffffff8119c660>] ? ctx_resched+0x90/0x90 [<ffffffff811971e0>] ? cpu_clock_event_read+0x30/0x30 [<ffffffff811976d0>] ? _perf_event_disable+0x60/0x60 [<ffffffff8119772b>] _perf_event_enable+0x5b/0x70 [<ffffffff81197388>] perf_event_for_each_child+0x38/0xa0 [<ffffffff811976d0>] ? _perf_event_disable+0x60/0x60 [<ffffffff811a0ffd>] perf_ioctl+0x12d/0x3c0 [<ffffffff8134d855>] ? selinux_file_ioctl+0x95/0x1e0 [<ffffffff8124a3a1>] do_vfs_ioctl+0xa1/0x5a0 [<ffffffff81036d29>] ? sched_clock+0x9/0x10 [<ffffffff8124a919>] SyS_ioctl+0x79/0x90 [<ffffffff817ac4b2>] entry_SYSCALL_64_fastpath+0x1a/0xa4 ---[ end trace aef202839fe9a71d ]--- Uhhuh. NMI received for unknown reason 2d on CPU 2. Do you have a strange power saving mode enabled? Signed-off-by: Kan Liang <kan.liang@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: <stable@vger.kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Link: http://lkml.kernel.org/r/1457046448-6184-1-git-send-email-kan.liang@intel.com [ Fixed various typos and other small details. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-03-04 07:07:28 +08:00
/*
* Only unmask the NMI after the overflow counters
* have been reset. This avoids spurious NMIs on
* Haswell CPUs.
*/
if (x86_pmu.late_ack)
apic_write(APIC_LVTPC, APIC_DM_NMI);
return handled;
}
static struct event_constraint *
intel_bts_constraints(struct perf_event *event)
{
if (unlikely(intel_pmu_has_bts(event)))
return &bts_constraint;
return NULL;
}
static int intel_alt_er(int idx, u64 config)
{
int alt_idx = idx;
if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
return idx;
if (idx == EXTRA_REG_RSP_0)
alt_idx = EXTRA_REG_RSP_1;
if (idx == EXTRA_REG_RSP_1)
alt_idx = EXTRA_REG_RSP_0;
if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
return idx;
return alt_idx;
}
static void intel_fixup_er(struct perf_event *event, int idx)
{
event->hw.extra_reg.idx = idx;
if (idx == EXTRA_REG_RSP_0) {
event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
} else if (idx == EXTRA_REG_RSP_1) {
event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
}
}
/*
* manage allocation of shared extra msr for certain events
*
* sharing can be:
* per-cpu: to be shared between the various events on a single PMU
* per-core: per-cpu + shared by HT threads
*/
perf: Add support for supplementary event registers Change logs against Andi's original version: - Extends perf_event_attr:config to config{,1,2} (Peter Zijlstra) - Fixed a major event scheduling issue. There cannot be a ref++ on an event that has already done ref++ once and without calling put_constraint() in between. (Stephane Eranian) - Use thread_cpumask for percore allocation. (Lin Ming) - Use MSR names in the extra reg lists. (Lin Ming) - Remove redundant "c = NULL" in intel_percore_constraints - Fix comment of perf_event_attr::config1 Intel Nehalem/Westmere have a special OFFCORE_RESPONSE event that can be used to monitor any offcore accesses from a core. This is a very useful event for various tunings, and it's also needed to implement the generic LLC-* events correctly. Unfortunately this event requires programming a mask in a separate register. And worse this separate register is per core, not per CPU thread. This patch: - Teaches perf_events that OFFCORE_RESPONSE needs extra parameters. The extra parameters are passed by user space in the perf_event_attr::config1 field. - Adds support to the Intel perf_event core to schedule per core resources. This adds fairly generic infrastructure that can be also used for other per core resources. The basic code has is patterned after the similar AMD northbridge constraints code. Thanks to Stephane Eranian who pointed out some problems in the original version and suggested improvements. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1299119690-13991-2-git-send-email-ming.m.lin@intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-03-03 10:34:47 +08:00
static struct event_constraint *
__intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
struct perf_event *event,
struct hw_perf_event_extra *reg)
perf: Add support for supplementary event registers Change logs against Andi's original version: - Extends perf_event_attr:config to config{,1,2} (Peter Zijlstra) - Fixed a major event scheduling issue. There cannot be a ref++ on an event that has already done ref++ once and without calling put_constraint() in between. (Stephane Eranian) - Use thread_cpumask for percore allocation. (Lin Ming) - Use MSR names in the extra reg lists. (Lin Ming) - Remove redundant "c = NULL" in intel_percore_constraints - Fix comment of perf_event_attr::config1 Intel Nehalem/Westmere have a special OFFCORE_RESPONSE event that can be used to monitor any offcore accesses from a core. This is a very useful event for various tunings, and it's also needed to implement the generic LLC-* events correctly. Unfortunately this event requires programming a mask in a separate register. And worse this separate register is per core, not per CPU thread. This patch: - Teaches perf_events that OFFCORE_RESPONSE needs extra parameters. The extra parameters are passed by user space in the perf_event_attr::config1 field. - Adds support to the Intel perf_event core to schedule per core resources. This adds fairly generic infrastructure that can be also used for other per core resources. The basic code has is patterned after the similar AMD northbridge constraints code. Thanks to Stephane Eranian who pointed out some problems in the original version and suggested improvements. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1299119690-13991-2-git-send-email-ming.m.lin@intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-03-03 10:34:47 +08:00
{
struct event_constraint *c = &emptyconstraint;
perf: Add support for supplementary event registers Change logs against Andi's original version: - Extends perf_event_attr:config to config{,1,2} (Peter Zijlstra) - Fixed a major event scheduling issue. There cannot be a ref++ on an event that has already done ref++ once and without calling put_constraint() in between. (Stephane Eranian) - Use thread_cpumask for percore allocation. (Lin Ming) - Use MSR names in the extra reg lists. (Lin Ming) - Remove redundant "c = NULL" in intel_percore_constraints - Fix comment of perf_event_attr::config1 Intel Nehalem/Westmere have a special OFFCORE_RESPONSE event that can be used to monitor any offcore accesses from a core. This is a very useful event for various tunings, and it's also needed to implement the generic LLC-* events correctly. Unfortunately this event requires programming a mask in a separate register. And worse this separate register is per core, not per CPU thread. This patch: - Teaches perf_events that OFFCORE_RESPONSE needs extra parameters. The extra parameters are passed by user space in the perf_event_attr::config1 field. - Adds support to the Intel perf_event core to schedule per core resources. This adds fairly generic infrastructure that can be also used for other per core resources. The basic code has is patterned after the similar AMD northbridge constraints code. Thanks to Stephane Eranian who pointed out some problems in the original version and suggested improvements. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1299119690-13991-2-git-send-email-ming.m.lin@intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-03-03 10:34:47 +08:00
struct er_account *era;
unsigned long flags;
int idx = reg->idx;
perf: Add support for supplementary event registers Change logs against Andi's original version: - Extends perf_event_attr:config to config{,1,2} (Peter Zijlstra) - Fixed a major event scheduling issue. There cannot be a ref++ on an event that has already done ref++ once and without calling put_constraint() in between. (Stephane Eranian) - Use thread_cpumask for percore allocation. (Lin Ming) - Use MSR names in the extra reg lists. (Lin Ming) - Remove redundant "c = NULL" in intel_percore_constraints - Fix comment of perf_event_attr::config1 Intel Nehalem/Westmere have a special OFFCORE_RESPONSE event that can be used to monitor any offcore accesses from a core. This is a very useful event for various tunings, and it's also needed to implement the generic LLC-* events correctly. Unfortunately this event requires programming a mask in a separate register. And worse this separate register is per core, not per CPU thread. This patch: - Teaches perf_events that OFFCORE_RESPONSE needs extra parameters. The extra parameters are passed by user space in the perf_event_attr::config1 field. - Adds support to the Intel perf_event core to schedule per core resources. This adds fairly generic infrastructure that can be also used for other per core resources. The basic code has is patterned after the similar AMD northbridge constraints code. Thanks to Stephane Eranian who pointed out some problems in the original version and suggested improvements. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1299119690-13991-2-git-send-email-ming.m.lin@intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-03-03 10:34:47 +08:00
/*
* reg->alloc can be set due to existing state, so for fake cpuc we
* need to ignore this, otherwise we might fail to allocate proper fake
* state for this extra reg constraint. Also see the comment below.
*/
if (reg->alloc && !cpuc->is_fake)
return NULL; /* call x86_get_event_constraint() */
perf: Add support for supplementary event registers Change logs against Andi's original version: - Extends perf_event_attr:config to config{,1,2} (Peter Zijlstra) - Fixed a major event scheduling issue. There cannot be a ref++ on an event that has already done ref++ once and without calling put_constraint() in between. (Stephane Eranian) - Use thread_cpumask for percore allocation. (Lin Ming) - Use MSR names in the extra reg lists. (Lin Ming) - Remove redundant "c = NULL" in intel_percore_constraints - Fix comment of perf_event_attr::config1 Intel Nehalem/Westmere have a special OFFCORE_RESPONSE event that can be used to monitor any offcore accesses from a core. This is a very useful event for various tunings, and it's also needed to implement the generic LLC-* events correctly. Unfortunately this event requires programming a mask in a separate register. And worse this separate register is per core, not per CPU thread. This patch: - Teaches perf_events that OFFCORE_RESPONSE needs extra parameters. The extra parameters are passed by user space in the perf_event_attr::config1 field. - Adds support to the Intel perf_event core to schedule per core resources. This adds fairly generic infrastructure that can be also used for other per core resources. The basic code has is patterned after the similar AMD northbridge constraints code. Thanks to Stephane Eranian who pointed out some problems in the original version and suggested improvements. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1299119690-13991-2-git-send-email-ming.m.lin@intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-03-03 10:34:47 +08:00
again:
era = &cpuc->shared_regs->regs[idx];
/*
* we use spin_lock_irqsave() to avoid lockdep issues when
* passing a fake cpuc
*/
raw_spin_lock_irqsave(&era->lock, flags);
if (!atomic_read(&era->ref) || era->config == reg->config) {
/*
* If its a fake cpuc -- as per validate_{group,event}() we
* shouldn't touch event state and we can avoid doing so
* since both will only call get_event_constraints() once
* on each event, this avoids the need for reg->alloc.
*
* Not doing the ER fixup will only result in era->reg being
* wrong, but since we won't actually try and program hardware
* this isn't a problem either.
*/
if (!cpuc->is_fake) {
if (idx != reg->idx)
intel_fixup_er(event, idx);
/*
* x86_schedule_events() can call get_event_constraints()
* multiple times on events in the case of incremental
* scheduling(). reg->alloc ensures we only do the ER
* allocation once.
*/
reg->alloc = 1;
}
/* lock in msr value */
era->config = reg->config;
era->reg = reg->reg;
/* one more user */
atomic_inc(&era->ref);
perf: Add support for supplementary event registers Change logs against Andi's original version: - Extends perf_event_attr:config to config{,1,2} (Peter Zijlstra) - Fixed a major event scheduling issue. There cannot be a ref++ on an event that has already done ref++ once and without calling put_constraint() in between. (Stephane Eranian) - Use thread_cpumask for percore allocation. (Lin Ming) - Use MSR names in the extra reg lists. (Lin Ming) - Remove redundant "c = NULL" in intel_percore_constraints - Fix comment of perf_event_attr::config1 Intel Nehalem/Westmere have a special OFFCORE_RESPONSE event that can be used to monitor any offcore accesses from a core. This is a very useful event for various tunings, and it's also needed to implement the generic LLC-* events correctly. Unfortunately this event requires programming a mask in a separate register. And worse this separate register is per core, not per CPU thread. This patch: - Teaches perf_events that OFFCORE_RESPONSE needs extra parameters. The extra parameters are passed by user space in the perf_event_attr::config1 field. - Adds support to the Intel perf_event core to schedule per core resources. This adds fairly generic infrastructure that can be also used for other per core resources. The basic code has is patterned after the similar AMD northbridge constraints code. Thanks to Stephane Eranian who pointed out some problems in the original version and suggested improvements. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1299119690-13991-2-git-send-email-ming.m.lin@intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-03-03 10:34:47 +08:00
/*
* need to call x86_get_event_constraint()
* to check if associated event has constraints
perf: Add support for supplementary event registers Change logs against Andi's original version: - Extends perf_event_attr:config to config{,1,2} (Peter Zijlstra) - Fixed a major event scheduling issue. There cannot be a ref++ on an event that has already done ref++ once and without calling put_constraint() in between. (Stephane Eranian) - Use thread_cpumask for percore allocation. (Lin Ming) - Use MSR names in the extra reg lists. (Lin Ming) - Remove redundant "c = NULL" in intel_percore_constraints - Fix comment of perf_event_attr::config1 Intel Nehalem/Westmere have a special OFFCORE_RESPONSE event that can be used to monitor any offcore accesses from a core. This is a very useful event for various tunings, and it's also needed to implement the generic LLC-* events correctly. Unfortunately this event requires programming a mask in a separate register. And worse this separate register is per core, not per CPU thread. This patch: - Teaches perf_events that OFFCORE_RESPONSE needs extra parameters. The extra parameters are passed by user space in the perf_event_attr::config1 field. - Adds support to the Intel perf_event core to schedule per core resources. This adds fairly generic infrastructure that can be also used for other per core resources. The basic code has is patterned after the similar AMD northbridge constraints code. Thanks to Stephane Eranian who pointed out some problems in the original version and suggested improvements. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1299119690-13991-2-git-send-email-ming.m.lin@intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-03-03 10:34:47 +08:00
*/
c = NULL;
} else {
idx = intel_alt_er(idx, reg->config);
if (idx != reg->idx) {
raw_spin_unlock_irqrestore(&era->lock, flags);
goto again;
}
perf: Add support for supplementary event registers Change logs against Andi's original version: - Extends perf_event_attr:config to config{,1,2} (Peter Zijlstra) - Fixed a major event scheduling issue. There cannot be a ref++ on an event that has already done ref++ once and without calling put_constraint() in between. (Stephane Eranian) - Use thread_cpumask for percore allocation. (Lin Ming) - Use MSR names in the extra reg lists. (Lin Ming) - Remove redundant "c = NULL" in intel_percore_constraints - Fix comment of perf_event_attr::config1 Intel Nehalem/Westmere have a special OFFCORE_RESPONSE event that can be used to monitor any offcore accesses from a core. This is a very useful event for various tunings, and it's also needed to implement the generic LLC-* events correctly. Unfortunately this event requires programming a mask in a separate register. And worse this separate register is per core, not per CPU thread. This patch: - Teaches perf_events that OFFCORE_RESPONSE needs extra parameters. The extra parameters are passed by user space in the perf_event_attr::config1 field. - Adds support to the Intel perf_event core to schedule per core resources. This adds fairly generic infrastructure that can be also used for other per core resources. The basic code has is patterned after the similar AMD northbridge constraints code. Thanks to Stephane Eranian who pointed out some problems in the original version and suggested improvements. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1299119690-13991-2-git-send-email-ming.m.lin@intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-03-03 10:34:47 +08:00
}
raw_spin_unlock_irqrestore(&era->lock, flags);
perf: Add support for supplementary event registers Change logs against Andi's original version: - Extends perf_event_attr:config to config{,1,2} (Peter Zijlstra) - Fixed a major event scheduling issue. There cannot be a ref++ on an event that has already done ref++ once and without calling put_constraint() in between. (Stephane Eranian) - Use thread_cpumask for percore allocation. (Lin Ming) - Use MSR names in the extra reg lists. (Lin Ming) - Remove redundant "c = NULL" in intel_percore_constraints - Fix comment of perf_event_attr::config1 Intel Nehalem/Westmere have a special OFFCORE_RESPONSE event that can be used to monitor any offcore accesses from a core. This is a very useful event for various tunings, and it's also needed to implement the generic LLC-* events correctly. Unfortunately this event requires programming a mask in a separate register. And worse this separate register is per core, not per CPU thread. This patch: - Teaches perf_events that OFFCORE_RESPONSE needs extra parameters. The extra parameters are passed by user space in the perf_event_attr::config1 field. - Adds support to the Intel perf_event core to schedule per core resources. This adds fairly generic infrastructure that can be also used for other per core resources. The basic code has is patterned after the similar AMD northbridge constraints code. Thanks to Stephane Eranian who pointed out some problems in the original version and suggested improvements. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1299119690-13991-2-git-send-email-ming.m.lin@intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-03-03 10:34:47 +08:00
return c;
}
static void
__intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
struct hw_perf_event_extra *reg)
{
struct er_account *era;
/*
* Only put constraint if extra reg was actually allocated. Also takes
* care of event which do not use an extra shared reg.
*
* Also, if this is a fake cpuc we shouldn't touch any event state
* (reg->alloc) and we don't care about leaving inconsistent cpuc state
* either since it'll be thrown out.
*/
if (!reg->alloc || cpuc->is_fake)
return;
era = &cpuc->shared_regs->regs[reg->idx];
/* one fewer user */
atomic_dec(&era->ref);
/* allocate again next time */
reg->alloc = 0;
}
static struct event_constraint *
intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
struct perf_event *event)
{
struct event_constraint *c = NULL, *d;
struct hw_perf_event_extra *xreg, *breg;
xreg = &event->hw.extra_reg;
if (xreg->idx != EXTRA_REG_NONE) {
c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
if (c == &emptyconstraint)
return c;
}
breg = &event->hw.branch_reg;
if (breg->idx != EXTRA_REG_NONE) {
d = __intel_shared_reg_get_constraints(cpuc, event, breg);
if (d == &emptyconstraint) {
__intel_shared_reg_put_constraints(cpuc, xreg);
c = d;
}
}
return c;
perf: Add support for supplementary event registers Change logs against Andi's original version: - Extends perf_event_attr:config to config{,1,2} (Peter Zijlstra) - Fixed a major event scheduling issue. There cannot be a ref++ on an event that has already done ref++ once and without calling put_constraint() in between. (Stephane Eranian) - Use thread_cpumask for percore allocation. (Lin Ming) - Use MSR names in the extra reg lists. (Lin Ming) - Remove redundant "c = NULL" in intel_percore_constraints - Fix comment of perf_event_attr::config1 Intel Nehalem/Westmere have a special OFFCORE_RESPONSE event that can be used to monitor any offcore accesses from a core. This is a very useful event for various tunings, and it's also needed to implement the generic LLC-* events correctly. Unfortunately this event requires programming a mask in a separate register. And worse this separate register is per core, not per CPU thread. This patch: - Teaches perf_events that OFFCORE_RESPONSE needs extra parameters. The extra parameters are passed by user space in the perf_event_attr::config1 field. - Adds support to the Intel perf_event core to schedule per core resources. This adds fairly generic infrastructure that can be also used for other per core resources. The basic code has is patterned after the similar AMD northbridge constraints code. Thanks to Stephane Eranian who pointed out some problems in the original version and suggested improvements. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1299119690-13991-2-git-send-email-ming.m.lin@intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-03-03 10:34:47 +08:00
}
struct event_constraint *
x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
struct perf_event *event)
{
struct event_constraint *c;
if (x86_pmu.event_constraints) {
for_each_event_constraint(c, x86_pmu.event_constraints) {
if (constraint_match(c, event->hw.config)) {
event->hw.flags |= c->flags;
return c;
}
}
}
return &unconstrained;
}
static struct event_constraint *
perf/x86/intel: Implement cross-HT corruption bug workaround This patch implements a software workaround for a HW erratum on Intel SandyBridge, IvyBridge and Haswell processors with Hyperthreading enabled. The errata are documented for each processor in their respective specification update documents: - SandyBridge: BJ122 - IvyBridge: BV98 - Haswell: HSD29 The bug causes silent counter corruption across hyperthreads only when measuring certain memory events (0xd0, 0xd1, 0xd2, 0xd3). Counters measuring those events may leak counts to the sibling counter. For instance, counter 0, thread 0 measuring event 0xd0, may leak to counter 0, thread 1, regardless of the event measured there. The size of the leak is not predictible. It all depends on the workload and the state of each sibling hyper-thread. The corrupting events do undercount as a consequence of the leak. The leak is compensated automatically only when the sibling counter measures the exact same corrupting event AND the workload is on the two threads is the same. Given, there is no way to guarantee this, a work-around is necessary. Furthermore, there is a serious problem if the leaked count is added to a low-occurrence event. In that case the corruption on the low occurrence event can be very large, e.g., orders of magnitude. There is no HW or FW workaround for this problem. The bug is very easy to reproduce on a loaded system. Here is an example on a Haswell client, where CPU0, CPU4 are siblings. We load the CPUs with a simple triad app streaming large floating-point vector. We use 0x81d0 corrupting event (MEM_UOPS_RETIRED:ALL_LOADS) and 0x20cc (ROB_MISC_EVENTS:LBR_INSERTS). Given we are not using the LBR, the 0x20cc event should be zero. $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 139 277 291 r20cc 10,000969126 seconds time elapsed In this example, 0x81d0 and r20cc ar eusing sinling counters on CPU0 and CPU4. 0x81d0 leaks into 0x20cc and corrupts it from 0 to 139 millions occurrences. This patch provides a software workaround to this problem by modifying the way events are scheduled onto counters by the kernel. The patch forces cross-thread mutual exclusion between counters in case a corrupting event is measured by one of the hyper-threads. If thread 0, counter 0 is measuring event 0xd0, then nothing can be measured on counter 0, thread 1. If no corrupting event is measured on any hyper-thread, event scheduling proceeds as before. The same example run with the workaround enabled, yield the correct answer: $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 0 r20cc 10,000969126 seconds time elapsed The patch does provide correctness for all non-corrupting events. It does not "repatriate" the leaked counts back to the leaking counter. This is planned for a second patch series. This patch series makes this repatriation more easy by guaranteeing the sibling counter is not measuring any useful event. The patch introduces dynamic constraints for events. That means that events which did not have constraints, i.e., could be measured on any counters, may now be constrained to a subset of the counters depending on what is going on the sibling thread. The algorithm is similar to a cache coherency protocol. We call it XSU in reference to Exclusive, Shared, Unused, the 3 possible states of a PMU counter. As a consequence of the workaround, users may see an increased amount of event multiplexing, even in situtations where there are fewer events than counters measured on a CPU. Patch has been tested on all three impacted processors. Note that when HT is off, there is no corruption. However, the workaround is still enabled, yet not costing too much. Adding a dynamic detection of HT on turned out to be complex are requiring too much to code to be justified. This patch addresses the issue when PEBS is not used. A subsequent patch fixes the problem when PEBS is used. Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> [spinlock_t -> raw_spinlock_t] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Cc: bp@alien8.de Cc: jolsa@redhat.com Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1416251225-17721-7-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-18 03:06:58 +08:00
__intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
struct perf_event *event)
{
struct event_constraint *c;
c = intel_bts_constraints(event);
if (c)
return c;
c = intel_shared_regs_constraints(cpuc, event);
if (c)
return c;
c = intel_pebs_constraints(event);
perf: Add support for supplementary event registers Change logs against Andi's original version: - Extends perf_event_attr:config to config{,1,2} (Peter Zijlstra) - Fixed a major event scheduling issue. There cannot be a ref++ on an event that has already done ref++ once and without calling put_constraint() in between. (Stephane Eranian) - Use thread_cpumask for percore allocation. (Lin Ming) - Use MSR names in the extra reg lists. (Lin Ming) - Remove redundant "c = NULL" in intel_percore_constraints - Fix comment of perf_event_attr::config1 Intel Nehalem/Westmere have a special OFFCORE_RESPONSE event that can be used to monitor any offcore accesses from a core. This is a very useful event for various tunings, and it's also needed to implement the generic LLC-* events correctly. Unfortunately this event requires programming a mask in a separate register. And worse this separate register is per core, not per CPU thread. This patch: - Teaches perf_events that OFFCORE_RESPONSE needs extra parameters. The extra parameters are passed by user space in the perf_event_attr::config1 field. - Adds support to the Intel perf_event core to schedule per core resources. This adds fairly generic infrastructure that can be also used for other per core resources. The basic code has is patterned after the similar AMD northbridge constraints code. Thanks to Stephane Eranian who pointed out some problems in the original version and suggested improvements. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1299119690-13991-2-git-send-email-ming.m.lin@intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-03-03 10:34:47 +08:00
if (c)
return c;
return x86_get_event_constraints(cpuc, idx, event);
}
perf/x86/intel: Implement cross-HT corruption bug workaround This patch implements a software workaround for a HW erratum on Intel SandyBridge, IvyBridge and Haswell processors with Hyperthreading enabled. The errata are documented for each processor in their respective specification update documents: - SandyBridge: BJ122 - IvyBridge: BV98 - Haswell: HSD29 The bug causes silent counter corruption across hyperthreads only when measuring certain memory events (0xd0, 0xd1, 0xd2, 0xd3). Counters measuring those events may leak counts to the sibling counter. For instance, counter 0, thread 0 measuring event 0xd0, may leak to counter 0, thread 1, regardless of the event measured there. The size of the leak is not predictible. It all depends on the workload and the state of each sibling hyper-thread. The corrupting events do undercount as a consequence of the leak. The leak is compensated automatically only when the sibling counter measures the exact same corrupting event AND the workload is on the two threads is the same. Given, there is no way to guarantee this, a work-around is necessary. Furthermore, there is a serious problem if the leaked count is added to a low-occurrence event. In that case the corruption on the low occurrence event can be very large, e.g., orders of magnitude. There is no HW or FW workaround for this problem. The bug is very easy to reproduce on a loaded system. Here is an example on a Haswell client, where CPU0, CPU4 are siblings. We load the CPUs with a simple triad app streaming large floating-point vector. We use 0x81d0 corrupting event (MEM_UOPS_RETIRED:ALL_LOADS) and 0x20cc (ROB_MISC_EVENTS:LBR_INSERTS). Given we are not using the LBR, the 0x20cc event should be zero. $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 139 277 291 r20cc 10,000969126 seconds time elapsed In this example, 0x81d0 and r20cc ar eusing sinling counters on CPU0 and CPU4. 0x81d0 leaks into 0x20cc and corrupts it from 0 to 139 millions occurrences. This patch provides a software workaround to this problem by modifying the way events are scheduled onto counters by the kernel. The patch forces cross-thread mutual exclusion between counters in case a corrupting event is measured by one of the hyper-threads. If thread 0, counter 0 is measuring event 0xd0, then nothing can be measured on counter 0, thread 1. If no corrupting event is measured on any hyper-thread, event scheduling proceeds as before. The same example run with the workaround enabled, yield the correct answer: $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 0 r20cc 10,000969126 seconds time elapsed The patch does provide correctness for all non-corrupting events. It does not "repatriate" the leaked counts back to the leaking counter. This is planned for a second patch series. This patch series makes this repatriation more easy by guaranteeing the sibling counter is not measuring any useful event. The patch introduces dynamic constraints for events. That means that events which did not have constraints, i.e., could be measured on any counters, may now be constrained to a subset of the counters depending on what is going on the sibling thread. The algorithm is similar to a cache coherency protocol. We call it XSU in reference to Exclusive, Shared, Unused, the 3 possible states of a PMU counter. As a consequence of the workaround, users may see an increased amount of event multiplexing, even in situtations where there are fewer events than counters measured on a CPU. Patch has been tested on all three impacted processors. Note that when HT is off, there is no corruption. However, the workaround is still enabled, yet not costing too much. Adding a dynamic detection of HT on turned out to be complex are requiring too much to code to be justified. This patch addresses the issue when PEBS is not used. A subsequent patch fixes the problem when PEBS is used. Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> [spinlock_t -> raw_spinlock_t] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Cc: bp@alien8.de Cc: jolsa@redhat.com Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1416251225-17721-7-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-18 03:06:58 +08:00
static void
intel_start_scheduling(struct cpu_hw_events *cpuc)
{
struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
struct intel_excl_states *xl;
perf/x86/intel: Implement cross-HT corruption bug workaround This patch implements a software workaround for a HW erratum on Intel SandyBridge, IvyBridge and Haswell processors with Hyperthreading enabled. The errata are documented for each processor in their respective specification update documents: - SandyBridge: BJ122 - IvyBridge: BV98 - Haswell: HSD29 The bug causes silent counter corruption across hyperthreads only when measuring certain memory events (0xd0, 0xd1, 0xd2, 0xd3). Counters measuring those events may leak counts to the sibling counter. For instance, counter 0, thread 0 measuring event 0xd0, may leak to counter 0, thread 1, regardless of the event measured there. The size of the leak is not predictible. It all depends on the workload and the state of each sibling hyper-thread. The corrupting events do undercount as a consequence of the leak. The leak is compensated automatically only when the sibling counter measures the exact same corrupting event AND the workload is on the two threads is the same. Given, there is no way to guarantee this, a work-around is necessary. Furthermore, there is a serious problem if the leaked count is added to a low-occurrence event. In that case the corruption on the low occurrence event can be very large, e.g., orders of magnitude. There is no HW or FW workaround for this problem. The bug is very easy to reproduce on a loaded system. Here is an example on a Haswell client, where CPU0, CPU4 are siblings. We load the CPUs with a simple triad app streaming large floating-point vector. We use 0x81d0 corrupting event (MEM_UOPS_RETIRED:ALL_LOADS) and 0x20cc (ROB_MISC_EVENTS:LBR_INSERTS). Given we are not using the LBR, the 0x20cc event should be zero. $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 139 277 291 r20cc 10,000969126 seconds time elapsed In this example, 0x81d0 and r20cc ar eusing sinling counters on CPU0 and CPU4. 0x81d0 leaks into 0x20cc and corrupts it from 0 to 139 millions occurrences. This patch provides a software workaround to this problem by modifying the way events are scheduled onto counters by the kernel. The patch forces cross-thread mutual exclusion between counters in case a corrupting event is measured by one of the hyper-threads. If thread 0, counter 0 is measuring event 0xd0, then nothing can be measured on counter 0, thread 1. If no corrupting event is measured on any hyper-thread, event scheduling proceeds as before. The same example run with the workaround enabled, yield the correct answer: $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 0 r20cc 10,000969126 seconds time elapsed The patch does provide correctness for all non-corrupting events. It does not "repatriate" the leaked counts back to the leaking counter. This is planned for a second patch series. This patch series makes this repatriation more easy by guaranteeing the sibling counter is not measuring any useful event. The patch introduces dynamic constraints for events. That means that events which did not have constraints, i.e., could be measured on any counters, may now be constrained to a subset of the counters depending on what is going on the sibling thread. The algorithm is similar to a cache coherency protocol. We call it XSU in reference to Exclusive, Shared, Unused, the 3 possible states of a PMU counter. As a consequence of the workaround, users may see an increased amount of event multiplexing, even in situtations where there are fewer events than counters measured on a CPU. Patch has been tested on all three impacted processors. Note that when HT is off, there is no corruption. However, the workaround is still enabled, yet not costing too much. Adding a dynamic detection of HT on turned out to be complex are requiring too much to code to be justified. This patch addresses the issue when PEBS is not used. A subsequent patch fixes the problem when PEBS is used. Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> [spinlock_t -> raw_spinlock_t] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Cc: bp@alien8.de Cc: jolsa@redhat.com Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1416251225-17721-7-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-18 03:06:58 +08:00
int tid = cpuc->excl_thread_id;
/*
* nothing needed if in group validation mode
*/
if (cpuc->is_fake || !is_ht_workaround_enabled())
perf/x86/intel: Implement cross-HT corruption bug workaround This patch implements a software workaround for a HW erratum on Intel SandyBridge, IvyBridge and Haswell processors with Hyperthreading enabled. The errata are documented for each processor in their respective specification update documents: - SandyBridge: BJ122 - IvyBridge: BV98 - Haswell: HSD29 The bug causes silent counter corruption across hyperthreads only when measuring certain memory events (0xd0, 0xd1, 0xd2, 0xd3). Counters measuring those events may leak counts to the sibling counter. For instance, counter 0, thread 0 measuring event 0xd0, may leak to counter 0, thread 1, regardless of the event measured there. The size of the leak is not predictible. It all depends on the workload and the state of each sibling hyper-thread. The corrupting events do undercount as a consequence of the leak. The leak is compensated automatically only when the sibling counter measures the exact same corrupting event AND the workload is on the two threads is the same. Given, there is no way to guarantee this, a work-around is necessary. Furthermore, there is a serious problem if the leaked count is added to a low-occurrence event. In that case the corruption on the low occurrence event can be very large, e.g., orders of magnitude. There is no HW or FW workaround for this problem. The bug is very easy to reproduce on a loaded system. Here is an example on a Haswell client, where CPU0, CPU4 are siblings. We load the CPUs with a simple triad app streaming large floating-point vector. We use 0x81d0 corrupting event (MEM_UOPS_RETIRED:ALL_LOADS) and 0x20cc (ROB_MISC_EVENTS:LBR_INSERTS). Given we are not using the LBR, the 0x20cc event should be zero. $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 139 277 291 r20cc 10,000969126 seconds time elapsed In this example, 0x81d0 and r20cc ar eusing sinling counters on CPU0 and CPU4. 0x81d0 leaks into 0x20cc and corrupts it from 0 to 139 millions occurrences. This patch provides a software workaround to this problem by modifying the way events are scheduled onto counters by the kernel. The patch forces cross-thread mutual exclusion between counters in case a corrupting event is measured by one of the hyper-threads. If thread 0, counter 0 is measuring event 0xd0, then nothing can be measured on counter 0, thread 1. If no corrupting event is measured on any hyper-thread, event scheduling proceeds as before. The same example run with the workaround enabled, yield the correct answer: $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 0 r20cc 10,000969126 seconds time elapsed The patch does provide correctness for all non-corrupting events. It does not "repatriate" the leaked counts back to the leaking counter. This is planned for a second patch series. This patch series makes this repatriation more easy by guaranteeing the sibling counter is not measuring any useful event. The patch introduces dynamic constraints for events. That means that events which did not have constraints, i.e., could be measured on any counters, may now be constrained to a subset of the counters depending on what is going on the sibling thread. The algorithm is similar to a cache coherency protocol. We call it XSU in reference to Exclusive, Shared, Unused, the 3 possible states of a PMU counter. As a consequence of the workaround, users may see an increased amount of event multiplexing, even in situtations where there are fewer events than counters measured on a CPU. Patch has been tested on all three impacted processors. Note that when HT is off, there is no corruption. However, the workaround is still enabled, yet not costing too much. Adding a dynamic detection of HT on turned out to be complex are requiring too much to code to be justified. This patch addresses the issue when PEBS is not used. A subsequent patch fixes the problem when PEBS is used. Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> [spinlock_t -> raw_spinlock_t] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Cc: bp@alien8.de Cc: jolsa@redhat.com Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1416251225-17721-7-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-18 03:06:58 +08:00
return;
perf/x86/intel: Implement cross-HT corruption bug workaround This patch implements a software workaround for a HW erratum on Intel SandyBridge, IvyBridge and Haswell processors with Hyperthreading enabled. The errata are documented for each processor in their respective specification update documents: - SandyBridge: BJ122 - IvyBridge: BV98 - Haswell: HSD29 The bug causes silent counter corruption across hyperthreads only when measuring certain memory events (0xd0, 0xd1, 0xd2, 0xd3). Counters measuring those events may leak counts to the sibling counter. For instance, counter 0, thread 0 measuring event 0xd0, may leak to counter 0, thread 1, regardless of the event measured there. The size of the leak is not predictible. It all depends on the workload and the state of each sibling hyper-thread. The corrupting events do undercount as a consequence of the leak. The leak is compensated automatically only when the sibling counter measures the exact same corrupting event AND the workload is on the two threads is the same. Given, there is no way to guarantee this, a work-around is necessary. Furthermore, there is a serious problem if the leaked count is added to a low-occurrence event. In that case the corruption on the low occurrence event can be very large, e.g., orders of magnitude. There is no HW or FW workaround for this problem. The bug is very easy to reproduce on a loaded system. Here is an example on a Haswell client, where CPU0, CPU4 are siblings. We load the CPUs with a simple triad app streaming large floating-point vector. We use 0x81d0 corrupting event (MEM_UOPS_RETIRED:ALL_LOADS) and 0x20cc (ROB_MISC_EVENTS:LBR_INSERTS). Given we are not using the LBR, the 0x20cc event should be zero. $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 139 277 291 r20cc 10,000969126 seconds time elapsed In this example, 0x81d0 and r20cc ar eusing sinling counters on CPU0 and CPU4. 0x81d0 leaks into 0x20cc and corrupts it from 0 to 139 millions occurrences. This patch provides a software workaround to this problem by modifying the way events are scheduled onto counters by the kernel. The patch forces cross-thread mutual exclusion between counters in case a corrupting event is measured by one of the hyper-threads. If thread 0, counter 0 is measuring event 0xd0, then nothing can be measured on counter 0, thread 1. If no corrupting event is measured on any hyper-thread, event scheduling proceeds as before. The same example run with the workaround enabled, yield the correct answer: $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 0 r20cc 10,000969126 seconds time elapsed The patch does provide correctness for all non-corrupting events. It does not "repatriate" the leaked counts back to the leaking counter. This is planned for a second patch series. This patch series makes this repatriation more easy by guaranteeing the sibling counter is not measuring any useful event. The patch introduces dynamic constraints for events. That means that events which did not have constraints, i.e., could be measured on any counters, may now be constrained to a subset of the counters depending on what is going on the sibling thread. The algorithm is similar to a cache coherency protocol. We call it XSU in reference to Exclusive, Shared, Unused, the 3 possible states of a PMU counter. As a consequence of the workaround, users may see an increased amount of event multiplexing, even in situtations where there are fewer events than counters measured on a CPU. Patch has been tested on all three impacted processors. Note that when HT is off, there is no corruption. However, the workaround is still enabled, yet not costing too much. Adding a dynamic detection of HT on turned out to be complex are requiring too much to code to be justified. This patch addresses the issue when PEBS is not used. A subsequent patch fixes the problem when PEBS is used. Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> [spinlock_t -> raw_spinlock_t] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Cc: bp@alien8.de Cc: jolsa@redhat.com Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1416251225-17721-7-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-18 03:06:58 +08:00
/*
* no exclusion needed
*/
if (WARN_ON_ONCE(!excl_cntrs))
perf/x86/intel: Implement cross-HT corruption bug workaround This patch implements a software workaround for a HW erratum on Intel SandyBridge, IvyBridge and Haswell processors with Hyperthreading enabled. The errata are documented for each processor in their respective specification update documents: - SandyBridge: BJ122 - IvyBridge: BV98 - Haswell: HSD29 The bug causes silent counter corruption across hyperthreads only when measuring certain memory events (0xd0, 0xd1, 0xd2, 0xd3). Counters measuring those events may leak counts to the sibling counter. For instance, counter 0, thread 0 measuring event 0xd0, may leak to counter 0, thread 1, regardless of the event measured there. The size of the leak is not predictible. It all depends on the workload and the state of each sibling hyper-thread. The corrupting events do undercount as a consequence of the leak. The leak is compensated automatically only when the sibling counter measures the exact same corrupting event AND the workload is on the two threads is the same. Given, there is no way to guarantee this, a work-around is necessary. Furthermore, there is a serious problem if the leaked count is added to a low-occurrence event. In that case the corruption on the low occurrence event can be very large, e.g., orders of magnitude. There is no HW or FW workaround for this problem. The bug is very easy to reproduce on a loaded system. Here is an example on a Haswell client, where CPU0, CPU4 are siblings. We load the CPUs with a simple triad app streaming large floating-point vector. We use 0x81d0 corrupting event (MEM_UOPS_RETIRED:ALL_LOADS) and 0x20cc (ROB_MISC_EVENTS:LBR_INSERTS). Given we are not using the LBR, the 0x20cc event should be zero. $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 139 277 291 r20cc 10,000969126 seconds time elapsed In this example, 0x81d0 and r20cc ar eusing sinling counters on CPU0 and CPU4. 0x81d0 leaks into 0x20cc and corrupts it from 0 to 139 millions occurrences. This patch provides a software workaround to this problem by modifying the way events are scheduled onto counters by the kernel. The patch forces cross-thread mutual exclusion between counters in case a corrupting event is measured by one of the hyper-threads. If thread 0, counter 0 is measuring event 0xd0, then nothing can be measured on counter 0, thread 1. If no corrupting event is measured on any hyper-thread, event scheduling proceeds as before. The same example run with the workaround enabled, yield the correct answer: $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 0 r20cc 10,000969126 seconds time elapsed The patch does provide correctness for all non-corrupting events. It does not "repatriate" the leaked counts back to the leaking counter. This is planned for a second patch series. This patch series makes this repatriation more easy by guaranteeing the sibling counter is not measuring any useful event. The patch introduces dynamic constraints for events. That means that events which did not have constraints, i.e., could be measured on any counters, may now be constrained to a subset of the counters depending on what is going on the sibling thread. The algorithm is similar to a cache coherency protocol. We call it XSU in reference to Exclusive, Shared, Unused, the 3 possible states of a PMU counter. As a consequence of the workaround, users may see an increased amount of event multiplexing, even in situtations where there are fewer events than counters measured on a CPU. Patch has been tested on all three impacted processors. Note that when HT is off, there is no corruption. However, the workaround is still enabled, yet not costing too much. Adding a dynamic detection of HT on turned out to be complex are requiring too much to code to be justified. This patch addresses the issue when PEBS is not used. A subsequent patch fixes the problem when PEBS is used. Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> [spinlock_t -> raw_spinlock_t] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Cc: bp@alien8.de Cc: jolsa@redhat.com Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1416251225-17721-7-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-18 03:06:58 +08:00
return;
xl = &excl_cntrs->states[tid];
xl->sched_started = true;
/*
* lock shared state until we are done scheduling
* in stop_event_scheduling()
* makes scheduling appear as a transaction
*/
raw_spin_lock(&excl_cntrs->lock);
}
static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
{
struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
struct event_constraint *c = cpuc->event_constraint[idx];
struct intel_excl_states *xl;
int tid = cpuc->excl_thread_id;
if (cpuc->is_fake || !is_ht_workaround_enabled())
return;
if (WARN_ON_ONCE(!excl_cntrs))
return;
if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
return;
xl = &excl_cntrs->states[tid];
lockdep_assert_held(&excl_cntrs->lock);
if (c->flags & PERF_X86_EVENT_EXCL)
xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
else
xl->state[cntr] = INTEL_EXCL_SHARED;
}
perf/x86/intel: Implement cross-HT corruption bug workaround This patch implements a software workaround for a HW erratum on Intel SandyBridge, IvyBridge and Haswell processors with Hyperthreading enabled. The errata are documented for each processor in their respective specification update documents: - SandyBridge: BJ122 - IvyBridge: BV98 - Haswell: HSD29 The bug causes silent counter corruption across hyperthreads only when measuring certain memory events (0xd0, 0xd1, 0xd2, 0xd3). Counters measuring those events may leak counts to the sibling counter. For instance, counter 0, thread 0 measuring event 0xd0, may leak to counter 0, thread 1, regardless of the event measured there. The size of the leak is not predictible. It all depends on the workload and the state of each sibling hyper-thread. The corrupting events do undercount as a consequence of the leak. The leak is compensated automatically only when the sibling counter measures the exact same corrupting event AND the workload is on the two threads is the same. Given, there is no way to guarantee this, a work-around is necessary. Furthermore, there is a serious problem if the leaked count is added to a low-occurrence event. In that case the corruption on the low occurrence event can be very large, e.g., orders of magnitude. There is no HW or FW workaround for this problem. The bug is very easy to reproduce on a loaded system. Here is an example on a Haswell client, where CPU0, CPU4 are siblings. We load the CPUs with a simple triad app streaming large floating-point vector. We use 0x81d0 corrupting event (MEM_UOPS_RETIRED:ALL_LOADS) and 0x20cc (ROB_MISC_EVENTS:LBR_INSERTS). Given we are not using the LBR, the 0x20cc event should be zero. $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 139 277 291 r20cc 10,000969126 seconds time elapsed In this example, 0x81d0 and r20cc ar eusing sinling counters on CPU0 and CPU4. 0x81d0 leaks into 0x20cc and corrupts it from 0 to 139 millions occurrences. This patch provides a software workaround to this problem by modifying the way events are scheduled onto counters by the kernel. The patch forces cross-thread mutual exclusion between counters in case a corrupting event is measured by one of the hyper-threads. If thread 0, counter 0 is measuring event 0xd0, then nothing can be measured on counter 0, thread 1. If no corrupting event is measured on any hyper-thread, event scheduling proceeds as before. The same example run with the workaround enabled, yield the correct answer: $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 0 r20cc 10,000969126 seconds time elapsed The patch does provide correctness for all non-corrupting events. It does not "repatriate" the leaked counts back to the leaking counter. This is planned for a second patch series. This patch series makes this repatriation more easy by guaranteeing the sibling counter is not measuring any useful event. The patch introduces dynamic constraints for events. That means that events which did not have constraints, i.e., could be measured on any counters, may now be constrained to a subset of the counters depending on what is going on the sibling thread. The algorithm is similar to a cache coherency protocol. We call it XSU in reference to Exclusive, Shared, Unused, the 3 possible states of a PMU counter. As a consequence of the workaround, users may see an increased amount of event multiplexing, even in situtations where there are fewer events than counters measured on a CPU. Patch has been tested on all three impacted processors. Note that when HT is off, there is no corruption. However, the workaround is still enabled, yet not costing too much. Adding a dynamic detection of HT on turned out to be complex are requiring too much to code to be justified. This patch addresses the issue when PEBS is not used. A subsequent patch fixes the problem when PEBS is used. Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> [spinlock_t -> raw_spinlock_t] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Cc: bp@alien8.de Cc: jolsa@redhat.com Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1416251225-17721-7-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-18 03:06:58 +08:00
static void
intel_stop_scheduling(struct cpu_hw_events *cpuc)
{
struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
struct intel_excl_states *xl;
perf/x86/intel: Implement cross-HT corruption bug workaround This patch implements a software workaround for a HW erratum on Intel SandyBridge, IvyBridge and Haswell processors with Hyperthreading enabled. The errata are documented for each processor in their respective specification update documents: - SandyBridge: BJ122 - IvyBridge: BV98 - Haswell: HSD29 The bug causes silent counter corruption across hyperthreads only when measuring certain memory events (0xd0, 0xd1, 0xd2, 0xd3). Counters measuring those events may leak counts to the sibling counter. For instance, counter 0, thread 0 measuring event 0xd0, may leak to counter 0, thread 1, regardless of the event measured there. The size of the leak is not predictible. It all depends on the workload and the state of each sibling hyper-thread. The corrupting events do undercount as a consequence of the leak. The leak is compensated automatically only when the sibling counter measures the exact same corrupting event AND the workload is on the two threads is the same. Given, there is no way to guarantee this, a work-around is necessary. Furthermore, there is a serious problem if the leaked count is added to a low-occurrence event. In that case the corruption on the low occurrence event can be very large, e.g., orders of magnitude. There is no HW or FW workaround for this problem. The bug is very easy to reproduce on a loaded system. Here is an example on a Haswell client, where CPU0, CPU4 are siblings. We load the CPUs with a simple triad app streaming large floating-point vector. We use 0x81d0 corrupting event (MEM_UOPS_RETIRED:ALL_LOADS) and 0x20cc (ROB_MISC_EVENTS:LBR_INSERTS). Given we are not using the LBR, the 0x20cc event should be zero. $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 139 277 291 r20cc 10,000969126 seconds time elapsed In this example, 0x81d0 and r20cc ar eusing sinling counters on CPU0 and CPU4. 0x81d0 leaks into 0x20cc and corrupts it from 0 to 139 millions occurrences. This patch provides a software workaround to this problem by modifying the way events are scheduled onto counters by the kernel. The patch forces cross-thread mutual exclusion between counters in case a corrupting event is measured by one of the hyper-threads. If thread 0, counter 0 is measuring event 0xd0, then nothing can be measured on counter 0, thread 1. If no corrupting event is measured on any hyper-thread, event scheduling proceeds as before. The same example run with the workaround enabled, yield the correct answer: $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 0 r20cc 10,000969126 seconds time elapsed The patch does provide correctness for all non-corrupting events. It does not "repatriate" the leaked counts back to the leaking counter. This is planned for a second patch series. This patch series makes this repatriation more easy by guaranteeing the sibling counter is not measuring any useful event. The patch introduces dynamic constraints for events. That means that events which did not have constraints, i.e., could be measured on any counters, may now be constrained to a subset of the counters depending on what is going on the sibling thread. The algorithm is similar to a cache coherency protocol. We call it XSU in reference to Exclusive, Shared, Unused, the 3 possible states of a PMU counter. As a consequence of the workaround, users may see an increased amount of event multiplexing, even in situtations where there are fewer events than counters measured on a CPU. Patch has been tested on all three impacted processors. Note that when HT is off, there is no corruption. However, the workaround is still enabled, yet not costing too much. Adding a dynamic detection of HT on turned out to be complex are requiring too much to code to be justified. This patch addresses the issue when PEBS is not used. A subsequent patch fixes the problem when PEBS is used. Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> [spinlock_t -> raw_spinlock_t] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Cc: bp@alien8.de Cc: jolsa@redhat.com Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1416251225-17721-7-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-18 03:06:58 +08:00
int tid = cpuc->excl_thread_id;
/*
* nothing needed if in group validation mode
*/
if (cpuc->is_fake || !is_ht_workaround_enabled())
perf/x86/intel: Implement cross-HT corruption bug workaround This patch implements a software workaround for a HW erratum on Intel SandyBridge, IvyBridge and Haswell processors with Hyperthreading enabled. The errata are documented for each processor in their respective specification update documents: - SandyBridge: BJ122 - IvyBridge: BV98 - Haswell: HSD29 The bug causes silent counter corruption across hyperthreads only when measuring certain memory events (0xd0, 0xd1, 0xd2, 0xd3). Counters measuring those events may leak counts to the sibling counter. For instance, counter 0, thread 0 measuring event 0xd0, may leak to counter 0, thread 1, regardless of the event measured there. The size of the leak is not predictible. It all depends on the workload and the state of each sibling hyper-thread. The corrupting events do undercount as a consequence of the leak. The leak is compensated automatically only when the sibling counter measures the exact same corrupting event AND the workload is on the two threads is the same. Given, there is no way to guarantee this, a work-around is necessary. Furthermore, there is a serious problem if the leaked count is added to a low-occurrence event. In that case the corruption on the low occurrence event can be very large, e.g., orders of magnitude. There is no HW or FW workaround for this problem. The bug is very easy to reproduce on a loaded system. Here is an example on a Haswell client, where CPU0, CPU4 are siblings. We load the CPUs with a simple triad app streaming large floating-point vector. We use 0x81d0 corrupting event (MEM_UOPS_RETIRED:ALL_LOADS) and 0x20cc (ROB_MISC_EVENTS:LBR_INSERTS). Given we are not using the LBR, the 0x20cc event should be zero. $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 139 277 291 r20cc 10,000969126 seconds time elapsed In this example, 0x81d0 and r20cc ar eusing sinling counters on CPU0 and CPU4. 0x81d0 leaks into 0x20cc and corrupts it from 0 to 139 millions occurrences. This patch provides a software workaround to this problem by modifying the way events are scheduled onto counters by the kernel. The patch forces cross-thread mutual exclusion between counters in case a corrupting event is measured by one of the hyper-threads. If thread 0, counter 0 is measuring event 0xd0, then nothing can be measured on counter 0, thread 1. If no corrupting event is measured on any hyper-thread, event scheduling proceeds as before. The same example run with the workaround enabled, yield the correct answer: $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 0 r20cc 10,000969126 seconds time elapsed The patch does provide correctness for all non-corrupting events. It does not "repatriate" the leaked counts back to the leaking counter. This is planned for a second patch series. This patch series makes this repatriation more easy by guaranteeing the sibling counter is not measuring any useful event. The patch introduces dynamic constraints for events. That means that events which did not have constraints, i.e., could be measured on any counters, may now be constrained to a subset of the counters depending on what is going on the sibling thread. The algorithm is similar to a cache coherency protocol. We call it XSU in reference to Exclusive, Shared, Unused, the 3 possible states of a PMU counter. As a consequence of the workaround, users may see an increased amount of event multiplexing, even in situtations where there are fewer events than counters measured on a CPU. Patch has been tested on all three impacted processors. Note that when HT is off, there is no corruption. However, the workaround is still enabled, yet not costing too much. Adding a dynamic detection of HT on turned out to be complex are requiring too much to code to be justified. This patch addresses the issue when PEBS is not used. A subsequent patch fixes the problem when PEBS is used. Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> [spinlock_t -> raw_spinlock_t] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Cc: bp@alien8.de Cc: jolsa@redhat.com Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1416251225-17721-7-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-18 03:06:58 +08:00
return;
/*
* no exclusion needed
*/
if (WARN_ON_ONCE(!excl_cntrs))
perf/x86/intel: Implement cross-HT corruption bug workaround This patch implements a software workaround for a HW erratum on Intel SandyBridge, IvyBridge and Haswell processors with Hyperthreading enabled. The errata are documented for each processor in their respective specification update documents: - SandyBridge: BJ122 - IvyBridge: BV98 - Haswell: HSD29 The bug causes silent counter corruption across hyperthreads only when measuring certain memory events (0xd0, 0xd1, 0xd2, 0xd3). Counters measuring those events may leak counts to the sibling counter. For instance, counter 0, thread 0 measuring event 0xd0, may leak to counter 0, thread 1, regardless of the event measured there. The size of the leak is not predictible. It all depends on the workload and the state of each sibling hyper-thread. The corrupting events do undercount as a consequence of the leak. The leak is compensated automatically only when the sibling counter measures the exact same corrupting event AND the workload is on the two threads is the same. Given, there is no way to guarantee this, a work-around is necessary. Furthermore, there is a serious problem if the leaked count is added to a low-occurrence event. In that case the corruption on the low occurrence event can be very large, e.g., orders of magnitude. There is no HW or FW workaround for this problem. The bug is very easy to reproduce on a loaded system. Here is an example on a Haswell client, where CPU0, CPU4 are siblings. We load the CPUs with a simple triad app streaming large floating-point vector. We use 0x81d0 corrupting event (MEM_UOPS_RETIRED:ALL_LOADS) and 0x20cc (ROB_MISC_EVENTS:LBR_INSERTS). Given we are not using the LBR, the 0x20cc event should be zero. $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 139 277 291 r20cc 10,000969126 seconds time elapsed In this example, 0x81d0 and r20cc ar eusing sinling counters on CPU0 and CPU4. 0x81d0 leaks into 0x20cc and corrupts it from 0 to 139 millions occurrences. This patch provides a software workaround to this problem by modifying the way events are scheduled onto counters by the kernel. The patch forces cross-thread mutual exclusion between counters in case a corrupting event is measured by one of the hyper-threads. If thread 0, counter 0 is measuring event 0xd0, then nothing can be measured on counter 0, thread 1. If no corrupting event is measured on any hyper-thread, event scheduling proceeds as before. The same example run with the workaround enabled, yield the correct answer: $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 0 r20cc 10,000969126 seconds time elapsed The patch does provide correctness for all non-corrupting events. It does not "repatriate" the leaked counts back to the leaking counter. This is planned for a second patch series. This patch series makes this repatriation more easy by guaranteeing the sibling counter is not measuring any useful event. The patch introduces dynamic constraints for events. That means that events which did not have constraints, i.e., could be measured on any counters, may now be constrained to a subset of the counters depending on what is going on the sibling thread. The algorithm is similar to a cache coherency protocol. We call it XSU in reference to Exclusive, Shared, Unused, the 3 possible states of a PMU counter. As a consequence of the workaround, users may see an increased amount of event multiplexing, even in situtations where there are fewer events than counters measured on a CPU. Patch has been tested on all three impacted processors. Note that when HT is off, there is no corruption. However, the workaround is still enabled, yet not costing too much. Adding a dynamic detection of HT on turned out to be complex are requiring too much to code to be justified. This patch addresses the issue when PEBS is not used. A subsequent patch fixes the problem when PEBS is used. Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> [spinlock_t -> raw_spinlock_t] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Cc: bp@alien8.de Cc: jolsa@redhat.com Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1416251225-17721-7-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-18 03:06:58 +08:00
return;
xl = &excl_cntrs->states[tid];
xl->sched_started = false;
/*
* release shared state lock (acquired in intel_start_scheduling())
*/
raw_spin_unlock(&excl_cntrs->lock);
}
static struct event_constraint *
dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
{
WARN_ON_ONCE(!cpuc->constraint_list);
if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
struct event_constraint *cx;
/*
* grab pre-allocated constraint entry
*/
cx = &cpuc->constraint_list[idx];
/*
* initialize dynamic constraint
* with static constraint
*/
*cx = *c;
/*
* mark constraint as dynamic
*/
cx->flags |= PERF_X86_EVENT_DYNAMIC;
c = cx;
}
return c;
}
perf/x86/intel: Implement cross-HT corruption bug workaround This patch implements a software workaround for a HW erratum on Intel SandyBridge, IvyBridge and Haswell processors with Hyperthreading enabled. The errata are documented for each processor in their respective specification update documents: - SandyBridge: BJ122 - IvyBridge: BV98 - Haswell: HSD29 The bug causes silent counter corruption across hyperthreads only when measuring certain memory events (0xd0, 0xd1, 0xd2, 0xd3). Counters measuring those events may leak counts to the sibling counter. For instance, counter 0, thread 0 measuring event 0xd0, may leak to counter 0, thread 1, regardless of the event measured there. The size of the leak is not predictible. It all depends on the workload and the state of each sibling hyper-thread. The corrupting events do undercount as a consequence of the leak. The leak is compensated automatically only when the sibling counter measures the exact same corrupting event AND the workload is on the two threads is the same. Given, there is no way to guarantee this, a work-around is necessary. Furthermore, there is a serious problem if the leaked count is added to a low-occurrence event. In that case the corruption on the low occurrence event can be very large, e.g., orders of magnitude. There is no HW or FW workaround for this problem. The bug is very easy to reproduce on a loaded system. Here is an example on a Haswell client, where CPU0, CPU4 are siblings. We load the CPUs with a simple triad app streaming large floating-point vector. We use 0x81d0 corrupting event (MEM_UOPS_RETIRED:ALL_LOADS) and 0x20cc (ROB_MISC_EVENTS:LBR_INSERTS). Given we are not using the LBR, the 0x20cc event should be zero. $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 139 277 291 r20cc 10,000969126 seconds time elapsed In this example, 0x81d0 and r20cc ar eusing sinling counters on CPU0 and CPU4. 0x81d0 leaks into 0x20cc and corrupts it from 0 to 139 millions occurrences. This patch provides a software workaround to this problem by modifying the way events are scheduled onto counters by the kernel. The patch forces cross-thread mutual exclusion between counters in case a corrupting event is measured by one of the hyper-threads. If thread 0, counter 0 is measuring event 0xd0, then nothing can be measured on counter 0, thread 1. If no corrupting event is measured on any hyper-thread, event scheduling proceeds as before. The same example run with the workaround enabled, yield the correct answer: $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 0 r20cc 10,000969126 seconds time elapsed The patch does provide correctness for all non-corrupting events. It does not "repatriate" the leaked counts back to the leaking counter. This is planned for a second patch series. This patch series makes this repatriation more easy by guaranteeing the sibling counter is not measuring any useful event. The patch introduces dynamic constraints for events. That means that events which did not have constraints, i.e., could be measured on any counters, may now be constrained to a subset of the counters depending on what is going on the sibling thread. The algorithm is similar to a cache coherency protocol. We call it XSU in reference to Exclusive, Shared, Unused, the 3 possible states of a PMU counter. As a consequence of the workaround, users may see an increased amount of event multiplexing, even in situtations where there are fewer events than counters measured on a CPU. Patch has been tested on all three impacted processors. Note that when HT is off, there is no corruption. However, the workaround is still enabled, yet not costing too much. Adding a dynamic detection of HT on turned out to be complex are requiring too much to code to be justified. This patch addresses the issue when PEBS is not used. A subsequent patch fixes the problem when PEBS is used. Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> [spinlock_t -> raw_spinlock_t] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Cc: bp@alien8.de Cc: jolsa@redhat.com Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1416251225-17721-7-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-18 03:06:58 +08:00
static struct event_constraint *
intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
int idx, struct event_constraint *c)
{
struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
struct intel_excl_states *xlo;
perf/x86/intel: Implement cross-HT corruption bug workaround This patch implements a software workaround for a HW erratum on Intel SandyBridge, IvyBridge and Haswell processors with Hyperthreading enabled. The errata are documented for each processor in their respective specification update documents: - SandyBridge: BJ122 - IvyBridge: BV98 - Haswell: HSD29 The bug causes silent counter corruption across hyperthreads only when measuring certain memory events (0xd0, 0xd1, 0xd2, 0xd3). Counters measuring those events may leak counts to the sibling counter. For instance, counter 0, thread 0 measuring event 0xd0, may leak to counter 0, thread 1, regardless of the event measured there. The size of the leak is not predictible. It all depends on the workload and the state of each sibling hyper-thread. The corrupting events do undercount as a consequence of the leak. The leak is compensated automatically only when the sibling counter measures the exact same corrupting event AND the workload is on the two threads is the same. Given, there is no way to guarantee this, a work-around is necessary. Furthermore, there is a serious problem if the leaked count is added to a low-occurrence event. In that case the corruption on the low occurrence event can be very large, e.g., orders of magnitude. There is no HW or FW workaround for this problem. The bug is very easy to reproduce on a loaded system. Here is an example on a Haswell client, where CPU0, CPU4 are siblings. We load the CPUs with a simple triad app streaming large floating-point vector. We use 0x81d0 corrupting event (MEM_UOPS_RETIRED:ALL_LOADS) and 0x20cc (ROB_MISC_EVENTS:LBR_INSERTS). Given we are not using the LBR, the 0x20cc event should be zero. $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 139 277 291 r20cc 10,000969126 seconds time elapsed In this example, 0x81d0 and r20cc ar eusing sinling counters on CPU0 and CPU4. 0x81d0 leaks into 0x20cc and corrupts it from 0 to 139 millions occurrences. This patch provides a software workaround to this problem by modifying the way events are scheduled onto counters by the kernel. The patch forces cross-thread mutual exclusion between counters in case a corrupting event is measured by one of the hyper-threads. If thread 0, counter 0 is measuring event 0xd0, then nothing can be measured on counter 0, thread 1. If no corrupting event is measured on any hyper-thread, event scheduling proceeds as before. The same example run with the workaround enabled, yield the correct answer: $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 0 r20cc 10,000969126 seconds time elapsed The patch does provide correctness for all non-corrupting events. It does not "repatriate" the leaked counts back to the leaking counter. This is planned for a second patch series. This patch series makes this repatriation more easy by guaranteeing the sibling counter is not measuring any useful event. The patch introduces dynamic constraints for events. That means that events which did not have constraints, i.e., could be measured on any counters, may now be constrained to a subset of the counters depending on what is going on the sibling thread. The algorithm is similar to a cache coherency protocol. We call it XSU in reference to Exclusive, Shared, Unused, the 3 possible states of a PMU counter. As a consequence of the workaround, users may see an increased amount of event multiplexing, even in situtations where there are fewer events than counters measured on a CPU. Patch has been tested on all three impacted processors. Note that when HT is off, there is no corruption. However, the workaround is still enabled, yet not costing too much. Adding a dynamic detection of HT on turned out to be complex are requiring too much to code to be justified. This patch addresses the issue when PEBS is not used. A subsequent patch fixes the problem when PEBS is used. Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> [spinlock_t -> raw_spinlock_t] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Cc: bp@alien8.de Cc: jolsa@redhat.com Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1416251225-17721-7-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-18 03:06:58 +08:00
int tid = cpuc->excl_thread_id;
int is_excl, i, w;
perf/x86/intel: Implement cross-HT corruption bug workaround This patch implements a software workaround for a HW erratum on Intel SandyBridge, IvyBridge and Haswell processors with Hyperthreading enabled. The errata are documented for each processor in their respective specification update documents: - SandyBridge: BJ122 - IvyBridge: BV98 - Haswell: HSD29 The bug causes silent counter corruption across hyperthreads only when measuring certain memory events (0xd0, 0xd1, 0xd2, 0xd3). Counters measuring those events may leak counts to the sibling counter. For instance, counter 0, thread 0 measuring event 0xd0, may leak to counter 0, thread 1, regardless of the event measured there. The size of the leak is not predictible. It all depends on the workload and the state of each sibling hyper-thread. The corrupting events do undercount as a consequence of the leak. The leak is compensated automatically only when the sibling counter measures the exact same corrupting event AND the workload is on the two threads is the same. Given, there is no way to guarantee this, a work-around is necessary. Furthermore, there is a serious problem if the leaked count is added to a low-occurrence event. In that case the corruption on the low occurrence event can be very large, e.g., orders of magnitude. There is no HW or FW workaround for this problem. The bug is very easy to reproduce on a loaded system. Here is an example on a Haswell client, where CPU0, CPU4 are siblings. We load the CPUs with a simple triad app streaming large floating-point vector. We use 0x81d0 corrupting event (MEM_UOPS_RETIRED:ALL_LOADS) and 0x20cc (ROB_MISC_EVENTS:LBR_INSERTS). Given we are not using the LBR, the 0x20cc event should be zero. $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 139 277 291 r20cc 10,000969126 seconds time elapsed In this example, 0x81d0 and r20cc ar eusing sinling counters on CPU0 and CPU4. 0x81d0 leaks into 0x20cc and corrupts it from 0 to 139 millions occurrences. This patch provides a software workaround to this problem by modifying the way events are scheduled onto counters by the kernel. The patch forces cross-thread mutual exclusion between counters in case a corrupting event is measured by one of the hyper-threads. If thread 0, counter 0 is measuring event 0xd0, then nothing can be measured on counter 0, thread 1. If no corrupting event is measured on any hyper-thread, event scheduling proceeds as before. The same example run with the workaround enabled, yield the correct answer: $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 0 r20cc 10,000969126 seconds time elapsed The patch does provide correctness for all non-corrupting events. It does not "repatriate" the leaked counts back to the leaking counter. This is planned for a second patch series. This patch series makes this repatriation more easy by guaranteeing the sibling counter is not measuring any useful event. The patch introduces dynamic constraints for events. That means that events which did not have constraints, i.e., could be measured on any counters, may now be constrained to a subset of the counters depending on what is going on the sibling thread. The algorithm is similar to a cache coherency protocol. We call it XSU in reference to Exclusive, Shared, Unused, the 3 possible states of a PMU counter. As a consequence of the workaround, users may see an increased amount of event multiplexing, even in situtations where there are fewer events than counters measured on a CPU. Patch has been tested on all three impacted processors. Note that when HT is off, there is no corruption. However, the workaround is still enabled, yet not costing too much. Adding a dynamic detection of HT on turned out to be complex are requiring too much to code to be justified. This patch addresses the issue when PEBS is not used. A subsequent patch fixes the problem when PEBS is used. Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> [spinlock_t -> raw_spinlock_t] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Cc: bp@alien8.de Cc: jolsa@redhat.com Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1416251225-17721-7-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-18 03:06:58 +08:00
/*
* validating a group does not require
* enforcing cross-thread exclusion
*/
if (cpuc->is_fake || !is_ht_workaround_enabled())
return c;
/*
* no exclusion needed
*/
if (WARN_ON_ONCE(!excl_cntrs))
perf/x86/intel: Implement cross-HT corruption bug workaround This patch implements a software workaround for a HW erratum on Intel SandyBridge, IvyBridge and Haswell processors with Hyperthreading enabled. The errata are documented for each processor in their respective specification update documents: - SandyBridge: BJ122 - IvyBridge: BV98 - Haswell: HSD29 The bug causes silent counter corruption across hyperthreads only when measuring certain memory events (0xd0, 0xd1, 0xd2, 0xd3). Counters measuring those events may leak counts to the sibling counter. For instance, counter 0, thread 0 measuring event 0xd0, may leak to counter 0, thread 1, regardless of the event measured there. The size of the leak is not predictible. It all depends on the workload and the state of each sibling hyper-thread. The corrupting events do undercount as a consequence of the leak. The leak is compensated automatically only when the sibling counter measures the exact same corrupting event AND the workload is on the two threads is the same. Given, there is no way to guarantee this, a work-around is necessary. Furthermore, there is a serious problem if the leaked count is added to a low-occurrence event. In that case the corruption on the low occurrence event can be very large, e.g., orders of magnitude. There is no HW or FW workaround for this problem. The bug is very easy to reproduce on a loaded system. Here is an example on a Haswell client, where CPU0, CPU4 are siblings. We load the CPUs with a simple triad app streaming large floating-point vector. We use 0x81d0 corrupting event (MEM_UOPS_RETIRED:ALL_LOADS) and 0x20cc (ROB_MISC_EVENTS:LBR_INSERTS). Given we are not using the LBR, the 0x20cc event should be zero. $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 139 277 291 r20cc 10,000969126 seconds time elapsed In this example, 0x81d0 and r20cc ar eusing sinling counters on CPU0 and CPU4. 0x81d0 leaks into 0x20cc and corrupts it from 0 to 139 millions occurrences. This patch provides a software workaround to this problem by modifying the way events are scheduled onto counters by the kernel. The patch forces cross-thread mutual exclusion between counters in case a corrupting event is measured by one of the hyper-threads. If thread 0, counter 0 is measuring event 0xd0, then nothing can be measured on counter 0, thread 1. If no corrupting event is measured on any hyper-thread, event scheduling proceeds as before. The same example run with the workaround enabled, yield the correct answer: $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 0 r20cc 10,000969126 seconds time elapsed The patch does provide correctness for all non-corrupting events. It does not "repatriate" the leaked counts back to the leaking counter. This is planned for a second patch series. This patch series makes this repatriation more easy by guaranteeing the sibling counter is not measuring any useful event. The patch introduces dynamic constraints for events. That means that events which did not have constraints, i.e., could be measured on any counters, may now be constrained to a subset of the counters depending on what is going on the sibling thread. The algorithm is similar to a cache coherency protocol. We call it XSU in reference to Exclusive, Shared, Unused, the 3 possible states of a PMU counter. As a consequence of the workaround, users may see an increased amount of event multiplexing, even in situtations where there are fewer events than counters measured on a CPU. Patch has been tested on all three impacted processors. Note that when HT is off, there is no corruption. However, the workaround is still enabled, yet not costing too much. Adding a dynamic detection of HT on turned out to be complex are requiring too much to code to be justified. This patch addresses the issue when PEBS is not used. A subsequent patch fixes the problem when PEBS is used. Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> [spinlock_t -> raw_spinlock_t] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Cc: bp@alien8.de Cc: jolsa@redhat.com Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1416251225-17721-7-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-18 03:06:58 +08:00
return c;
/*
* because we modify the constraint, we need
* to make a copy. Static constraints come
* from static const tables.
*
* only needed when constraint has not yet
* been cloned (marked dynamic)
*/
c = dyn_constraint(cpuc, c, idx);
perf/x86/intel: Implement cross-HT corruption bug workaround This patch implements a software workaround for a HW erratum on Intel SandyBridge, IvyBridge and Haswell processors with Hyperthreading enabled. The errata are documented for each processor in their respective specification update documents: - SandyBridge: BJ122 - IvyBridge: BV98 - Haswell: HSD29 The bug causes silent counter corruption across hyperthreads only when measuring certain memory events (0xd0, 0xd1, 0xd2, 0xd3). Counters measuring those events may leak counts to the sibling counter. For instance, counter 0, thread 0 measuring event 0xd0, may leak to counter 0, thread 1, regardless of the event measured there. The size of the leak is not predictible. It all depends on the workload and the state of each sibling hyper-thread. The corrupting events do undercount as a consequence of the leak. The leak is compensated automatically only when the sibling counter measures the exact same corrupting event AND the workload is on the two threads is the same. Given, there is no way to guarantee this, a work-around is necessary. Furthermore, there is a serious problem if the leaked count is added to a low-occurrence event. In that case the corruption on the low occurrence event can be very large, e.g., orders of magnitude. There is no HW or FW workaround for this problem. The bug is very easy to reproduce on a loaded system. Here is an example on a Haswell client, where CPU0, CPU4 are siblings. We load the CPUs with a simple triad app streaming large floating-point vector. We use 0x81d0 corrupting event (MEM_UOPS_RETIRED:ALL_LOADS) and 0x20cc (ROB_MISC_EVENTS:LBR_INSERTS). Given we are not using the LBR, the 0x20cc event should be zero. $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 139 277 291 r20cc 10,000969126 seconds time elapsed In this example, 0x81d0 and r20cc ar eusing sinling counters on CPU0 and CPU4. 0x81d0 leaks into 0x20cc and corrupts it from 0 to 139 millions occurrences. This patch provides a software workaround to this problem by modifying the way events are scheduled onto counters by the kernel. The patch forces cross-thread mutual exclusion between counters in case a corrupting event is measured by one of the hyper-threads. If thread 0, counter 0 is measuring event 0xd0, then nothing can be measured on counter 0, thread 1. If no corrupting event is measured on any hyper-thread, event scheduling proceeds as before. The same example run with the workaround enabled, yield the correct answer: $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 0 r20cc 10,000969126 seconds time elapsed The patch does provide correctness for all non-corrupting events. It does not "repatriate" the leaked counts back to the leaking counter. This is planned for a second patch series. This patch series makes this repatriation more easy by guaranteeing the sibling counter is not measuring any useful event. The patch introduces dynamic constraints for events. That means that events which did not have constraints, i.e., could be measured on any counters, may now be constrained to a subset of the counters depending on what is going on the sibling thread. The algorithm is similar to a cache coherency protocol. We call it XSU in reference to Exclusive, Shared, Unused, the 3 possible states of a PMU counter. As a consequence of the workaround, users may see an increased amount of event multiplexing, even in situtations where there are fewer events than counters measured on a CPU. Patch has been tested on all three impacted processors. Note that when HT is off, there is no corruption. However, the workaround is still enabled, yet not costing too much. Adding a dynamic detection of HT on turned out to be complex are requiring too much to code to be justified. This patch addresses the issue when PEBS is not used. A subsequent patch fixes the problem when PEBS is used. Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> [spinlock_t -> raw_spinlock_t] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Cc: bp@alien8.de Cc: jolsa@redhat.com Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1416251225-17721-7-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-18 03:06:58 +08:00
/*
* From here on, the constraint is dynamic.
* Either it was just allocated above, or it
* was allocated during a earlier invocation
* of this function
*/
/*
* state of sibling HT
*/
xlo = &excl_cntrs->states[tid ^ 1];
/*
* event requires exclusive counter access
* across HT threads
*/
is_excl = c->flags & PERF_X86_EVENT_EXCL;
if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
if (!cpuc->n_excl++)
WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
}
perf/x86/intel: Implement cross-HT corruption bug workaround This patch implements a software workaround for a HW erratum on Intel SandyBridge, IvyBridge and Haswell processors with Hyperthreading enabled. The errata are documented for each processor in their respective specification update documents: - SandyBridge: BJ122 - IvyBridge: BV98 - Haswell: HSD29 The bug causes silent counter corruption across hyperthreads only when measuring certain memory events (0xd0, 0xd1, 0xd2, 0xd3). Counters measuring those events may leak counts to the sibling counter. For instance, counter 0, thread 0 measuring event 0xd0, may leak to counter 0, thread 1, regardless of the event measured there. The size of the leak is not predictible. It all depends on the workload and the state of each sibling hyper-thread. The corrupting events do undercount as a consequence of the leak. The leak is compensated automatically only when the sibling counter measures the exact same corrupting event AND the workload is on the two threads is the same. Given, there is no way to guarantee this, a work-around is necessary. Furthermore, there is a serious problem if the leaked count is added to a low-occurrence event. In that case the corruption on the low occurrence event can be very large, e.g., orders of magnitude. There is no HW or FW workaround for this problem. The bug is very easy to reproduce on a loaded system. Here is an example on a Haswell client, where CPU0, CPU4 are siblings. We load the CPUs with a simple triad app streaming large floating-point vector. We use 0x81d0 corrupting event (MEM_UOPS_RETIRED:ALL_LOADS) and 0x20cc (ROB_MISC_EVENTS:LBR_INSERTS). Given we are not using the LBR, the 0x20cc event should be zero. $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 139 277 291 r20cc 10,000969126 seconds time elapsed In this example, 0x81d0 and r20cc ar eusing sinling counters on CPU0 and CPU4. 0x81d0 leaks into 0x20cc and corrupts it from 0 to 139 millions occurrences. This patch provides a software workaround to this problem by modifying the way events are scheduled onto counters by the kernel. The patch forces cross-thread mutual exclusion between counters in case a corrupting event is measured by one of the hyper-threads. If thread 0, counter 0 is measuring event 0xd0, then nothing can be measured on counter 0, thread 1. If no corrupting event is measured on any hyper-thread, event scheduling proceeds as before. The same example run with the workaround enabled, yield the correct answer: $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 0 r20cc 10,000969126 seconds time elapsed The patch does provide correctness for all non-corrupting events. It does not "repatriate" the leaked counts back to the leaking counter. This is planned for a second patch series. This patch series makes this repatriation more easy by guaranteeing the sibling counter is not measuring any useful event. The patch introduces dynamic constraints for events. That means that events which did not have constraints, i.e., could be measured on any counters, may now be constrained to a subset of the counters depending on what is going on the sibling thread. The algorithm is similar to a cache coherency protocol. We call it XSU in reference to Exclusive, Shared, Unused, the 3 possible states of a PMU counter. As a consequence of the workaround, users may see an increased amount of event multiplexing, even in situtations where there are fewer events than counters measured on a CPU. Patch has been tested on all three impacted processors. Note that when HT is off, there is no corruption. However, the workaround is still enabled, yet not costing too much. Adding a dynamic detection of HT on turned out to be complex are requiring too much to code to be justified. This patch addresses the issue when PEBS is not used. A subsequent patch fixes the problem when PEBS is used. Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> [spinlock_t -> raw_spinlock_t] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Cc: bp@alien8.de Cc: jolsa@redhat.com Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1416251225-17721-7-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-18 03:06:58 +08:00
/*
* Modify static constraint with current dynamic
* state of thread
*
* EXCLUSIVE: sibling counter measuring exclusive event
* SHARED : sibling counter measuring non-exclusive event
* UNUSED : sibling counter unused
*/
w = c->weight;
for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
perf/x86/intel: Implement cross-HT corruption bug workaround This patch implements a software workaround for a HW erratum on Intel SandyBridge, IvyBridge and Haswell processors with Hyperthreading enabled. The errata are documented for each processor in their respective specification update documents: - SandyBridge: BJ122 - IvyBridge: BV98 - Haswell: HSD29 The bug causes silent counter corruption across hyperthreads only when measuring certain memory events (0xd0, 0xd1, 0xd2, 0xd3). Counters measuring those events may leak counts to the sibling counter. For instance, counter 0, thread 0 measuring event 0xd0, may leak to counter 0, thread 1, regardless of the event measured there. The size of the leak is not predictible. It all depends on the workload and the state of each sibling hyper-thread. The corrupting events do undercount as a consequence of the leak. The leak is compensated automatically only when the sibling counter measures the exact same corrupting event AND the workload is on the two threads is the same. Given, there is no way to guarantee this, a work-around is necessary. Furthermore, there is a serious problem if the leaked count is added to a low-occurrence event. In that case the corruption on the low occurrence event can be very large, e.g., orders of magnitude. There is no HW or FW workaround for this problem. The bug is very easy to reproduce on a loaded system. Here is an example on a Haswell client, where CPU0, CPU4 are siblings. We load the CPUs with a simple triad app streaming large floating-point vector. We use 0x81d0 corrupting event (MEM_UOPS_RETIRED:ALL_LOADS) and 0x20cc (ROB_MISC_EVENTS:LBR_INSERTS). Given we are not using the LBR, the 0x20cc event should be zero. $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 139 277 291 r20cc 10,000969126 seconds time elapsed In this example, 0x81d0 and r20cc ar eusing sinling counters on CPU0 and CPU4. 0x81d0 leaks into 0x20cc and corrupts it from 0 to 139 millions occurrences. This patch provides a software workaround to this problem by modifying the way events are scheduled onto counters by the kernel. The patch forces cross-thread mutual exclusion between counters in case a corrupting event is measured by one of the hyper-threads. If thread 0, counter 0 is measuring event 0xd0, then nothing can be measured on counter 0, thread 1. If no corrupting event is measured on any hyper-thread, event scheduling proceeds as before. The same example run with the workaround enabled, yield the correct answer: $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 0 r20cc 10,000969126 seconds time elapsed The patch does provide correctness for all non-corrupting events. It does not "repatriate" the leaked counts back to the leaking counter. This is planned for a second patch series. This patch series makes this repatriation more easy by guaranteeing the sibling counter is not measuring any useful event. The patch introduces dynamic constraints for events. That means that events which did not have constraints, i.e., could be measured on any counters, may now be constrained to a subset of the counters depending on what is going on the sibling thread. The algorithm is similar to a cache coherency protocol. We call it XSU in reference to Exclusive, Shared, Unused, the 3 possible states of a PMU counter. As a consequence of the workaround, users may see an increased amount of event multiplexing, even in situtations where there are fewer events than counters measured on a CPU. Patch has been tested on all three impacted processors. Note that when HT is off, there is no corruption. However, the workaround is still enabled, yet not costing too much. Adding a dynamic detection of HT on turned out to be complex are requiring too much to code to be justified. This patch addresses the issue when PEBS is not used. A subsequent patch fixes the problem when PEBS is used. Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> [spinlock_t -> raw_spinlock_t] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Cc: bp@alien8.de Cc: jolsa@redhat.com Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1416251225-17721-7-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-18 03:06:58 +08:00
/*
* exclusive event in sibling counter
* our corresponding counter cannot be used
* regardless of our event
*/
if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
__clear_bit(i, c->idxmsk);
w--;
continue;
}
perf/x86/intel: Implement cross-HT corruption bug workaround This patch implements a software workaround for a HW erratum on Intel SandyBridge, IvyBridge and Haswell processors with Hyperthreading enabled. The errata are documented for each processor in their respective specification update documents: - SandyBridge: BJ122 - IvyBridge: BV98 - Haswell: HSD29 The bug causes silent counter corruption across hyperthreads only when measuring certain memory events (0xd0, 0xd1, 0xd2, 0xd3). Counters measuring those events may leak counts to the sibling counter. For instance, counter 0, thread 0 measuring event 0xd0, may leak to counter 0, thread 1, regardless of the event measured there. The size of the leak is not predictible. It all depends on the workload and the state of each sibling hyper-thread. The corrupting events do undercount as a consequence of the leak. The leak is compensated automatically only when the sibling counter measures the exact same corrupting event AND the workload is on the two threads is the same. Given, there is no way to guarantee this, a work-around is necessary. Furthermore, there is a serious problem if the leaked count is added to a low-occurrence event. In that case the corruption on the low occurrence event can be very large, e.g., orders of magnitude. There is no HW or FW workaround for this problem. The bug is very easy to reproduce on a loaded system. Here is an example on a Haswell client, where CPU0, CPU4 are siblings. We load the CPUs with a simple triad app streaming large floating-point vector. We use 0x81d0 corrupting event (MEM_UOPS_RETIRED:ALL_LOADS) and 0x20cc (ROB_MISC_EVENTS:LBR_INSERTS). Given we are not using the LBR, the 0x20cc event should be zero. $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 139 277 291 r20cc 10,000969126 seconds time elapsed In this example, 0x81d0 and r20cc ar eusing sinling counters on CPU0 and CPU4. 0x81d0 leaks into 0x20cc and corrupts it from 0 to 139 millions occurrences. This patch provides a software workaround to this problem by modifying the way events are scheduled onto counters by the kernel. The patch forces cross-thread mutual exclusion between counters in case a corrupting event is measured by one of the hyper-threads. If thread 0, counter 0 is measuring event 0xd0, then nothing can be measured on counter 0, thread 1. If no corrupting event is measured on any hyper-thread, event scheduling proceeds as before. The same example run with the workaround enabled, yield the correct answer: $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 0 r20cc 10,000969126 seconds time elapsed The patch does provide correctness for all non-corrupting events. It does not "repatriate" the leaked counts back to the leaking counter. This is planned for a second patch series. This patch series makes this repatriation more easy by guaranteeing the sibling counter is not measuring any useful event. The patch introduces dynamic constraints for events. That means that events which did not have constraints, i.e., could be measured on any counters, may now be constrained to a subset of the counters depending on what is going on the sibling thread. The algorithm is similar to a cache coherency protocol. We call it XSU in reference to Exclusive, Shared, Unused, the 3 possible states of a PMU counter. As a consequence of the workaround, users may see an increased amount of event multiplexing, even in situtations where there are fewer events than counters measured on a CPU. Patch has been tested on all three impacted processors. Note that when HT is off, there is no corruption. However, the workaround is still enabled, yet not costing too much. Adding a dynamic detection of HT on turned out to be complex are requiring too much to code to be justified. This patch addresses the issue when PEBS is not used. A subsequent patch fixes the problem when PEBS is used. Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> [spinlock_t -> raw_spinlock_t] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Cc: bp@alien8.de Cc: jolsa@redhat.com Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1416251225-17721-7-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-18 03:06:58 +08:00
/*
* if measuring an exclusive event, sibling
* measuring non-exclusive, then counter cannot
* be used
*/
if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
__clear_bit(i, c->idxmsk);
w--;
continue;
}
perf/x86/intel: Implement cross-HT corruption bug workaround This patch implements a software workaround for a HW erratum on Intel SandyBridge, IvyBridge and Haswell processors with Hyperthreading enabled. The errata are documented for each processor in their respective specification update documents: - SandyBridge: BJ122 - IvyBridge: BV98 - Haswell: HSD29 The bug causes silent counter corruption across hyperthreads only when measuring certain memory events (0xd0, 0xd1, 0xd2, 0xd3). Counters measuring those events may leak counts to the sibling counter. For instance, counter 0, thread 0 measuring event 0xd0, may leak to counter 0, thread 1, regardless of the event measured there. The size of the leak is not predictible. It all depends on the workload and the state of each sibling hyper-thread. The corrupting events do undercount as a consequence of the leak. The leak is compensated automatically only when the sibling counter measures the exact same corrupting event AND the workload is on the two threads is the same. Given, there is no way to guarantee this, a work-around is necessary. Furthermore, there is a serious problem if the leaked count is added to a low-occurrence event. In that case the corruption on the low occurrence event can be very large, e.g., orders of magnitude. There is no HW or FW workaround for this problem. The bug is very easy to reproduce on a loaded system. Here is an example on a Haswell client, where CPU0, CPU4 are siblings. We load the CPUs with a simple triad app streaming large floating-point vector. We use 0x81d0 corrupting event (MEM_UOPS_RETIRED:ALL_LOADS) and 0x20cc (ROB_MISC_EVENTS:LBR_INSERTS). Given we are not using the LBR, the 0x20cc event should be zero. $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 139 277 291 r20cc 10,000969126 seconds time elapsed In this example, 0x81d0 and r20cc ar eusing sinling counters on CPU0 and CPU4. 0x81d0 leaks into 0x20cc and corrupts it from 0 to 139 millions occurrences. This patch provides a software workaround to this problem by modifying the way events are scheduled onto counters by the kernel. The patch forces cross-thread mutual exclusion between counters in case a corrupting event is measured by one of the hyper-threads. If thread 0, counter 0 is measuring event 0xd0, then nothing can be measured on counter 0, thread 1. If no corrupting event is measured on any hyper-thread, event scheduling proceeds as before. The same example run with the workaround enabled, yield the correct answer: $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 0 r20cc 10,000969126 seconds time elapsed The patch does provide correctness for all non-corrupting events. It does not "repatriate" the leaked counts back to the leaking counter. This is planned for a second patch series. This patch series makes this repatriation more easy by guaranteeing the sibling counter is not measuring any useful event. The patch introduces dynamic constraints for events. That means that events which did not have constraints, i.e., could be measured on any counters, may now be constrained to a subset of the counters depending on what is going on the sibling thread. The algorithm is similar to a cache coherency protocol. We call it XSU in reference to Exclusive, Shared, Unused, the 3 possible states of a PMU counter. As a consequence of the workaround, users may see an increased amount of event multiplexing, even in situtations where there are fewer events than counters measured on a CPU. Patch has been tested on all three impacted processors. Note that when HT is off, there is no corruption. However, the workaround is still enabled, yet not costing too much. Adding a dynamic detection of HT on turned out to be complex are requiring too much to code to be justified. This patch addresses the issue when PEBS is not used. A subsequent patch fixes the problem when PEBS is used. Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> [spinlock_t -> raw_spinlock_t] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Cc: bp@alien8.de Cc: jolsa@redhat.com Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1416251225-17721-7-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-18 03:06:58 +08:00
}
/*
* if we return an empty mask, then switch
* back to static empty constraint to avoid
* the cost of freeing later on
*/
if (!w)
c = &emptyconstraint;
perf/x86/intel: Implement cross-HT corruption bug workaround This patch implements a software workaround for a HW erratum on Intel SandyBridge, IvyBridge and Haswell processors with Hyperthreading enabled. The errata are documented for each processor in their respective specification update documents: - SandyBridge: BJ122 - IvyBridge: BV98 - Haswell: HSD29 The bug causes silent counter corruption across hyperthreads only when measuring certain memory events (0xd0, 0xd1, 0xd2, 0xd3). Counters measuring those events may leak counts to the sibling counter. For instance, counter 0, thread 0 measuring event 0xd0, may leak to counter 0, thread 1, regardless of the event measured there. The size of the leak is not predictible. It all depends on the workload and the state of each sibling hyper-thread. The corrupting events do undercount as a consequence of the leak. The leak is compensated automatically only when the sibling counter measures the exact same corrupting event AND the workload is on the two threads is the same. Given, there is no way to guarantee this, a work-around is necessary. Furthermore, there is a serious problem if the leaked count is added to a low-occurrence event. In that case the corruption on the low occurrence event can be very large, e.g., orders of magnitude. There is no HW or FW workaround for this problem. The bug is very easy to reproduce on a loaded system. Here is an example on a Haswell client, where CPU0, CPU4 are siblings. We load the CPUs with a simple triad app streaming large floating-point vector. We use 0x81d0 corrupting event (MEM_UOPS_RETIRED:ALL_LOADS) and 0x20cc (ROB_MISC_EVENTS:LBR_INSERTS). Given we are not using the LBR, the 0x20cc event should be zero. $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 139 277 291 r20cc 10,000969126 seconds time elapsed In this example, 0x81d0 and r20cc ar eusing sinling counters on CPU0 and CPU4. 0x81d0 leaks into 0x20cc and corrupts it from 0 to 139 millions occurrences. This patch provides a software workaround to this problem by modifying the way events are scheduled onto counters by the kernel. The patch forces cross-thread mutual exclusion between counters in case a corrupting event is measured by one of the hyper-threads. If thread 0, counter 0 is measuring event 0xd0, then nothing can be measured on counter 0, thread 1. If no corrupting event is measured on any hyper-thread, event scheduling proceeds as before. The same example run with the workaround enabled, yield the correct answer: $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 0 r20cc 10,000969126 seconds time elapsed The patch does provide correctness for all non-corrupting events. It does not "repatriate" the leaked counts back to the leaking counter. This is planned for a second patch series. This patch series makes this repatriation more easy by guaranteeing the sibling counter is not measuring any useful event. The patch introduces dynamic constraints for events. That means that events which did not have constraints, i.e., could be measured on any counters, may now be constrained to a subset of the counters depending on what is going on the sibling thread. The algorithm is similar to a cache coherency protocol. We call it XSU in reference to Exclusive, Shared, Unused, the 3 possible states of a PMU counter. As a consequence of the workaround, users may see an increased amount of event multiplexing, even in situtations where there are fewer events than counters measured on a CPU. Patch has been tested on all three impacted processors. Note that when HT is off, there is no corruption. However, the workaround is still enabled, yet not costing too much. Adding a dynamic detection of HT on turned out to be complex are requiring too much to code to be justified. This patch addresses the issue when PEBS is not used. A subsequent patch fixes the problem when PEBS is used. Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> [spinlock_t -> raw_spinlock_t] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Cc: bp@alien8.de Cc: jolsa@redhat.com Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1416251225-17721-7-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-18 03:06:58 +08:00
c->weight = w;
return c;
perf/x86/intel: Implement cross-HT corruption bug workaround This patch implements a software workaround for a HW erratum on Intel SandyBridge, IvyBridge and Haswell processors with Hyperthreading enabled. The errata are documented for each processor in their respective specification update documents: - SandyBridge: BJ122 - IvyBridge: BV98 - Haswell: HSD29 The bug causes silent counter corruption across hyperthreads only when measuring certain memory events (0xd0, 0xd1, 0xd2, 0xd3). Counters measuring those events may leak counts to the sibling counter. For instance, counter 0, thread 0 measuring event 0xd0, may leak to counter 0, thread 1, regardless of the event measured there. The size of the leak is not predictible. It all depends on the workload and the state of each sibling hyper-thread. The corrupting events do undercount as a consequence of the leak. The leak is compensated automatically only when the sibling counter measures the exact same corrupting event AND the workload is on the two threads is the same. Given, there is no way to guarantee this, a work-around is necessary. Furthermore, there is a serious problem if the leaked count is added to a low-occurrence event. In that case the corruption on the low occurrence event can be very large, e.g., orders of magnitude. There is no HW or FW workaround for this problem. The bug is very easy to reproduce on a loaded system. Here is an example on a Haswell client, where CPU0, CPU4 are siblings. We load the CPUs with a simple triad app streaming large floating-point vector. We use 0x81d0 corrupting event (MEM_UOPS_RETIRED:ALL_LOADS) and 0x20cc (ROB_MISC_EVENTS:LBR_INSERTS). Given we are not using the LBR, the 0x20cc event should be zero. $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 139 277 291 r20cc 10,000969126 seconds time elapsed In this example, 0x81d0 and r20cc ar eusing sinling counters on CPU0 and CPU4. 0x81d0 leaks into 0x20cc and corrupts it from 0 to 139 millions occurrences. This patch provides a software workaround to this problem by modifying the way events are scheduled onto counters by the kernel. The patch forces cross-thread mutual exclusion between counters in case a corrupting event is measured by one of the hyper-threads. If thread 0, counter 0 is measuring event 0xd0, then nothing can be measured on counter 0, thread 1. If no corrupting event is measured on any hyper-thread, event scheduling proceeds as before. The same example run with the workaround enabled, yield the correct answer: $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 0 r20cc 10,000969126 seconds time elapsed The patch does provide correctness for all non-corrupting events. It does not "repatriate" the leaked counts back to the leaking counter. This is planned for a second patch series. This patch series makes this repatriation more easy by guaranteeing the sibling counter is not measuring any useful event. The patch introduces dynamic constraints for events. That means that events which did not have constraints, i.e., could be measured on any counters, may now be constrained to a subset of the counters depending on what is going on the sibling thread. The algorithm is similar to a cache coherency protocol. We call it XSU in reference to Exclusive, Shared, Unused, the 3 possible states of a PMU counter. As a consequence of the workaround, users may see an increased amount of event multiplexing, even in situtations where there are fewer events than counters measured on a CPU. Patch has been tested on all three impacted processors. Note that when HT is off, there is no corruption. However, the workaround is still enabled, yet not costing too much. Adding a dynamic detection of HT on turned out to be complex are requiring too much to code to be justified. This patch addresses the issue when PEBS is not used. A subsequent patch fixes the problem when PEBS is used. Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> [spinlock_t -> raw_spinlock_t] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Cc: bp@alien8.de Cc: jolsa@redhat.com Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1416251225-17721-7-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-18 03:06:58 +08:00
}
static struct event_constraint *
intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
struct perf_event *event)
{
struct event_constraint *c1, *c2;
perf/x86/intel: Implement cross-HT corruption bug workaround This patch implements a software workaround for a HW erratum on Intel SandyBridge, IvyBridge and Haswell processors with Hyperthreading enabled. The errata are documented for each processor in their respective specification update documents: - SandyBridge: BJ122 - IvyBridge: BV98 - Haswell: HSD29 The bug causes silent counter corruption across hyperthreads only when measuring certain memory events (0xd0, 0xd1, 0xd2, 0xd3). Counters measuring those events may leak counts to the sibling counter. For instance, counter 0, thread 0 measuring event 0xd0, may leak to counter 0, thread 1, regardless of the event measured there. The size of the leak is not predictible. It all depends on the workload and the state of each sibling hyper-thread. The corrupting events do undercount as a consequence of the leak. The leak is compensated automatically only when the sibling counter measures the exact same corrupting event AND the workload is on the two threads is the same. Given, there is no way to guarantee this, a work-around is necessary. Furthermore, there is a serious problem if the leaked count is added to a low-occurrence event. In that case the corruption on the low occurrence event can be very large, e.g., orders of magnitude. There is no HW or FW workaround for this problem. The bug is very easy to reproduce on a loaded system. Here is an example on a Haswell client, where CPU0, CPU4 are siblings. We load the CPUs with a simple triad app streaming large floating-point vector. We use 0x81d0 corrupting event (MEM_UOPS_RETIRED:ALL_LOADS) and 0x20cc (ROB_MISC_EVENTS:LBR_INSERTS). Given we are not using the LBR, the 0x20cc event should be zero. $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 139 277 291 r20cc 10,000969126 seconds time elapsed In this example, 0x81d0 and r20cc ar eusing sinling counters on CPU0 and CPU4. 0x81d0 leaks into 0x20cc and corrupts it from 0 to 139 millions occurrences. This patch provides a software workaround to this problem by modifying the way events are scheduled onto counters by the kernel. The patch forces cross-thread mutual exclusion between counters in case a corrupting event is measured by one of the hyper-threads. If thread 0, counter 0 is measuring event 0xd0, then nothing can be measured on counter 0, thread 1. If no corrupting event is measured on any hyper-thread, event scheduling proceeds as before. The same example run with the workaround enabled, yield the correct answer: $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 0 r20cc 10,000969126 seconds time elapsed The patch does provide correctness for all non-corrupting events. It does not "repatriate" the leaked counts back to the leaking counter. This is planned for a second patch series. This patch series makes this repatriation more easy by guaranteeing the sibling counter is not measuring any useful event. The patch introduces dynamic constraints for events. That means that events which did not have constraints, i.e., could be measured on any counters, may now be constrained to a subset of the counters depending on what is going on the sibling thread. The algorithm is similar to a cache coherency protocol. We call it XSU in reference to Exclusive, Shared, Unused, the 3 possible states of a PMU counter. As a consequence of the workaround, users may see an increased amount of event multiplexing, even in situtations where there are fewer events than counters measured on a CPU. Patch has been tested on all three impacted processors. Note that when HT is off, there is no corruption. However, the workaround is still enabled, yet not costing too much. Adding a dynamic detection of HT on turned out to be complex are requiring too much to code to be justified. This patch addresses the issue when PEBS is not used. A subsequent patch fixes the problem when PEBS is used. Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> [spinlock_t -> raw_spinlock_t] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Cc: bp@alien8.de Cc: jolsa@redhat.com Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1416251225-17721-7-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-18 03:06:58 +08:00
c1 = cpuc->event_constraint[idx];
perf/x86/intel: Implement cross-HT corruption bug workaround This patch implements a software workaround for a HW erratum on Intel SandyBridge, IvyBridge and Haswell processors with Hyperthreading enabled. The errata are documented for each processor in their respective specification update documents: - SandyBridge: BJ122 - IvyBridge: BV98 - Haswell: HSD29 The bug causes silent counter corruption across hyperthreads only when measuring certain memory events (0xd0, 0xd1, 0xd2, 0xd3). Counters measuring those events may leak counts to the sibling counter. For instance, counter 0, thread 0 measuring event 0xd0, may leak to counter 0, thread 1, regardless of the event measured there. The size of the leak is not predictible. It all depends on the workload and the state of each sibling hyper-thread. The corrupting events do undercount as a consequence of the leak. The leak is compensated automatically only when the sibling counter measures the exact same corrupting event AND the workload is on the two threads is the same. Given, there is no way to guarantee this, a work-around is necessary. Furthermore, there is a serious problem if the leaked count is added to a low-occurrence event. In that case the corruption on the low occurrence event can be very large, e.g., orders of magnitude. There is no HW or FW workaround for this problem. The bug is very easy to reproduce on a loaded system. Here is an example on a Haswell client, where CPU0, CPU4 are siblings. We load the CPUs with a simple triad app streaming large floating-point vector. We use 0x81d0 corrupting event (MEM_UOPS_RETIRED:ALL_LOADS) and 0x20cc (ROB_MISC_EVENTS:LBR_INSERTS). Given we are not using the LBR, the 0x20cc event should be zero. $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 139 277 291 r20cc 10,000969126 seconds time elapsed In this example, 0x81d0 and r20cc ar eusing sinling counters on CPU0 and CPU4. 0x81d0 leaks into 0x20cc and corrupts it from 0 to 139 millions occurrences. This patch provides a software workaround to this problem by modifying the way events are scheduled onto counters by the kernel. The patch forces cross-thread mutual exclusion between counters in case a corrupting event is measured by one of the hyper-threads. If thread 0, counter 0 is measuring event 0xd0, then nothing can be measured on counter 0, thread 1. If no corrupting event is measured on any hyper-thread, event scheduling proceeds as before. The same example run with the workaround enabled, yield the correct answer: $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 0 r20cc 10,000969126 seconds time elapsed The patch does provide correctness for all non-corrupting events. It does not "repatriate" the leaked counts back to the leaking counter. This is planned for a second patch series. This patch series makes this repatriation more easy by guaranteeing the sibling counter is not measuring any useful event. The patch introduces dynamic constraints for events. That means that events which did not have constraints, i.e., could be measured on any counters, may now be constrained to a subset of the counters depending on what is going on the sibling thread. The algorithm is similar to a cache coherency protocol. We call it XSU in reference to Exclusive, Shared, Unused, the 3 possible states of a PMU counter. As a consequence of the workaround, users may see an increased amount of event multiplexing, even in situtations where there are fewer events than counters measured on a CPU. Patch has been tested on all three impacted processors. Note that when HT is off, there is no corruption. However, the workaround is still enabled, yet not costing too much. Adding a dynamic detection of HT on turned out to be complex are requiring too much to code to be justified. This patch addresses the issue when PEBS is not used. A subsequent patch fixes the problem when PEBS is used. Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> [spinlock_t -> raw_spinlock_t] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Cc: bp@alien8.de Cc: jolsa@redhat.com Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1416251225-17721-7-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-18 03:06:58 +08:00
/*
* first time only
* - static constraint: no change across incremental scheduling calls
* - dynamic constraint: handled by intel_get_excl_constraints()
*/
c2 = __intel_get_event_constraints(cpuc, idx, event);
if (c1) {
WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
c1->weight = c2->weight;
c2 = c1;
}
perf/x86/intel: Implement cross-HT corruption bug workaround This patch implements a software workaround for a HW erratum on Intel SandyBridge, IvyBridge and Haswell processors with Hyperthreading enabled. The errata are documented for each processor in their respective specification update documents: - SandyBridge: BJ122 - IvyBridge: BV98 - Haswell: HSD29 The bug causes silent counter corruption across hyperthreads only when measuring certain memory events (0xd0, 0xd1, 0xd2, 0xd3). Counters measuring those events may leak counts to the sibling counter. For instance, counter 0, thread 0 measuring event 0xd0, may leak to counter 0, thread 1, regardless of the event measured there. The size of the leak is not predictible. It all depends on the workload and the state of each sibling hyper-thread. The corrupting events do undercount as a consequence of the leak. The leak is compensated automatically only when the sibling counter measures the exact same corrupting event AND the workload is on the two threads is the same. Given, there is no way to guarantee this, a work-around is necessary. Furthermore, there is a serious problem if the leaked count is added to a low-occurrence event. In that case the corruption on the low occurrence event can be very large, e.g., orders of magnitude. There is no HW or FW workaround for this problem. The bug is very easy to reproduce on a loaded system. Here is an example on a Haswell client, where CPU0, CPU4 are siblings. We load the CPUs with a simple triad app streaming large floating-point vector. We use 0x81d0 corrupting event (MEM_UOPS_RETIRED:ALL_LOADS) and 0x20cc (ROB_MISC_EVENTS:LBR_INSERTS). Given we are not using the LBR, the 0x20cc event should be zero. $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 139 277 291 r20cc 10,000969126 seconds time elapsed In this example, 0x81d0 and r20cc ar eusing sinling counters on CPU0 and CPU4. 0x81d0 leaks into 0x20cc and corrupts it from 0 to 139 millions occurrences. This patch provides a software workaround to this problem by modifying the way events are scheduled onto counters by the kernel. The patch forces cross-thread mutual exclusion between counters in case a corrupting event is measured by one of the hyper-threads. If thread 0, counter 0 is measuring event 0xd0, then nothing can be measured on counter 0, thread 1. If no corrupting event is measured on any hyper-thread, event scheduling proceeds as before. The same example run with the workaround enabled, yield the correct answer: $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 0 r20cc 10,000969126 seconds time elapsed The patch does provide correctness for all non-corrupting events. It does not "repatriate" the leaked counts back to the leaking counter. This is planned for a second patch series. This patch series makes this repatriation more easy by guaranteeing the sibling counter is not measuring any useful event. The patch introduces dynamic constraints for events. That means that events which did not have constraints, i.e., could be measured on any counters, may now be constrained to a subset of the counters depending on what is going on the sibling thread. The algorithm is similar to a cache coherency protocol. We call it XSU in reference to Exclusive, Shared, Unused, the 3 possible states of a PMU counter. As a consequence of the workaround, users may see an increased amount of event multiplexing, even in situtations where there are fewer events than counters measured on a CPU. Patch has been tested on all three impacted processors. Note that when HT is off, there is no corruption. However, the workaround is still enabled, yet not costing too much. Adding a dynamic detection of HT on turned out to be complex are requiring too much to code to be justified. This patch addresses the issue when PEBS is not used. A subsequent patch fixes the problem when PEBS is used. Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> [spinlock_t -> raw_spinlock_t] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Cc: bp@alien8.de Cc: jolsa@redhat.com Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1416251225-17721-7-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-18 03:06:58 +08:00
if (cpuc->excl_cntrs)
return intel_get_excl_constraints(cpuc, event, idx, c2);
perf/x86/intel: Implement cross-HT corruption bug workaround This patch implements a software workaround for a HW erratum on Intel SandyBridge, IvyBridge and Haswell processors with Hyperthreading enabled. The errata are documented for each processor in their respective specification update documents: - SandyBridge: BJ122 - IvyBridge: BV98 - Haswell: HSD29 The bug causes silent counter corruption across hyperthreads only when measuring certain memory events (0xd0, 0xd1, 0xd2, 0xd3). Counters measuring those events may leak counts to the sibling counter. For instance, counter 0, thread 0 measuring event 0xd0, may leak to counter 0, thread 1, regardless of the event measured there. The size of the leak is not predictible. It all depends on the workload and the state of each sibling hyper-thread. The corrupting events do undercount as a consequence of the leak. The leak is compensated automatically only when the sibling counter measures the exact same corrupting event AND the workload is on the two threads is the same. Given, there is no way to guarantee this, a work-around is necessary. Furthermore, there is a serious problem if the leaked count is added to a low-occurrence event. In that case the corruption on the low occurrence event can be very large, e.g., orders of magnitude. There is no HW or FW workaround for this problem. The bug is very easy to reproduce on a loaded system. Here is an example on a Haswell client, where CPU0, CPU4 are siblings. We load the CPUs with a simple triad app streaming large floating-point vector. We use 0x81d0 corrupting event (MEM_UOPS_RETIRED:ALL_LOADS) and 0x20cc (ROB_MISC_EVENTS:LBR_INSERTS). Given we are not using the LBR, the 0x20cc event should be zero. $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 139 277 291 r20cc 10,000969126 seconds time elapsed In this example, 0x81d0 and r20cc ar eusing sinling counters on CPU0 and CPU4. 0x81d0 leaks into 0x20cc and corrupts it from 0 to 139 millions occurrences. This patch provides a software workaround to this problem by modifying the way events are scheduled onto counters by the kernel. The patch forces cross-thread mutual exclusion between counters in case a corrupting event is measured by one of the hyper-threads. If thread 0, counter 0 is measuring event 0xd0, then nothing can be measured on counter 0, thread 1. If no corrupting event is measured on any hyper-thread, event scheduling proceeds as before. The same example run with the workaround enabled, yield the correct answer: $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 0 r20cc 10,000969126 seconds time elapsed The patch does provide correctness for all non-corrupting events. It does not "repatriate" the leaked counts back to the leaking counter. This is planned for a second patch series. This patch series makes this repatriation more easy by guaranteeing the sibling counter is not measuring any useful event. The patch introduces dynamic constraints for events. That means that events which did not have constraints, i.e., could be measured on any counters, may now be constrained to a subset of the counters depending on what is going on the sibling thread. The algorithm is similar to a cache coherency protocol. We call it XSU in reference to Exclusive, Shared, Unused, the 3 possible states of a PMU counter. As a consequence of the workaround, users may see an increased amount of event multiplexing, even in situtations where there are fewer events than counters measured on a CPU. Patch has been tested on all three impacted processors. Note that when HT is off, there is no corruption. However, the workaround is still enabled, yet not costing too much. Adding a dynamic detection of HT on turned out to be complex are requiring too much to code to be justified. This patch addresses the issue when PEBS is not used. A subsequent patch fixes the problem when PEBS is used. Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> [spinlock_t -> raw_spinlock_t] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Cc: bp@alien8.de Cc: jolsa@redhat.com Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1416251225-17721-7-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-18 03:06:58 +08:00
return c2;
perf/x86/intel: Implement cross-HT corruption bug workaround This patch implements a software workaround for a HW erratum on Intel SandyBridge, IvyBridge and Haswell processors with Hyperthreading enabled. The errata are documented for each processor in their respective specification update documents: - SandyBridge: BJ122 - IvyBridge: BV98 - Haswell: HSD29 The bug causes silent counter corruption across hyperthreads only when measuring certain memory events (0xd0, 0xd1, 0xd2, 0xd3). Counters measuring those events may leak counts to the sibling counter. For instance, counter 0, thread 0 measuring event 0xd0, may leak to counter 0, thread 1, regardless of the event measured there. The size of the leak is not predictible. It all depends on the workload and the state of each sibling hyper-thread. The corrupting events do undercount as a consequence of the leak. The leak is compensated automatically only when the sibling counter measures the exact same corrupting event AND the workload is on the two threads is the same. Given, there is no way to guarantee this, a work-around is necessary. Furthermore, there is a serious problem if the leaked count is added to a low-occurrence event. In that case the corruption on the low occurrence event can be very large, e.g., orders of magnitude. There is no HW or FW workaround for this problem. The bug is very easy to reproduce on a loaded system. Here is an example on a Haswell client, where CPU0, CPU4 are siblings. We load the CPUs with a simple triad app streaming large floating-point vector. We use 0x81d0 corrupting event (MEM_UOPS_RETIRED:ALL_LOADS) and 0x20cc (ROB_MISC_EVENTS:LBR_INSERTS). Given we are not using the LBR, the 0x20cc event should be zero. $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 139 277 291 r20cc 10,000969126 seconds time elapsed In this example, 0x81d0 and r20cc ar eusing sinling counters on CPU0 and CPU4. 0x81d0 leaks into 0x20cc and corrupts it from 0 to 139 millions occurrences. This patch provides a software workaround to this problem by modifying the way events are scheduled onto counters by the kernel. The patch forces cross-thread mutual exclusion between counters in case a corrupting event is measured by one of the hyper-threads. If thread 0, counter 0 is measuring event 0xd0, then nothing can be measured on counter 0, thread 1. If no corrupting event is measured on any hyper-thread, event scheduling proceeds as before. The same example run with the workaround enabled, yield the correct answer: $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 0 r20cc 10,000969126 seconds time elapsed The patch does provide correctness for all non-corrupting events. It does not "repatriate" the leaked counts back to the leaking counter. This is planned for a second patch series. This patch series makes this repatriation more easy by guaranteeing the sibling counter is not measuring any useful event. The patch introduces dynamic constraints for events. That means that events which did not have constraints, i.e., could be measured on any counters, may now be constrained to a subset of the counters depending on what is going on the sibling thread. The algorithm is similar to a cache coherency protocol. We call it XSU in reference to Exclusive, Shared, Unused, the 3 possible states of a PMU counter. As a consequence of the workaround, users may see an increased amount of event multiplexing, even in situtations where there are fewer events than counters measured on a CPU. Patch has been tested on all three impacted processors. Note that when HT is off, there is no corruption. However, the workaround is still enabled, yet not costing too much. Adding a dynamic detection of HT on turned out to be complex are requiring too much to code to be justified. This patch addresses the issue when PEBS is not used. A subsequent patch fixes the problem when PEBS is used. Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> [spinlock_t -> raw_spinlock_t] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Cc: bp@alien8.de Cc: jolsa@redhat.com Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1416251225-17721-7-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-18 03:06:58 +08:00
}
static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
int tid = cpuc->excl_thread_id;
struct intel_excl_states *xl;
perf/x86/intel: Implement cross-HT corruption bug workaround This patch implements a software workaround for a HW erratum on Intel SandyBridge, IvyBridge and Haswell processors with Hyperthreading enabled. The errata are documented for each processor in their respective specification update documents: - SandyBridge: BJ122 - IvyBridge: BV98 - Haswell: HSD29 The bug causes silent counter corruption across hyperthreads only when measuring certain memory events (0xd0, 0xd1, 0xd2, 0xd3). Counters measuring those events may leak counts to the sibling counter. For instance, counter 0, thread 0 measuring event 0xd0, may leak to counter 0, thread 1, regardless of the event measured there. The size of the leak is not predictible. It all depends on the workload and the state of each sibling hyper-thread. The corrupting events do undercount as a consequence of the leak. The leak is compensated automatically only when the sibling counter measures the exact same corrupting event AND the workload is on the two threads is the same. Given, there is no way to guarantee this, a work-around is necessary. Furthermore, there is a serious problem if the leaked count is added to a low-occurrence event. In that case the corruption on the low occurrence event can be very large, e.g., orders of magnitude. There is no HW or FW workaround for this problem. The bug is very easy to reproduce on a loaded system. Here is an example on a Haswell client, where CPU0, CPU4 are siblings. We load the CPUs with a simple triad app streaming large floating-point vector. We use 0x81d0 corrupting event (MEM_UOPS_RETIRED:ALL_LOADS) and 0x20cc (ROB_MISC_EVENTS:LBR_INSERTS). Given we are not using the LBR, the 0x20cc event should be zero. $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 139 277 291 r20cc 10,000969126 seconds time elapsed In this example, 0x81d0 and r20cc ar eusing sinling counters on CPU0 and CPU4. 0x81d0 leaks into 0x20cc and corrupts it from 0 to 139 millions occurrences. This patch provides a software workaround to this problem by modifying the way events are scheduled onto counters by the kernel. The patch forces cross-thread mutual exclusion between counters in case a corrupting event is measured by one of the hyper-threads. If thread 0, counter 0 is measuring event 0xd0, then nothing can be measured on counter 0, thread 1. If no corrupting event is measured on any hyper-thread, event scheduling proceeds as before. The same example run with the workaround enabled, yield the correct answer: $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 0 r20cc 10,000969126 seconds time elapsed The patch does provide correctness for all non-corrupting events. It does not "repatriate" the leaked counts back to the leaking counter. This is planned for a second patch series. This patch series makes this repatriation more easy by guaranteeing the sibling counter is not measuring any useful event. The patch introduces dynamic constraints for events. That means that events which did not have constraints, i.e., could be measured on any counters, may now be constrained to a subset of the counters depending on what is going on the sibling thread. The algorithm is similar to a cache coherency protocol. We call it XSU in reference to Exclusive, Shared, Unused, the 3 possible states of a PMU counter. As a consequence of the workaround, users may see an increased amount of event multiplexing, even in situtations where there are fewer events than counters measured on a CPU. Patch has been tested on all three impacted processors. Note that when HT is off, there is no corruption. However, the workaround is still enabled, yet not costing too much. Adding a dynamic detection of HT on turned out to be complex are requiring too much to code to be justified. This patch addresses the issue when PEBS is not used. A subsequent patch fixes the problem when PEBS is used. Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> [spinlock_t -> raw_spinlock_t] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Cc: bp@alien8.de Cc: jolsa@redhat.com Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1416251225-17721-7-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-18 03:06:58 +08:00
/*
* nothing needed if in group validation mode
*/
if (cpuc->is_fake)
return;
if (WARN_ON_ONCE(!excl_cntrs))
perf/x86/intel: Implement cross-HT corruption bug workaround This patch implements a software workaround for a HW erratum on Intel SandyBridge, IvyBridge and Haswell processors with Hyperthreading enabled. The errata are documented for each processor in their respective specification update documents: - SandyBridge: BJ122 - IvyBridge: BV98 - Haswell: HSD29 The bug causes silent counter corruption across hyperthreads only when measuring certain memory events (0xd0, 0xd1, 0xd2, 0xd3). Counters measuring those events may leak counts to the sibling counter. For instance, counter 0, thread 0 measuring event 0xd0, may leak to counter 0, thread 1, regardless of the event measured there. The size of the leak is not predictible. It all depends on the workload and the state of each sibling hyper-thread. The corrupting events do undercount as a consequence of the leak. The leak is compensated automatically only when the sibling counter measures the exact same corrupting event AND the workload is on the two threads is the same. Given, there is no way to guarantee this, a work-around is necessary. Furthermore, there is a serious problem if the leaked count is added to a low-occurrence event. In that case the corruption on the low occurrence event can be very large, e.g., orders of magnitude. There is no HW or FW workaround for this problem. The bug is very easy to reproduce on a loaded system. Here is an example on a Haswell client, where CPU0, CPU4 are siblings. We load the CPUs with a simple triad app streaming large floating-point vector. We use 0x81d0 corrupting event (MEM_UOPS_RETIRED:ALL_LOADS) and 0x20cc (ROB_MISC_EVENTS:LBR_INSERTS). Given we are not using the LBR, the 0x20cc event should be zero. $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 139 277 291 r20cc 10,000969126 seconds time elapsed In this example, 0x81d0 and r20cc ar eusing sinling counters on CPU0 and CPU4. 0x81d0 leaks into 0x20cc and corrupts it from 0 to 139 millions occurrences. This patch provides a software workaround to this problem by modifying the way events are scheduled onto counters by the kernel. The patch forces cross-thread mutual exclusion between counters in case a corrupting event is measured by one of the hyper-threads. If thread 0, counter 0 is measuring event 0xd0, then nothing can be measured on counter 0, thread 1. If no corrupting event is measured on any hyper-thread, event scheduling proceeds as before. The same example run with the workaround enabled, yield the correct answer: $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 0 r20cc 10,000969126 seconds time elapsed The patch does provide correctness for all non-corrupting events. It does not "repatriate" the leaked counts back to the leaking counter. This is planned for a second patch series. This patch series makes this repatriation more easy by guaranteeing the sibling counter is not measuring any useful event. The patch introduces dynamic constraints for events. That means that events which did not have constraints, i.e., could be measured on any counters, may now be constrained to a subset of the counters depending on what is going on the sibling thread. The algorithm is similar to a cache coherency protocol. We call it XSU in reference to Exclusive, Shared, Unused, the 3 possible states of a PMU counter. As a consequence of the workaround, users may see an increased amount of event multiplexing, even in situtations where there are fewer events than counters measured on a CPU. Patch has been tested on all three impacted processors. Note that when HT is off, there is no corruption. However, the workaround is still enabled, yet not costing too much. Adding a dynamic detection of HT on turned out to be complex are requiring too much to code to be justified. This patch addresses the issue when PEBS is not used. A subsequent patch fixes the problem when PEBS is used. Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> [spinlock_t -> raw_spinlock_t] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Cc: bp@alien8.de Cc: jolsa@redhat.com Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1416251225-17721-7-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-18 03:06:58 +08:00
return;
if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
if (!--cpuc->n_excl)
WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
}
perf/x86/intel: Implement cross-HT corruption bug workaround This patch implements a software workaround for a HW erratum on Intel SandyBridge, IvyBridge and Haswell processors with Hyperthreading enabled. The errata are documented for each processor in their respective specification update documents: - SandyBridge: BJ122 - IvyBridge: BV98 - Haswell: HSD29 The bug causes silent counter corruption across hyperthreads only when measuring certain memory events (0xd0, 0xd1, 0xd2, 0xd3). Counters measuring those events may leak counts to the sibling counter. For instance, counter 0, thread 0 measuring event 0xd0, may leak to counter 0, thread 1, regardless of the event measured there. The size of the leak is not predictible. It all depends on the workload and the state of each sibling hyper-thread. The corrupting events do undercount as a consequence of the leak. The leak is compensated automatically only when the sibling counter measures the exact same corrupting event AND the workload is on the two threads is the same. Given, there is no way to guarantee this, a work-around is necessary. Furthermore, there is a serious problem if the leaked count is added to a low-occurrence event. In that case the corruption on the low occurrence event can be very large, e.g., orders of magnitude. There is no HW or FW workaround for this problem. The bug is very easy to reproduce on a loaded system. Here is an example on a Haswell client, where CPU0, CPU4 are siblings. We load the CPUs with a simple triad app streaming large floating-point vector. We use 0x81d0 corrupting event (MEM_UOPS_RETIRED:ALL_LOADS) and 0x20cc (ROB_MISC_EVENTS:LBR_INSERTS). Given we are not using the LBR, the 0x20cc event should be zero. $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 139 277 291 r20cc 10,000969126 seconds time elapsed In this example, 0x81d0 and r20cc ar eusing sinling counters on CPU0 and CPU4. 0x81d0 leaks into 0x20cc and corrupts it from 0 to 139 millions occurrences. This patch provides a software workaround to this problem by modifying the way events are scheduled onto counters by the kernel. The patch forces cross-thread mutual exclusion between counters in case a corrupting event is measured by one of the hyper-threads. If thread 0, counter 0 is measuring event 0xd0, then nothing can be measured on counter 0, thread 1. If no corrupting event is measured on any hyper-thread, event scheduling proceeds as before. The same example run with the workaround enabled, yield the correct answer: $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 0 r20cc 10,000969126 seconds time elapsed The patch does provide correctness for all non-corrupting events. It does not "repatriate" the leaked counts back to the leaking counter. This is planned for a second patch series. This patch series makes this repatriation more easy by guaranteeing the sibling counter is not measuring any useful event. The patch introduces dynamic constraints for events. That means that events which did not have constraints, i.e., could be measured on any counters, may now be constrained to a subset of the counters depending on what is going on the sibling thread. The algorithm is similar to a cache coherency protocol. We call it XSU in reference to Exclusive, Shared, Unused, the 3 possible states of a PMU counter. As a consequence of the workaround, users may see an increased amount of event multiplexing, even in situtations where there are fewer events than counters measured on a CPU. Patch has been tested on all three impacted processors. Note that when HT is off, there is no corruption. However, the workaround is still enabled, yet not costing too much. Adding a dynamic detection of HT on turned out to be complex are requiring too much to code to be justified. This patch addresses the issue when PEBS is not used. A subsequent patch fixes the problem when PEBS is used. Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> [spinlock_t -> raw_spinlock_t] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Cc: bp@alien8.de Cc: jolsa@redhat.com Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1416251225-17721-7-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-18 03:06:58 +08:00
/*
* If event was actually assigned, then mark the counter state as
* unused now.
perf/x86/intel: Implement cross-HT corruption bug workaround This patch implements a software workaround for a HW erratum on Intel SandyBridge, IvyBridge and Haswell processors with Hyperthreading enabled. The errata are documented for each processor in their respective specification update documents: - SandyBridge: BJ122 - IvyBridge: BV98 - Haswell: HSD29 The bug causes silent counter corruption across hyperthreads only when measuring certain memory events (0xd0, 0xd1, 0xd2, 0xd3). Counters measuring those events may leak counts to the sibling counter. For instance, counter 0, thread 0 measuring event 0xd0, may leak to counter 0, thread 1, regardless of the event measured there. The size of the leak is not predictible. It all depends on the workload and the state of each sibling hyper-thread. The corrupting events do undercount as a consequence of the leak. The leak is compensated automatically only when the sibling counter measures the exact same corrupting event AND the workload is on the two threads is the same. Given, there is no way to guarantee this, a work-around is necessary. Furthermore, there is a serious problem if the leaked count is added to a low-occurrence event. In that case the corruption on the low occurrence event can be very large, e.g., orders of magnitude. There is no HW or FW workaround for this problem. The bug is very easy to reproduce on a loaded system. Here is an example on a Haswell client, where CPU0, CPU4 are siblings. We load the CPUs with a simple triad app streaming large floating-point vector. We use 0x81d0 corrupting event (MEM_UOPS_RETIRED:ALL_LOADS) and 0x20cc (ROB_MISC_EVENTS:LBR_INSERTS). Given we are not using the LBR, the 0x20cc event should be zero. $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 139 277 291 r20cc 10,000969126 seconds time elapsed In this example, 0x81d0 and r20cc ar eusing sinling counters on CPU0 and CPU4. 0x81d0 leaks into 0x20cc and corrupts it from 0 to 139 millions occurrences. This patch provides a software workaround to this problem by modifying the way events are scheduled onto counters by the kernel. The patch forces cross-thread mutual exclusion between counters in case a corrupting event is measured by one of the hyper-threads. If thread 0, counter 0 is measuring event 0xd0, then nothing can be measured on counter 0, thread 1. If no corrupting event is measured on any hyper-thread, event scheduling proceeds as before. The same example run with the workaround enabled, yield the correct answer: $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 0 r20cc 10,000969126 seconds time elapsed The patch does provide correctness for all non-corrupting events. It does not "repatriate" the leaked counts back to the leaking counter. This is planned for a second patch series. This patch series makes this repatriation more easy by guaranteeing the sibling counter is not measuring any useful event. The patch introduces dynamic constraints for events. That means that events which did not have constraints, i.e., could be measured on any counters, may now be constrained to a subset of the counters depending on what is going on the sibling thread. The algorithm is similar to a cache coherency protocol. We call it XSU in reference to Exclusive, Shared, Unused, the 3 possible states of a PMU counter. As a consequence of the workaround, users may see an increased amount of event multiplexing, even in situtations where there are fewer events than counters measured on a CPU. Patch has been tested on all three impacted processors. Note that when HT is off, there is no corruption. However, the workaround is still enabled, yet not costing too much. Adding a dynamic detection of HT on turned out to be complex are requiring too much to code to be justified. This patch addresses the issue when PEBS is not used. A subsequent patch fixes the problem when PEBS is used. Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> [spinlock_t -> raw_spinlock_t] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Cc: bp@alien8.de Cc: jolsa@redhat.com Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1416251225-17721-7-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-18 03:06:58 +08:00
*/
if (hwc->idx >= 0) {
xl = &excl_cntrs->states[tid];
/*
* put_constraint may be called from x86_schedule_events()
* which already has the lock held so here make locking
* conditional.
*/
if (!xl->sched_started)
raw_spin_lock(&excl_cntrs->lock);
perf/x86/intel: Implement cross-HT corruption bug workaround This patch implements a software workaround for a HW erratum on Intel SandyBridge, IvyBridge and Haswell processors with Hyperthreading enabled. The errata are documented for each processor in their respective specification update documents: - SandyBridge: BJ122 - IvyBridge: BV98 - Haswell: HSD29 The bug causes silent counter corruption across hyperthreads only when measuring certain memory events (0xd0, 0xd1, 0xd2, 0xd3). Counters measuring those events may leak counts to the sibling counter. For instance, counter 0, thread 0 measuring event 0xd0, may leak to counter 0, thread 1, regardless of the event measured there. The size of the leak is not predictible. It all depends on the workload and the state of each sibling hyper-thread. The corrupting events do undercount as a consequence of the leak. The leak is compensated automatically only when the sibling counter measures the exact same corrupting event AND the workload is on the two threads is the same. Given, there is no way to guarantee this, a work-around is necessary. Furthermore, there is a serious problem if the leaked count is added to a low-occurrence event. In that case the corruption on the low occurrence event can be very large, e.g., orders of magnitude. There is no HW or FW workaround for this problem. The bug is very easy to reproduce on a loaded system. Here is an example on a Haswell client, where CPU0, CPU4 are siblings. We load the CPUs with a simple triad app streaming large floating-point vector. We use 0x81d0 corrupting event (MEM_UOPS_RETIRED:ALL_LOADS) and 0x20cc (ROB_MISC_EVENTS:LBR_INSERTS). Given we are not using the LBR, the 0x20cc event should be zero. $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 139 277 291 r20cc 10,000969126 seconds time elapsed In this example, 0x81d0 and r20cc ar eusing sinling counters on CPU0 and CPU4. 0x81d0 leaks into 0x20cc and corrupts it from 0 to 139 millions occurrences. This patch provides a software workaround to this problem by modifying the way events are scheduled onto counters by the kernel. The patch forces cross-thread mutual exclusion between counters in case a corrupting event is measured by one of the hyper-threads. If thread 0, counter 0 is measuring event 0xd0, then nothing can be measured on counter 0, thread 1. If no corrupting event is measured on any hyper-thread, event scheduling proceeds as before. The same example run with the workaround enabled, yield the correct answer: $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 0 r20cc 10,000969126 seconds time elapsed The patch does provide correctness for all non-corrupting events. It does not "repatriate" the leaked counts back to the leaking counter. This is planned for a second patch series. This patch series makes this repatriation more easy by guaranteeing the sibling counter is not measuring any useful event. The patch introduces dynamic constraints for events. That means that events which did not have constraints, i.e., could be measured on any counters, may now be constrained to a subset of the counters depending on what is going on the sibling thread. The algorithm is similar to a cache coherency protocol. We call it XSU in reference to Exclusive, Shared, Unused, the 3 possible states of a PMU counter. As a consequence of the workaround, users may see an increased amount of event multiplexing, even in situtations where there are fewer events than counters measured on a CPU. Patch has been tested on all three impacted processors. Note that when HT is off, there is no corruption. However, the workaround is still enabled, yet not costing too much. Adding a dynamic detection of HT on turned out to be complex are requiring too much to code to be justified. This patch addresses the issue when PEBS is not used. A subsequent patch fixes the problem when PEBS is used. Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> [spinlock_t -> raw_spinlock_t] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Cc: bp@alien8.de Cc: jolsa@redhat.com Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1416251225-17721-7-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-18 03:06:58 +08:00
xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
perf/x86/intel: Implement cross-HT corruption bug workaround This patch implements a software workaround for a HW erratum on Intel SandyBridge, IvyBridge and Haswell processors with Hyperthreading enabled. The errata are documented for each processor in their respective specification update documents: - SandyBridge: BJ122 - IvyBridge: BV98 - Haswell: HSD29 The bug causes silent counter corruption across hyperthreads only when measuring certain memory events (0xd0, 0xd1, 0xd2, 0xd3). Counters measuring those events may leak counts to the sibling counter. For instance, counter 0, thread 0 measuring event 0xd0, may leak to counter 0, thread 1, regardless of the event measured there. The size of the leak is not predictible. It all depends on the workload and the state of each sibling hyper-thread. The corrupting events do undercount as a consequence of the leak. The leak is compensated automatically only when the sibling counter measures the exact same corrupting event AND the workload is on the two threads is the same. Given, there is no way to guarantee this, a work-around is necessary. Furthermore, there is a serious problem if the leaked count is added to a low-occurrence event. In that case the corruption on the low occurrence event can be very large, e.g., orders of magnitude. There is no HW or FW workaround for this problem. The bug is very easy to reproduce on a loaded system. Here is an example on a Haswell client, where CPU0, CPU4 are siblings. We load the CPUs with a simple triad app streaming large floating-point vector. We use 0x81d0 corrupting event (MEM_UOPS_RETIRED:ALL_LOADS) and 0x20cc (ROB_MISC_EVENTS:LBR_INSERTS). Given we are not using the LBR, the 0x20cc event should be zero. $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 139 277 291 r20cc 10,000969126 seconds time elapsed In this example, 0x81d0 and r20cc ar eusing sinling counters on CPU0 and CPU4. 0x81d0 leaks into 0x20cc and corrupts it from 0 to 139 millions occurrences. This patch provides a software workaround to this problem by modifying the way events are scheduled onto counters by the kernel. The patch forces cross-thread mutual exclusion between counters in case a corrupting event is measured by one of the hyper-threads. If thread 0, counter 0 is measuring event 0xd0, then nothing can be measured on counter 0, thread 1. If no corrupting event is measured on any hyper-thread, event scheduling proceeds as before. The same example run with the workaround enabled, yield the correct answer: $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 0 r20cc 10,000969126 seconds time elapsed The patch does provide correctness for all non-corrupting events. It does not "repatriate" the leaked counts back to the leaking counter. This is planned for a second patch series. This patch series makes this repatriation more easy by guaranteeing the sibling counter is not measuring any useful event. The patch introduces dynamic constraints for events. That means that events which did not have constraints, i.e., could be measured on any counters, may now be constrained to a subset of the counters depending on what is going on the sibling thread. The algorithm is similar to a cache coherency protocol. We call it XSU in reference to Exclusive, Shared, Unused, the 3 possible states of a PMU counter. As a consequence of the workaround, users may see an increased amount of event multiplexing, even in situtations where there are fewer events than counters measured on a CPU. Patch has been tested on all three impacted processors. Note that when HT is off, there is no corruption. However, the workaround is still enabled, yet not costing too much. Adding a dynamic detection of HT on turned out to be complex are requiring too much to code to be justified. This patch addresses the issue when PEBS is not used. A subsequent patch fixes the problem when PEBS is used. Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> [spinlock_t -> raw_spinlock_t] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Cc: bp@alien8.de Cc: jolsa@redhat.com Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1416251225-17721-7-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-18 03:06:58 +08:00
if (!xl->sched_started)
raw_spin_unlock(&excl_cntrs->lock);
}
perf/x86/intel: Implement cross-HT corruption bug workaround This patch implements a software workaround for a HW erratum on Intel SandyBridge, IvyBridge and Haswell processors with Hyperthreading enabled. The errata are documented for each processor in their respective specification update documents: - SandyBridge: BJ122 - IvyBridge: BV98 - Haswell: HSD29 The bug causes silent counter corruption across hyperthreads only when measuring certain memory events (0xd0, 0xd1, 0xd2, 0xd3). Counters measuring those events may leak counts to the sibling counter. For instance, counter 0, thread 0 measuring event 0xd0, may leak to counter 0, thread 1, regardless of the event measured there. The size of the leak is not predictible. It all depends on the workload and the state of each sibling hyper-thread. The corrupting events do undercount as a consequence of the leak. The leak is compensated automatically only when the sibling counter measures the exact same corrupting event AND the workload is on the two threads is the same. Given, there is no way to guarantee this, a work-around is necessary. Furthermore, there is a serious problem if the leaked count is added to a low-occurrence event. In that case the corruption on the low occurrence event can be very large, e.g., orders of magnitude. There is no HW or FW workaround for this problem. The bug is very easy to reproduce on a loaded system. Here is an example on a Haswell client, where CPU0, CPU4 are siblings. We load the CPUs with a simple triad app streaming large floating-point vector. We use 0x81d0 corrupting event (MEM_UOPS_RETIRED:ALL_LOADS) and 0x20cc (ROB_MISC_EVENTS:LBR_INSERTS). Given we are not using the LBR, the 0x20cc event should be zero. $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 139 277 291 r20cc 10,000969126 seconds time elapsed In this example, 0x81d0 and r20cc ar eusing sinling counters on CPU0 and CPU4. 0x81d0 leaks into 0x20cc and corrupts it from 0 to 139 millions occurrences. This patch provides a software workaround to this problem by modifying the way events are scheduled onto counters by the kernel. The patch forces cross-thread mutual exclusion between counters in case a corrupting event is measured by one of the hyper-threads. If thread 0, counter 0 is measuring event 0xd0, then nothing can be measured on counter 0, thread 1. If no corrupting event is measured on any hyper-thread, event scheduling proceeds as before. The same example run with the workaround enabled, yield the correct answer: $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 0 r20cc 10,000969126 seconds time elapsed The patch does provide correctness for all non-corrupting events. It does not "repatriate" the leaked counts back to the leaking counter. This is planned for a second patch series. This patch series makes this repatriation more easy by guaranteeing the sibling counter is not measuring any useful event. The patch introduces dynamic constraints for events. That means that events which did not have constraints, i.e., could be measured on any counters, may now be constrained to a subset of the counters depending on what is going on the sibling thread. The algorithm is similar to a cache coherency protocol. We call it XSU in reference to Exclusive, Shared, Unused, the 3 possible states of a PMU counter. As a consequence of the workaround, users may see an increased amount of event multiplexing, even in situtations where there are fewer events than counters measured on a CPU. Patch has been tested on all three impacted processors. Note that when HT is off, there is no corruption. However, the workaround is still enabled, yet not costing too much. Adding a dynamic detection of HT on turned out to be complex are requiring too much to code to be justified. This patch addresses the issue when PEBS is not used. A subsequent patch fixes the problem when PEBS is used. Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> [spinlock_t -> raw_spinlock_t] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Cc: bp@alien8.de Cc: jolsa@redhat.com Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1416251225-17721-7-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-18 03:06:58 +08:00
}
static void
intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
perf: Add support for supplementary event registers Change logs against Andi's original version: - Extends perf_event_attr:config to config{,1,2} (Peter Zijlstra) - Fixed a major event scheduling issue. There cannot be a ref++ on an event that has already done ref++ once and without calling put_constraint() in between. (Stephane Eranian) - Use thread_cpumask for percore allocation. (Lin Ming) - Use MSR names in the extra reg lists. (Lin Ming) - Remove redundant "c = NULL" in intel_percore_constraints - Fix comment of perf_event_attr::config1 Intel Nehalem/Westmere have a special OFFCORE_RESPONSE event that can be used to monitor any offcore accesses from a core. This is a very useful event for various tunings, and it's also needed to implement the generic LLC-* events correctly. Unfortunately this event requires programming a mask in a separate register. And worse this separate register is per core, not per CPU thread. This patch: - Teaches perf_events that OFFCORE_RESPONSE needs extra parameters. The extra parameters are passed by user space in the perf_event_attr::config1 field. - Adds support to the Intel perf_event core to schedule per core resources. This adds fairly generic infrastructure that can be also used for other per core resources. The basic code has is patterned after the similar AMD northbridge constraints code. Thanks to Stephane Eranian who pointed out some problems in the original version and suggested improvements. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1299119690-13991-2-git-send-email-ming.m.lin@intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-03-03 10:34:47 +08:00
struct perf_event *event)
{
struct hw_perf_event_extra *reg;
perf: Add support for supplementary event registers Change logs against Andi's original version: - Extends perf_event_attr:config to config{,1,2} (Peter Zijlstra) - Fixed a major event scheduling issue. There cannot be a ref++ on an event that has already done ref++ once and without calling put_constraint() in between. (Stephane Eranian) - Use thread_cpumask for percore allocation. (Lin Ming) - Use MSR names in the extra reg lists. (Lin Ming) - Remove redundant "c = NULL" in intel_percore_constraints - Fix comment of perf_event_attr::config1 Intel Nehalem/Westmere have a special OFFCORE_RESPONSE event that can be used to monitor any offcore accesses from a core. This is a very useful event for various tunings, and it's also needed to implement the generic LLC-* events correctly. Unfortunately this event requires programming a mask in a separate register. And worse this separate register is per core, not per CPU thread. This patch: - Teaches perf_events that OFFCORE_RESPONSE needs extra parameters. The extra parameters are passed by user space in the perf_event_attr::config1 field. - Adds support to the Intel perf_event core to schedule per core resources. This adds fairly generic infrastructure that can be also used for other per core resources. The basic code has is patterned after the similar AMD northbridge constraints code. Thanks to Stephane Eranian who pointed out some problems in the original version and suggested improvements. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1299119690-13991-2-git-send-email-ming.m.lin@intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-03-03 10:34:47 +08:00
reg = &event->hw.extra_reg;
if (reg->idx != EXTRA_REG_NONE)
__intel_shared_reg_put_constraints(cpuc, reg);
reg = &event->hw.branch_reg;
if (reg->idx != EXTRA_REG_NONE)
__intel_shared_reg_put_constraints(cpuc, reg);
}
perf: Add support for supplementary event registers Change logs against Andi's original version: - Extends perf_event_attr:config to config{,1,2} (Peter Zijlstra) - Fixed a major event scheduling issue. There cannot be a ref++ on an event that has already done ref++ once and without calling put_constraint() in between. (Stephane Eranian) - Use thread_cpumask for percore allocation. (Lin Ming) - Use MSR names in the extra reg lists. (Lin Ming) - Remove redundant "c = NULL" in intel_percore_constraints - Fix comment of perf_event_attr::config1 Intel Nehalem/Westmere have a special OFFCORE_RESPONSE event that can be used to monitor any offcore accesses from a core. This is a very useful event for various tunings, and it's also needed to implement the generic LLC-* events correctly. Unfortunately this event requires programming a mask in a separate register. And worse this separate register is per core, not per CPU thread. This patch: - Teaches perf_events that OFFCORE_RESPONSE needs extra parameters. The extra parameters are passed by user space in the perf_event_attr::config1 field. - Adds support to the Intel perf_event core to schedule per core resources. This adds fairly generic infrastructure that can be also used for other per core resources. The basic code has is patterned after the similar AMD northbridge constraints code. Thanks to Stephane Eranian who pointed out some problems in the original version and suggested improvements. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1299119690-13991-2-git-send-email-ming.m.lin@intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-03-03 10:34:47 +08:00
static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
struct perf_event *event)
{
intel_put_shared_regs_event_constraints(cpuc, event);
perf/x86/intel: Implement cross-HT corruption bug workaround This patch implements a software workaround for a HW erratum on Intel SandyBridge, IvyBridge and Haswell processors with Hyperthreading enabled. The errata are documented for each processor in their respective specification update documents: - SandyBridge: BJ122 - IvyBridge: BV98 - Haswell: HSD29 The bug causes silent counter corruption across hyperthreads only when measuring certain memory events (0xd0, 0xd1, 0xd2, 0xd3). Counters measuring those events may leak counts to the sibling counter. For instance, counter 0, thread 0 measuring event 0xd0, may leak to counter 0, thread 1, regardless of the event measured there. The size of the leak is not predictible. It all depends on the workload and the state of each sibling hyper-thread. The corrupting events do undercount as a consequence of the leak. The leak is compensated automatically only when the sibling counter measures the exact same corrupting event AND the workload is on the two threads is the same. Given, there is no way to guarantee this, a work-around is necessary. Furthermore, there is a serious problem if the leaked count is added to a low-occurrence event. In that case the corruption on the low occurrence event can be very large, e.g., orders of magnitude. There is no HW or FW workaround for this problem. The bug is very easy to reproduce on a loaded system. Here is an example on a Haswell client, where CPU0, CPU4 are siblings. We load the CPUs with a simple triad app streaming large floating-point vector. We use 0x81d0 corrupting event (MEM_UOPS_RETIRED:ALL_LOADS) and 0x20cc (ROB_MISC_EVENTS:LBR_INSERTS). Given we are not using the LBR, the 0x20cc event should be zero. $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 139 277 291 r20cc 10,000969126 seconds time elapsed In this example, 0x81d0 and r20cc ar eusing sinling counters on CPU0 and CPU4. 0x81d0 leaks into 0x20cc and corrupts it from 0 to 139 millions occurrences. This patch provides a software workaround to this problem by modifying the way events are scheduled onto counters by the kernel. The patch forces cross-thread mutual exclusion between counters in case a corrupting event is measured by one of the hyper-threads. If thread 0, counter 0 is measuring event 0xd0, then nothing can be measured on counter 0, thread 1. If no corrupting event is measured on any hyper-thread, event scheduling proceeds as before. The same example run with the workaround enabled, yield the correct answer: $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 0 r20cc 10,000969126 seconds time elapsed The patch does provide correctness for all non-corrupting events. It does not "repatriate" the leaked counts back to the leaking counter. This is planned for a second patch series. This patch series makes this repatriation more easy by guaranteeing the sibling counter is not measuring any useful event. The patch introduces dynamic constraints for events. That means that events which did not have constraints, i.e., could be measured on any counters, may now be constrained to a subset of the counters depending on what is going on the sibling thread. The algorithm is similar to a cache coherency protocol. We call it XSU in reference to Exclusive, Shared, Unused, the 3 possible states of a PMU counter. As a consequence of the workaround, users may see an increased amount of event multiplexing, even in situtations where there are fewer events than counters measured on a CPU. Patch has been tested on all three impacted processors. Note that when HT is off, there is no corruption. However, the workaround is still enabled, yet not costing too much. Adding a dynamic detection of HT on turned out to be complex are requiring too much to code to be justified. This patch addresses the issue when PEBS is not used. A subsequent patch fixes the problem when PEBS is used. Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> [spinlock_t -> raw_spinlock_t] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Cc: bp@alien8.de Cc: jolsa@redhat.com Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1416251225-17721-7-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-18 03:06:58 +08:00
/*
* is PMU has exclusive counter restrictions, then
* all events are subject to and must call the
* put_excl_constraints() routine
*/
perf/x86: Fix event/group validation Commit 43b4578071c0 ("perf/x86: Reduce stack usage of x86_schedule_events()") violated the rule that 'fake' scheduling; as used for event/group validation; should not change the event state. This went mostly un-noticed because repeated calls of x86_pmu::get_event_constraints() would give the same result. And x86_pmu::put_event_constraints() would mostly not do anything. Commit e979121b1b15 ("perf/x86/intel: Implement cross-HT corruption bug workaround") made the situation much worse by actually setting the event->hw.constraint value to NULL, so when validation and actual scheduling interact we get NULL ptr derefs. Fix it by removing the constraint pointer from the event and move it back to an array, this time in cpuc instead of on the stack. validate_group() x86_schedule_events() event->hw.constraint = c; # store <context switch> perf_task_event_sched_in() ... x86_schedule_events(); event->hw.constraint = c2; # store ... put_event_constraints(event); # assume failure to schedule intel_put_event_constraints() event->hw.constraint = NULL; <context switch end> c = event->hw.constraint; # read -> NULL if (!test_bit(hwc->idx, c->idxmsk)) # <- *BOOM* NULL deref This in particular is possible when the event in question is a cpu-wide event and group-leader, where the validate_group() tries to add an event to the group. Reported-by: Vince Weaver <vincent.weaver@maine.edu> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Hunter <ahh@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 43b4578071c0 ("perf/x86: Reduce stack usage of x86_schedule_events()") Fixes: e979121b1b15 ("perf/x86/intel: Implement cross-HT corruption bug workaround") Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-21 16:57:13 +08:00
if (cpuc->excl_cntrs)
perf/x86/intel: Implement cross-HT corruption bug workaround This patch implements a software workaround for a HW erratum on Intel SandyBridge, IvyBridge and Haswell processors with Hyperthreading enabled. The errata are documented for each processor in their respective specification update documents: - SandyBridge: BJ122 - IvyBridge: BV98 - Haswell: HSD29 The bug causes silent counter corruption across hyperthreads only when measuring certain memory events (0xd0, 0xd1, 0xd2, 0xd3). Counters measuring those events may leak counts to the sibling counter. For instance, counter 0, thread 0 measuring event 0xd0, may leak to counter 0, thread 1, regardless of the event measured there. The size of the leak is not predictible. It all depends on the workload and the state of each sibling hyper-thread. The corrupting events do undercount as a consequence of the leak. The leak is compensated automatically only when the sibling counter measures the exact same corrupting event AND the workload is on the two threads is the same. Given, there is no way to guarantee this, a work-around is necessary. Furthermore, there is a serious problem if the leaked count is added to a low-occurrence event. In that case the corruption on the low occurrence event can be very large, e.g., orders of magnitude. There is no HW or FW workaround for this problem. The bug is very easy to reproduce on a loaded system. Here is an example on a Haswell client, where CPU0, CPU4 are siblings. We load the CPUs with a simple triad app streaming large floating-point vector. We use 0x81d0 corrupting event (MEM_UOPS_RETIRED:ALL_LOADS) and 0x20cc (ROB_MISC_EVENTS:LBR_INSERTS). Given we are not using the LBR, the 0x20cc event should be zero. $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 139 277 291 r20cc 10,000969126 seconds time elapsed In this example, 0x81d0 and r20cc ar eusing sinling counters on CPU0 and CPU4. 0x81d0 leaks into 0x20cc and corrupts it from 0 to 139 millions occurrences. This patch provides a software workaround to this problem by modifying the way events are scheduled onto counters by the kernel. The patch forces cross-thread mutual exclusion between counters in case a corrupting event is measured by one of the hyper-threads. If thread 0, counter 0 is measuring event 0xd0, then nothing can be measured on counter 0, thread 1. If no corrupting event is measured on any hyper-thread, event scheduling proceeds as before. The same example run with the workaround enabled, yield the correct answer: $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 0 r20cc 10,000969126 seconds time elapsed The patch does provide correctness for all non-corrupting events. It does not "repatriate" the leaked counts back to the leaking counter. This is planned for a second patch series. This patch series makes this repatriation more easy by guaranteeing the sibling counter is not measuring any useful event. The patch introduces dynamic constraints for events. That means that events which did not have constraints, i.e., could be measured on any counters, may now be constrained to a subset of the counters depending on what is going on the sibling thread. The algorithm is similar to a cache coherency protocol. We call it XSU in reference to Exclusive, Shared, Unused, the 3 possible states of a PMU counter. As a consequence of the workaround, users may see an increased amount of event multiplexing, even in situtations where there are fewer events than counters measured on a CPU. Patch has been tested on all three impacted processors. Note that when HT is off, there is no corruption. However, the workaround is still enabled, yet not costing too much. Adding a dynamic detection of HT on turned out to be complex are requiring too much to code to be justified. This patch addresses the issue when PEBS is not used. A subsequent patch fixes the problem when PEBS is used. Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> [spinlock_t -> raw_spinlock_t] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Cc: bp@alien8.de Cc: jolsa@redhat.com Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1416251225-17721-7-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-18 03:06:58 +08:00
intel_put_excl_constraints(cpuc, event);
}
static void intel_pebs_aliases_core2(struct perf_event *event)
{
if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
/*
* Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
* (0x003c) so that we can use it with PEBS.
*
* The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
* PEBS capable. However we can use INST_RETIRED.ANY_P
* (0x00c0), which is a PEBS capable event, to get the same
* count.
*
* INST_RETIRED.ANY_P counts the number of cycles that retires
* CNTMASK instructions. By setting CNTMASK to a value (16)
* larger than the maximum number of instructions that can be
* retired per cycle (4) and then inverting the condition, we
* count all cycles that retire 16 or less instructions, which
* is every cycle.
*
* Thereby we gain a PEBS capable cycle counter.
*/
u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
event->hw.config = alt_config;
}
}
static void intel_pebs_aliases_snb(struct perf_event *event)
{
if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
/*
* Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
* (0x003c) so that we can use it with PEBS.
*
* The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
* PEBS capable. However we can use UOPS_RETIRED.ALL
* (0x01c2), which is a PEBS capable event, to get the same
* count.
*
* UOPS_RETIRED.ALL counts the number of cycles that retires
* CNTMASK micro-ops. By setting CNTMASK to a value (16)
* larger than the maximum number of micro-ops that can be
* retired per cycle (4) and then inverting the condition, we
* count all cycles that retire 16 or less micro-ops, which
* is every cycle.
*
* Thereby we gain a PEBS capable cycle counter.
*/
u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
event->hw.config = alt_config;
}
}
perf/x86: Use INST_RETIRED.PREC_DIST for cycles: ppp Add a new 'three-p' precise level, that uses INST_RETIRED.PREC_DIST as base. The basic mechanism of abusing the inverse cmask to get all cycles works the same as before. PREC_DIST is available on Sandy Bridge or later. It had some problems on Sandy Bridge, so we only use it on IvyBridge and later. I tested it on Broadwell and Skylake. PREC_DIST has special support for avoiding shadow effects, which can give better results compare to UOPS_RETIRED. The drawback is that PREC_DIST can only schedule on counter 1, but that is ok for cycle sampling, as there is normally no need to do multiple cycle sampling runs in parallel. It is still possible to run perf top in parallel, as that doesn't use precise mode. Also of course the multiplexing can still allow parallel operation. :pp stays with the previous event. Example: Sample a loop with 10 sqrt with old cycles:pp 0.14 │10: sqrtps %xmm1,%xmm0 <-------------- 9.13 │ sqrtps %xmm1,%xmm0 11.58 │ sqrtps %xmm1,%xmm0 11.51 │ sqrtps %xmm1,%xmm0 6.27 │ sqrtps %xmm1,%xmm0 10.38 │ sqrtps %xmm1,%xmm0 12.20 │ sqrtps %xmm1,%xmm0 12.74 │ sqrtps %xmm1,%xmm0 5.40 │ sqrtps %xmm1,%xmm0 10.14 │ sqrtps %xmm1,%xmm0 10.51 │ ↑ jmp 10 We expect all 10 sqrt to get roughly the sample number of samples. But you can see that the instruction directly after the JMP is systematically underestimated in the result, due to sampling shadow effects. With the new PREC_DIST based sampling this problem is gone and all instructions show up roughly evenly: 9.51 │10: sqrtps %xmm1,%xmm0 11.74 │ sqrtps %xmm1,%xmm0 11.84 │ sqrtps %xmm1,%xmm0 6.05 │ sqrtps %xmm1,%xmm0 10.46 │ sqrtps %xmm1,%xmm0 12.25 │ sqrtps %xmm1,%xmm0 12.18 │ sqrtps %xmm1,%xmm0 5.26 │ sqrtps %xmm1,%xmm0 10.13 │ sqrtps %xmm1,%xmm0 10.43 │ sqrtps %xmm1,%xmm0 0.16 │ ↑ jmp 10 Even with PREC_DIST there is still sampling skid and the result is not completely even, but systematic shadow effects are significantly reduced. The improvements are mainly expected to make a difference in high IPC code. With low IPC it should be similar. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: hpa@zytor.com Link: http://lkml.kernel.org/r/1448929689-13771-2-git-send-email-andi@firstfloor.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-12-04 19:50:52 +08:00
static void intel_pebs_aliases_precdist(struct perf_event *event)
{
if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
/*
* Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
* (0x003c) so that we can use it with PEBS.
*
* The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
* PEBS capable. However we can use INST_RETIRED.PREC_DIST
* (0x01c0), which is a PEBS capable event, to get the same
* count.
*
* The PREC_DIST event has special support to minimize sample
* shadowing effects. One drawback is that it can be
* only programmed on counter 1, but that seems like an
* acceptable trade off.
*/
u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
event->hw.config = alt_config;
}
}
static void intel_pebs_aliases_ivb(struct perf_event *event)
{
if (event->attr.precise_ip < 3)
return intel_pebs_aliases_snb(event);
return intel_pebs_aliases_precdist(event);
}
static void intel_pebs_aliases_skl(struct perf_event *event)
{
if (event->attr.precise_ip < 3)
return intel_pebs_aliases_core2(event);
return intel_pebs_aliases_precdist(event);
}
static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
{
unsigned long flags = x86_pmu.large_pebs_flags;
if (event->attr.use_clockid)
flags &= ~PERF_SAMPLE_TIME;
if (!event->attr.exclude_kernel)
flags &= ~PERF_SAMPLE_REGS_USER;
if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
return flags;
}
static int intel_pmu_bts_config(struct perf_event *event)
{
struct perf_event_attr *attr = &event->attr;
if (unlikely(intel_pmu_has_bts(event))) {
/* BTS is not supported by this architecture. */
if (!x86_pmu.bts_active)
return -EOPNOTSUPP;
/* BTS is currently only allowed for user-mode. */
if (!attr->exclude_kernel)
return -EOPNOTSUPP;
perf/x86/intel: Disallow precise_ip on BTS events Vince reported a crash in the BTS flush code when touching the callchain data, which was supposed to be initialized as an 'early' callchain, but intel_pmu_drain_bts_buffer() does not do that: BUG: unable to handle kernel NULL pointer dereference at 0000000000000000 ... Call Trace: <IRQ> intel_pmu_drain_bts_buffer+0x151/0x220 ? intel_get_event_constraints+0x219/0x360 ? perf_assign_events+0xe2/0x2a0 ? select_idle_sibling+0x22/0x3a0 ? __update_load_avg_se+0x1ec/0x270 ? enqueue_task_fair+0x377/0xdd0 ? cpumask_next_and+0x19/0x20 ? load_balance+0x134/0x950 ? check_preempt_curr+0x7a/0x90 ? ttwu_do_wakeup+0x19/0x140 x86_pmu_stop+0x3b/0x90 x86_pmu_del+0x57/0x160 event_sched_out.isra.106+0x81/0x170 group_sched_out.part.108+0x51/0xc0 __perf_event_disable+0x7f/0x160 event_function+0x8c/0xd0 remote_function+0x3c/0x50 flush_smp_call_function_queue+0x35/0xe0 smp_call_function_single_interrupt+0x3a/0xd0 call_function_single_interrupt+0xf/0x20 </IRQ> It was triggered by fuzzer but can be easily reproduced by: # perf record -e cpu/branch-instructions/pu -g -c 1 Peter suggested not to allow branch tracing for precise events: > Now arguably, this is really stupid behaviour. Who in his right mind > wants callchain output on BTS entries. And even if they do, BTS + > precise_ip is nonsensical. > > So in my mind disallowing precise_ip on BTS would be the simplest fix. Suggested-by: Peter Zijlstra <peterz@infradead.org> Reported-by: Vince Weaver <vincent.weaver@maine.edu> Signed-off-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: <stable@vger.kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 6cbc304f2f36 ("perf/x86/intel: Fix unwind errors from PEBS entries (mk-II)") Link: http://lkml.kernel.org/r/20181121101612.16272-3-jolsa@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-11-21 18:16:12 +08:00
/* BTS is not allowed for precise events. */
if (attr->precise_ip)
return -EOPNOTSUPP;
/* disallow bts if conflicting events are present */
if (x86_add_exclusive(x86_lbr_exclusive_lbr))
return -EBUSY;
event->destroy = hw_perf_lbr_event_destroy;
}
return 0;
}
static int core_pmu_hw_config(struct perf_event *event)
{
int ret = x86_pmu_hw_config(event);
if (ret)
return ret;
return intel_pmu_bts_config(event);
}
static int intel_pmu_hw_config(struct perf_event *event)
{
int ret = x86_pmu_hw_config(event);
if (ret)
return ret;
ret = intel_pmu_bts_config(event);
if (ret)
return ret;
if (event->attr.precise_ip) {
if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
if (!(event->attr.sample_type &
~intel_pmu_large_pebs_flags(event)))
event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
perf/x86/intel: Implement batched PEBS interrupt handling (large PEBS interrupt threshold) PEBS always had the capability to log samples to its buffers without an interrupt. Traditionally perf has not used this but always set the PEBS threshold to one. For frequently occurring events (like cycles or branches or load/store) this in term requires using a relatively high sampling period to avoid overloading the system, by only processing PMIs. This in term increases sampling error. For the common cases we still need to use the PMI because the PEBS hardware has various limitations. The biggest one is that it can not supply a callgraph. It also requires setting a fixed period, as the hardware does not support adaptive period. Another issue is that it cannot supply a time stamp and some other options. To supply a TID it requires flushing on context switch. It can however supply the IP, the load/store address, TSX information, registers, and some other things. So we can make PEBS work for some specific cases, basically as long as you can do without a callgraph and can set the period you can use this new PEBS mode. The main benefit is the ability to support much lower sampling period (down to -c 1000) without extensive overhead. One use cases is for example to increase the resolution of the c2c tool. Another is double checking when you suspect the standard sampling has too much sampling error. Some numbers on the overhead, using cycle soak, comparing the elapsed time from "kernbench -M -H" between plain (threshold set to one) and multi (large threshold). The test command for plain: "perf record --time -e cycles:p -c $period -- kernbench -M -H" The test command for multi: "perf record --no-time -e cycles:p -c $period -- kernbench -M -H" ( The only difference of test command between multi and plain is time stamp options. Since time stamp is not supported by large PEBS threshold, it can be used as a flag to indicate if large threshold is enabled during the test. ) period plain(Sec) multi(Sec) Delta 10003 32.7 16.5 16.2 20003 30.2 16.2 14.0 40003 18.6 14.1 4.5 80003 16.8 14.6 2.2 100003 16.9 14.1 2.8 800003 15.4 15.7 -0.3 1000003 15.3 15.2 0.2 2000003 15.3 15.1 0.1 With periods below 100003, plain (threshold one) cause much more overhead. With 10003 sampling period, the Elapsed Time for multi is even 2X faster than plain. Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com> Signed-off-by: Kan Liang <kan.liang@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: acme@infradead.org Cc: eranian@google.com Link: http://lkml.kernel.org/r/1430940834-8964-5-git-send-email-kan.liang@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-07 03:33:50 +08:00
}
if (x86_pmu.pebs_aliases)
x86_pmu.pebs_aliases(event);
perf/x86/intel: Fix unwind errors from PEBS entries (mk-II) Vince reported the perf_fuzzer giving various unwinder warnings and Josh reported: > Deja vu. Most of these are related to perf PEBS, similar to the > following issue: > > b8000586c90b ("perf/x86/intel: Cure bogus unwind from PEBS entries") > > This is basically the ORC version of that. setup_pebs_sample_data() is > assembling a franken-pt_regs which ORC isn't happy about. RIP is > inconsistent with some of the other registers (like RSP and RBP). And where the previous unwinder only needed BP,SP ORC also requires IP. But we cannot spoof IP because then the sample will get displaced, entirely negating the point of PEBS. So cure the whole thing differently by doing the unwind early; this does however require a means to communicate we did the unwind early. We (ab)use an unused sample_type bit for this, which we set on events that fill out the data->callchain before the normal perf_prepare_sample(). Debugged-by: Josh Poimboeuf <jpoimboe@redhat.com> Reported-by: Vince Weaver <vincent.weaver@maine.edu> Tested-by: Josh Poimboeuf <jpoimboe@redhat.com> Tested-by: Prashant Bhole <bhole_prashant_q7@lab.ntt.co.jp> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-05-10 21:48:41 +08:00
if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
}
if (needs_branch_stack(event)) {
ret = intel_pmu_setup_lbr_filter(event);
if (ret)
return ret;
/*
* BTS is set up earlier in this path, so don't account twice
*/
if (!unlikely(intel_pmu_has_bts(event))) {
/* disallow lbr if conflicting events are present */
if (x86_add_exclusive(x86_lbr_exclusive_lbr))
return -EBUSY;
event->destroy = hw_perf_lbr_event_destroy;
}
}
if (event->attr.aux_output) {
if (!event->attr.precise_ip)
return -EINVAL;
event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
}
if (event->attr.type != PERF_TYPE_RAW)
return 0;
if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
return 0;
if (x86_pmu.version < 3)
return -EINVAL;
if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
return -EACCES;
event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
return 0;
}
struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
{
if (x86_pmu.guest_get_msrs)
return x86_pmu.guest_get_msrs(nr);
*nr = 0;
return NULL;
}
EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
{
x86: Replace __get_cpu_var uses __get_cpu_var() is used for multiple purposes in the kernel source. One of them is address calculation via the form &__get_cpu_var(x). This calculates the address for the instance of the percpu variable of the current processor based on an offset. Other use cases are for storing and retrieving data from the current processors percpu area. __get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment. __get_cpu_var() is defined as : #define __get_cpu_var(var) (*this_cpu_ptr(&(var))) __get_cpu_var() always only does an address determination. However, store and retrieve operations could use a segment prefix (or global register on other platforms) to avoid the address calculation. this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use optimized assembly code to read and write per cpu variables. This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr() or into a use of this_cpu operations that use the offset. Thereby address calculations are avoided and less registers are used when code is generated. Transformations done to __get_cpu_var() 1. Determine the address of the percpu instance of the current processor. DEFINE_PER_CPU(int, y); int *x = &__get_cpu_var(y); Converts to int *x = this_cpu_ptr(&y); 2. Same as #1 but this time an array structure is involved. DEFINE_PER_CPU(int, y[20]); int *x = __get_cpu_var(y); Converts to int *x = this_cpu_ptr(y); 3. Retrieve the content of the current processors instance of a per cpu variable. DEFINE_PER_CPU(int, y); int x = __get_cpu_var(y) Converts to int x = __this_cpu_read(y); 4. Retrieve the content of a percpu struct DEFINE_PER_CPU(struct mystruct, y); struct mystruct x = __get_cpu_var(y); Converts to memcpy(&x, this_cpu_ptr(&y), sizeof(x)); 5. Assignment to a per cpu variable DEFINE_PER_CPU(int, y) __get_cpu_var(y) = x; Converts to __this_cpu_write(y, x); 6. Increment/Decrement etc of a per cpu variable DEFINE_PER_CPU(int, y); __get_cpu_var(y)++ Converts to __this_cpu_inc(y) Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86@kernel.org Acked-by: H. Peter Anvin <hpa@linux.intel.com> Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-18 01:30:40 +08:00
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
perf/x86/kvm: Avoid unnecessary work in guest filtering KVM added a workaround for PEBS events leaking into guests with commit: 26a4f3c08de4 ("perf/x86: disable PEBS on a guest entry.") This uses the VT entry/exit list to add an extra disable of the PEBS_ENABLE MSR. Intel also added a fix for this issue to microcode updates on Haswell/Broadwell/Skylake. It turns out using the MSR entry/exit list makes VM exits significantly slower. The list is only needed for disabling PEBS, because the GLOBAL_CTRL change gets optimized by KVM into changing the VMCS. Check for the microcode updates that have the microcode fix for leaking PEBS, and disable the extra entry/exit list entry for PEBS_ENABLE. In addition we always clear the GLOBAL_CTRL for the PEBS counter while running in the guest, which is enough to make them never fire at the wrong side of the host/guest transition. The overhead for VM exits with the filtering active with the patch is reduced from 8% to 4%. The microcode patch has already been merged into future platforms. This patch is one-off thing. The quirks is used here. For other old platforms which doesn't have microcode patch and quirks, extra disable of the PEBS_ENABLE MSR is still required. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: David Ahern <dsahern@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: bp@alien8.de Link: https://lkml.kernel.org/r/1549319013-4522-2-git-send-email-kan.liang@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-05 06:23:30 +08:00
if (x86_pmu.flags & PMU_FL_PEBS_ALL)
arr[0].guest &= ~cpuc->pebs_enabled;
else
arr[0].guest &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
*nr = 1;
if (x86_pmu.pebs && x86_pmu.pebs_no_isolation) {
/*
* If PMU counter has PEBS enabled it is not enough to
* disable counter on a guest entry since PEBS memory
* write can overshoot guest entry and corrupt guest
* memory. Disabling PEBS solves the problem.
*
* Don't do this if the CPU already enforces it.
*/
arr[1].msr = MSR_IA32_PEBS_ENABLE;
arr[1].host = cpuc->pebs_enabled;
arr[1].guest = 0;
*nr = 2;
}
return arr;
}
static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
{
x86: Replace __get_cpu_var uses __get_cpu_var() is used for multiple purposes in the kernel source. One of them is address calculation via the form &__get_cpu_var(x). This calculates the address for the instance of the percpu variable of the current processor based on an offset. Other use cases are for storing and retrieving data from the current processors percpu area. __get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment. __get_cpu_var() is defined as : #define __get_cpu_var(var) (*this_cpu_ptr(&(var))) __get_cpu_var() always only does an address determination. However, store and retrieve operations could use a segment prefix (or global register on other platforms) to avoid the address calculation. this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use optimized assembly code to read and write per cpu variables. This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr() or into a use of this_cpu operations that use the offset. Thereby address calculations are avoided and less registers are used when code is generated. Transformations done to __get_cpu_var() 1. Determine the address of the percpu instance of the current processor. DEFINE_PER_CPU(int, y); int *x = &__get_cpu_var(y); Converts to int *x = this_cpu_ptr(&y); 2. Same as #1 but this time an array structure is involved. DEFINE_PER_CPU(int, y[20]); int *x = __get_cpu_var(y); Converts to int *x = this_cpu_ptr(y); 3. Retrieve the content of the current processors instance of a per cpu variable. DEFINE_PER_CPU(int, y); int x = __get_cpu_var(y) Converts to int x = __this_cpu_read(y); 4. Retrieve the content of a percpu struct DEFINE_PER_CPU(struct mystruct, y); struct mystruct x = __get_cpu_var(y); Converts to memcpy(&x, this_cpu_ptr(&y), sizeof(x)); 5. Assignment to a per cpu variable DEFINE_PER_CPU(int, y) __get_cpu_var(y) = x; Converts to __this_cpu_write(y, x); 6. Increment/Decrement etc of a per cpu variable DEFINE_PER_CPU(int, y); __get_cpu_var(y)++ Converts to __this_cpu_inc(y) Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86@kernel.org Acked-by: H. Peter Anvin <hpa@linux.intel.com> Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-18 01:30:40 +08:00
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
int idx;
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
struct perf_event *event = cpuc->events[idx];
arr[idx].msr = x86_pmu_config_addr(idx);
arr[idx].host = arr[idx].guest = 0;
if (!test_bit(idx, cpuc->active_mask))
continue;
arr[idx].host = arr[idx].guest =
event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
if (event->attr.exclude_host)
arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
else if (event->attr.exclude_guest)
arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
}
*nr = x86_pmu.num_counters;
return arr;
}
static void core_pmu_enable_event(struct perf_event *event)
{
if (!event->attr.exclude_host)
x86_pmu_enable_event(event);
}
static void core_pmu_enable_all(int added)
{
x86: Replace __get_cpu_var uses __get_cpu_var() is used for multiple purposes in the kernel source. One of them is address calculation via the form &__get_cpu_var(x). This calculates the address for the instance of the percpu variable of the current processor based on an offset. Other use cases are for storing and retrieving data from the current processors percpu area. __get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment. __get_cpu_var() is defined as : #define __get_cpu_var(var) (*this_cpu_ptr(&(var))) __get_cpu_var() always only does an address determination. However, store and retrieve operations could use a segment prefix (or global register on other platforms) to avoid the address calculation. this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use optimized assembly code to read and write per cpu variables. This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr() or into a use of this_cpu operations that use the offset. Thereby address calculations are avoided and less registers are used when code is generated. Transformations done to __get_cpu_var() 1. Determine the address of the percpu instance of the current processor. DEFINE_PER_CPU(int, y); int *x = &__get_cpu_var(y); Converts to int *x = this_cpu_ptr(&y); 2. Same as #1 but this time an array structure is involved. DEFINE_PER_CPU(int, y[20]); int *x = __get_cpu_var(y); Converts to int *x = this_cpu_ptr(y); 3. Retrieve the content of the current processors instance of a per cpu variable. DEFINE_PER_CPU(int, y); int x = __get_cpu_var(y) Converts to int x = __this_cpu_read(y); 4. Retrieve the content of a percpu struct DEFINE_PER_CPU(struct mystruct, y); struct mystruct x = __get_cpu_var(y); Converts to memcpy(&x, this_cpu_ptr(&y), sizeof(x)); 5. Assignment to a per cpu variable DEFINE_PER_CPU(int, y) __get_cpu_var(y) = x; Converts to __this_cpu_write(y, x); 6. Increment/Decrement etc of a per cpu variable DEFINE_PER_CPU(int, y); __get_cpu_var(y)++ Converts to __this_cpu_inc(y) Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86@kernel.org Acked-by: H. Peter Anvin <hpa@linux.intel.com> Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-18 01:30:40 +08:00
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
int idx;
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
if (!test_bit(idx, cpuc->active_mask) ||
cpuc->events[idx]->attr.exclude_host)
continue;
__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
}
}
static int hsw_hw_config(struct perf_event *event)
{
int ret = intel_pmu_hw_config(event);
if (ret)
return ret;
if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
return 0;
event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
/*
* IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
* PEBS or in ANY thread mode. Since the results are non-sensical forbid
* this combination.
*/
if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
event->attr.precise_ip > 0))
return -EOPNOTSUPP;
if (event_is_checkpointed(event)) {
/*
* Sampling of checkpointed events can cause situations where
* the CPU constantly aborts because of a overflow, which is
* then checkpointed back and ignored. Forbid checkpointing
* for sampling.
*
* But still allow a long sampling period, so that perf stat
* from KVM works.
*/
if (event->attr.sample_period > 0 &&
event->attr.sample_period < 0x7fffffff)
return -EOPNOTSUPP;
}
return 0;
}
static struct event_constraint counter0_constraint =
INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
static struct event_constraint counter2_constraint =
EVENT_CONSTRAINT(0, 0x4, 0);
perf/x86/intel: Add Icelake support Add Icelake core PMU perf code, including constraint tables and the main enable code. Icelake expanded the generic counters to always 8 even with HT on, but a range of events cannot be scheduled on the extra 4 counters. Add new constraint ranges to describe this to the scheduler. The number of constraints that need to be checked is larger now than with earlier CPUs. At some point we may need a new data structure to look them up more efficiently than with linear search. So far it still seems to be acceptable however. Icelake added a new fixed counter SLOTS. Full support for it is added later in the patch series. The cache events table is identical to Skylake. Compare to PEBS instruction event on generic counter, fixed counter 0 has less skid. Force instruction:ppp always in fixed counter 0. Originally-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: jolsa@kernel.org Link: https://lkml.kernel.org/r/20190402194509.2832-9-kan.liang@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-03 03:45:05 +08:00
static struct event_constraint fixed0_constraint =
FIXED_EVENT_CONSTRAINT(0x00c0, 0);
static struct event_constraint fixed0_counter0_constraint =
INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
static struct event_constraint *
hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
struct perf_event *event)
{
struct event_constraint *c;
c = intel_get_event_constraints(cpuc, idx, event);
/* Handle special quirk on in_tx_checkpointed only in counter 2 */
if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
if (c->idxmsk64 & (1U << 2))
return &counter2_constraint;
return &emptyconstraint;
}
return c;
}
perf/x86/intel: Add Icelake support Add Icelake core PMU perf code, including constraint tables and the main enable code. Icelake expanded the generic counters to always 8 even with HT on, but a range of events cannot be scheduled on the extra 4 counters. Add new constraint ranges to describe this to the scheduler. The number of constraints that need to be checked is larger now than with earlier CPUs. At some point we may need a new data structure to look them up more efficiently than with linear search. So far it still seems to be acceptable however. Icelake added a new fixed counter SLOTS. Full support for it is added later in the patch series. The cache events table is identical to Skylake. Compare to PEBS instruction event on generic counter, fixed counter 0 has less skid. Force instruction:ppp always in fixed counter 0. Originally-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: jolsa@kernel.org Link: https://lkml.kernel.org/r/20190402194509.2832-9-kan.liang@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-03 03:45:05 +08:00
static struct event_constraint *
icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
struct perf_event *event)
{
/*
* Fixed counter 0 has less skid.
* Force instruction:ppp in Fixed counter 0
*/
if ((event->attr.precise_ip == 3) &&
constraint_match(&fixed0_constraint, event->hw.config))
return &fixed0_constraint;
return hsw_get_event_constraints(cpuc, idx, event);
}
static struct event_constraint *
glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
struct perf_event *event)
{
struct event_constraint *c;
/* :ppp means to do reduced skid PEBS which is PMC0 only. */
if (event->attr.precise_ip == 3)
return &counter0_constraint;
c = intel_get_event_constraints(cpuc, idx, event);
return c;
}
static struct event_constraint *
tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
struct perf_event *event)
{
struct event_constraint *c;
/*
* :ppp means to do reduced skid PEBS,
* which is available on PMC0 and fixed counter 0.
*/
if (event->attr.precise_ip == 3) {
/* Force instruction:ppp on PMC0 and Fixed counter 0 */
if (constraint_match(&fixed0_constraint, event->hw.config))
return &fixed0_counter0_constraint;
return &counter0_constraint;
}
c = intel_get_event_constraints(cpuc, idx, event);
return c;
}
static bool allow_tsx_force_abort = true;
static struct event_constraint *
tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
struct perf_event *event)
{
struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
/*
* Without TFA we must not use PMC3.
*/
if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
c = dyn_constraint(cpuc, c, idx);
c->idxmsk64 &= ~(1ULL << 3);
c->weight--;
}
return c;
}
perf/x86/intel: Add INST_RETIRED.ALL workarounds On Broadwell INST_RETIRED.ALL cannot be used with any period that doesn't have the lowest 6 bits cleared. And the period should not be smaller than 128. This is erratum BDM11 and BDM55: http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/5th-gen-core-family-spec-update.pdf BDM11: When using a period < 100; we may get incorrect PEBS/PMI interrupts and/or an invalid counter state. BDM55: When bit0-5 of the period are !0 we may get redundant PEBS records on overflow. Add a new callback to enforce this, and set it for Broadwell. How does this handle the case when an app requests a specific period with some of the bottom bits set? Short answer: Any useful instruction sampling period needs to be 4-6 orders of magnitude larger than 128, as an PMI every 128 instructions would instantly overwhelm the system and be throttled. So the +-64 error from this is really small compared to the period, much smaller than normal system jitter. Long answer (by Peterz): IFF we guarantee perf_event_attr::sample_period >= 128. Suppose we start out with sample_period=192; then we'll set period_left to 192, we'll end up with left = 128 (we truncate the lower bits). We get an interrupt, find that period_left = 64 (>0 so we return 0 and don't get an overflow handler), up that to 128. Then we trigger again, at n=256. Then we find period_left = -64 (<=0 so we return 1 and do get an overflow). We increment with sample_period so we get left = 128. We fire again, at n=384, period_left = 0 (<=0 so we return 1 and get an overflow). And on and on. So while the individual interrupts are 'wrong' we get then with interval=256,128 in exactly the right ratio to average out at 192. And this works for everything >=128. So the num_samples*fixed_period thing is still entirely correct +- 127, which is good enough I'd say, as you already have that error anyhow. So no need to 'fix' the tools, al we need to do is refuse to create INST_RETIRED:ALL events with sample_period < 128. Signed-off-by: Andi Kleen <ak@linux.intel.com> [ Updated comments and changelog a bit. ] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: http://lkml.kernel.org/r/1424225886-18652-3-git-send-email-andi@firstfloor.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-02-18 10:18:06 +08:00
/*
* Broadwell:
*
* The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
* (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
* the two to enforce a minimum period of 128 (the smallest value that has bits
* 0-5 cleared and >= 100).
*
* Because of how the code in x86_perf_event_set_period() works, the truncation
* of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
* to make up for the 'lost' events due to carrying the 'error' in period_left.
*
* Therefore the effective (average) period matches the requested period,
* despite coarser hardware granularity.
*/
static u64 bdw_limit_period(struct perf_event *event, u64 left)
perf/x86/intel: Add INST_RETIRED.ALL workarounds On Broadwell INST_RETIRED.ALL cannot be used with any period that doesn't have the lowest 6 bits cleared. And the period should not be smaller than 128. This is erratum BDM11 and BDM55: http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/5th-gen-core-family-spec-update.pdf BDM11: When using a period < 100; we may get incorrect PEBS/PMI interrupts and/or an invalid counter state. BDM55: When bit0-5 of the period are !0 we may get redundant PEBS records on overflow. Add a new callback to enforce this, and set it for Broadwell. How does this handle the case when an app requests a specific period with some of the bottom bits set? Short answer: Any useful instruction sampling period needs to be 4-6 orders of magnitude larger than 128, as an PMI every 128 instructions would instantly overwhelm the system and be throttled. So the +-64 error from this is really small compared to the period, much smaller than normal system jitter. Long answer (by Peterz): IFF we guarantee perf_event_attr::sample_period >= 128. Suppose we start out with sample_period=192; then we'll set period_left to 192, we'll end up with left = 128 (we truncate the lower bits). We get an interrupt, find that period_left = 64 (>0 so we return 0 and don't get an overflow handler), up that to 128. Then we trigger again, at n=256. Then we find period_left = -64 (<=0 so we return 1 and do get an overflow). We increment with sample_period so we get left = 128. We fire again, at n=384, period_left = 0 (<=0 so we return 1 and get an overflow). And on and on. So while the individual interrupts are 'wrong' we get then with interval=256,128 in exactly the right ratio to average out at 192. And this works for everything >=128. So the num_samples*fixed_period thing is still entirely correct +- 127, which is good enough I'd say, as you already have that error anyhow. So no need to 'fix' the tools, al we need to do is refuse to create INST_RETIRED:ALL events with sample_period < 128. Signed-off-by: Andi Kleen <ak@linux.intel.com> [ Updated comments and changelog a bit. ] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: http://lkml.kernel.org/r/1424225886-18652-3-git-send-email-andi@firstfloor.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-02-18 10:18:06 +08:00
{
if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
X86_CONFIG(.event=0xc0, .umask=0x01)) {
if (left < 128)
left = 128;
left &= ~0x3fULL;
perf/x86/intel: Add INST_RETIRED.ALL workarounds On Broadwell INST_RETIRED.ALL cannot be used with any period that doesn't have the lowest 6 bits cleared. And the period should not be smaller than 128. This is erratum BDM11 and BDM55: http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/5th-gen-core-family-spec-update.pdf BDM11: When using a period < 100; we may get incorrect PEBS/PMI interrupts and/or an invalid counter state. BDM55: When bit0-5 of the period are !0 we may get redundant PEBS records on overflow. Add a new callback to enforce this, and set it for Broadwell. How does this handle the case when an app requests a specific period with some of the bottom bits set? Short answer: Any useful instruction sampling period needs to be 4-6 orders of magnitude larger than 128, as an PMI every 128 instructions would instantly overwhelm the system and be throttled. So the +-64 error from this is really small compared to the period, much smaller than normal system jitter. Long answer (by Peterz): IFF we guarantee perf_event_attr::sample_period >= 128. Suppose we start out with sample_period=192; then we'll set period_left to 192, we'll end up with left = 128 (we truncate the lower bits). We get an interrupt, find that period_left = 64 (>0 so we return 0 and don't get an overflow handler), up that to 128. Then we trigger again, at n=256. Then we find period_left = -64 (<=0 so we return 1 and do get an overflow). We increment with sample_period so we get left = 128. We fire again, at n=384, period_left = 0 (<=0 so we return 1 and get an overflow). And on and on. So while the individual interrupts are 'wrong' we get then with interval=256,128 in exactly the right ratio to average out at 192. And this works for everything >=128. So the num_samples*fixed_period thing is still entirely correct +- 127, which is good enough I'd say, as you already have that error anyhow. So no need to 'fix' the tools, al we need to do is refuse to create INST_RETIRED:ALL events with sample_period < 128. Signed-off-by: Andi Kleen <ak@linux.intel.com> [ Updated comments and changelog a bit. ] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: http://lkml.kernel.org/r/1424225886-18652-3-git-send-email-andi@firstfloor.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-02-18 10:18:06 +08:00
}
return left;
}
perf/x86/intel: Restrict period on Nehalem We see our Nehalem machines reporting 'perfevents: irq loop stuck!' in some cases when using perf: perfevents: irq loop stuck! WARNING: CPU: 0 PID: 3485 at arch/x86/events/intel/core.c:2282 intel_pmu_handle_irq+0x37b/0x530 ... RIP: 0010:intel_pmu_handle_irq+0x37b/0x530 ... Call Trace: <NMI> ? perf_event_nmi_handler+0x2e/0x50 ? intel_pmu_save_and_restart+0x50/0x50 perf_event_nmi_handler+0x2e/0x50 nmi_handle+0x6e/0x120 default_do_nmi+0x3e/0x100 do_nmi+0x102/0x160 end_repeat_nmi+0x16/0x50 ... ? native_write_msr+0x6/0x20 ? native_write_msr+0x6/0x20 </NMI> intel_pmu_enable_event+0x1ce/0x1f0 x86_pmu_start+0x78/0xa0 x86_pmu_enable+0x252/0x310 __perf_event_task_sched_in+0x181/0x190 ? __switch_to_asm+0x41/0x70 ? __switch_to_asm+0x35/0x70 ? __switch_to_asm+0x41/0x70 ? __switch_to_asm+0x35/0x70 finish_task_switch+0x158/0x260 __schedule+0x2f6/0x840 ? hrtimer_start_range_ns+0x153/0x210 schedule+0x32/0x80 schedule_hrtimeout_range_clock+0x8a/0x100 ? hrtimer_init+0x120/0x120 ep_poll+0x2f7/0x3a0 ? wake_up_q+0x60/0x60 do_epoll_wait+0xa9/0xc0 __x64_sys_epoll_wait+0x1a/0x20 do_syscall_64+0x4e/0x110 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7fdeb1e96c03 ... Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: acme@kernel.org Cc: Josh Hunt <johunt@akamai.com> Cc: bpuranda@akamai.com Cc: mingo@redhat.com Cc: jolsa@redhat.com Cc: tglx@linutronix.de Cc: namhyung@kernel.org Cc: alexander.shishkin@linux.intel.com Link: https://lkml.kernel.org/r/1566256411-18820-1-git-send-email-johunt@akamai.com
2019-08-20 07:13:31 +08:00
static u64 nhm_limit_period(struct perf_event *event, u64 left)
{
return max(left, 32ULL);
}
PMU_FORMAT_ATTR(event, "config:0-7" );
PMU_FORMAT_ATTR(umask, "config:8-15" );
PMU_FORMAT_ATTR(edge, "config:18" );
PMU_FORMAT_ATTR(pc, "config:19" );
PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
PMU_FORMAT_ATTR(inv, "config:23" );
PMU_FORMAT_ATTR(cmask, "config:24-31" );
PMU_FORMAT_ATTR(in_tx, "config:32");
PMU_FORMAT_ATTR(in_tx_cp, "config:33");
static struct attribute *intel_arch_formats_attr[] = {
&format_attr_event.attr,
&format_attr_umask.attr,
&format_attr_edge.attr,
&format_attr_pc.attr,
&format_attr_inv.attr,
&format_attr_cmask.attr,
NULL,
};
ssize_t intel_event_sysfs_show(char *page, u64 config)
{
u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
return x86_event_sysfs_show(page, config, event);
}
static struct intel_shared_regs *allocate_shared_regs(int cpu)
{
struct intel_shared_regs *regs;
int i;
regs = kzalloc_node(sizeof(struct intel_shared_regs),
GFP_KERNEL, cpu_to_node(cpu));
if (regs) {
/*
* initialize the locks to keep lockdep happy
*/
for (i = 0; i < EXTRA_REG_MAX; i++)
raw_spin_lock_init(&regs->regs[i].lock);
regs->core_id = -1;
}
return regs;
}
static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
{
struct intel_excl_cntrs *c;
c = kzalloc_node(sizeof(struct intel_excl_cntrs),
GFP_KERNEL, cpu_to_node(cpu));
if (c) {
raw_spin_lock_init(&c->lock);
c->core_id = -1;
}
return c;
}
perf: Add support for supplementary event registers Change logs against Andi's original version: - Extends perf_event_attr:config to config{,1,2} (Peter Zijlstra) - Fixed a major event scheduling issue. There cannot be a ref++ on an event that has already done ref++ once and without calling put_constraint() in between. (Stephane Eranian) - Use thread_cpumask for percore allocation. (Lin Ming) - Use MSR names in the extra reg lists. (Lin Ming) - Remove redundant "c = NULL" in intel_percore_constraints - Fix comment of perf_event_attr::config1 Intel Nehalem/Westmere have a special OFFCORE_RESPONSE event that can be used to monitor any offcore accesses from a core. This is a very useful event for various tunings, and it's also needed to implement the generic LLC-* events correctly. Unfortunately this event requires programming a mask in a separate register. And worse this separate register is per core, not per CPU thread. This patch: - Teaches perf_events that OFFCORE_RESPONSE needs extra parameters. The extra parameters are passed by user space in the perf_event_attr::config1 field. - Adds support to the Intel perf_event core to schedule per core resources. This adds fairly generic infrastructure that can be also used for other per core resources. The basic code has is patterned after the similar AMD northbridge constraints code. Thanks to Stephane Eranian who pointed out some problems in the original version and suggested improvements. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1299119690-13991-2-git-send-email-ming.m.lin@intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-03-03 10:34:47 +08:00
int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
{
perf/x86/intel: Support adaptive PEBS v4 Adaptive PEBS is a new way to report PEBS sampling information. Instead of a fixed size record for all PEBS events it allows to configure the PEBS record to only include the information needed. Events can then opt in to use such an extended record, or stay with a basic record which only contains the IP. The major new feature is to support LBRs in PEBS record. Besides normal LBR, this allows (much faster) large PEBS, while still supporting callstacks through callstack LBR. So essentially a lot of profiling can now be done without frequent interrupts, dropping the overhead significantly. The main requirement still is to use a period, and not use frequency mode, because frequency mode requires reevaluating the frequency on each overflow. The floating point state (XMM) is also supported, which allows efficient profiling of FP function arguments. Introduce specific drain function to handle variable length records. Use a new callback to parse the new record format, and also handle the STATUS field now being at a different offset. Add code to set up the configuration register. Since there is only a single register, all events either get the full super set of all events, or only the basic record. Originally-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: jolsa@kernel.org Link: https://lkml.kernel.org/r/20190402194509.2832-6-kan.liang@linux.intel.com [ Renamed GPRS => GP. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-03 03:45:02 +08:00
cpuc->pebs_record_size = x86_pmu.pebs_record_size;
if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
cpuc->shared_regs = allocate_shared_regs(cpu);
if (!cpuc->shared_regs)
goto err;
}
if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
if (!cpuc->constraint_list)
goto err_shared_regs;
}
if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
if (!cpuc->excl_cntrs)
goto err_constraint_list;
cpuc->excl_thread_id = 0;
}
perf: Add support for supplementary event registers Change logs against Andi's original version: - Extends perf_event_attr:config to config{,1,2} (Peter Zijlstra) - Fixed a major event scheduling issue. There cannot be a ref++ on an event that has already done ref++ once and without calling put_constraint() in between. (Stephane Eranian) - Use thread_cpumask for percore allocation. (Lin Ming) - Use MSR names in the extra reg lists. (Lin Ming) - Remove redundant "c = NULL" in intel_percore_constraints - Fix comment of perf_event_attr::config1 Intel Nehalem/Westmere have a special OFFCORE_RESPONSE event that can be used to monitor any offcore accesses from a core. This is a very useful event for various tunings, and it's also needed to implement the generic LLC-* events correctly. Unfortunately this event requires programming a mask in a separate register. And worse this separate register is per core, not per CPU thread. This patch: - Teaches perf_events that OFFCORE_RESPONSE needs extra parameters. The extra parameters are passed by user space in the perf_event_attr::config1 field. - Adds support to the Intel perf_event core to schedule per core resources. This adds fairly generic infrastructure that can be also used for other per core resources. The basic code has is patterned after the similar AMD northbridge constraints code. Thanks to Stephane Eranian who pointed out some problems in the original version and suggested improvements. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1299119690-13991-2-git-send-email-ming.m.lin@intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-03-03 10:34:47 +08:00
return 0;
err_constraint_list:
kfree(cpuc->constraint_list);
cpuc->constraint_list = NULL;
err_shared_regs:
kfree(cpuc->shared_regs);
cpuc->shared_regs = NULL;
err:
return -ENOMEM;
perf: Add support for supplementary event registers Change logs against Andi's original version: - Extends perf_event_attr:config to config{,1,2} (Peter Zijlstra) - Fixed a major event scheduling issue. There cannot be a ref++ on an event that has already done ref++ once and without calling put_constraint() in between. (Stephane Eranian) - Use thread_cpumask for percore allocation. (Lin Ming) - Use MSR names in the extra reg lists. (Lin Ming) - Remove redundant "c = NULL" in intel_percore_constraints - Fix comment of perf_event_attr::config1 Intel Nehalem/Westmere have a special OFFCORE_RESPONSE event that can be used to monitor any offcore accesses from a core. This is a very useful event for various tunings, and it's also needed to implement the generic LLC-* events correctly. Unfortunately this event requires programming a mask in a separate register. And worse this separate register is per core, not per CPU thread. This patch: - Teaches perf_events that OFFCORE_RESPONSE needs extra parameters. The extra parameters are passed by user space in the perf_event_attr::config1 field. - Adds support to the Intel perf_event core to schedule per core resources. This adds fairly generic infrastructure that can be also used for other per core resources. The basic code has is patterned after the similar AMD northbridge constraints code. Thanks to Stephane Eranian who pointed out some problems in the original version and suggested improvements. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1299119690-13991-2-git-send-email-ming.m.lin@intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-03-03 10:34:47 +08:00
}
static int intel_pmu_cpu_prepare(int cpu)
{
return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
}
perf/x86: Add sysfs entry to freeze counters on SMI Currently, the SMIs are visible to all performance counters, because many users want to measure everything including SMIs. But in some cases, the SMI cycles should not be counted - for example, to calculate the cost of an SMI itself. So a knob is needed. When setting FREEZE_WHILE_SMM bit in IA32_DEBUGCTL, all performance counters will be effected. There is no way to do per-counter freeze on SMI. So it should not use the per-event interface (e.g. ioctl or event attribute) to set FREEZE_WHILE_SMM bit. Adds sysfs entry /sys/device/cpu/freeze_on_smi to set FREEZE_WHILE_SMM bit in IA32_DEBUGCTL. When set, freezes perfmon and trace messages while in SMM. Value has to be 0 or 1. It will be applied to all processors. Also serialize the entire setting so we don't get multiple concurrent threads trying to update to different values. Signed-off-by: Kan Liang <Kan.liang@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: bp@alien8.de Cc: jolsa@kernel.org Link: http://lkml.kernel.org/r/1494600673-244667-1-git-send-email-kan.liang@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-05-12 22:51:13 +08:00
static void flip_smm_bit(void *data)
{
unsigned long set = *(unsigned long *)data;
if (set > 0) {
msr_set_bit(MSR_IA32_DEBUGCTLMSR,
DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
} else {
msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
}
}
static void intel_pmu_cpu_starting(int cpu)
{
perf: Add support for supplementary event registers Change logs against Andi's original version: - Extends perf_event_attr:config to config{,1,2} (Peter Zijlstra) - Fixed a major event scheduling issue. There cannot be a ref++ on an event that has already done ref++ once and without calling put_constraint() in between. (Stephane Eranian) - Use thread_cpumask for percore allocation. (Lin Ming) - Use MSR names in the extra reg lists. (Lin Ming) - Remove redundant "c = NULL" in intel_percore_constraints - Fix comment of perf_event_attr::config1 Intel Nehalem/Westmere have a special OFFCORE_RESPONSE event that can be used to monitor any offcore accesses from a core. This is a very useful event for various tunings, and it's also needed to implement the generic LLC-* events correctly. Unfortunately this event requires programming a mask in a separate register. And worse this separate register is per core, not per CPU thread. This patch: - Teaches perf_events that OFFCORE_RESPONSE needs extra parameters. The extra parameters are passed by user space in the perf_event_attr::config1 field. - Adds support to the Intel perf_event core to schedule per core resources. This adds fairly generic infrastructure that can be also used for other per core resources. The basic code has is patterned after the similar AMD northbridge constraints code. Thanks to Stephane Eranian who pointed out some problems in the original version and suggested improvements. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1299119690-13991-2-git-send-email-ming.m.lin@intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-03-03 10:34:47 +08:00
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
int core_id = topology_core_id(cpu);
int i;
init_debug_store_on_cpu(cpu);
/*
* Deal with CPUs that don't clear their LBRs on power-up.
*/
intel_pmu_lbr_reset();
cpuc->lbr_sel = NULL;
if (x86_pmu.flags & PMU_FL_TFA) {
WARN_ON_ONCE(cpuc->tfa_shadow);
cpuc->tfa_shadow = ~0ULL;
intel_set_tfa(cpuc, false);
}
if (x86_pmu.version > 1)
flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
perf/x86: Add sysfs entry to freeze counters on SMI Currently, the SMIs are visible to all performance counters, because many users want to measure everything including SMIs. But in some cases, the SMI cycles should not be counted - for example, to calculate the cost of an SMI itself. So a knob is needed. When setting FREEZE_WHILE_SMM bit in IA32_DEBUGCTL, all performance counters will be effected. There is no way to do per-counter freeze on SMI. So it should not use the per-event interface (e.g. ioctl or event attribute) to set FREEZE_WHILE_SMM bit. Adds sysfs entry /sys/device/cpu/freeze_on_smi to set FREEZE_WHILE_SMM bit in IA32_DEBUGCTL. When set, freezes perfmon and trace messages while in SMM. Value has to be 0 or 1. It will be applied to all processors. Also serialize the entire setting so we don't get multiple concurrent threads trying to update to different values. Signed-off-by: Kan Liang <Kan.liang@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: bp@alien8.de Cc: jolsa@kernel.org Link: http://lkml.kernel.org/r/1494600673-244667-1-git-send-email-kan.liang@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-05-12 22:51:13 +08:00
perf/x86/intel: Add a separate Arch Perfmon v4 PMI handler Implements counter freezing for Arch Perfmon v4 (Skylake and newer). This allows to speed up the PMI handler by avoiding unnecessary MSR writes and make it more accurate. The Arch Perfmon v4 PMI handler is substantially different than the older PMI handler. Differences to the old handler: - It relies on counter freezing, which eliminates several MSR writes from the PMI handler and lowers the overhead significantly. It makes the PMI handler more accurate, as all counters get frozen atomically as soon as any counter overflows. So there is much less counting of the PMI handler itself. With the freezing we don't need to disable or enable counters or PEBS. Only BTS which does not support auto-freezing still needs to be explicitly managed. - The PMU acking is done at the end, not the beginning. This makes it possible to avoid manual enabling/disabling of the PMU, instead we just rely on the freezing/acking. - The APIC is acked before reenabling the PMU, which avoids problems with LBRs occasionally not getting unfreezed on Skylake. - Looping is only needed to workaround a corner case which several PMIs are very close to each other. For common cases, the counters are freezed during PMI handler. It doesn't need to do re-check. This patch: - Adds code to enable v4 counter freezing - Fork <=v3 and >=v4 PMI handlers into separate functions. - Add kernel parameter to disable counter freezing. It took some time to debug counter freezing, so in case there are new problems we added an option to turn it off. Would not expect this to be used until there are new bugs. - Only for big core. The patch for small core will be posted later separately. Performance: When profiling a kernel build on Kabylake with different perf options, measuring the length of all NMI handlers using the nmi handler trace point: V3 is without counter freezing. V4 is with counter freezing. The value is the average cost of the PMI handler. (lower is better) perf options ` V3(ns) V4(ns) delta -c 100000 1088 894 -18% -g -c 100000 1862 1646 -12% --call-graph lbr -c 100000 3649 3367 -8% --c.g. dwarf -c 100000 2248 1982 -12% Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Link: http://lkml.kernel.org/r/1533712328-2834-2-git-send-email-kan.liang@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-08-08 15:12:07 +08:00
if (x86_pmu.counter_freezing)
enable_counter_freeze();
if (!cpuc->shared_regs)
return;
if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
for_each_cpu(i, topology_sibling_cpumask(cpu)) {
struct intel_shared_regs *pc;
perf: Add support for supplementary event registers Change logs against Andi's original version: - Extends perf_event_attr:config to config{,1,2} (Peter Zijlstra) - Fixed a major event scheduling issue. There cannot be a ref++ on an event that has already done ref++ once and without calling put_constraint() in between. (Stephane Eranian) - Use thread_cpumask for percore allocation. (Lin Ming) - Use MSR names in the extra reg lists. (Lin Ming) - Remove redundant "c = NULL" in intel_percore_constraints - Fix comment of perf_event_attr::config1 Intel Nehalem/Westmere have a special OFFCORE_RESPONSE event that can be used to monitor any offcore accesses from a core. This is a very useful event for various tunings, and it's also needed to implement the generic LLC-* events correctly. Unfortunately this event requires programming a mask in a separate register. And worse this separate register is per core, not per CPU thread. This patch: - Teaches perf_events that OFFCORE_RESPONSE needs extra parameters. The extra parameters are passed by user space in the perf_event_attr::config1 field. - Adds support to the Intel perf_event core to schedule per core resources. This adds fairly generic infrastructure that can be also used for other per core resources. The basic code has is patterned after the similar AMD northbridge constraints code. Thanks to Stephane Eranian who pointed out some problems in the original version and suggested improvements. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1299119690-13991-2-git-send-email-ming.m.lin@intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-03-03 10:34:47 +08:00
pc = per_cpu(cpu_hw_events, i).shared_regs;
if (pc && pc->core_id == core_id) {
cpuc->kfree_on_online[0] = cpuc->shared_regs;
cpuc->shared_regs = pc;
break;
}
perf: Add support for supplementary event registers Change logs against Andi's original version: - Extends perf_event_attr:config to config{,1,2} (Peter Zijlstra) - Fixed a major event scheduling issue. There cannot be a ref++ on an event that has already done ref++ once and without calling put_constraint() in between. (Stephane Eranian) - Use thread_cpumask for percore allocation. (Lin Ming) - Use MSR names in the extra reg lists. (Lin Ming) - Remove redundant "c = NULL" in intel_percore_constraints - Fix comment of perf_event_attr::config1 Intel Nehalem/Westmere have a special OFFCORE_RESPONSE event that can be used to monitor any offcore accesses from a core. This is a very useful event for various tunings, and it's also needed to implement the generic LLC-* events correctly. Unfortunately this event requires programming a mask in a separate register. And worse this separate register is per core, not per CPU thread. This patch: - Teaches perf_events that OFFCORE_RESPONSE needs extra parameters. The extra parameters are passed by user space in the perf_event_attr::config1 field. - Adds support to the Intel perf_event core to schedule per core resources. This adds fairly generic infrastructure that can be also used for other per core resources. The basic code has is patterned after the similar AMD northbridge constraints code. Thanks to Stephane Eranian who pointed out some problems in the original version and suggested improvements. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1299119690-13991-2-git-send-email-ming.m.lin@intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-03-03 10:34:47 +08:00
}
cpuc->shared_regs->core_id = core_id;
cpuc->shared_regs->refcnt++;
perf: Add support for supplementary event registers Change logs against Andi's original version: - Extends perf_event_attr:config to config{,1,2} (Peter Zijlstra) - Fixed a major event scheduling issue. There cannot be a ref++ on an event that has already done ref++ once and without calling put_constraint() in between. (Stephane Eranian) - Use thread_cpumask for percore allocation. (Lin Ming) - Use MSR names in the extra reg lists. (Lin Ming) - Remove redundant "c = NULL" in intel_percore_constraints - Fix comment of perf_event_attr::config1 Intel Nehalem/Westmere have a special OFFCORE_RESPONSE event that can be used to monitor any offcore accesses from a core. This is a very useful event for various tunings, and it's also needed to implement the generic LLC-* events correctly. Unfortunately this event requires programming a mask in a separate register. And worse this separate register is per core, not per CPU thread. This patch: - Teaches perf_events that OFFCORE_RESPONSE needs extra parameters. The extra parameters are passed by user space in the perf_event_attr::config1 field. - Adds support to the Intel perf_event core to schedule per core resources. This adds fairly generic infrastructure that can be also used for other per core resources. The basic code has is patterned after the similar AMD northbridge constraints code. Thanks to Stephane Eranian who pointed out some problems in the original version and suggested improvements. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1299119690-13991-2-git-send-email-ming.m.lin@intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-03-03 10:34:47 +08:00
}
if (x86_pmu.lbr_sel_map)
cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
for_each_cpu(i, topology_sibling_cpumask(cpu)) {
struct cpu_hw_events *sibling;
struct intel_excl_cntrs *c;
sibling = &per_cpu(cpu_hw_events, i);
c = sibling->excl_cntrs;
if (c && c->core_id == core_id) {
cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
cpuc->excl_cntrs = c;
if (!sibling->excl_thread_id)
cpuc->excl_thread_id = 1;
break;
}
}
cpuc->excl_cntrs->core_id = core_id;
cpuc->excl_cntrs->refcnt++;
}
}
static void free_excl_cntrs(struct cpu_hw_events *cpuc)
{
struct intel_excl_cntrs *c;
perf: Add support for supplementary event registers Change logs against Andi's original version: - Extends perf_event_attr:config to config{,1,2} (Peter Zijlstra) - Fixed a major event scheduling issue. There cannot be a ref++ on an event that has already done ref++ once and without calling put_constraint() in between. (Stephane Eranian) - Use thread_cpumask for percore allocation. (Lin Ming) - Use MSR names in the extra reg lists. (Lin Ming) - Remove redundant "c = NULL" in intel_percore_constraints - Fix comment of perf_event_attr::config1 Intel Nehalem/Westmere have a special OFFCORE_RESPONSE event that can be used to monitor any offcore accesses from a core. This is a very useful event for various tunings, and it's also needed to implement the generic LLC-* events correctly. Unfortunately this event requires programming a mask in a separate register. And worse this separate register is per core, not per CPU thread. This patch: - Teaches perf_events that OFFCORE_RESPONSE needs extra parameters. The extra parameters are passed by user space in the perf_event_attr::config1 field. - Adds support to the Intel perf_event core to schedule per core resources. This adds fairly generic infrastructure that can be also used for other per core resources. The basic code has is patterned after the similar AMD northbridge constraints code. Thanks to Stephane Eranian who pointed out some problems in the original version and suggested improvements. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1299119690-13991-2-git-send-email-ming.m.lin@intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-03-03 10:34:47 +08:00
c = cpuc->excl_cntrs;
if (c) {
if (c->core_id == -1 || --c->refcnt == 0)
kfree(c);
cpuc->excl_cntrs = NULL;
}
kfree(cpuc->constraint_list);
cpuc->constraint_list = NULL;
}
perf: Add support for supplementary event registers Change logs against Andi's original version: - Extends perf_event_attr:config to config{,1,2} (Peter Zijlstra) - Fixed a major event scheduling issue. There cannot be a ref++ on an event that has already done ref++ once and without calling put_constraint() in between. (Stephane Eranian) - Use thread_cpumask for percore allocation. (Lin Ming) - Use MSR names in the extra reg lists. (Lin Ming) - Remove redundant "c = NULL" in intel_percore_constraints - Fix comment of perf_event_attr::config1 Intel Nehalem/Westmere have a special OFFCORE_RESPONSE event that can be used to monitor any offcore accesses from a core. This is a very useful event for various tunings, and it's also needed to implement the generic LLC-* events correctly. Unfortunately this event requires programming a mask in a separate register. And worse this separate register is per core, not per CPU thread. This patch: - Teaches perf_events that OFFCORE_RESPONSE needs extra parameters. The extra parameters are passed by user space in the perf_event_attr::config1 field. - Adds support to the Intel perf_event core to schedule per core resources. This adds fairly generic infrastructure that can be also used for other per core resources. The basic code has is patterned after the similar AMD northbridge constraints code. Thanks to Stephane Eranian who pointed out some problems in the original version and suggested improvements. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1299119690-13991-2-git-send-email-ming.m.lin@intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-03-03 10:34:47 +08:00
static void intel_pmu_cpu_dying(int cpu)
perf/x86/intel: Delay memory deallocation until x86_pmu_dead_cpu() intel_pmu_cpu_prepare() allocated memory for ->shared_regs among other members of struct cpu_hw_events. This memory is released in intel_pmu_cpu_dying() which is wrong. The counterpart of the intel_pmu_cpu_prepare() callback is x86_pmu_dead_cpu(). Otherwise if the CPU fails on the UP path between CPUHP_PERF_X86_PREPARE and CPUHP_AP_PERF_X86_STARTING then it won't release the memory but allocate new memory on the next attempt to online the CPU (leaking the old memory). Also, if the CPU down path fails between CPUHP_AP_PERF_X86_STARTING and CPUHP_PERF_X86_PREPARE then the CPU will go back online but never allocate the memory that was released in x86_pmu_dying_cpu(). Make the memory allocation/free symmetrical in regard to the CPU hotplug notifier by moving the deallocation to intel_pmu_cpu_dead(). This started in commit: a7e3ed1e47011 ("perf: Add support for supplementary event registers"). In principle the bug was introduced in v2.6.39 (!), but it will almost certainly not backport cleanly across the big CPU hotplug rewrite between v4.7-v4.15... [ bigeasy: Added patch description. ] [ mingo: Added backporting guidance. ] Reported-by: He Zhe <zhe.he@windriver.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> # With developer hat on Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> # With maintainer hat on Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: acme@kernel.org Cc: bp@alien8.de Cc: hpa@zytor.com Cc: jolsa@kernel.org Cc: kan.liang@linux.intel.com Cc: namhyung@kernel.org Cc: <stable@vger.kernel.org> Fixes: a7e3ed1e47011 ("perf: Add support for supplementary event registers"). Link: https://lkml.kernel.org/r/20181219165350.6s3jvyxbibpvlhtq@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-12-20 00:53:50 +08:00
{
fini_debug_store_on_cpu(cpu);
if (x86_pmu.counter_freezing)
disable_counter_freeze();
}
void intel_cpuc_finish(struct cpu_hw_events *cpuc)
{
struct intel_shared_regs *pc;
pc = cpuc->shared_regs;
if (pc) {
if (pc->core_id == -1 || --pc->refcnt == 0)
kfree(pc);
cpuc->shared_regs = NULL;
perf/x86/intel: Implement cross-HT corruption bug workaround This patch implements a software workaround for a HW erratum on Intel SandyBridge, IvyBridge and Haswell processors with Hyperthreading enabled. The errata are documented for each processor in their respective specification update documents: - SandyBridge: BJ122 - IvyBridge: BV98 - Haswell: HSD29 The bug causes silent counter corruption across hyperthreads only when measuring certain memory events (0xd0, 0xd1, 0xd2, 0xd3). Counters measuring those events may leak counts to the sibling counter. For instance, counter 0, thread 0 measuring event 0xd0, may leak to counter 0, thread 1, regardless of the event measured there. The size of the leak is not predictible. It all depends on the workload and the state of each sibling hyper-thread. The corrupting events do undercount as a consequence of the leak. The leak is compensated automatically only when the sibling counter measures the exact same corrupting event AND the workload is on the two threads is the same. Given, there is no way to guarantee this, a work-around is necessary. Furthermore, there is a serious problem if the leaked count is added to a low-occurrence event. In that case the corruption on the low occurrence event can be very large, e.g., orders of magnitude. There is no HW or FW workaround for this problem. The bug is very easy to reproduce on a loaded system. Here is an example on a Haswell client, where CPU0, CPU4 are siblings. We load the CPUs with a simple triad app streaming large floating-point vector. We use 0x81d0 corrupting event (MEM_UOPS_RETIRED:ALL_LOADS) and 0x20cc (ROB_MISC_EVENTS:LBR_INSERTS). Given we are not using the LBR, the 0x20cc event should be zero. $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 139 277 291 r20cc 10,000969126 seconds time elapsed In this example, 0x81d0 and r20cc ar eusing sinling counters on CPU0 and CPU4. 0x81d0 leaks into 0x20cc and corrupts it from 0 to 139 millions occurrences. This patch provides a software workaround to this problem by modifying the way events are scheduled onto counters by the kernel. The patch forces cross-thread mutual exclusion between counters in case a corrupting event is measured by one of the hyper-threads. If thread 0, counter 0 is measuring event 0xd0, then nothing can be measured on counter 0, thread 1. If no corrupting event is measured on any hyper-thread, event scheduling proceeds as before. The same example run with the workaround enabled, yield the correct answer: $ taskset -c 0 triad & $ taskset -c 4 triad & $ perf stat -a -C 0 -e r81d0 sleep 100 & $ perf stat -a -C 4 -r20cc sleep 10 Performance counter stats for 'system wide': 0 r20cc 10,000969126 seconds time elapsed The patch does provide correctness for all non-corrupting events. It does not "repatriate" the leaked counts back to the leaking counter. This is planned for a second patch series. This patch series makes this repatriation more easy by guaranteeing the sibling counter is not measuring any useful event. The patch introduces dynamic constraints for events. That means that events which did not have constraints, i.e., could be measured on any counters, may now be constrained to a subset of the counters depending on what is going on the sibling thread. The algorithm is similar to a cache coherency protocol. We call it XSU in reference to Exclusive, Shared, Unused, the 3 possible states of a PMU counter. As a consequence of the workaround, users may see an increased amount of event multiplexing, even in situtations where there are fewer events than counters measured on a CPU. Patch has been tested on all three impacted processors. Note that when HT is off, there is no corruption. However, the workaround is still enabled, yet not costing too much. Adding a dynamic detection of HT on turned out to be complex are requiring too much to code to be justified. This patch addresses the issue when PEBS is not used. A subsequent patch fixes the problem when PEBS is used. Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> [spinlock_t -> raw_spinlock_t] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Cc: bp@alien8.de Cc: jolsa@redhat.com Cc: kan.liang@intel.com Link: http://lkml.kernel.org/r/1416251225-17721-7-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-18 03:06:58 +08:00
}
free_excl_cntrs(cpuc);
}
static void intel_pmu_cpu_dead(int cpu)
{
intel_cpuc_finish(&per_cpu(cpu_hw_events, cpu));
}
static void intel_pmu_sched_task(struct perf_event_context *ctx,
bool sched_in)
{
perf/x86/intel: Add proper condition to run sched_task callbacks We have 2 functions using the same sched_task callback: - PEBS drain for free running counters - LBR save/store Both of them are called from intel_pmu_sched_task() and either of them can be unwillingly triggered when the other one is configured to run. Let's say there's PEBS drain configured in sched_task callback for the event, but in the callback itself (intel_pmu_sched_task()) we will also run the code for LBR save/restore, which we did not ask for, but the code in intel_pmu_sched_task() does not check for that. This can lead to extra cycles in some perf monitoring, like when we monitor PEBS event without LBR data. # perf record --no-timestamp -c 10000 -e cycles:p ./perf bench sched pipe -l 1000000 (We need PEBS, non freq/non timestamp event to enable the sched_task callback) The perf stat of cycles and msr:write_msr for above command before the change: ... Performance counter stats for './perf record --no-timestamp -c 10000 -e cycles:p \ ./perf bench sched pipe -l 1000000' (5 runs): 18,519,557,441 cycles:k 91,195,527 msr:write_msr 29.334476406 seconds time elapsed And after the change: ... Performance counter stats for './perf record --no-timestamp -c 10000 -e cycles:p \ ./perf bench sched pipe -l 1000000' (5 runs): 18,704,973,540 cycles:k 27,184,720 msr:write_msr 16.977875900 seconds time elapsed There's no affect on cycles:k because the sched_task happens with events switched off, however the msr:write_msr tracepoint counter together with almost 50% of time speedup show the improvement. Monitoring LBR event and having extra PEBS drain processing in sched_task callback showed just a little speedup, because the drain function does not do much extra work in case there is no PEBS data. Adding conditions to recognize the configured work that needs to be done in the x86_pmu's sched_task callback. Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Kan Liang <kan.liang@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170719075247.GA27506@krava Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-07-19 15:52:47 +08:00
intel_pmu_pebs_sched_task(ctx, sched_in);
intel_pmu_lbr_sched_task(ctx, sched_in);
}
perf/x86: Add check_period PMU callback Vince (and later on Ravi) reported crashes in the BTS code during fuzzing with the following backtrace: general protection fault: 0000 [#1] SMP PTI ... RIP: 0010:perf_prepare_sample+0x8f/0x510 ... Call Trace: <IRQ> ? intel_pmu_drain_bts_buffer+0x194/0x230 intel_pmu_drain_bts_buffer+0x160/0x230 ? tick_nohz_irq_exit+0x31/0x40 ? smp_call_function_single_interrupt+0x48/0xe0 ? call_function_single_interrupt+0xf/0x20 ? call_function_single_interrupt+0xa/0x20 ? x86_schedule_events+0x1a0/0x2f0 ? x86_pmu_commit_txn+0xb4/0x100 ? find_busiest_group+0x47/0x5d0 ? perf_event_set_state.part.42+0x12/0x50 ? perf_mux_hrtimer_restart+0x40/0xb0 intel_pmu_disable_event+0xae/0x100 ? intel_pmu_disable_event+0xae/0x100 x86_pmu_stop+0x7a/0xb0 x86_pmu_del+0x57/0x120 event_sched_out.isra.101+0x83/0x180 group_sched_out.part.103+0x57/0xe0 ctx_sched_out+0x188/0x240 ctx_resched+0xa8/0xd0 __perf_event_enable+0x193/0x1e0 event_function+0x8e/0xc0 remote_function+0x41/0x50 flush_smp_call_function_queue+0x68/0x100 generic_smp_call_function_single_interrupt+0x13/0x30 smp_call_function_single_interrupt+0x3e/0xe0 call_function_single_interrupt+0xf/0x20 </IRQ> The reason is that while event init code does several checks for BTS events and prevents several unwanted config bits for BTS event (like precise_ip), the PERF_EVENT_IOC_PERIOD allows to create BTS event without those checks being done. Following sequence will cause the crash: If we create an 'almost' BTS event with precise_ip and callchains, and it into a BTS event it will crash the perf_prepare_sample() function because precise_ip events are expected to come in with callchain data initialized, but that's not the case for intel_pmu_drain_bts_buffer() caller. Adding a check_period callback to be called before the period is changed via PERF_EVENT_IOC_PERIOD. It will deny the change if the event would become BTS. Plus adding also the limit_period check as well. Reported-by: Vince Weaver <vincent.weaver@maine.edu> Signed-off-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: <stable@vger.kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Cc: Ravi Bangoria <ravi.bangoria@linux.ibm.com> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20190204123532.GA4794@krava Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-04 20:35:32 +08:00
static int intel_pmu_check_period(struct perf_event *event, u64 value)
{
return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
}
static int intel_pmu_aux_output_match(struct perf_event *event)
{
if (!x86_pmu.intel_cap.pebs_output_pt_available)
return 0;
return is_intel_pt_event(event);
}
PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
PMU_FORMAT_ATTR(ldlat, "config1:0-15");
PMU_FORMAT_ATTR(frontend, "config1:0-23");
static struct attribute *intel_arch3_formats_attr[] = {
&format_attr_event.attr,
&format_attr_umask.attr,
&format_attr_edge.attr,
&format_attr_pc.attr,
&format_attr_any.attr,
&format_attr_inv.attr,
&format_attr_cmask.attr,
NULL,
};
static struct attribute *hsw_format_attr[] = {
&format_attr_in_tx.attr,
&format_attr_in_tx_cp.attr,
&format_attr_offcore_rsp.attr,
&format_attr_ldlat.attr,
NULL
};
static struct attribute *nhm_format_attr[] = {
&format_attr_offcore_rsp.attr,
&format_attr_ldlat.attr,
NULL
};
static struct attribute *slm_format_attr[] = {
&format_attr_offcore_rsp.attr,
NULL
};
static struct attribute *skl_format_attr[] = {
&format_attr_frontend.attr,
NULL,
};
perf/x86/intel: Add cpu_(prepare|starting|dying) for core_pmu The core_pmu does not define cpu_* callbacks, which handles allocation of 'struct cpu_hw_events::shared_regs' data, initialization of debug store and PMU_FL_EXCL_CNTRS counters. While this probably won't happen on bare metal, virtual CPU can define x86_pmu.extra_regs together with PMU version 1 and thus be using core_pmu -> using shared_regs data without it being allocated. That could could leave to following panic: BUG: unable to handle kernel NULL pointer dereference at (null) IP: [<ffffffff8152cd4f>] _spin_lock_irqsave+0x1f/0x40 SNIP [<ffffffff81024bd9>] __intel_shared_reg_get_constraints+0x69/0x1e0 [<ffffffff81024deb>] intel_get_event_constraints+0x9b/0x180 [<ffffffff8101e815>] x86_schedule_events+0x75/0x1d0 [<ffffffff810586dc>] ? check_preempt_curr+0x7c/0x90 [<ffffffff810649fe>] ? try_to_wake_up+0x24e/0x3e0 [<ffffffff81064ba2>] ? default_wake_function+0x12/0x20 [<ffffffff8109eb16>] ? autoremove_wake_function+0x16/0x40 [<ffffffff810577e9>] ? __wake_up_common+0x59/0x90 [<ffffffff811a9517>] ? __d_lookup+0xa7/0x150 [<ffffffff8119db5f>] ? do_lookup+0x9f/0x230 [<ffffffff811a993a>] ? dput+0x9a/0x150 [<ffffffff8119c8f5>] ? path_to_nameidata+0x25/0x60 [<ffffffff8119e90a>] ? __link_path_walk+0x7da/0x1000 [<ffffffff8101d8f9>] ? x86_pmu_add+0xb9/0x170 [<ffffffff8101d7a7>] x86_pmu_commit_txn+0x67/0xc0 [<ffffffff811b07b0>] ? mntput_no_expire+0x30/0x110 [<ffffffff8119c731>] ? path_put+0x31/0x40 [<ffffffff8107c297>] ? current_fs_time+0x27/0x30 [<ffffffff8117d170>] ? mem_cgroup_get_reclaim_stat_from_page+0x20/0x70 [<ffffffff8111b7aa>] group_sched_in+0x13a/0x170 [<ffffffff81014a29>] ? sched_clock+0x9/0x10 [<ffffffff8111bac8>] ctx_sched_in+0x2e8/0x330 [<ffffffff8111bb7b>] perf_event_sched_in+0x6b/0xb0 [<ffffffff8111bc36>] perf_event_context_sched_in+0x76/0xc0 [<ffffffff8111eb3b>] perf_event_comm+0x1bb/0x2e0 [<ffffffff81195ee9>] set_task_comm+0x69/0x80 [<ffffffff81195fe1>] setup_new_exec+0xe1/0x2e0 [<ffffffff811ea68e>] load_elf_binary+0x3ce/0x1ab0 Adding cpu_(prepare|starting|dying) for core_pmu to have shared_regs data allocated for core_pmu. AFAICS there's no harm to initialize debug store and PMU_FL_EXCL_CNTRS either for core_pmu. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lkml.kernel.org/r/20150421152623.GC13169@krava.redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-04-21 23:26:23 +08:00
static __initconst const struct x86_pmu core_pmu = {
.name = "core",
.handle_irq = x86_pmu_handle_irq,
.disable_all = x86_pmu_disable_all,
.enable_all = core_pmu_enable_all,
.enable = core_pmu_enable_event,
.disable = x86_pmu_disable_event,
.hw_config = core_pmu_hw_config,
perf/x86/intel: Add cpu_(prepare|starting|dying) for core_pmu The core_pmu does not define cpu_* callbacks, which handles allocation of 'struct cpu_hw_events::shared_regs' data, initialization of debug store and PMU_FL_EXCL_CNTRS counters. While this probably won't happen on bare metal, virtual CPU can define x86_pmu.extra_regs together with PMU version 1 and thus be using core_pmu -> using shared_regs data without it being allocated. That could could leave to following panic: BUG: unable to handle kernel NULL pointer dereference at (null) IP: [<ffffffff8152cd4f>] _spin_lock_irqsave+0x1f/0x40 SNIP [<ffffffff81024bd9>] __intel_shared_reg_get_constraints+0x69/0x1e0 [<ffffffff81024deb>] intel_get_event_constraints+0x9b/0x180 [<ffffffff8101e815>] x86_schedule_events+0x75/0x1d0 [<ffffffff810586dc>] ? check_preempt_curr+0x7c/0x90 [<ffffffff810649fe>] ? try_to_wake_up+0x24e/0x3e0 [<ffffffff81064ba2>] ? default_wake_function+0x12/0x20 [<ffffffff8109eb16>] ? autoremove_wake_function+0x16/0x40 [<ffffffff810577e9>] ? __wake_up_common+0x59/0x90 [<ffffffff811a9517>] ? __d_lookup+0xa7/0x150 [<ffffffff8119db5f>] ? do_lookup+0x9f/0x230 [<ffffffff811a993a>] ? dput+0x9a/0x150 [<ffffffff8119c8f5>] ? path_to_nameidata+0x25/0x60 [<ffffffff8119e90a>] ? __link_path_walk+0x7da/0x1000 [<ffffffff8101d8f9>] ? x86_pmu_add+0xb9/0x170 [<ffffffff8101d7a7>] x86_pmu_commit_txn+0x67/0xc0 [<ffffffff811b07b0>] ? mntput_no_expire+0x30/0x110 [<ffffffff8119c731>] ? path_put+0x31/0x40 [<ffffffff8107c297>] ? current_fs_time+0x27/0x30 [<ffffffff8117d170>] ? mem_cgroup_get_reclaim_stat_from_page+0x20/0x70 [<ffffffff8111b7aa>] group_sched_in+0x13a/0x170 [<ffffffff81014a29>] ? sched_clock+0x9/0x10 [<ffffffff8111bac8>] ctx_sched_in+0x2e8/0x330 [<ffffffff8111bb7b>] perf_event_sched_in+0x6b/0xb0 [<ffffffff8111bc36>] perf_event_context_sched_in+0x76/0xc0 [<ffffffff8111eb3b>] perf_event_comm+0x1bb/0x2e0 [<ffffffff81195ee9>] set_task_comm+0x69/0x80 [<ffffffff81195fe1>] setup_new_exec+0xe1/0x2e0 [<ffffffff811ea68e>] load_elf_binary+0x3ce/0x1ab0 Adding cpu_(prepare|starting|dying) for core_pmu to have shared_regs data allocated for core_pmu. AFAICS there's no harm to initialize debug store and PMU_FL_EXCL_CNTRS either for core_pmu. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lkml.kernel.org/r/20150421152623.GC13169@krava.redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-04-21 23:26:23 +08:00
.schedule_events = x86_schedule_events,
.eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
.perfctr = MSR_ARCH_PERFMON_PERFCTR0,
.event_map = intel_pmu_event_map,
.max_events = ARRAY_SIZE(intel_perfmon_event_map),
.apic = 1,
.large_pebs_flags = LARGE_PEBS_FLAGS,
perf/x86/intel: Add cpu_(prepare|starting|dying) for core_pmu The core_pmu does not define cpu_* callbacks, which handles allocation of 'struct cpu_hw_events::shared_regs' data, initialization of debug store and PMU_FL_EXCL_CNTRS counters. While this probably won't happen on bare metal, virtual CPU can define x86_pmu.extra_regs together with PMU version 1 and thus be using core_pmu -> using shared_regs data without it being allocated. That could could leave to following panic: BUG: unable to handle kernel NULL pointer dereference at (null) IP: [<ffffffff8152cd4f>] _spin_lock_irqsave+0x1f/0x40 SNIP [<ffffffff81024bd9>] __intel_shared_reg_get_constraints+0x69/0x1e0 [<ffffffff81024deb>] intel_get_event_constraints+0x9b/0x180 [<ffffffff8101e815>] x86_schedule_events+0x75/0x1d0 [<ffffffff810586dc>] ? check_preempt_curr+0x7c/0x90 [<ffffffff810649fe>] ? try_to_wake_up+0x24e/0x3e0 [<ffffffff81064ba2>] ? default_wake_function+0x12/0x20 [<ffffffff8109eb16>] ? autoremove_wake_function+0x16/0x40 [<ffffffff810577e9>] ? __wake_up_common+0x59/0x90 [<ffffffff811a9517>] ? __d_lookup+0xa7/0x150 [<ffffffff8119db5f>] ? do_lookup+0x9f/0x230 [<ffffffff811a993a>] ? dput+0x9a/0x150 [<ffffffff8119c8f5>] ? path_to_nameidata+0x25/0x60 [<ffffffff8119e90a>] ? __link_path_walk+0x7da/0x1000 [<ffffffff8101d8f9>] ? x86_pmu_add+0xb9/0x170 [<ffffffff8101d7a7>] x86_pmu_commit_txn+0x67/0xc0 [<ffffffff811b07b0>] ? mntput_no_expire+0x30/0x110 [<ffffffff8119c731>] ? path_put+0x31/0x40 [<ffffffff8107c297>] ? current_fs_time+0x27/0x30 [<ffffffff8117d170>] ? mem_cgroup_get_reclaim_stat_from_page+0x20/0x70 [<ffffffff8111b7aa>] group_sched_in+0x13a/0x170 [<ffffffff81014a29>] ? sched_clock+0x9/0x10 [<ffffffff8111bac8>] ctx_sched_in+0x2e8/0x330 [<ffffffff8111bb7b>] perf_event_sched_in+0x6b/0xb0 [<ffffffff8111bc36>] perf_event_context_sched_in+0x76/0xc0 [<ffffffff8111eb3b>] perf_event_comm+0x1bb/0x2e0 [<ffffffff81195ee9>] set_task_comm+0x69/0x80 [<ffffffff81195fe1>] setup_new_exec+0xe1/0x2e0 [<ffffffff811ea68e>] load_elf_binary+0x3ce/0x1ab0 Adding cpu_(prepare|starting|dying) for core_pmu to have shared_regs data allocated for core_pmu. AFAICS there's no harm to initialize debug store and PMU_FL_EXCL_CNTRS either for core_pmu. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lkml.kernel.org/r/20150421152623.GC13169@krava.redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-04-21 23:26:23 +08:00
/*
* Intel PMCs cannot be accessed sanely above 32-bit width,
* so we install an artificial 1<<31 period regardless of
* the generic event period:
*/
.max_period = (1ULL<<31) - 1,
.get_event_constraints = intel_get_event_constraints,
.put_event_constraints = intel_put_event_constraints,
.event_constraints = intel_core_event_constraints,
.guest_get_msrs = core_guest_get_msrs,
.format_attrs = intel_arch_formats_attr,
.events_sysfs_show = intel_event_sysfs_show,
/*
* Virtual (or funny metal) CPU can define x86_pmu.extra_regs
* together with PMU version 1 and thus be using core_pmu with
* shared_regs. We need following callbacks here to allocate
* it properly.
*/
.cpu_prepare = intel_pmu_cpu_prepare,
.cpu_starting = intel_pmu_cpu_starting,
.cpu_dying = intel_pmu_cpu_dying,
perf/x86/intel: Delay memory deallocation until x86_pmu_dead_cpu() intel_pmu_cpu_prepare() allocated memory for ->shared_regs among other members of struct cpu_hw_events. This memory is released in intel_pmu_cpu_dying() which is wrong. The counterpart of the intel_pmu_cpu_prepare() callback is x86_pmu_dead_cpu(). Otherwise if the CPU fails on the UP path between CPUHP_PERF_X86_PREPARE and CPUHP_AP_PERF_X86_STARTING then it won't release the memory but allocate new memory on the next attempt to online the CPU (leaking the old memory). Also, if the CPU down path fails between CPUHP_AP_PERF_X86_STARTING and CPUHP_PERF_X86_PREPARE then the CPU will go back online but never allocate the memory that was released in x86_pmu_dying_cpu(). Make the memory allocation/free symmetrical in regard to the CPU hotplug notifier by moving the deallocation to intel_pmu_cpu_dead(). This started in commit: a7e3ed1e47011 ("perf: Add support for supplementary event registers"). In principle the bug was introduced in v2.6.39 (!), but it will almost certainly not backport cleanly across the big CPU hotplug rewrite between v4.7-v4.15... [ bigeasy: Added patch description. ] [ mingo: Added backporting guidance. ] Reported-by: He Zhe <zhe.he@windriver.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> # With developer hat on Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> # With maintainer hat on Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: acme@kernel.org Cc: bp@alien8.de Cc: hpa@zytor.com Cc: jolsa@kernel.org Cc: kan.liang@linux.intel.com Cc: namhyung@kernel.org Cc: <stable@vger.kernel.org> Fixes: a7e3ed1e47011 ("perf: Add support for supplementary event registers"). Link: https://lkml.kernel.org/r/20181219165350.6s3jvyxbibpvlhtq@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-12-20 00:53:50 +08:00
.cpu_dead = intel_pmu_cpu_dead,
perf/x86: Add check_period PMU callback Vince (and later on Ravi) reported crashes in the BTS code during fuzzing with the following backtrace: general protection fault: 0000 [#1] SMP PTI ... RIP: 0010:perf_prepare_sample+0x8f/0x510 ... Call Trace: <IRQ> ? intel_pmu_drain_bts_buffer+0x194/0x230 intel_pmu_drain_bts_buffer+0x160/0x230 ? tick_nohz_irq_exit+0x31/0x40 ? smp_call_function_single_interrupt+0x48/0xe0 ? call_function_single_interrupt+0xf/0x20 ? call_function_single_interrupt+0xa/0x20 ? x86_schedule_events+0x1a0/0x2f0 ? x86_pmu_commit_txn+0xb4/0x100 ? find_busiest_group+0x47/0x5d0 ? perf_event_set_state.part.42+0x12/0x50 ? perf_mux_hrtimer_restart+0x40/0xb0 intel_pmu_disable_event+0xae/0x100 ? intel_pmu_disable_event+0xae/0x100 x86_pmu_stop+0x7a/0xb0 x86_pmu_del+0x57/0x120 event_sched_out.isra.101+0x83/0x180 group_sched_out.part.103+0x57/0xe0 ctx_sched_out+0x188/0x240 ctx_resched+0xa8/0xd0 __perf_event_enable+0x193/0x1e0 event_function+0x8e/0xc0 remote_function+0x41/0x50 flush_smp_call_function_queue+0x68/0x100 generic_smp_call_function_single_interrupt+0x13/0x30 smp_call_function_single_interrupt+0x3e/0xe0 call_function_single_interrupt+0xf/0x20 </IRQ> The reason is that while event init code does several checks for BTS events and prevents several unwanted config bits for BTS event (like precise_ip), the PERF_EVENT_IOC_PERIOD allows to create BTS event without those checks being done. Following sequence will cause the crash: If we create an 'almost' BTS event with precise_ip and callchains, and it into a BTS event it will crash the perf_prepare_sample() function because precise_ip events are expected to come in with callchain data initialized, but that's not the case for intel_pmu_drain_bts_buffer() caller. Adding a check_period callback to be called before the period is changed via PERF_EVENT_IOC_PERIOD. It will deny the change if the event would become BTS. Plus adding also the limit_period check as well. Reported-by: Vince Weaver <vincent.weaver@maine.edu> Signed-off-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: <stable@vger.kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Cc: Ravi Bangoria <ravi.bangoria@linux.ibm.com> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20190204123532.GA4794@krava Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-04 20:35:32 +08:00
.check_period = intel_pmu_check_period,
perf/x86/intel: Add cpu_(prepare|starting|dying) for core_pmu The core_pmu does not define cpu_* callbacks, which handles allocation of 'struct cpu_hw_events::shared_regs' data, initialization of debug store and PMU_FL_EXCL_CNTRS counters. While this probably won't happen on bare metal, virtual CPU can define x86_pmu.extra_regs together with PMU version 1 and thus be using core_pmu -> using shared_regs data without it being allocated. That could could leave to following panic: BUG: unable to handle kernel NULL pointer dereference at (null) IP: [<ffffffff8152cd4f>] _spin_lock_irqsave+0x1f/0x40 SNIP [<ffffffff81024bd9>] __intel_shared_reg_get_constraints+0x69/0x1e0 [<ffffffff81024deb>] intel_get_event_constraints+0x9b/0x180 [<ffffffff8101e815>] x86_schedule_events+0x75/0x1d0 [<ffffffff810586dc>] ? check_preempt_curr+0x7c/0x90 [<ffffffff810649fe>] ? try_to_wake_up+0x24e/0x3e0 [<ffffffff81064ba2>] ? default_wake_function+0x12/0x20 [<ffffffff8109eb16>] ? autoremove_wake_function+0x16/0x40 [<ffffffff810577e9>] ? __wake_up_common+0x59/0x90 [<ffffffff811a9517>] ? __d_lookup+0xa7/0x150 [<ffffffff8119db5f>] ? do_lookup+0x9f/0x230 [<ffffffff811a993a>] ? dput+0x9a/0x150 [<ffffffff8119c8f5>] ? path_to_nameidata+0x25/0x60 [<ffffffff8119e90a>] ? __link_path_walk+0x7da/0x1000 [<ffffffff8101d8f9>] ? x86_pmu_add+0xb9/0x170 [<ffffffff8101d7a7>] x86_pmu_commit_txn+0x67/0xc0 [<ffffffff811b07b0>] ? mntput_no_expire+0x30/0x110 [<ffffffff8119c731>] ? path_put+0x31/0x40 [<ffffffff8107c297>] ? current_fs_time+0x27/0x30 [<ffffffff8117d170>] ? mem_cgroup_get_reclaim_stat_from_page+0x20/0x70 [<ffffffff8111b7aa>] group_sched_in+0x13a/0x170 [<ffffffff81014a29>] ? sched_clock+0x9/0x10 [<ffffffff8111bac8>] ctx_sched_in+0x2e8/0x330 [<ffffffff8111bb7b>] perf_event_sched_in+0x6b/0xb0 [<ffffffff8111bc36>] perf_event_context_sched_in+0x76/0xc0 [<ffffffff8111eb3b>] perf_event_comm+0x1bb/0x2e0 [<ffffffff81195ee9>] set_task_comm+0x69/0x80 [<ffffffff81195fe1>] setup_new_exec+0xe1/0x2e0 [<ffffffff811ea68e>] load_elf_binary+0x3ce/0x1ab0 Adding cpu_(prepare|starting|dying) for core_pmu to have shared_regs data allocated for core_pmu. AFAICS there's no harm to initialize debug store and PMU_FL_EXCL_CNTRS either for core_pmu. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lkml.kernel.org/r/20150421152623.GC13169@krava.redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-04-21 23:26:23 +08:00
};
static __initconst const struct x86_pmu intel_pmu = {
.name = "Intel",
.handle_irq = intel_pmu_handle_irq,
.disable_all = intel_pmu_disable_all,
.enable_all = intel_pmu_enable_all,
.enable = intel_pmu_enable_event,
.disable = intel_pmu_disable_event,
.add = intel_pmu_add_event,
.del = intel_pmu_del_event,
.read = intel_pmu_read_event,
.hw_config = intel_pmu_hw_config,
perf, x86: Implement initial P4 PMU driver The netburst PMU is way different from the "architectural perfomance monitoring" specification that current CPUs use. P4 uses a tuple of ESCR+CCCR+COUNTER MSR registers to handle perfomance monitoring events. A few implementational details: 1) We need a separate x86_pmu::hw_config helper in struct x86_pmu since register bit-fields are quite different from P6, Core and later cpu series. 2) For the same reason is a x86_pmu::schedule_events helper introduced. 3) hw_perf_event::config consists of packed ESCR+CCCR values. It's allowed since in reality both registers only use a half of their size. Of course before making a real write into a particular MSR we need to unpack the value and extend it to a proper size. 4) The tuple of packed ESCR+CCCR in hw_perf_event::config doesn't describe the memory address of ESCR MSR register so that we need to keep a mapping between these tuples used and available ESCR (various P4 events may use same ESCRs but not simultaneously), for this sake every active event has a per-cpu map of hw_perf_event::idx <--> ESCR addresses. 5) Since hw_perf_event::idx is an offset to counter/control register we need to lift X86_PMC_MAX_GENERIC up, otherwise kernel strips it down to 8 registers and event armed may never be turned off (ie the bit in active_mask is set but the loop never reaches this index to check), thanks to Peter Zijlstra Restrictions: - No cascaded counters support (do we ever need them?) - No dependent events support (so PERF_COUNT_HW_INSTRUCTIONS doesn't work for now) - There are events with same counters which can't work simultaneously (need to use intersected ones due to broken counter 1) - No PERF_COUNT_HW_CACHE_ events yet Todo: - Implement dependent events - Need proper hashing for event opcodes (no linear search, good for debugging stage but not in real loads) - Some events counted during a clock cycle -- need to set threshold for them and count every clock cycle just to get summary statistics (ie to behave the same way as other PMUs do) - Need to swicth to use event_constraints - To support RAW events we need to encode a global list of P4 events into p4_templates - Cache events need to be added Event support status matrix: Event status ----------------------------- cycles works cache-references works cache-misses works branch-misses works bus-cycles partially (does not work on 64bit cpu with HT enabled) instruction doesnt work (needs dependent event [mop tagging]) branches doesnt work Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Stephane Eranian <eranian@google.com> Cc: Robert Richter <robert.richter@amd.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> LKML-Reference: <20100311165439.GB5129@lenovo> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-03-12 00:54:39 +08:00
.schedule_events = x86_schedule_events,
.eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
.perfctr = MSR_ARCH_PERFMON_PERFCTR0,
.event_map = intel_pmu_event_map,
.max_events = ARRAY_SIZE(intel_perfmon_event_map),
.apic = 1,
.large_pebs_flags = LARGE_PEBS_FLAGS,
/*
* Intel PMCs cannot be accessed sanely above 32 bit width,
* so we install an artificial 1<<31 period regardless of
* the generic event period:
*/
.max_period = (1ULL << 31) - 1,
.get_event_constraints = intel_get_event_constraints,
perf: Add support for supplementary event registers Change logs against Andi's original version: - Extends perf_event_attr:config to config{,1,2} (Peter Zijlstra) - Fixed a major event scheduling issue. There cannot be a ref++ on an event that has already done ref++ once and without calling put_constraint() in between. (Stephane Eranian) - Use thread_cpumask for percore allocation. (Lin Ming) - Use MSR names in the extra reg lists. (Lin Ming) - Remove redundant "c = NULL" in intel_percore_constraints - Fix comment of perf_event_attr::config1 Intel Nehalem/Westmere have a special OFFCORE_RESPONSE event that can be used to monitor any offcore accesses from a core. This is a very useful event for various tunings, and it's also needed to implement the generic LLC-* events correctly. Unfortunately this event requires programming a mask in a separate register. And worse this separate register is per core, not per CPU thread. This patch: - Teaches perf_events that OFFCORE_RESPONSE needs extra parameters. The extra parameters are passed by user space in the perf_event_attr::config1 field. - Adds support to the Intel perf_event core to schedule per core resources. This adds fairly generic infrastructure that can be also used for other per core resources. The basic code has is patterned after the similar AMD northbridge constraints code. Thanks to Stephane Eranian who pointed out some problems in the original version and suggested improvements. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1299119690-13991-2-git-send-email-ming.m.lin@intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-03-03 10:34:47 +08:00
.put_event_constraints = intel_put_event_constraints,
.pebs_aliases = intel_pebs_aliases_core2,
.format_attrs = intel_arch3_formats_attr,
.events_sysfs_show = intel_event_sysfs_show,
perf: Add support for supplementary event registers Change logs against Andi's original version: - Extends perf_event_attr:config to config{,1,2} (Peter Zijlstra) - Fixed a major event scheduling issue. There cannot be a ref++ on an event that has already done ref++ once and without calling put_constraint() in between. (Stephane Eranian) - Use thread_cpumask for percore allocation. (Lin Ming) - Use MSR names in the extra reg lists. (Lin Ming) - Remove redundant "c = NULL" in intel_percore_constraints - Fix comment of perf_event_attr::config1 Intel Nehalem/Westmere have a special OFFCORE_RESPONSE event that can be used to monitor any offcore accesses from a core. This is a very useful event for various tunings, and it's also needed to implement the generic LLC-* events correctly. Unfortunately this event requires programming a mask in a separate register. And worse this separate register is per core, not per CPU thread. This patch: - Teaches perf_events that OFFCORE_RESPONSE needs extra parameters. The extra parameters are passed by user space in the perf_event_attr::config1 field. - Adds support to the Intel perf_event core to schedule per core resources. This adds fairly generic infrastructure that can be also used for other per core resources. The basic code has is patterned after the similar AMD northbridge constraints code. Thanks to Stephane Eranian who pointed out some problems in the original version and suggested improvements. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1299119690-13991-2-git-send-email-ming.m.lin@intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-03-03 10:34:47 +08:00
.cpu_prepare = intel_pmu_cpu_prepare,
.cpu_starting = intel_pmu_cpu_starting,
.cpu_dying = intel_pmu_cpu_dying,
perf/x86/intel: Delay memory deallocation until x86_pmu_dead_cpu() intel_pmu_cpu_prepare() allocated memory for ->shared_regs among other members of struct cpu_hw_events. This memory is released in intel_pmu_cpu_dying() which is wrong. The counterpart of the intel_pmu_cpu_prepare() callback is x86_pmu_dead_cpu(). Otherwise if the CPU fails on the UP path between CPUHP_PERF_X86_PREPARE and CPUHP_AP_PERF_X86_STARTING then it won't release the memory but allocate new memory on the next attempt to online the CPU (leaking the old memory). Also, if the CPU down path fails between CPUHP_AP_PERF_X86_STARTING and CPUHP_PERF_X86_PREPARE then the CPU will go back online but never allocate the memory that was released in x86_pmu_dying_cpu(). Make the memory allocation/free symmetrical in regard to the CPU hotplug notifier by moving the deallocation to intel_pmu_cpu_dead(). This started in commit: a7e3ed1e47011 ("perf: Add support for supplementary event registers"). In principle the bug was introduced in v2.6.39 (!), but it will almost certainly not backport cleanly across the big CPU hotplug rewrite between v4.7-v4.15... [ bigeasy: Added patch description. ] [ mingo: Added backporting guidance. ] Reported-by: He Zhe <zhe.he@windriver.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> # With developer hat on Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> # With maintainer hat on Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: acme@kernel.org Cc: bp@alien8.de Cc: hpa@zytor.com Cc: jolsa@kernel.org Cc: kan.liang@linux.intel.com Cc: namhyung@kernel.org Cc: <stable@vger.kernel.org> Fixes: a7e3ed1e47011 ("perf: Add support for supplementary event registers"). Link: https://lkml.kernel.org/r/20181219165350.6s3jvyxbibpvlhtq@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-12-20 00:53:50 +08:00
.cpu_dead = intel_pmu_cpu_dead,
.guest_get_msrs = intel_guest_get_msrs,
.sched_task = intel_pmu_sched_task,
perf/x86: Add check_period PMU callback Vince (and later on Ravi) reported crashes in the BTS code during fuzzing with the following backtrace: general protection fault: 0000 [#1] SMP PTI ... RIP: 0010:perf_prepare_sample+0x8f/0x510 ... Call Trace: <IRQ> ? intel_pmu_drain_bts_buffer+0x194/0x230 intel_pmu_drain_bts_buffer+0x160/0x230 ? tick_nohz_irq_exit+0x31/0x40 ? smp_call_function_single_interrupt+0x48/0xe0 ? call_function_single_interrupt+0xf/0x20 ? call_function_single_interrupt+0xa/0x20 ? x86_schedule_events+0x1a0/0x2f0 ? x86_pmu_commit_txn+0xb4/0x100 ? find_busiest_group+0x47/0x5d0 ? perf_event_set_state.part.42+0x12/0x50 ? perf_mux_hrtimer_restart+0x40/0xb0 intel_pmu_disable_event+0xae/0x100 ? intel_pmu_disable_event+0xae/0x100 x86_pmu_stop+0x7a/0xb0 x86_pmu_del+0x57/0x120 event_sched_out.isra.101+0x83/0x180 group_sched_out.part.103+0x57/0xe0 ctx_sched_out+0x188/0x240 ctx_resched+0xa8/0xd0 __perf_event_enable+0x193/0x1e0 event_function+0x8e/0xc0 remote_function+0x41/0x50 flush_smp_call_function_queue+0x68/0x100 generic_smp_call_function_single_interrupt+0x13/0x30 smp_call_function_single_interrupt+0x3e/0xe0 call_function_single_interrupt+0xf/0x20 </IRQ> The reason is that while event init code does several checks for BTS events and prevents several unwanted config bits for BTS event (like precise_ip), the PERF_EVENT_IOC_PERIOD allows to create BTS event without those checks being done. Following sequence will cause the crash: If we create an 'almost' BTS event with precise_ip and callchains, and it into a BTS event it will crash the perf_prepare_sample() function because precise_ip events are expected to come in with callchain data initialized, but that's not the case for intel_pmu_drain_bts_buffer() caller. Adding a check_period callback to be called before the period is changed via PERF_EVENT_IOC_PERIOD. It will deny the change if the event would become BTS. Plus adding also the limit_period check as well. Reported-by: Vince Weaver <vincent.weaver@maine.edu> Signed-off-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: <stable@vger.kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Cc: Ravi Bangoria <ravi.bangoria@linux.ibm.com> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20190204123532.GA4794@krava Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-04 20:35:32 +08:00
.check_period = intel_pmu_check_period,
.aux_output_match = intel_pmu_aux_output_match,
};
static __init void intel_clovertown_quirk(void)
{
/*
* PEBS is unreliable due to:
*
* AJ67 - PEBS may experience CPL leaks
* AJ68 - PEBS PMI may be delayed by one event
* AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
* AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
*
* AJ67 could be worked around by restricting the OS/USR flags.
* AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
*
* AJ106 could possibly be worked around by not allowing LBR
* usage from PEBS, including the fixup.
* AJ68 could possibly be worked around by always programming
* a pebs_event_reset[0] value and coping with the lost events.
*
* But taken together it might just make sense to not enable PEBS on
* these chips.
*/
pr_warn("PEBS disabled due to CPU errata\n");
x86_pmu.pebs = 0;
x86_pmu.pebs_constraints = NULL;
}
perf/x86/kvm: Avoid unnecessary work in guest filtering KVM added a workaround for PEBS events leaking into guests with commit: 26a4f3c08de4 ("perf/x86: disable PEBS on a guest entry.") This uses the VT entry/exit list to add an extra disable of the PEBS_ENABLE MSR. Intel also added a fix for this issue to microcode updates on Haswell/Broadwell/Skylake. It turns out using the MSR entry/exit list makes VM exits significantly slower. The list is only needed for disabling PEBS, because the GLOBAL_CTRL change gets optimized by KVM into changing the VMCS. Check for the microcode updates that have the microcode fix for leaking PEBS, and disable the extra entry/exit list entry for PEBS_ENABLE. In addition we always clear the GLOBAL_CTRL for the PEBS counter while running in the guest, which is enough to make them never fire at the wrong side of the host/guest transition. The overhead for VM exits with the filtering active with the patch is reduced from 8% to 4%. The microcode patch has already been merged into future platforms. This patch is one-off thing. The quirks is used here. For other old platforms which doesn't have microcode patch and quirks, extra disable of the PEBS_ENABLE MSR is still required. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: David Ahern <dsahern@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: bp@alien8.de Link: https://lkml.kernel.org/r/1549319013-4522-2-git-send-email-kan.liang@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-05 06:23:30 +08:00
static const struct x86_cpu_desc isolation_ucodes[] = {
INTEL_CPU_DESC(INTEL_FAM6_HASWELL, 3, 0x0000001f),
INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L, 1, 0x0000001e),
INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G, 1, 0x00000015),
perf/x86/kvm: Avoid unnecessary work in guest filtering KVM added a workaround for PEBS events leaking into guests with commit: 26a4f3c08de4 ("perf/x86: disable PEBS on a guest entry.") This uses the VT entry/exit list to add an extra disable of the PEBS_ENABLE MSR. Intel also added a fix for this issue to microcode updates on Haswell/Broadwell/Skylake. It turns out using the MSR entry/exit list makes VM exits significantly slower. The list is only needed for disabling PEBS, because the GLOBAL_CTRL change gets optimized by KVM into changing the VMCS. Check for the microcode updates that have the microcode fix for leaking PEBS, and disable the extra entry/exit list entry for PEBS_ENABLE. In addition we always clear the GLOBAL_CTRL for the PEBS counter while running in the guest, which is enough to make them never fire at the wrong side of the host/guest transition. The overhead for VM exits with the filtering active with the patch is reduced from 8% to 4%. The microcode patch has already been merged into future platforms. This patch is one-off thing. The quirks is used here. For other old platforms which doesn't have microcode patch and quirks, extra disable of the PEBS_ENABLE MSR is still required. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: David Ahern <dsahern@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: bp@alien8.de Link: https://lkml.kernel.org/r/1549319013-4522-2-git-send-email-kan.liang@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-05 06:23:30 +08:00
INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X, 2, 0x00000037),
INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X, 4, 0x0000000a),
INTEL_CPU_DESC(INTEL_FAM6_BROADWELL, 4, 0x00000023),
INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G, 1, 0x00000014),
INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 2, 0x00000010),
INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 3, 0x07000009),
INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 4, 0x0f000009),
INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 5, 0x0e000002),
perf/x86/kvm: Avoid unnecessary work in guest filtering KVM added a workaround for PEBS events leaking into guests with commit: 26a4f3c08de4 ("perf/x86: disable PEBS on a guest entry.") This uses the VT entry/exit list to add an extra disable of the PEBS_ENABLE MSR. Intel also added a fix for this issue to microcode updates on Haswell/Broadwell/Skylake. It turns out using the MSR entry/exit list makes VM exits significantly slower. The list is only needed for disabling PEBS, because the GLOBAL_CTRL change gets optimized by KVM into changing the VMCS. Check for the microcode updates that have the microcode fix for leaking PEBS, and disable the extra entry/exit list entry for PEBS_ENABLE. In addition we always clear the GLOBAL_CTRL for the PEBS counter while running in the guest, which is enough to make them never fire at the wrong side of the host/guest transition. The overhead for VM exits with the filtering active with the patch is reduced from 8% to 4%. The microcode patch has already been merged into future platforms. This patch is one-off thing. The quirks is used here. For other old platforms which doesn't have microcode patch and quirks, extra disable of the PEBS_ENABLE MSR is still required. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: David Ahern <dsahern@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: bp@alien8.de Link: https://lkml.kernel.org/r/1549319013-4522-2-git-send-email-kan.liang@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-05 06:23:30 +08:00
INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X, 2, 0x0b000014),
INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 3, 0x00000021),
INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 4, 0x00000000),
INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L, 3, 0x0000007c),
INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE, 3, 0x0000007c),
INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 9, 0x0000004e),
INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 9, 0x0000004e),
INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 10, 0x0000004e),
INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 11, 0x0000004e),
INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 12, 0x0000004e),
INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 10, 0x0000004e),
INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 11, 0x0000004e),
INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 12, 0x0000004e),
INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 13, 0x0000004e),
perf/x86/kvm: Avoid unnecessary work in guest filtering KVM added a workaround for PEBS events leaking into guests with commit: 26a4f3c08de4 ("perf/x86: disable PEBS on a guest entry.") This uses the VT entry/exit list to add an extra disable of the PEBS_ENABLE MSR. Intel also added a fix for this issue to microcode updates on Haswell/Broadwell/Skylake. It turns out using the MSR entry/exit list makes VM exits significantly slower. The list is only needed for disabling PEBS, because the GLOBAL_CTRL change gets optimized by KVM into changing the VMCS. Check for the microcode updates that have the microcode fix for leaking PEBS, and disable the extra entry/exit list entry for PEBS_ENABLE. In addition we always clear the GLOBAL_CTRL for the PEBS counter while running in the guest, which is enough to make them never fire at the wrong side of the host/guest transition. The overhead for VM exits with the filtering active with the patch is reduced from 8% to 4%. The microcode patch has already been merged into future platforms. This patch is one-off thing. The quirks is used here. For other old platforms which doesn't have microcode patch and quirks, extra disable of the PEBS_ENABLE MSR is still required. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: David Ahern <dsahern@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: bp@alien8.de Link: https://lkml.kernel.org/r/1549319013-4522-2-git-send-email-kan.liang@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-05 06:23:30 +08:00
{}
};
static void intel_check_pebs_isolation(void)
{
x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
}
static __init void intel_pebs_isolation_quirk(void)
{
WARN_ON_ONCE(x86_pmu.check_microcode);
x86_pmu.check_microcode = intel_check_pebs_isolation;
intel_check_pebs_isolation();
}
static const struct x86_cpu_desc pebs_ucodes[] = {
INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE, 7, 0x00000028),
INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X, 6, 0x00000618),
INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X, 7, 0x0000070c),
{}
};
static bool intel_snb_pebs_broken(void)
{
return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
}
static void intel_snb_check_microcode(void)
{
if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
return;
/*
* Serialized by the microcode lock..
*/
if (x86_pmu.pebs_broken) {
pr_info("PEBS enabled due to microcode update\n");
x86_pmu.pebs_broken = 0;
} else {
pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
x86_pmu.pebs_broken = 1;
}
}
perf/x86/intel: Fix MSR_LAST_BRANCH_FROM_x bug when no TSX Intel's SDM states that bits 61:62 in MSR_LAST_BRANCH_FROM_x are the TSX flags for formats with LBR_TSX flags (i.e. LBR_FORMAT_EIP_EFLAGS2). However, when the CPU has TSX support deactivated, bits 61:62 actually behave as follows: - For wrmsr(), bits 61:62 are considered part of the sign extension. - When capturing branches, the LBR hw will always clear bits 61:62. regardless of the sign extension. Therefore, if: 1) LBR has TSX format. 2) CPU has no TSX support enabled. ... then any value passed to wrmsr() must be sign extended to 63 bits and any value from rdmsr() must be converted to have a sign extension of 61 bits, ignoring the values at TSX flags. This bug was masked by the work-around to the Intel's CPU bug: BJ94. "LBR May Contain Incorrect Information When Using FREEZE_LBRS_ON_PMI" in Document Number: 324643-037US. The aforementioned work-around uses hw flags to filter out all kernel branches, limiting LBR callstack to user level execution only. Since user addresses are not sign extended, they do not trigger the wrmsr() bug in MSR_LAST_BRANCH_FROM_x when saved/restored at context switch. To verify the hw bug: $ perf record -b -e cycles sleep 1 $ rdmsr -p 0 0x680 0x1fffffffb0b9b0cc $ wrmsr -p 0 0x680 0x1fffffffb0b9b0cc write(): Input/output error The quirk for LBR_FROM_ MSRs is required before calls to wrmsrl() and after rdmsrl(). This patch introduces it for wrmsrl()'s done for testing LBR support. Future patch in series adds the quirk for context switch, that would be required if LBR callstack is to be enabled for ring 0. Signed-off-by: David Carrillo-Cisneros <davidcc@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Reviewed-by: Andi Kleen <ak@linux.intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Kan Liang <kan.liang@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Link: http://lkml.kernel.org/r/1466533874-52003-3-git-send-email-davidcc@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-22 02:31:11 +08:00
static bool is_lbr_from(unsigned long msr)
{
unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
}
/*
* Under certain circumstances, access certain MSR may cause #GP.
* The function tests if the input MSR can be safely accessed.
*/
static bool check_msr(unsigned long msr, u64 mask)
{
u64 val_old, val_new, val_tmp;
/*
* Disable the check for real HW, so we don't
* mess with potentionaly enabled registers:
*/
if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
return true;
/*
* Read the current value, change it and read it back to see if it
* matches, this is needed to detect certain hardware emulators
* (qemu/kvm) that don't trap on the MSR access and always return 0s.
*/
if (rdmsrl_safe(msr, &val_old))
return false;
/*
* Only change the bits which can be updated by wrmsrl.
*/
val_tmp = val_old ^ mask;
perf/x86/intel: Fix MSR_LAST_BRANCH_FROM_x bug when no TSX Intel's SDM states that bits 61:62 in MSR_LAST_BRANCH_FROM_x are the TSX flags for formats with LBR_TSX flags (i.e. LBR_FORMAT_EIP_EFLAGS2). However, when the CPU has TSX support deactivated, bits 61:62 actually behave as follows: - For wrmsr(), bits 61:62 are considered part of the sign extension. - When capturing branches, the LBR hw will always clear bits 61:62. regardless of the sign extension. Therefore, if: 1) LBR has TSX format. 2) CPU has no TSX support enabled. ... then any value passed to wrmsr() must be sign extended to 63 bits and any value from rdmsr() must be converted to have a sign extension of 61 bits, ignoring the values at TSX flags. This bug was masked by the work-around to the Intel's CPU bug: BJ94. "LBR May Contain Incorrect Information When Using FREEZE_LBRS_ON_PMI" in Document Number: 324643-037US. The aforementioned work-around uses hw flags to filter out all kernel branches, limiting LBR callstack to user level execution only. Since user addresses are not sign extended, they do not trigger the wrmsr() bug in MSR_LAST_BRANCH_FROM_x when saved/restored at context switch. To verify the hw bug: $ perf record -b -e cycles sleep 1 $ rdmsr -p 0 0x680 0x1fffffffb0b9b0cc $ wrmsr -p 0 0x680 0x1fffffffb0b9b0cc write(): Input/output error The quirk for LBR_FROM_ MSRs is required before calls to wrmsrl() and after rdmsrl(). This patch introduces it for wrmsrl()'s done for testing LBR support. Future patch in series adds the quirk for context switch, that would be required if LBR callstack is to be enabled for ring 0. Signed-off-by: David Carrillo-Cisneros <davidcc@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Reviewed-by: Andi Kleen <ak@linux.intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Kan Liang <kan.liang@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Link: http://lkml.kernel.org/r/1466533874-52003-3-git-send-email-davidcc@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-22 02:31:11 +08:00
if (is_lbr_from(msr))
val_tmp = lbr_from_signext_quirk_wr(val_tmp);
if (wrmsrl_safe(msr, val_tmp) ||
rdmsrl_safe(msr, &val_new))
return false;
perf/x86/intel: Fix MSR_LAST_BRANCH_FROM_x bug when no TSX Intel's SDM states that bits 61:62 in MSR_LAST_BRANCH_FROM_x are the TSX flags for formats with LBR_TSX flags (i.e. LBR_FORMAT_EIP_EFLAGS2). However, when the CPU has TSX support deactivated, bits 61:62 actually behave as follows: - For wrmsr(), bits 61:62 are considered part of the sign extension. - When capturing branches, the LBR hw will always clear bits 61:62. regardless of the sign extension. Therefore, if: 1) LBR has TSX format. 2) CPU has no TSX support enabled. ... then any value passed to wrmsr() must be sign extended to 63 bits and any value from rdmsr() must be converted to have a sign extension of 61 bits, ignoring the values at TSX flags. This bug was masked by the work-around to the Intel's CPU bug: BJ94. "LBR May Contain Incorrect Information When Using FREEZE_LBRS_ON_PMI" in Document Number: 324643-037US. The aforementioned work-around uses hw flags to filter out all kernel branches, limiting LBR callstack to user level execution only. Since user addresses are not sign extended, they do not trigger the wrmsr() bug in MSR_LAST_BRANCH_FROM_x when saved/restored at context switch. To verify the hw bug: $ perf record -b -e cycles sleep 1 $ rdmsr -p 0 0x680 0x1fffffffb0b9b0cc $ wrmsr -p 0 0x680 0x1fffffffb0b9b0cc write(): Input/output error The quirk for LBR_FROM_ MSRs is required before calls to wrmsrl() and after rdmsrl(). This patch introduces it for wrmsrl()'s done for testing LBR support. Future patch in series adds the quirk for context switch, that would be required if LBR callstack is to be enabled for ring 0. Signed-off-by: David Carrillo-Cisneros <davidcc@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Reviewed-by: Andi Kleen <ak@linux.intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Kan Liang <kan.liang@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Link: http://lkml.kernel.org/r/1466533874-52003-3-git-send-email-davidcc@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-22 02:31:11 +08:00
/*
* Quirk only affects validation in wrmsr(), so wrmsrl()'s value
* should equal rdmsrl()'s even with the quirk.
*/
if (val_new != val_tmp)
return false;
perf/x86/intel: Fix MSR_LAST_BRANCH_FROM_x bug when no TSX Intel's SDM states that bits 61:62 in MSR_LAST_BRANCH_FROM_x are the TSX flags for formats with LBR_TSX flags (i.e. LBR_FORMAT_EIP_EFLAGS2). However, when the CPU has TSX support deactivated, bits 61:62 actually behave as follows: - For wrmsr(), bits 61:62 are considered part of the sign extension. - When capturing branches, the LBR hw will always clear bits 61:62. regardless of the sign extension. Therefore, if: 1) LBR has TSX format. 2) CPU has no TSX support enabled. ... then any value passed to wrmsr() must be sign extended to 63 bits and any value from rdmsr() must be converted to have a sign extension of 61 bits, ignoring the values at TSX flags. This bug was masked by the work-around to the Intel's CPU bug: BJ94. "LBR May Contain Incorrect Information When Using FREEZE_LBRS_ON_PMI" in Document Number: 324643-037US. The aforementioned work-around uses hw flags to filter out all kernel branches, limiting LBR callstack to user level execution only. Since user addresses are not sign extended, they do not trigger the wrmsr() bug in MSR_LAST_BRANCH_FROM_x when saved/restored at context switch. To verify the hw bug: $ perf record -b -e cycles sleep 1 $ rdmsr -p 0 0x680 0x1fffffffb0b9b0cc $ wrmsr -p 0 0x680 0x1fffffffb0b9b0cc write(): Input/output error The quirk for LBR_FROM_ MSRs is required before calls to wrmsrl() and after rdmsrl(). This patch introduces it for wrmsrl()'s done for testing LBR support. Future patch in series adds the quirk for context switch, that would be required if LBR callstack is to be enabled for ring 0. Signed-off-by: David Carrillo-Cisneros <davidcc@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Stephane Eranian <eranian@google.com> Reviewed-by: Andi Kleen <ak@linux.intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Kan Liang <kan.liang@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Link: http://lkml.kernel.org/r/1466533874-52003-3-git-send-email-davidcc@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-22 02:31:11 +08:00
if (is_lbr_from(msr))
val_old = lbr_from_signext_quirk_wr(val_old);
/* Here it's sure that the MSR can be safely accessed.
* Restore the old value and return.
*/
wrmsrl(msr, val_old);
return true;
}
static __init void intel_sandybridge_quirk(void)
{
x86_pmu.check_microcode = intel_snb_check_microcode;
cpus_read_lock();
intel_snb_check_microcode();
cpus_read_unlock();
}
static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
};
static __init void intel_arch_events_quirk(void)
{
int bit;
/* disable event that reported as not presend by cpuid */
for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
pr_warn("CPUID marked event: \'%s\' unavailable\n",
intel_arch_events_map[bit].name);
}
}
static __init void intel_nehalem_quirk(void)
{
union cpuid10_ebx ebx;
ebx.full = x86_pmu.events_maskl;
if (ebx.split.no_branch_misses_retired) {
/*
* Erratum AAJ80 detected, we work it around by using
* the BR_MISP_EXEC.ANY event. This will over-count
* branch-misses, but it's still much better than the
* architectural event which is often completely bogus:
*/
intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
ebx.split.no_branch_misses_retired = 0;
x86_pmu.events_maskl = ebx.full;
pr_info("CPU erratum AAJ80 worked around\n");
}
}
static const struct x86_cpu_desc counter_freezing_ucodes[] = {
INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT, 2, 0x0000000e),
INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT, 9, 0x0000002e),
INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT, 10, 0x00000008),
INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_D, 1, 0x00000028),
INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS, 1, 0x00000028),
INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS, 8, 0x00000006),
{}
};
static bool intel_counter_freezing_broken(void)
{
return !x86_cpu_has_min_microcode_rev(counter_freezing_ucodes);
}
static __init void intel_counter_freezing_quirk(void)
{
/* Check if it's already disabled */
if (disable_counter_freezing)
return;
/*
* If the system starts with the wrong ucode, leave the
* counter-freezing feature permanently disabled.
*/
if (intel_counter_freezing_broken()) {
pr_info("PMU counter freezing disabled due to CPU errata,"
"please upgrade microcode\n");
x86_pmu.counter_freezing = false;
x86_pmu.handle_irq = intel_pmu_handle_irq;
}
}
/*
* enable software workaround for errata:
* SNB: BJ122
* IVB: BV98
* HSW: HSD29
*
* Only needed when HT is enabled. However detecting
* if HT is enabled is difficult (model specific). So instead,
* we enable the workaround in the early boot, and verify if
* it is needed in a later initcall phase once we have valid
* topology information to check if HT is actually enabled
*/
static __init void intel_ht_bug(void)
{
x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
x86_pmu.start_scheduling = intel_start_scheduling;
x86_pmu.commit_scheduling = intel_commit_scheduling;
x86_pmu.stop_scheduling = intel_stop_scheduling;
}
EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3");
EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82")
perf/x86/intel: Add Haswell TSX event aliases Add TSX event aliases, and export them from the kernel to perf. These are used by perf stat -T and to allow more user friendly access to events. The events are designed to be fairly generic and may also apply to other architectures implementing HTM. They all cover common situations that happens during tuning of transactional code. For Haswell we have to separate the HLE and RTM events, as they are separate in the PMU. This adds the following events: tx-start Count start transaction (used by perf stat -T) tx-commit Count commit of transaction tx-abort Count all aborts tx-conflict Count aborts due to conflict with another CPU. tx-capacity Count capacity aborts (transaction too large) Then matching el-* events for HLE cycles-t Transactional cycles (used by perf stat -T) * also exists on POWER8 cycles-ct Transactional cycles commited (used by perf stat -T) * according to Michael Ellerman POWER8 has a cycles-transactional-committed, * perf stat -T handles both cases Note for useful abort profiling often precise has to be set, as Haswell can only report the point inside the transaction with precise=2. For some classes of aborts, like conflicts, this is not needed, as it makes more sense to look at the complete critical section. This gives a clean set of generalized events to examine transaction success and aborts. Haswell has additional events for TSX, but those are more specialized for very specific situations. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1378438661-24765-4-git-send-email-andi@firstfloor.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-09-06 11:37:40 +08:00
/* Haswell special events */
EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1");
EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2");
EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4");
EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2");
EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1");
EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1");
EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2");
EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4");
EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2");
EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1");
EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1");
EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1");
perf/x86/intel: Add Haswell TSX event aliases Add TSX event aliases, and export them from the kernel to perf. These are used by perf stat -T and to allow more user friendly access to events. The events are designed to be fairly generic and may also apply to other architectures implementing HTM. They all cover common situations that happens during tuning of transactional code. For Haswell we have to separate the HLE and RTM events, as they are separate in the PMU. This adds the following events: tx-start Count start transaction (used by perf stat -T) tx-commit Count commit of transaction tx-abort Count all aborts tx-conflict Count aborts due to conflict with another CPU. tx-capacity Count capacity aborts (transaction too large) Then matching el-* events for HLE cycles-t Transactional cycles (used by perf stat -T) * also exists on POWER8 cycles-ct Transactional cycles commited (used by perf stat -T) * according to Michael Ellerman POWER8 has a cycles-transactional-committed, * perf stat -T handles both cases Note for useful abort profiling often precise has to be set, as Haswell can only report the point inside the transaction with precise=2. For some classes of aborts, like conflicts, this is not needed, as it makes more sense to look at the complete critical section. This gives a clean set of generalized events to examine transaction success and aborts. Haswell has additional events for TSX, but those are more specialized for very specific situations. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1378438661-24765-4-git-send-email-andi@firstfloor.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-09-06 11:37:40 +08:00
static struct attribute *hsw_events_attrs[] = {
EVENT_PTR(td_slots_issued),
EVENT_PTR(td_slots_retired),
EVENT_PTR(td_fetch_bubbles),
EVENT_PTR(td_total_slots),
EVENT_PTR(td_total_slots_scale),
EVENT_PTR(td_recovery_bubbles),
EVENT_PTR(td_recovery_bubbles_scale),
NULL
};
static struct attribute *hsw_mem_events_attrs[] = {
EVENT_PTR(mem_ld_hsw),
EVENT_PTR(mem_st_hsw),
NULL,
};
static struct attribute *hsw_tsx_events_attrs[] = {
perf/x86/intel: Add Haswell TSX event aliases Add TSX event aliases, and export them from the kernel to perf. These are used by perf stat -T and to allow more user friendly access to events. The events are designed to be fairly generic and may also apply to other architectures implementing HTM. They all cover common situations that happens during tuning of transactional code. For Haswell we have to separate the HLE and RTM events, as they are separate in the PMU. This adds the following events: tx-start Count start transaction (used by perf stat -T) tx-commit Count commit of transaction tx-abort Count all aborts tx-conflict Count aborts due to conflict with another CPU. tx-capacity Count capacity aborts (transaction too large) Then matching el-* events for HLE cycles-t Transactional cycles (used by perf stat -T) * also exists on POWER8 cycles-ct Transactional cycles commited (used by perf stat -T) * according to Michael Ellerman POWER8 has a cycles-transactional-committed, * perf stat -T handles both cases Note for useful abort profiling often precise has to be set, as Haswell can only report the point inside the transaction with precise=2. For some classes of aborts, like conflicts, this is not needed, as it makes more sense to look at the complete critical section. This gives a clean set of generalized events to examine transaction success and aborts. Haswell has additional events for TSX, but those are more specialized for very specific situations. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1378438661-24765-4-git-send-email-andi@firstfloor.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-09-06 11:37:40 +08:00
EVENT_PTR(tx_start),
EVENT_PTR(tx_commit),
EVENT_PTR(tx_abort),
EVENT_PTR(tx_capacity),
EVENT_PTR(tx_conflict),
EVENT_PTR(el_start),
EVENT_PTR(el_commit),
EVENT_PTR(el_abort),
EVENT_PTR(el_capacity),
EVENT_PTR(el_conflict),
EVENT_PTR(cycles_t),
EVENT_PTR(cycles_ct),
NULL
};
perf/x86/intel: Add Icelake support Add Icelake core PMU perf code, including constraint tables and the main enable code. Icelake expanded the generic counters to always 8 even with HT on, but a range of events cannot be scheduled on the extra 4 counters. Add new constraint ranges to describe this to the scheduler. The number of constraints that need to be checked is larger now than with earlier CPUs. At some point we may need a new data structure to look them up more efficiently than with linear search. So far it still seems to be acceptable however. Icelake added a new fixed counter SLOTS. Full support for it is added later in the patch series. The cache events table is identical to Skylake. Compare to PEBS instruction event on generic counter, fixed counter 0 has less skid. Force instruction:ppp always in fixed counter 0. Originally-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: jolsa@kernel.org Link: https://lkml.kernel.org/r/20190402194509.2832-9-kan.liang@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-03 03:45:05 +08:00
EVENT_ATTR_STR(tx-capacity-read, tx_capacity_read, "event=0x54,umask=0x80");
EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
EVENT_ATTR_STR(el-capacity-read, el_capacity_read, "event=0x54,umask=0x80");
EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
static struct attribute *icl_events_attrs[] = {
EVENT_PTR(mem_ld_hsw),
EVENT_PTR(mem_st_hsw),
NULL,
};
static struct attribute *icl_tsx_events_attrs[] = {
EVENT_PTR(tx_start),
EVENT_PTR(tx_abort),
EVENT_PTR(tx_commit),
EVENT_PTR(tx_capacity_read),
EVENT_PTR(tx_capacity_write),
EVENT_PTR(tx_conflict),
EVENT_PTR(el_start),
EVENT_PTR(el_abort),
EVENT_PTR(el_commit),
EVENT_PTR(el_capacity_read),
EVENT_PTR(el_capacity_write),
EVENT_PTR(el_conflict),
EVENT_PTR(cycles_t),
EVENT_PTR(cycles_ct),
NULL,
};
perf/x86: Add sysfs entry to freeze counters on SMI Currently, the SMIs are visible to all performance counters, because many users want to measure everything including SMIs. But in some cases, the SMI cycles should not be counted - for example, to calculate the cost of an SMI itself. So a knob is needed. When setting FREEZE_WHILE_SMM bit in IA32_DEBUGCTL, all performance counters will be effected. There is no way to do per-counter freeze on SMI. So it should not use the per-event interface (e.g. ioctl or event attribute) to set FREEZE_WHILE_SMM bit. Adds sysfs entry /sys/device/cpu/freeze_on_smi to set FREEZE_WHILE_SMM bit in IA32_DEBUGCTL. When set, freezes perfmon and trace messages while in SMM. Value has to be 0 or 1. It will be applied to all processors. Also serialize the entire setting so we don't get multiple concurrent threads trying to update to different values. Signed-off-by: Kan Liang <Kan.liang@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: bp@alien8.de Cc: jolsa@kernel.org Link: http://lkml.kernel.org/r/1494600673-244667-1-git-send-email-kan.liang@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-05-12 22:51:13 +08:00
static ssize_t freeze_on_smi_show(struct device *cdev,
struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
}
static DEFINE_MUTEX(freeze_on_smi_mutex);
static ssize_t freeze_on_smi_store(struct device *cdev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long val;
ssize_t ret;
ret = kstrtoul(buf, 0, &val);
if (ret)
return ret;
if (val > 1)
return -EINVAL;
mutex_lock(&freeze_on_smi_mutex);
if (x86_pmu.attr_freeze_on_smi == val)
goto done;
x86_pmu.attr_freeze_on_smi = val;
get_online_cpus();
on_each_cpu(flip_smm_bit, &val, 1);
put_online_cpus();
done:
mutex_unlock(&freeze_on_smi_mutex);
return count;
}
perf/x86/intel: Force resched when TFA sysctl is modified This patch provides guarantee to the sysadmin that when TFA is disabled, no PMU event is using PMC3 when the echo command returns. Vice-Versa, when TFA is enabled, PMU can use PMC3 immediately (to eliminate possible multiplexing). $ perf stat -a -I 1000 --no-merge -e branches,branches,branches,branches 1.000123979 125,768,725,208 branches 1.000562520 125,631,000,456 branches 1.000942898 125,487,114,291 branches 1.001333316 125,323,363,620 branches 2.004721306 125,514,968,546 branches 2.005114560 125,511,110,861 branches 2.005482722 125,510,132,724 branches 2.005851245 125,508,967,086 branches 3.006323475 125,166,570,648 branches 3.006709247 125,165,650,056 branches 3.007086605 125,164,639,142 branches 3.007459298 125,164,402,912 branches 4.007922698 125,045,577,140 branches 4.008310775 125,046,804,324 branches 4.008670814 125,048,265,111 branches 4.009039251 125,048,677,611 branches 5.009503373 125,122,240,217 branches 5.009897067 125,122,450,517 branches Then on another connection, sysadmin does: $ echo 1 >/sys/devices/cpu/allow_tsx_force_abort Then perf stat adjusts the events immediately: 5.010286029 125,121,393,483 branches 5.010646308 125,120,556,786 branches 6.011113588 124,963,351,832 branches 6.011510331 124,964,267,566 branches 6.011889913 124,964,829,130 branches 6.012262996 124,965,841,156 branches 7.012708299 124,419,832,234 branches [79.69%] 7.012847908 124,416,363,853 branches [79.73%] 7.013225462 124,400,723,712 branches [79.73%] 7.013598191 124,376,154,434 branches [79.70%] 8.014089834 124,250,862,693 branches [74.98%] 8.014481363 124,267,539,139 branches [74.94%] 8.014856006 124,259,519,786 branches [74.98%] 8.014980848 124,225,457,969 branches [75.04%] 9.015464576 124,204,235,423 branches [75.03%] 9.015858587 124,204,988,490 branches [75.04%] 9.016243680 124,220,092,486 branches [74.99%] 9.016620104 124,231,260,146 branches [74.94%] And vice-versa if the syadmin does: $ echo 0 >/sys/devices/cpu/allow_tsx_force_abort Events are again spread over the 4 counters: 10.017096277 124,276,230,565 branches [74.96%] 10.017237209 124,228,062,171 branches [75.03%] 10.017478637 124,178,780,626 branches [75.03%] 10.017853402 124,198,316,177 branches [75.03%] 11.018334423 124,602,418,933 branches [85.40%] 11.018722584 124,602,921,320 branches [85.42%] 11.019095621 124,603,956,093 branches [85.42%] 11.019467742 124,595,273,783 branches [85.42%] 12.019945736 125,110,114,864 branches 12.020330764 125,109,334,472 branches 12.020688740 125,109,818,865 branches 12.021054020 125,108,594,014 branches 13.021516774 125,109,164,018 branches 13.021903640 125,108,794,510 branches 13.022270770 125,107,756,978 branches 13.022630819 125,109,380,471 branches 14.023114989 125,133,140,817 branches 14.023501880 125,133,785,858 branches 14.023868339 125,133,852,700 branches Signed-off-by: Stephane Eranian <eranian@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: kan.liang@intel.com Cc: nelson.dsouza@intel.com Cc: tonyj@suse.com Link: https://lkml.kernel.org/r/20190408173252.37932-3-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-09 01:32:52 +08:00
static void update_tfa_sched(void *ignored)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
/*
* check if PMC3 is used
* and if so force schedule out for all event types all contexts
*/
if (test_bit(3, cpuc->active_mask))
perf_pmu_resched(x86_get_pmu());
}
static ssize_t show_sysctl_tfa(struct device *cdev,
struct device_attribute *attr,
char *buf)
{
return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
}
static ssize_t set_sysctl_tfa(struct device *cdev,
struct device_attribute *attr,
const char *buf, size_t count)
{
bool val;
ssize_t ret;
ret = kstrtobool(buf, &val);
if (ret)
return ret;
/* no change */
if (val == allow_tsx_force_abort)
return count;
allow_tsx_force_abort = val;
get_online_cpus();
on_each_cpu(update_tfa_sched, NULL, 1);
put_online_cpus();
return count;
}
perf/x86: Add sysfs entry to freeze counters on SMI Currently, the SMIs are visible to all performance counters, because many users want to measure everything including SMIs. But in some cases, the SMI cycles should not be counted - for example, to calculate the cost of an SMI itself. So a knob is needed. When setting FREEZE_WHILE_SMM bit in IA32_DEBUGCTL, all performance counters will be effected. There is no way to do per-counter freeze on SMI. So it should not use the per-event interface (e.g. ioctl or event attribute) to set FREEZE_WHILE_SMM bit. Adds sysfs entry /sys/device/cpu/freeze_on_smi to set FREEZE_WHILE_SMM bit in IA32_DEBUGCTL. When set, freezes perfmon and trace messages while in SMM. Value has to be 0 or 1. It will be applied to all processors. Also serialize the entire setting so we don't get multiple concurrent threads trying to update to different values. Signed-off-by: Kan Liang <Kan.liang@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: bp@alien8.de Cc: jolsa@kernel.org Link: http://lkml.kernel.org/r/1494600673-244667-1-git-send-email-kan.liang@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-05-12 22:51:13 +08:00
static DEVICE_ATTR_RW(freeze_on_smi);
static ssize_t branches_show(struct device *cdev,
struct device_attribute *attr,
char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
}
static DEVICE_ATTR_RO(branches);
static struct attribute *lbr_attrs[] = {
&dev_attr_branches.attr,
NULL
};
static char pmu_name_str[30];
static ssize_t pmu_name_show(struct device *cdev,
struct device_attribute *attr,
char *buf)
{
return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
}
static DEVICE_ATTR_RO(pmu_name);
static struct attribute *intel_pmu_caps_attrs[] = {
&dev_attr_pmu_name.attr,
NULL
};
perf/x86/intel: Force resched when TFA sysctl is modified This patch provides guarantee to the sysadmin that when TFA is disabled, no PMU event is using PMC3 when the echo command returns. Vice-Versa, when TFA is enabled, PMU can use PMC3 immediately (to eliminate possible multiplexing). $ perf stat -a -I 1000 --no-merge -e branches,branches,branches,branches 1.000123979 125,768,725,208 branches 1.000562520 125,631,000,456 branches 1.000942898 125,487,114,291 branches 1.001333316 125,323,363,620 branches 2.004721306 125,514,968,546 branches 2.005114560 125,511,110,861 branches 2.005482722 125,510,132,724 branches 2.005851245 125,508,967,086 branches 3.006323475 125,166,570,648 branches 3.006709247 125,165,650,056 branches 3.007086605 125,164,639,142 branches 3.007459298 125,164,402,912 branches 4.007922698 125,045,577,140 branches 4.008310775 125,046,804,324 branches 4.008670814 125,048,265,111 branches 4.009039251 125,048,677,611 branches 5.009503373 125,122,240,217 branches 5.009897067 125,122,450,517 branches Then on another connection, sysadmin does: $ echo 1 >/sys/devices/cpu/allow_tsx_force_abort Then perf stat adjusts the events immediately: 5.010286029 125,121,393,483 branches 5.010646308 125,120,556,786 branches 6.011113588 124,963,351,832 branches 6.011510331 124,964,267,566 branches 6.011889913 124,964,829,130 branches 6.012262996 124,965,841,156 branches 7.012708299 124,419,832,234 branches [79.69%] 7.012847908 124,416,363,853 branches [79.73%] 7.013225462 124,400,723,712 branches [79.73%] 7.013598191 124,376,154,434 branches [79.70%] 8.014089834 124,250,862,693 branches [74.98%] 8.014481363 124,267,539,139 branches [74.94%] 8.014856006 124,259,519,786 branches [74.98%] 8.014980848 124,225,457,969 branches [75.04%] 9.015464576 124,204,235,423 branches [75.03%] 9.015858587 124,204,988,490 branches [75.04%] 9.016243680 124,220,092,486 branches [74.99%] 9.016620104 124,231,260,146 branches [74.94%] And vice-versa if the syadmin does: $ echo 0 >/sys/devices/cpu/allow_tsx_force_abort Events are again spread over the 4 counters: 10.017096277 124,276,230,565 branches [74.96%] 10.017237209 124,228,062,171 branches [75.03%] 10.017478637 124,178,780,626 branches [75.03%] 10.017853402 124,198,316,177 branches [75.03%] 11.018334423 124,602,418,933 branches [85.40%] 11.018722584 124,602,921,320 branches [85.42%] 11.019095621 124,603,956,093 branches [85.42%] 11.019467742 124,595,273,783 branches [85.42%] 12.019945736 125,110,114,864 branches 12.020330764 125,109,334,472 branches 12.020688740 125,109,818,865 branches 12.021054020 125,108,594,014 branches 13.021516774 125,109,164,018 branches 13.021903640 125,108,794,510 branches 13.022270770 125,107,756,978 branches 13.022630819 125,109,380,471 branches 14.023114989 125,133,140,817 branches 14.023501880 125,133,785,858 branches 14.023868339 125,133,852,700 branches Signed-off-by: Stephane Eranian <eranian@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: kan.liang@intel.com Cc: nelson.dsouza@intel.com Cc: tonyj@suse.com Link: https://lkml.kernel.org/r/20190408173252.37932-3-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-09 01:32:52 +08:00
static DEVICE_ATTR(allow_tsx_force_abort, 0644,
show_sysctl_tfa,
set_sysctl_tfa);
perf/x86: Add sysfs entry to freeze counters on SMI Currently, the SMIs are visible to all performance counters, because many users want to measure everything including SMIs. But in some cases, the SMI cycles should not be counted - for example, to calculate the cost of an SMI itself. So a knob is needed. When setting FREEZE_WHILE_SMM bit in IA32_DEBUGCTL, all performance counters will be effected. There is no way to do per-counter freeze on SMI. So it should not use the per-event interface (e.g. ioctl or event attribute) to set FREEZE_WHILE_SMM bit. Adds sysfs entry /sys/device/cpu/freeze_on_smi to set FREEZE_WHILE_SMM bit in IA32_DEBUGCTL. When set, freezes perfmon and trace messages while in SMM. Value has to be 0 or 1. It will be applied to all processors. Also serialize the entire setting so we don't get multiple concurrent threads trying to update to different values. Signed-off-by: Kan Liang <Kan.liang@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: bp@alien8.de Cc: jolsa@kernel.org Link: http://lkml.kernel.org/r/1494600673-244667-1-git-send-email-kan.liang@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-05-12 22:51:13 +08:00
static struct attribute *intel_pmu_attrs[] = {
&dev_attr_freeze_on_smi.attr,
&dev_attr_allow_tsx_force_abort.attr,
perf/x86: Add sysfs entry to freeze counters on SMI Currently, the SMIs are visible to all performance counters, because many users want to measure everything including SMIs. But in some cases, the SMI cycles should not be counted - for example, to calculate the cost of an SMI itself. So a knob is needed. When setting FREEZE_WHILE_SMM bit in IA32_DEBUGCTL, all performance counters will be effected. There is no way to do per-counter freeze on SMI. So it should not use the per-event interface (e.g. ioctl or event attribute) to set FREEZE_WHILE_SMM bit. Adds sysfs entry /sys/device/cpu/freeze_on_smi to set FREEZE_WHILE_SMM bit in IA32_DEBUGCTL. When set, freezes perfmon and trace messages while in SMM. Value has to be 0 or 1. It will be applied to all processors. Also serialize the entire setting so we don't get multiple concurrent threads trying to update to different values. Signed-off-by: Kan Liang <Kan.liang@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: bp@alien8.de Cc: jolsa@kernel.org Link: http://lkml.kernel.org/r/1494600673-244667-1-git-send-email-kan.liang@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-05-12 22:51:13 +08:00
NULL,
};
static umode_t
tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
{
return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
}
static umode_t
pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
{
return x86_pmu.pebs ? attr->mode : 0;
}
static umode_t
lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
{
return x86_pmu.lbr_nr ? attr->mode : 0;
}
static umode_t
exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
{
return x86_pmu.version >= 2 ? attr->mode : 0;
}
static umode_t
default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
{
if (attr == &dev_attr_allow_tsx_force_abort.attr)
return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
return attr->mode;
}
static struct attribute_group group_events_td = {
.name = "events",
};
static struct attribute_group group_events_mem = {
.name = "events",
.is_visible = pebs_is_visible,
};
static struct attribute_group group_events_tsx = {
.name = "events",
.is_visible = tsx_is_visible,
};
static struct attribute_group group_caps_gen = {
.name = "caps",
.attrs = intel_pmu_caps_attrs,
};
static struct attribute_group group_caps_lbr = {
.name = "caps",
.attrs = lbr_attrs,
.is_visible = lbr_is_visible,
};
static struct attribute_group group_format_extra = {
.name = "format",
.is_visible = exra_is_visible,
};
static struct attribute_group group_format_extra_skl = {
.name = "format",
.is_visible = exra_is_visible,
};
static struct attribute_group group_default = {
.attrs = intel_pmu_attrs,
.is_visible = default_is_visible,
};
static const struct attribute_group *attr_update[] = {
&group_events_td,
&group_events_mem,
&group_events_tsx,
&group_caps_gen,
&group_caps_lbr,
&group_format_extra,
&group_format_extra_skl,
&group_default,
NULL,
};
static struct attribute *empty_attrs;
__init int intel_pmu_init(void)
{
struct attribute **extra_skl_attr = &empty_attrs;
struct attribute **extra_attr = &empty_attrs;
struct attribute **td_attr = &empty_attrs;
struct attribute **mem_attr = &empty_attrs;
struct attribute **tsx_attr = &empty_attrs;
union cpuid10_edx edx;
union cpuid10_eax eax;
union cpuid10_ebx ebx;
struct event_constraint *c;
unsigned int unused;
struct extra_reg *er;
bool pmem = false;
int version, i;
char *name;
if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
perf, x86: Implement initial P4 PMU driver The netburst PMU is way different from the "architectural perfomance monitoring" specification that current CPUs use. P4 uses a tuple of ESCR+CCCR+COUNTER MSR registers to handle perfomance monitoring events. A few implementational details: 1) We need a separate x86_pmu::hw_config helper in struct x86_pmu since register bit-fields are quite different from P6, Core and later cpu series. 2) For the same reason is a x86_pmu::schedule_events helper introduced. 3) hw_perf_event::config consists of packed ESCR+CCCR values. It's allowed since in reality both registers only use a half of their size. Of course before making a real write into a particular MSR we need to unpack the value and extend it to a proper size. 4) The tuple of packed ESCR+CCCR in hw_perf_event::config doesn't describe the memory address of ESCR MSR register so that we need to keep a mapping between these tuples used and available ESCR (various P4 events may use same ESCRs but not simultaneously), for this sake every active event has a per-cpu map of hw_perf_event::idx <--> ESCR addresses. 5) Since hw_perf_event::idx is an offset to counter/control register we need to lift X86_PMC_MAX_GENERIC up, otherwise kernel strips it down to 8 registers and event armed may never be turned off (ie the bit in active_mask is set but the loop never reaches this index to check), thanks to Peter Zijlstra Restrictions: - No cascaded counters support (do we ever need them?) - No dependent events support (so PERF_COUNT_HW_INSTRUCTIONS doesn't work for now) - There are events with same counters which can't work simultaneously (need to use intersected ones due to broken counter 1) - No PERF_COUNT_HW_CACHE_ events yet Todo: - Implement dependent events - Need proper hashing for event opcodes (no linear search, good for debugging stage but not in real loads) - Some events counted during a clock cycle -- need to set threshold for them and count every clock cycle just to get summary statistics (ie to behave the same way as other PMUs do) - Need to swicth to use event_constraints - To support RAW events we need to encode a global list of P4 events into p4_templates - Cache events need to be added Event support status matrix: Event status ----------------------------- cycles works cache-references works cache-misses works branch-misses works bus-cycles partially (does not work on 64bit cpu with HT enabled) instruction doesnt work (needs dependent event [mop tagging]) branches doesnt work Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Stephane Eranian <eranian@google.com> Cc: Robert Richter <robert.richter@amd.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> LKML-Reference: <20100311165439.GB5129@lenovo> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-03-12 00:54:39 +08:00
switch (boot_cpu_data.x86) {
case 0x6:
return p6_pmu_init();
case 0xb:
return knc_pmu_init();
perf, x86: Implement initial P4 PMU driver The netburst PMU is way different from the "architectural perfomance monitoring" specification that current CPUs use. P4 uses a tuple of ESCR+CCCR+COUNTER MSR registers to handle perfomance monitoring events. A few implementational details: 1) We need a separate x86_pmu::hw_config helper in struct x86_pmu since register bit-fields are quite different from P6, Core and later cpu series. 2) For the same reason is a x86_pmu::schedule_events helper introduced. 3) hw_perf_event::config consists of packed ESCR+CCCR values. It's allowed since in reality both registers only use a half of their size. Of course before making a real write into a particular MSR we need to unpack the value and extend it to a proper size. 4) The tuple of packed ESCR+CCCR in hw_perf_event::config doesn't describe the memory address of ESCR MSR register so that we need to keep a mapping between these tuples used and available ESCR (various P4 events may use same ESCRs but not simultaneously), for this sake every active event has a per-cpu map of hw_perf_event::idx <--> ESCR addresses. 5) Since hw_perf_event::idx is an offset to counter/control register we need to lift X86_PMC_MAX_GENERIC up, otherwise kernel strips it down to 8 registers and event armed may never be turned off (ie the bit in active_mask is set but the loop never reaches this index to check), thanks to Peter Zijlstra Restrictions: - No cascaded counters support (do we ever need them?) - No dependent events support (so PERF_COUNT_HW_INSTRUCTIONS doesn't work for now) - There are events with same counters which can't work simultaneously (need to use intersected ones due to broken counter 1) - No PERF_COUNT_HW_CACHE_ events yet Todo: - Implement dependent events - Need proper hashing for event opcodes (no linear search, good for debugging stage but not in real loads) - Some events counted during a clock cycle -- need to set threshold for them and count every clock cycle just to get summary statistics (ie to behave the same way as other PMUs do) - Need to swicth to use event_constraints - To support RAW events we need to encode a global list of P4 events into p4_templates - Cache events need to be added Event support status matrix: Event status ----------------------------- cycles works cache-references works cache-misses works branch-misses works bus-cycles partially (does not work on 64bit cpu with HT enabled) instruction doesnt work (needs dependent event [mop tagging]) branches doesnt work Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Stephane Eranian <eranian@google.com> Cc: Robert Richter <robert.richter@amd.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> LKML-Reference: <20100311165439.GB5129@lenovo> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-03-12 00:54:39 +08:00
case 0xf:
return p4_pmu_init();
}
return -ENODEV;
}
/*
* Check whether the Architectural PerfMon supports
* Branch Misses Retired hw_event or not.
*/
cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
return -ENODEV;
version = eax.split.version_id;
if (version < 2)
x86_pmu = core_pmu;
else
x86_pmu = intel_pmu;
x86_pmu.version = version;
x86_pmu.num_counters = eax.split.num_counters;
x86_pmu.cntval_bits = eax.split.bit_width;
x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
x86_pmu.events_maskl = ebx.full;
x86_pmu.events_mask_len = eax.split.mask_length;
x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
/*
* Quirk: v2 perfmon does not report fixed-purpose events, so
* assume at least 3 events, when not running in a hypervisor:
*/
if (version > 1) {
int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
x86_pmu.num_counters_fixed =
max((int)edx.split.num_counters_fixed, assume);
}
perf/x86/intel: Add a separate Arch Perfmon v4 PMI handler Implements counter freezing for Arch Perfmon v4 (Skylake and newer). This allows to speed up the PMI handler by avoiding unnecessary MSR writes and make it more accurate. The Arch Perfmon v4 PMI handler is substantially different than the older PMI handler. Differences to the old handler: - It relies on counter freezing, which eliminates several MSR writes from the PMI handler and lowers the overhead significantly. It makes the PMI handler more accurate, as all counters get frozen atomically as soon as any counter overflows. So there is much less counting of the PMI handler itself. With the freezing we don't need to disable or enable counters or PEBS. Only BTS which does not support auto-freezing still needs to be explicitly managed. - The PMU acking is done at the end, not the beginning. This makes it possible to avoid manual enabling/disabling of the PMU, instead we just rely on the freezing/acking. - The APIC is acked before reenabling the PMU, which avoids problems with LBRs occasionally not getting unfreezed on Skylake. - Looping is only needed to workaround a corner case which several PMIs are very close to each other. For common cases, the counters are freezed during PMI handler. It doesn't need to do re-check. This patch: - Adds code to enable v4 counter freezing - Fork <=v3 and >=v4 PMI handlers into separate functions. - Add kernel parameter to disable counter freezing. It took some time to debug counter freezing, so in case there are new problems we added an option to turn it off. Would not expect this to be used until there are new bugs. - Only for big core. The patch for small core will be posted later separately. Performance: When profiling a kernel build on Kabylake with different perf options, measuring the length of all NMI handlers using the nmi handler trace point: V3 is without counter freezing. V4 is with counter freezing. The value is the average cost of the PMI handler. (lower is better) perf options ` V3(ns) V4(ns) delta -c 100000 1088 894 -18% -g -c 100000 1862 1646 -12% --call-graph lbr -c 100000 3649 3367 -8% --c.g. dwarf -c 100000 2248 1982 -12% Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Link: http://lkml.kernel.org/r/1533712328-2834-2-git-send-email-kan.liang@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-08-08 15:12:07 +08:00
if (version >= 4)
x86_pmu.counter_freezing = !disable_counter_freezing;
if (boot_cpu_has(X86_FEATURE_PDCM)) {
u64 capabilities;
rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
x86_pmu.intel_cap.capabilities = capabilities;
}
intel_ds_init();
x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
/*
* Install the hw-cache-events table:
*/
switch (boot_cpu_data.x86_model) {
case INTEL_FAM6_CORE_YONAH:
pr_cont("Core events, ");
name = "core";
break;
case INTEL_FAM6_CORE2_MEROM:
x86_add_quirk(intel_clovertown_quirk);
/* fall through */
case INTEL_FAM6_CORE2_MEROM_L:
case INTEL_FAM6_CORE2_PENRYN:
case INTEL_FAM6_CORE2_DUNNINGTON:
memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
sizeof(hw_cache_event_ids));
intel_pmu_lbr_init_core();
x86_pmu.event_constraints = intel_core2_event_constraints;
x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
pr_cont("Core2 events, ");
name = "core2";
break;
case INTEL_FAM6_NEHALEM:
case INTEL_FAM6_NEHALEM_EP:
case INTEL_FAM6_NEHALEM_EX:
memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
sizeof(hw_cache_event_ids));
memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
sizeof(hw_cache_extra_regs));
intel_pmu_lbr_init_nhm();
x86_pmu.event_constraints = intel_nehalem_event_constraints;
x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
x86_pmu.enable_all = intel_pmu_nhm_enable_all;
perf: Add support for supplementary event registers Change logs against Andi's original version: - Extends perf_event_attr:config to config{,1,2} (Peter Zijlstra) - Fixed a major event scheduling issue. There cannot be a ref++ on an event that has already done ref++ once and without calling put_constraint() in between. (Stephane Eranian) - Use thread_cpumask for percore allocation. (Lin Ming) - Use MSR names in the extra reg lists. (Lin Ming) - Remove redundant "c = NULL" in intel_percore_constraints - Fix comment of perf_event_attr::config1 Intel Nehalem/Westmere have a special OFFCORE_RESPONSE event that can be used to monitor any offcore accesses from a core. This is a very useful event for various tunings, and it's also needed to implement the generic LLC-* events correctly. Unfortunately this event requires programming a mask in a separate register. And worse this separate register is per core, not per CPU thread. This patch: - Teaches perf_events that OFFCORE_RESPONSE needs extra parameters. The extra parameters are passed by user space in the perf_event_attr::config1 field. - Adds support to the Intel perf_event core to schedule per core resources. This adds fairly generic infrastructure that can be also used for other per core resources. The basic code has is patterned after the similar AMD northbridge constraints code. Thanks to Stephane Eranian who pointed out some problems in the original version and suggested improvements. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1299119690-13991-2-git-send-email-ming.m.lin@intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-03-03 10:34:47 +08:00
x86_pmu.extra_regs = intel_nehalem_extra_regs;
perf/x86/intel: Restrict period on Nehalem We see our Nehalem machines reporting 'perfevents: irq loop stuck!' in some cases when using perf: perfevents: irq loop stuck! WARNING: CPU: 0 PID: 3485 at arch/x86/events/intel/core.c:2282 intel_pmu_handle_irq+0x37b/0x530 ... RIP: 0010:intel_pmu_handle_irq+0x37b/0x530 ... Call Trace: <NMI> ? perf_event_nmi_handler+0x2e/0x50 ? intel_pmu_save_and_restart+0x50/0x50 perf_event_nmi_handler+0x2e/0x50 nmi_handle+0x6e/0x120 default_do_nmi+0x3e/0x100 do_nmi+0x102/0x160 end_repeat_nmi+0x16/0x50 ... ? native_write_msr+0x6/0x20 ? native_write_msr+0x6/0x20 </NMI> intel_pmu_enable_event+0x1ce/0x1f0 x86_pmu_start+0x78/0xa0 x86_pmu_enable+0x252/0x310 __perf_event_task_sched_in+0x181/0x190 ? __switch_to_asm+0x41/0x70 ? __switch_to_asm+0x35/0x70 ? __switch_to_asm+0x41/0x70 ? __switch_to_asm+0x35/0x70 finish_task_switch+0x158/0x260 __schedule+0x2f6/0x840 ? hrtimer_start_range_ns+0x153/0x210 schedule+0x32/0x80 schedule_hrtimeout_range_clock+0x8a/0x100 ? hrtimer_init+0x120/0x120 ep_poll+0x2f7/0x3a0 ? wake_up_q+0x60/0x60 do_epoll_wait+0xa9/0xc0 __x64_sys_epoll_wait+0x1a/0x20 do_syscall_64+0x4e/0x110 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7fdeb1e96c03 ... Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: acme@kernel.org Cc: Josh Hunt <johunt@akamai.com> Cc: bpuranda@akamai.com Cc: mingo@redhat.com Cc: jolsa@redhat.com Cc: tglx@linutronix.de Cc: namhyung@kernel.org Cc: alexander.shishkin@linux.intel.com Link: https://lkml.kernel.org/r/1566256411-18820-1-git-send-email-johunt@akamai.com
2019-08-20 07:13:31 +08:00
x86_pmu.limit_period = nhm_limit_period;
mem_attr = nhm_mem_events_attrs;
/* UOPS_ISSUED.STALLED_CYCLES */
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
intel_pmu_pebs_data_source_nhm();
x86_add_quirk(intel_nehalem_quirk);
x86_pmu.pebs_no_tlb = 1;
extra_attr = nhm_format_attr;
pr_cont("Nehalem events, ");
name = "nehalem";
break;
case INTEL_FAM6_ATOM_BONNELL:
case INTEL_FAM6_ATOM_BONNELL_MID:
case INTEL_FAM6_ATOM_SALTWELL:
case INTEL_FAM6_ATOM_SALTWELL_MID:
case INTEL_FAM6_ATOM_SALTWELL_TABLET:
memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
sizeof(hw_cache_event_ids));
intel_pmu_lbr_init_atom();
x86_pmu.event_constraints = intel_gen_event_constraints;
x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
pr_cont("Atom events, ");
name = "bonnell";
break;
case INTEL_FAM6_ATOM_SILVERMONT:
case INTEL_FAM6_ATOM_SILVERMONT_D:
case INTEL_FAM6_ATOM_SILVERMONT_MID:
case INTEL_FAM6_ATOM_AIRMONT:
case INTEL_FAM6_ATOM_AIRMONT_MID:
memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
sizeof(hw_cache_event_ids));
memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
sizeof(hw_cache_extra_regs));
intel_pmu_lbr_init_slm();
x86_pmu.event_constraints = intel_slm_event_constraints;
x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
x86_pmu.extra_regs = intel_slm_extra_regs;
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
td_attr = slm_events_attrs;
extra_attr = slm_format_attr;
pr_cont("Silvermont events, ");
name = "silvermont";
break;
case INTEL_FAM6_ATOM_GOLDMONT:
case INTEL_FAM6_ATOM_GOLDMONT_D:
x86_add_quirk(intel_counter_freezing_quirk);
memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
sizeof(hw_cache_event_ids));
memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
sizeof(hw_cache_extra_regs));
intel_pmu_lbr_init_skl();
x86_pmu.event_constraints = intel_slm_event_constraints;
x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
x86_pmu.extra_regs = intel_glm_extra_regs;
/*
* It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
* for precise cycles.
* :pp is identical to :ppp
*/
x86_pmu.pebs_aliases = NULL;
x86_pmu.pebs_prec_dist = true;
x86_pmu.lbr_pt_coexist = true;
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
td_attr = glm_events_attrs;
extra_attr = slm_format_attr;
pr_cont("Goldmont events, ");
name = "goldmont";
break;
case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
x86_add_quirk(intel_counter_freezing_quirk);
memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
sizeof(hw_cache_event_ids));
memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
sizeof(hw_cache_extra_regs));
intel_pmu_lbr_init_skl();
x86_pmu.event_constraints = intel_slm_event_constraints;
x86_pmu.extra_regs = intel_glm_extra_regs;
/*
* It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
* for precise cycles.
*/
x86_pmu.pebs_aliases = NULL;
x86_pmu.pebs_prec_dist = true;
x86_pmu.lbr_pt_coexist = true;
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
x86_pmu.flags |= PMU_FL_PEBS_ALL;
x86_pmu.get_event_constraints = glp_get_event_constraints;
td_attr = glm_events_attrs;
/* Goldmont Plus has 4-wide pipeline */
event_attr_td_total_slots_scale_glm.event_str = "4";
extra_attr = slm_format_attr;
pr_cont("Goldmont plus events, ");
name = "goldmont_plus";
break;
case INTEL_FAM6_ATOM_TREMONT_D:
x86_pmu.late_ack = true;
memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
sizeof(hw_cache_event_ids));
memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
sizeof(hw_cache_extra_regs));
hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
intel_pmu_lbr_init_skl();
x86_pmu.event_constraints = intel_slm_event_constraints;
x86_pmu.extra_regs = intel_tnt_extra_regs;
/*
* It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
* for precise cycles.
*/
x86_pmu.pebs_aliases = NULL;
x86_pmu.pebs_prec_dist = true;
x86_pmu.lbr_pt_coexist = true;
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
x86_pmu.get_event_constraints = tnt_get_event_constraints;
extra_attr = slm_format_attr;
pr_cont("Tremont events, ");
name = "Tremont";
break;
case INTEL_FAM6_WESTMERE:
case INTEL_FAM6_WESTMERE_EP:
case INTEL_FAM6_WESTMERE_EX:
memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
sizeof(hw_cache_event_ids));
memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
sizeof(hw_cache_extra_regs));
intel_pmu_lbr_init_nhm();
x86_pmu.event_constraints = intel_westmere_event_constraints;
x86_pmu.enable_all = intel_pmu_nhm_enable_all;
x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
perf: Add support for supplementary event registers Change logs against Andi's original version: - Extends perf_event_attr:config to config{,1,2} (Peter Zijlstra) - Fixed a major event scheduling issue. There cannot be a ref++ on an event that has already done ref++ once and without calling put_constraint() in between. (Stephane Eranian) - Use thread_cpumask for percore allocation. (Lin Ming) - Use MSR names in the extra reg lists. (Lin Ming) - Remove redundant "c = NULL" in intel_percore_constraints - Fix comment of perf_event_attr::config1 Intel Nehalem/Westmere have a special OFFCORE_RESPONSE event that can be used to monitor any offcore accesses from a core. This is a very useful event for various tunings, and it's also needed to implement the generic LLC-* events correctly. Unfortunately this event requires programming a mask in a separate register. And worse this separate register is per core, not per CPU thread. This patch: - Teaches perf_events that OFFCORE_RESPONSE needs extra parameters. The extra parameters are passed by user space in the perf_event_attr::config1 field. - Adds support to the Intel perf_event core to schedule per core resources. This adds fairly generic infrastructure that can be also used for other per core resources. The basic code has is patterned after the similar AMD northbridge constraints code. Thanks to Stephane Eranian who pointed out some problems in the original version and suggested improvements. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1299119690-13991-2-git-send-email-ming.m.lin@intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-03-03 10:34:47 +08:00
x86_pmu.extra_regs = intel_westmere_extra_regs;
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
mem_attr = nhm_mem_events_attrs;
/* UOPS_ISSUED.STALLED_CYCLES */
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
intel_pmu_pebs_data_source_nhm();
extra_attr = nhm_format_attr;
pr_cont("Westmere events, ");
name = "westmere";
break;
case INTEL_FAM6_SANDYBRIDGE:
case INTEL_FAM6_SANDYBRIDGE_X:
x86_add_quirk(intel_sandybridge_quirk);
x86_add_quirk(intel_ht_bug);
memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
sizeof(hw_cache_event_ids));
memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
sizeof(hw_cache_extra_regs));
intel_pmu_lbr_init_snb();
x86_pmu.event_constraints = intel_snb_event_constraints;
x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
x86_pmu.extra_regs = intel_snbep_extra_regs;
else
x86_pmu.extra_regs = intel_snb_extra_regs;
/* all extra regs are per-cpu when HT is on */
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
td_attr = snb_events_attrs;
mem_attr = snb_mem_events_attrs;
/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
extra_attr = nhm_format_attr;
pr_cont("SandyBridge events, ");
name = "sandybridge";
break;
case INTEL_FAM6_IVYBRIDGE:
case INTEL_FAM6_IVYBRIDGE_X:
x86_add_quirk(intel_ht_bug);
memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
sizeof(hw_cache_event_ids));
/* dTLB-load-misses on IVB is different than SNB */
hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
sizeof(hw_cache_extra_regs));
intel_pmu_lbr_init_snb();
x86_pmu.event_constraints = intel_ivb_event_constraints;
x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
perf/x86: Use INST_RETIRED.PREC_DIST for cycles: ppp Add a new 'three-p' precise level, that uses INST_RETIRED.PREC_DIST as base. The basic mechanism of abusing the inverse cmask to get all cycles works the same as before. PREC_DIST is available on Sandy Bridge or later. It had some problems on Sandy Bridge, so we only use it on IvyBridge and later. I tested it on Broadwell and Skylake. PREC_DIST has special support for avoiding shadow effects, which can give better results compare to UOPS_RETIRED. The drawback is that PREC_DIST can only schedule on counter 1, but that is ok for cycle sampling, as there is normally no need to do multiple cycle sampling runs in parallel. It is still possible to run perf top in parallel, as that doesn't use precise mode. Also of course the multiplexing can still allow parallel operation. :pp stays with the previous event. Example: Sample a loop with 10 sqrt with old cycles:pp 0.14 │10: sqrtps %xmm1,%xmm0 <-------------- 9.13 │ sqrtps %xmm1,%xmm0 11.58 │ sqrtps %xmm1,%xmm0 11.51 │ sqrtps %xmm1,%xmm0 6.27 │ sqrtps %xmm1,%xmm0 10.38 │ sqrtps %xmm1,%xmm0 12.20 │ sqrtps %xmm1,%xmm0 12.74 │ sqrtps %xmm1,%xmm0 5.40 │ sqrtps %xmm1,%xmm0 10.14 │ sqrtps %xmm1,%xmm0 10.51 │ ↑ jmp 10 We expect all 10 sqrt to get roughly the sample number of samples. But you can see that the instruction directly after the JMP is systematically underestimated in the result, due to sampling shadow effects. With the new PREC_DIST based sampling this problem is gone and all instructions show up roughly evenly: 9.51 │10: sqrtps %xmm1,%xmm0 11.74 │ sqrtps %xmm1,%xmm0 11.84 │ sqrtps %xmm1,%xmm0 6.05 │ sqrtps %xmm1,%xmm0 10.46 │ sqrtps %xmm1,%xmm0 12.25 │ sqrtps %xmm1,%xmm0 12.18 │ sqrtps %xmm1,%xmm0 5.26 │ sqrtps %xmm1,%xmm0 10.13 │ sqrtps %xmm1,%xmm0 10.43 │ sqrtps %xmm1,%xmm0 0.16 │ ↑ jmp 10 Even with PREC_DIST there is still sampling skid and the result is not completely even, but systematic shadow effects are significantly reduced. The improvements are mainly expected to make a difference in high IPC code. With low IPC it should be similar. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: hpa@zytor.com Link: http://lkml.kernel.org/r/1448929689-13771-2-git-send-email-andi@firstfloor.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-12-04 19:50:52 +08:00
x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
x86_pmu.pebs_prec_dist = true;
if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
x86_pmu.extra_regs = intel_snbep_extra_regs;
else
x86_pmu.extra_regs = intel_snb_extra_regs;
/* all extra regs are per-cpu when HT is on */
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
td_attr = snb_events_attrs;
mem_attr = snb_mem_events_attrs;
/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
extra_attr = nhm_format_attr;
pr_cont("IvyBridge events, ");
name = "ivybridge";
break;
case INTEL_FAM6_HASWELL:
case INTEL_FAM6_HASWELL_X:
case INTEL_FAM6_HASWELL_L:
case INTEL_FAM6_HASWELL_G:
x86_add_quirk(intel_ht_bug);
perf/x86/kvm: Avoid unnecessary work in guest filtering KVM added a workaround for PEBS events leaking into guests with commit: 26a4f3c08de4 ("perf/x86: disable PEBS on a guest entry.") This uses the VT entry/exit list to add an extra disable of the PEBS_ENABLE MSR. Intel also added a fix for this issue to microcode updates on Haswell/Broadwell/Skylake. It turns out using the MSR entry/exit list makes VM exits significantly slower. The list is only needed for disabling PEBS, because the GLOBAL_CTRL change gets optimized by KVM into changing the VMCS. Check for the microcode updates that have the microcode fix for leaking PEBS, and disable the extra entry/exit list entry for PEBS_ENABLE. In addition we always clear the GLOBAL_CTRL for the PEBS counter while running in the guest, which is enough to make them never fire at the wrong side of the host/guest transition. The overhead for VM exits with the filtering active with the patch is reduced from 8% to 4%. The microcode patch has already been merged into future platforms. This patch is one-off thing. The quirks is used here. For other old platforms which doesn't have microcode patch and quirks, extra disable of the PEBS_ENABLE MSR is still required. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: David Ahern <dsahern@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: bp@alien8.de Link: https://lkml.kernel.org/r/1549319013-4522-2-git-send-email-kan.liang@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-05 06:23:30 +08:00
x86_add_quirk(intel_pebs_isolation_quirk);
x86_pmu.late_ack = true;
memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
2014-11-05 10:56:00 +08:00
intel_pmu_lbr_init_hsw();
x86_pmu.event_constraints = intel_hsw_event_constraints;
x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
x86_pmu.extra_regs = intel_snbep_extra_regs;
perf/x86: Use INST_RETIRED.PREC_DIST for cycles: ppp Add a new 'three-p' precise level, that uses INST_RETIRED.PREC_DIST as base. The basic mechanism of abusing the inverse cmask to get all cycles works the same as before. PREC_DIST is available on Sandy Bridge or later. It had some problems on Sandy Bridge, so we only use it on IvyBridge and later. I tested it on Broadwell and Skylake. PREC_DIST has special support for avoiding shadow effects, which can give better results compare to UOPS_RETIRED. The drawback is that PREC_DIST can only schedule on counter 1, but that is ok for cycle sampling, as there is normally no need to do multiple cycle sampling runs in parallel. It is still possible to run perf top in parallel, as that doesn't use precise mode. Also of course the multiplexing can still allow parallel operation. :pp stays with the previous event. Example: Sample a loop with 10 sqrt with old cycles:pp 0.14 │10: sqrtps %xmm1,%xmm0 <-------------- 9.13 │ sqrtps %xmm1,%xmm0 11.58 │ sqrtps %xmm1,%xmm0 11.51 │ sqrtps %xmm1,%xmm0 6.27 │ sqrtps %xmm1,%xmm0 10.38 │ sqrtps %xmm1,%xmm0 12.20 │ sqrtps %xmm1,%xmm0 12.74 │ sqrtps %xmm1,%xmm0 5.40 │ sqrtps %xmm1,%xmm0 10.14 │ sqrtps %xmm1,%xmm0 10.51 │ ↑ jmp 10 We expect all 10 sqrt to get roughly the sample number of samples. But you can see that the instruction directly after the JMP is systematically underestimated in the result, due to sampling shadow effects. With the new PREC_DIST based sampling this problem is gone and all instructions show up roughly evenly: 9.51 │10: sqrtps %xmm1,%xmm0 11.74 │ sqrtps %xmm1,%xmm0 11.84 │ sqrtps %xmm1,%xmm0 6.05 │ sqrtps %xmm1,%xmm0 10.46 │ sqrtps %xmm1,%xmm0 12.25 │ sqrtps %xmm1,%xmm0 12.18 │ sqrtps %xmm1,%xmm0 5.26 │ sqrtps %xmm1,%xmm0 10.13 │ sqrtps %xmm1,%xmm0 10.43 │ sqrtps %xmm1,%xmm0 0.16 │ ↑ jmp 10 Even with PREC_DIST there is still sampling skid and the result is not completely even, but systematic shadow effects are significantly reduced. The improvements are mainly expected to make a difference in high IPC code. With low IPC it should be similar. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: hpa@zytor.com Link: http://lkml.kernel.org/r/1448929689-13771-2-git-send-email-andi@firstfloor.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-12-04 19:50:52 +08:00
x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
x86_pmu.pebs_prec_dist = true;
/* all extra regs are per-cpu when HT is on */
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
x86_pmu.hw_config = hsw_hw_config;
x86_pmu.get_event_constraints = hsw_get_event_constraints;
x86_pmu.lbr_double_abort = true;
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
hsw_format_attr : nhm_format_attr;
td_attr = hsw_events_attrs;
mem_attr = hsw_mem_events_attrs;
tsx_attr = hsw_tsx_events_attrs;
pr_cont("Haswell events, ");
name = "haswell";
break;
case INTEL_FAM6_BROADWELL:
case INTEL_FAM6_BROADWELL_D:
case INTEL_FAM6_BROADWELL_G:
case INTEL_FAM6_BROADWELL_X:
perf/x86/kvm: Avoid unnecessary work in guest filtering KVM added a workaround for PEBS events leaking into guests with commit: 26a4f3c08de4 ("perf/x86: disable PEBS on a guest entry.") This uses the VT entry/exit list to add an extra disable of the PEBS_ENABLE MSR. Intel also added a fix for this issue to microcode updates on Haswell/Broadwell/Skylake. It turns out using the MSR entry/exit list makes VM exits significantly slower. The list is only needed for disabling PEBS, because the GLOBAL_CTRL change gets optimized by KVM into changing the VMCS. Check for the microcode updates that have the microcode fix for leaking PEBS, and disable the extra entry/exit list entry for PEBS_ENABLE. In addition we always clear the GLOBAL_CTRL for the PEBS counter while running in the guest, which is enough to make them never fire at the wrong side of the host/guest transition. The overhead for VM exits with the filtering active with the patch is reduced from 8% to 4%. The microcode patch has already been merged into future platforms. This patch is one-off thing. The quirks is used here. For other old platforms which doesn't have microcode patch and quirks, extra disable of the PEBS_ENABLE MSR is still required. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: David Ahern <dsahern@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: bp@alien8.de Link: https://lkml.kernel.org/r/1549319013-4522-2-git-send-email-kan.liang@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-05 06:23:30 +08:00
x86_add_quirk(intel_pebs_isolation_quirk);
x86_pmu.late_ack = true;
memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
BDW_L3_MISS|HSW_SNOOP_DRAM;
hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
HSW_SNOOP_DRAM;
hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
intel_pmu_lbr_init_hsw();
x86_pmu.event_constraints = intel_bdw_event_constraints;
x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
x86_pmu.extra_regs = intel_snbep_extra_regs;
perf/x86: Use INST_RETIRED.PREC_DIST for cycles: ppp Add a new 'three-p' precise level, that uses INST_RETIRED.PREC_DIST as base. The basic mechanism of abusing the inverse cmask to get all cycles works the same as before. PREC_DIST is available on Sandy Bridge or later. It had some problems on Sandy Bridge, so we only use it on IvyBridge and later. I tested it on Broadwell and Skylake. PREC_DIST has special support for avoiding shadow effects, which can give better results compare to UOPS_RETIRED. The drawback is that PREC_DIST can only schedule on counter 1, but that is ok for cycle sampling, as there is normally no need to do multiple cycle sampling runs in parallel. It is still possible to run perf top in parallel, as that doesn't use precise mode. Also of course the multiplexing can still allow parallel operation. :pp stays with the previous event. Example: Sample a loop with 10 sqrt with old cycles:pp 0.14 │10: sqrtps %xmm1,%xmm0 <-------------- 9.13 │ sqrtps %xmm1,%xmm0 11.58 │ sqrtps %xmm1,%xmm0 11.51 │ sqrtps %xmm1,%xmm0 6.27 │ sqrtps %xmm1,%xmm0 10.38 │ sqrtps %xmm1,%xmm0 12.20 │ sqrtps %xmm1,%xmm0 12.74 │ sqrtps %xmm1,%xmm0 5.40 │ sqrtps %xmm1,%xmm0 10.14 │ sqrtps %xmm1,%xmm0 10.51 │ ↑ jmp 10 We expect all 10 sqrt to get roughly the sample number of samples. But you can see that the instruction directly after the JMP is systematically underestimated in the result, due to sampling shadow effects. With the new PREC_DIST based sampling this problem is gone and all instructions show up roughly evenly: 9.51 │10: sqrtps %xmm1,%xmm0 11.74 │ sqrtps %xmm1,%xmm0 11.84 │ sqrtps %xmm1,%xmm0 6.05 │ sqrtps %xmm1,%xmm0 10.46 │ sqrtps %xmm1,%xmm0 12.25 │ sqrtps %xmm1,%xmm0 12.18 │ sqrtps %xmm1,%xmm0 5.26 │ sqrtps %xmm1,%xmm0 10.13 │ sqrtps %xmm1,%xmm0 10.43 │ sqrtps %xmm1,%xmm0 0.16 │ ↑ jmp 10 Even with PREC_DIST there is still sampling skid and the result is not completely even, but systematic shadow effects are significantly reduced. The improvements are mainly expected to make a difference in high IPC code. With low IPC it should be similar. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: hpa@zytor.com Link: http://lkml.kernel.org/r/1448929689-13771-2-git-send-email-andi@firstfloor.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-12-04 19:50:52 +08:00
x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
x86_pmu.pebs_prec_dist = true;
/* all extra regs are per-cpu when HT is on */
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
x86_pmu.hw_config = hsw_hw_config;
x86_pmu.get_event_constraints = hsw_get_event_constraints;
perf/x86/intel: Add INST_RETIRED.ALL workarounds On Broadwell INST_RETIRED.ALL cannot be used with any period that doesn't have the lowest 6 bits cleared. And the period should not be smaller than 128. This is erratum BDM11 and BDM55: http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/5th-gen-core-family-spec-update.pdf BDM11: When using a period < 100; we may get incorrect PEBS/PMI interrupts and/or an invalid counter state. BDM55: When bit0-5 of the period are !0 we may get redundant PEBS records on overflow. Add a new callback to enforce this, and set it for Broadwell. How does this handle the case when an app requests a specific period with some of the bottom bits set? Short answer: Any useful instruction sampling period needs to be 4-6 orders of magnitude larger than 128, as an PMI every 128 instructions would instantly overwhelm the system and be throttled. So the +-64 error from this is really small compared to the period, much smaller than normal system jitter. Long answer (by Peterz): IFF we guarantee perf_event_attr::sample_period >= 128. Suppose we start out with sample_period=192; then we'll set period_left to 192, we'll end up with left = 128 (we truncate the lower bits). We get an interrupt, find that period_left = 64 (>0 so we return 0 and don't get an overflow handler), up that to 128. Then we trigger again, at n=256. Then we find period_left = -64 (<=0 so we return 1 and do get an overflow). We increment with sample_period so we get left = 128. We fire again, at n=384, period_left = 0 (<=0 so we return 1 and get an overflow). And on and on. So while the individual interrupts are 'wrong' we get then with interval=256,128 in exactly the right ratio to average out at 192. And this works for everything >=128. So the num_samples*fixed_period thing is still entirely correct +- 127, which is good enough I'd say, as you already have that error anyhow. So no need to 'fix' the tools, al we need to do is refuse to create INST_RETIRED:ALL events with sample_period < 128. Signed-off-by: Andi Kleen <ak@linux.intel.com> [ Updated comments and changelog a bit. ] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: http://lkml.kernel.org/r/1424225886-18652-3-git-send-email-andi@firstfloor.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-02-18 10:18:06 +08:00
x86_pmu.limit_period = bdw_limit_period;
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
hsw_format_attr : nhm_format_attr;
td_attr = hsw_events_attrs;
mem_attr = hsw_mem_events_attrs;
tsx_attr = hsw_tsx_events_attrs;
pr_cont("Broadwell events, ");
name = "broadwell";
break;
case INTEL_FAM6_XEON_PHI_KNL:
case INTEL_FAM6_XEON_PHI_KNM:
2015-12-08 06:28:18 +08:00
memcpy(hw_cache_event_ids,
slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
memcpy(hw_cache_extra_regs,
knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
intel_pmu_lbr_init_knl();
x86_pmu.event_constraints = intel_slm_event_constraints;
x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
x86_pmu.extra_regs = intel_knl_extra_regs;
/* all extra regs are per-cpu when HT is on */
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
extra_attr = slm_format_attr;
pr_cont("Knights Landing/Mill events, ");
name = "knights-landing";
2015-12-08 06:28:18 +08:00
break;
case INTEL_FAM6_SKYLAKE_X:
pmem = true;
/* fall through */
case INTEL_FAM6_SKYLAKE_L:
case INTEL_FAM6_SKYLAKE:
case INTEL_FAM6_KABYLAKE_L:
case INTEL_FAM6_KABYLAKE:
case INTEL_FAM6_COMETLAKE_L:
case INTEL_FAM6_COMETLAKE:
perf/x86/kvm: Avoid unnecessary work in guest filtering KVM added a workaround for PEBS events leaking into guests with commit: 26a4f3c08de4 ("perf/x86: disable PEBS on a guest entry.") This uses the VT entry/exit list to add an extra disable of the PEBS_ENABLE MSR. Intel also added a fix for this issue to microcode updates on Haswell/Broadwell/Skylake. It turns out using the MSR entry/exit list makes VM exits significantly slower. The list is only needed for disabling PEBS, because the GLOBAL_CTRL change gets optimized by KVM into changing the VMCS. Check for the microcode updates that have the microcode fix for leaking PEBS, and disable the extra entry/exit list entry for PEBS_ENABLE. In addition we always clear the GLOBAL_CTRL for the PEBS counter while running in the guest, which is enough to make them never fire at the wrong side of the host/guest transition. The overhead for VM exits with the filtering active with the patch is reduced from 8% to 4%. The microcode patch has already been merged into future platforms. This patch is one-off thing. The quirks is used here. For other old platforms which doesn't have microcode patch and quirks, extra disable of the PEBS_ENABLE MSR is still required. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: David Ahern <dsahern@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: bp@alien8.de Link: https://lkml.kernel.org/r/1549319013-4522-2-git-send-email-kan.liang@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-05 06:23:30 +08:00
x86_add_quirk(intel_pebs_isolation_quirk);
x86_pmu.late_ack = true;
memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
intel_pmu_lbr_init_skl();
perf/x86/intel: Add topdown events to Intel Core Add declarations for the events needed for topdown to the Intel big core CPUs starting with Sandy Bridge. We need to report different values if HyperThreading is on or off. The only thing this patch does is to export some events in sysfs. topdown level 1 uses a set of abstracted metrics which are generic to out of order CPU cores (although some CPUs may not implement all of them): topdown-total-slots Available slots in the pipeline topdown-slots-issued Slots issued into the pipeline topdown-slots-retired Slots successfully retired topdown-fetch-bubbles Pipeline gaps in the frontend topdown-recovery-bubbles Pipeline gaps during recovery from misspeculation A slot is a single operation in the CPU pipe line. These metrics then allow to compute four useful metrics: FrontendBound, BackendBound, Retiring, BadSpeculation. The formulas to compute the metrics are generic, they only change based on the availability on the abstracted input values. The kernel declares the events supported by the current CPU and their scaling factors (such as the pipeline width) and perf stat then computes the formulas based on the available metrics. This is similar how existing perf metrics, such as TSC metrics or IPC, are implemented. This abstracts all CPU pipe line specific knowledge in the kernel driver, but still avoids the need for larger scale perf interface changes. For HyperThreading the any bit is needed to get accurate values when both threads are executing. This implies that the events can only be collected as root or with perf_event_paranoid=-1 for now. The basic scheme is based on the following paper: Yasin, A Top Down Method for Performance analysis and Counter architecture ISPASS14 (pdf available via google) Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: jolsa@kernel.org Link: http://lkml.kernel.org/r/1463703002-19686-4-git-send-email-andi@firstfloor.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-20 08:09:57 +08:00
/* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
event_attr_td_recovery_bubbles.event_str_noht =
"event=0xd,umask=0x1,cmask=1";
event_attr_td_recovery_bubbles.event_str_ht =
"event=0xd,umask=0x1,cmask=1,any=1";
x86_pmu.event_constraints = intel_skl_event_constraints;
x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
x86_pmu.extra_regs = intel_skl_extra_regs;
perf/x86: Use INST_RETIRED.PREC_DIST for cycles: ppp Add a new 'three-p' precise level, that uses INST_RETIRED.PREC_DIST as base. The basic mechanism of abusing the inverse cmask to get all cycles works the same as before. PREC_DIST is available on Sandy Bridge or later. It had some problems on Sandy Bridge, so we only use it on IvyBridge and later. I tested it on Broadwell and Skylake. PREC_DIST has special support for avoiding shadow effects, which can give better results compare to UOPS_RETIRED. The drawback is that PREC_DIST can only schedule on counter 1, but that is ok for cycle sampling, as there is normally no need to do multiple cycle sampling runs in parallel. It is still possible to run perf top in parallel, as that doesn't use precise mode. Also of course the multiplexing can still allow parallel operation. :pp stays with the previous event. Example: Sample a loop with 10 sqrt with old cycles:pp 0.14 │10: sqrtps %xmm1,%xmm0 <-------------- 9.13 │ sqrtps %xmm1,%xmm0 11.58 │ sqrtps %xmm1,%xmm0 11.51 │ sqrtps %xmm1,%xmm0 6.27 │ sqrtps %xmm1,%xmm0 10.38 │ sqrtps %xmm1,%xmm0 12.20 │ sqrtps %xmm1,%xmm0 12.74 │ sqrtps %xmm1,%xmm0 5.40 │ sqrtps %xmm1,%xmm0 10.14 │ sqrtps %xmm1,%xmm0 10.51 │ ↑ jmp 10 We expect all 10 sqrt to get roughly the sample number of samples. But you can see that the instruction directly after the JMP is systematically underestimated in the result, due to sampling shadow effects. With the new PREC_DIST based sampling this problem is gone and all instructions show up roughly evenly: 9.51 │10: sqrtps %xmm1,%xmm0 11.74 │ sqrtps %xmm1,%xmm0 11.84 │ sqrtps %xmm1,%xmm0 6.05 │ sqrtps %xmm1,%xmm0 10.46 │ sqrtps %xmm1,%xmm0 12.25 │ sqrtps %xmm1,%xmm0 12.18 │ sqrtps %xmm1,%xmm0 5.26 │ sqrtps %xmm1,%xmm0 10.13 │ sqrtps %xmm1,%xmm0 10.43 │ sqrtps %xmm1,%xmm0 0.16 │ ↑ jmp 10 Even with PREC_DIST there is still sampling skid and the result is not completely even, but systematic shadow effects are significantly reduced. The improvements are mainly expected to make a difference in high IPC code. With low IPC it should be similar. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: hpa@zytor.com Link: http://lkml.kernel.org/r/1448929689-13771-2-git-send-email-andi@firstfloor.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-12-04 19:50:52 +08:00
x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
x86_pmu.pebs_prec_dist = true;
/* all extra regs are per-cpu when HT is on */
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
x86_pmu.hw_config = hsw_hw_config;
x86_pmu.get_event_constraints = hsw_get_event_constraints;
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
hsw_format_attr : nhm_format_attr;
extra_skl_attr = skl_format_attr;
td_attr = hsw_events_attrs;
mem_attr = hsw_mem_events_attrs;
tsx_attr = hsw_tsx_events_attrs;
intel_pmu_pebs_data_source_skl(pmem);
if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT)) {
x86_pmu.flags |= PMU_FL_TFA;
x86_pmu.get_event_constraints = tfa_get_event_constraints;
x86_pmu.enable_all = intel_tfa_pmu_enable_all;
x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
}
pr_cont("Skylake events, ");
name = "skylake";
break;
case INTEL_FAM6_ICELAKE_X:
case INTEL_FAM6_ICELAKE_D:
pmem = true;
/* fall through */
case INTEL_FAM6_ICELAKE_L:
case INTEL_FAM6_ICELAKE:
case INTEL_FAM6_TIGERLAKE_L:
case INTEL_FAM6_TIGERLAKE:
perf/x86/intel: Add Icelake support Add Icelake core PMU perf code, including constraint tables and the main enable code. Icelake expanded the generic counters to always 8 even with HT on, but a range of events cannot be scheduled on the extra 4 counters. Add new constraint ranges to describe this to the scheduler. The number of constraints that need to be checked is larger now than with earlier CPUs. At some point we may need a new data structure to look them up more efficiently than with linear search. So far it still seems to be acceptable however. Icelake added a new fixed counter SLOTS. Full support for it is added later in the patch series. The cache events table is identical to Skylake. Compare to PEBS instruction event on generic counter, fixed counter 0 has less skid. Force instruction:ppp always in fixed counter 0. Originally-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: jolsa@kernel.org Link: https://lkml.kernel.org/r/20190402194509.2832-9-kan.liang@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-03 03:45:05 +08:00
x86_pmu.late_ack = true;
memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
intel_pmu_lbr_init_skl();
x86_pmu.event_constraints = intel_icl_event_constraints;
x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
x86_pmu.extra_regs = intel_icl_extra_regs;
x86_pmu.pebs_aliases = NULL;
x86_pmu.pebs_prec_dist = true;
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
x86_pmu.hw_config = hsw_hw_config;
x86_pmu.get_event_constraints = icl_get_event_constraints;
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
hsw_format_attr : nhm_format_attr;
extra_skl_attr = skl_format_attr;
mem_attr = icl_events_attrs;
tsx_attr = icl_tsx_events_attrs;
perf/x86/intel: Add Icelake support Add Icelake core PMU perf code, including constraint tables and the main enable code. Icelake expanded the generic counters to always 8 even with HT on, but a range of events cannot be scheduled on the extra 4 counters. Add new constraint ranges to describe this to the scheduler. The number of constraints that need to be checked is larger now than with earlier CPUs. At some point we may need a new data structure to look them up more efficiently than with linear search. So far it still seems to be acceptable however. Icelake added a new fixed counter SLOTS. Full support for it is added later in the patch series. The cache events table is identical to Skylake. Compare to PEBS instruction event on generic counter, fixed counter 0 has less skid. Force instruction:ppp always in fixed counter 0. Originally-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: jolsa@kernel.org Link: https://lkml.kernel.org/r/20190402194509.2832-9-kan.liang@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-03 03:45:05 +08:00
x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xca, .umask=0x02);
x86_pmu.lbr_pt_coexist = true;
intel_pmu_pebs_data_source_skl(pmem);
perf/x86/intel: Add Icelake support Add Icelake core PMU perf code, including constraint tables and the main enable code. Icelake expanded the generic counters to always 8 even with HT on, but a range of events cannot be scheduled on the extra 4 counters. Add new constraint ranges to describe this to the scheduler. The number of constraints that need to be checked is larger now than with earlier CPUs. At some point we may need a new data structure to look them up more efficiently than with linear search. So far it still seems to be acceptable however. Icelake added a new fixed counter SLOTS. Full support for it is added later in the patch series. The cache events table is identical to Skylake. Compare to PEBS instruction event on generic counter, fixed counter 0 has less skid. Force instruction:ppp always in fixed counter 0. Originally-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: jolsa@kernel.org Link: https://lkml.kernel.org/r/20190402194509.2832-9-kan.liang@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-03 03:45:05 +08:00
pr_cont("Icelake events, ");
name = "icelake";
break;
default:
switch (x86_pmu.version) {
case 1:
x86_pmu.event_constraints = intel_v1_event_constraints;
pr_cont("generic architected perfmon v1, ");
name = "generic_arch_v1";
break;
default:
/*
* default constraints for v2 and up
*/
x86_pmu.event_constraints = intel_gen_event_constraints;
pr_cont("generic architected perfmon, ");
name = "generic_arch_v2+";
break;
}
}
snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
group_events_td.attrs = td_attr;
group_events_mem.attrs = mem_attr;
group_events_tsx.attrs = tsx_attr;
group_format_extra.attrs = extra_attr;
group_format_extra_skl.attrs = extra_skl_attr;
x86_pmu.attr_update = attr_update;
if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
}
x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1;
if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
}
x86_pmu.intel_ctrl |=
((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
if (x86_pmu.event_constraints) {
/*
* event on fixed counter2 (REF_CYCLES) only works on this
* counter, so do not extend mask to generic counters
*/
for_each_event_constraint(c, x86_pmu.event_constraints) {
if (c->cmask == FIXED_EVENT_FLAGS
&& c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
}
c->idxmsk64 &=
~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
c->weight = hweight64(c->idxmsk64);
}
}
/*
* Access LBR MSR may cause #GP under certain circumstances.
* E.g. KVM doesn't support LBR MSR
* Check all LBT MSR here.
* Disable LBR access if any LBR MSRs can not be accessed.
*/
if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
x86_pmu.lbr_nr = 0;
for (i = 0; i < x86_pmu.lbr_nr; i++) {
if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
x86_pmu.lbr_nr = 0;
}
if (x86_pmu.lbr_nr)
pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
/*
* Access extra MSR may cause #GP under certain circumstances.
* E.g. KVM doesn't support offcore event
* Check all extra_regs here.
*/
if (x86_pmu.extra_regs) {
for (er = x86_pmu.extra_regs; er->msr; er++) {
er->extra_msr_access = check_msr(er->msr, 0x11UL);
/* Disable LBR select mapping */
if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
x86_pmu.lbr_sel_map = NULL;
}
}
/* Support full width counters using alternative MSR range */
if (x86_pmu.intel_cap.full_width_write) {
2016-11-30 04:33:28 +08:00
x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
x86_pmu.perfctr = MSR_IA32_PMC0;
pr_cont("full-width counters, ");
}
perf/x86/intel: Add a separate Arch Perfmon v4 PMI handler Implements counter freezing for Arch Perfmon v4 (Skylake and newer). This allows to speed up the PMI handler by avoiding unnecessary MSR writes and make it more accurate. The Arch Perfmon v4 PMI handler is substantially different than the older PMI handler. Differences to the old handler: - It relies on counter freezing, which eliminates several MSR writes from the PMI handler and lowers the overhead significantly. It makes the PMI handler more accurate, as all counters get frozen atomically as soon as any counter overflows. So there is much less counting of the PMI handler itself. With the freezing we don't need to disable or enable counters or PEBS. Only BTS which does not support auto-freezing still needs to be explicitly managed. - The PMU acking is done at the end, not the beginning. This makes it possible to avoid manual enabling/disabling of the PMU, instead we just rely on the freezing/acking. - The APIC is acked before reenabling the PMU, which avoids problems with LBRs occasionally not getting unfreezed on Skylake. - Looping is only needed to workaround a corner case which several PMIs are very close to each other. For common cases, the counters are freezed during PMI handler. It doesn't need to do re-check. This patch: - Adds code to enable v4 counter freezing - Fork <=v3 and >=v4 PMI handlers into separate functions. - Add kernel parameter to disable counter freezing. It took some time to debug counter freezing, so in case there are new problems we added an option to turn it off. Would not expect this to be used until there are new bugs. - Only for big core. The patch for small core will be posted later separately. Performance: When profiling a kernel build on Kabylake with different perf options, measuring the length of all NMI handlers using the nmi handler trace point: V3 is without counter freezing. V4 is with counter freezing. The value is the average cost of the PMI handler. (lower is better) perf options ` V3(ns) V4(ns) delta -c 100000 1088 894 -18% -g -c 100000 1862 1646 -12% --call-graph lbr -c 100000 3649 3367 -8% --c.g. dwarf -c 100000 2248 1982 -12% Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Link: http://lkml.kernel.org/r/1533712328-2834-2-git-send-email-kan.liang@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-08-08 15:12:07 +08:00
/*
* For arch perfmon 4 use counter freezing to avoid
* several MSR accesses in the PMI.
*/
if (x86_pmu.counter_freezing)
x86_pmu.handle_irq = intel_pmu_handle_irq_v4;
return 0;
}
/*
* HT bug: phase 2 init
* Called once we have valid topology information to check
* whether or not HT is enabled
* If HT is off, then we disable the workaround
*/
static __init int fixup_ht_bug(void)
{
int c;
/*
* problem not present on this CPU model, nothing to do
*/
if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
return 0;
if (topology_max_smt_threads() > 1) {
pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
return 0;
}
cpus_read_lock();
hardlockup_detector_perf_stop();
x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
x86_pmu.start_scheduling = NULL;
x86_pmu.commit_scheduling = NULL;
x86_pmu.stop_scheduling = NULL;
hardlockup_detector_perf_restart();
for_each_online_cpu(c)
free_excl_cntrs(&per_cpu(cpu_hw_events, c));
cpus_read_unlock();
pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
return 0;
}
subsys_initcall(fixup_ht_bug)