OpenCloudOS-Kernel/arch/x86/kvm/hyperv.c

2183 lines
56 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* KVM Microsoft Hyper-V emulation
*
* derived from arch/x86/kvm/x86.c
*
* Copyright (C) 2006 Qumranet, Inc.
* Copyright (C) 2008 Qumranet, Inc.
* Copyright IBM Corporation, 2008
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
* Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
*
* Authors:
* Avi Kivity <avi@qumranet.com>
* Yaniv Kamay <yaniv@qumranet.com>
* Amit Shah <amit.shah@qumranet.com>
* Ben-Ami Yassour <benami@il.ibm.com>
* Andrey Smetanin <asmetanin@virtuozzo.com>
*/
#include "x86.h"
#include "lapic.h"
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
#include "ioapic.h"
#include "cpuid.h"
#include "hyperv.h"
#include "xen.h"
KVM: x86: hyper-v: set NoNonArchitecturalCoreSharing CPUID bit when SMT is impossible Hyper-V 2019 doesn't expose MD_CLEAR CPUID bit to guests when it cannot guarantee that two virtual processors won't end up running on sibling SMT threads without knowing about it. This is done as an optimization as in this case there is nothing the guest can do to protect itself against MDS and issuing additional flush requests is just pointless. On bare metal the topology is known, however, when Hyper-V is running nested (e.g. on top of KVM) it needs an additional piece of information: a confirmation that the exposed topology (wrt vCPU placement on different SMT threads) is trustworthy. NoNonArchitecturalCoreSharing (CPUID 0x40000004 EAX bit 18) is described in TLFS as follows: "Indicates that a virtual processor will never share a physical core with another virtual processor, except for virtual processors that are reported as sibling SMT threads." From KVM we can give such guarantee in two cases: - SMT is unsupported or forcefully disabled (just 'disabled' doesn't work as it can become re-enabled during the lifetime of the guest). - vCPUs are properly pinned so the scheduler won't put them on sibling SMT threads (when they're not reported as such). This patch reports NoNonArchitecturalCoreSharing bit in to userspace in the first case. The second case is outside of KVM's domain of responsibility (as vCPU pinning is actually done by someone who manages KVM's userspace - e.g. libvirt pinning QEMU threads). Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-17 00:22:57 +08:00
#include <linux/cpu.h>
#include <linux/kvm_host.h>
#include <linux/highmem.h>
#include <linux/sched/cputime.h>
#include <linux/eventfd.h>
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
#include <asm/apicdef.h>
#include <trace/events/kvm.h>
#include "trace.h"
#include "irq.h"
/* "Hv#1" signature */
#define HYPERV_CPUID_SIGNATURE_EAX 0x31237648
#define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, 64)
static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
bool vcpu_kick);
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
{
return atomic64_read(&synic->sint[sint]);
}
static inline int synic_get_sint_vector(u64 sint_value)
{
if (sint_value & HV_SYNIC_SINT_MASKED)
return -1;
return sint_value & HV_SYNIC_SINT_VECTOR_MASK;
}
static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic,
int vector)
{
int i;
for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
return true;
}
return false;
}
static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic,
int vector)
{
int i;
u64 sint_value;
for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
sint_value = synic_read_sint(synic, i);
if (synic_get_sint_vector(sint_value) == vector &&
sint_value & HV_SYNIC_SINT_AUTO_EOI)
return true;
}
return false;
}
static void synic_update_vector(struct kvm_vcpu_hv_synic *synic,
int vector)
{
if (vector < HV_SYNIC_FIRST_VALID_VECTOR)
return;
if (synic_has_vector_connected(synic, vector))
__set_bit(vector, synic->vec_bitmap);
else
__clear_bit(vector, synic->vec_bitmap);
if (synic_has_vector_auto_eoi(synic, vector))
__set_bit(vector, synic->auto_eoi_bitmap);
else
__clear_bit(vector, synic->auto_eoi_bitmap);
}
static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint,
u64 data, bool host)
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
{
int vector, old_vector;
bool masked;
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
vector = data & HV_SYNIC_SINT_VECTOR_MASK;
masked = data & HV_SYNIC_SINT_MASKED;
/*
* Valid vectors are 16-255, however, nested Hyper-V attempts to write
* default '0x10000' value on boot and this should not #GP. We need to
* allow zero-initing the register from host as well.
*/
if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked)
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
return 1;
/*
* Guest may configure multiple SINTs to use the same vector, so
* we maintain a bitmap of vectors handled by synic, and a
* bitmap of vectors with auto-eoi behavior. The bitmaps are
* updated here, and atomically queried on fast paths.
*/
old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK;
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
atomic64_set(&synic->sint[sint], data);
synic_update_vector(synic, old_vector);
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
synic_update_vector(synic, vector);
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
/* Load SynIC vectors into EOI exit bitmap */
kvm_make_request(KVM_REQ_SCAN_IOAPIC, hv_synic_to_vcpu(synic));
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
return 0;
}
static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
{
struct kvm_vcpu *vcpu = NULL;
int i;
if (vpidx >= KVM_MAX_VCPUS)
return NULL;
vcpu = kvm_get_vcpu(kvm, vpidx);
if (vcpu && kvm_hv_get_vpindex(vcpu) == vpidx)
return vcpu;
kvm_for_each_vcpu(i, vcpu, kvm)
if (kvm_hv_get_vpindex(vcpu) == vpidx)
return vcpu;
return NULL;
}
static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
{
struct kvm_vcpu *vcpu;
struct kvm_vcpu_hv_synic *synic;
vcpu = get_vcpu_by_vpidx(kvm, vpidx);
2021-02-26 15:59:59 +08:00
if (!vcpu || !to_hv_vcpu(vcpu))
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
return NULL;
synic = to_hv_synic(vcpu);
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
return (synic->active) ? synic : NULL;
}
static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
{
struct kvm *kvm = vcpu->kvm;
struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
struct kvm_vcpu_hv_stimer *stimer;
int gsi, idx;
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint);
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
/* Try to deliver pending Hyper-V SynIC timers messages */
for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
stimer = &hv_vcpu->stimer[idx];
if (stimer->msg_pending && stimer->config.enable &&
!stimer->config.direct_mode &&
stimer->config.sintx == sint)
stimer_mark_pending(stimer, false);
}
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
idx = srcu_read_lock(&kvm->irq_srcu);
gsi = atomic_read(&synic->sint_to_gsi[sint]);
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
if (gsi != -1)
kvm_notify_acked_gsi(kvm, gsi);
srcu_read_unlock(&kvm->irq_srcu, idx);
}
static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr)
{
struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC;
hv_vcpu->exit.u.synic.msr = msr;
hv_vcpu->exit.u.synic.control = synic->control;
hv_vcpu->exit.u.synic.evt_page = synic->evt_page;
hv_vcpu->exit.u.synic.msg_page = synic->msg_page;
kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
}
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
static int synic_set_msr(struct kvm_vcpu_hv_synic *synic,
u32 msr, u64 data, bool host)
{
struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
int ret;
if (!synic->active && !host)
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
return 1;
trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host);
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
ret = 0;
switch (msr) {
case HV_X64_MSR_SCONTROL:
synic->control = data;
if (!host)
synic_exit(synic, msr);
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
break;
case HV_X64_MSR_SVERSION:
if (!host) {
ret = 1;
break;
}
synic->version = data;
break;
case HV_X64_MSR_SIEFP:
if ((data & HV_SYNIC_SIEFP_ENABLE) && !host &&
!synic->dont_zero_synic_pages)
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
if (kvm_clear_guest(vcpu->kvm,
data & PAGE_MASK, PAGE_SIZE)) {
ret = 1;
break;
}
synic->evt_page = data;
if (!host)
synic_exit(synic, msr);
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
break;
case HV_X64_MSR_SIMP:
if ((data & HV_SYNIC_SIMP_ENABLE) && !host &&
!synic->dont_zero_synic_pages)
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
if (kvm_clear_guest(vcpu->kvm,
data & PAGE_MASK, PAGE_SIZE)) {
ret = 1;
break;
}
synic->msg_page = data;
if (!host)
synic_exit(synic, msr);
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
break;
case HV_X64_MSR_EOM: {
int i;
for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
kvm_hv_notify_acked_sint(vcpu, i);
break;
}
case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host);
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
break;
default:
ret = 1;
break;
}
return ret;
}
static bool kvm_hv_is_syndbg_enabled(struct kvm_vcpu *vcpu)
{
struct kvm_cpuid_entry2 *entry;
entry = kvm_find_cpuid_entry(vcpu,
HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES,
0);
if (!entry)
return false;
return entry->eax & HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
}
static int kvm_hv_syndbg_complete_userspace(struct kvm_vcpu *vcpu)
{
struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
if (vcpu->run->hyperv.u.syndbg.msr == HV_X64_MSR_SYNDBG_CONTROL)
hv->hv_syndbg.control.status =
vcpu->run->hyperv.u.syndbg.status;
return 1;
}
static void syndbg_exit(struct kvm_vcpu *vcpu, u32 msr)
{
struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNDBG;
hv_vcpu->exit.u.syndbg.msr = msr;
hv_vcpu->exit.u.syndbg.control = syndbg->control.control;
hv_vcpu->exit.u.syndbg.send_page = syndbg->control.send_page;
hv_vcpu->exit.u.syndbg.recv_page = syndbg->control.recv_page;
hv_vcpu->exit.u.syndbg.pending_page = syndbg->control.pending_page;
vcpu->arch.complete_userspace_io =
kvm_hv_syndbg_complete_userspace;
kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
}
static int syndbg_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
{
struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
return 1;
trace_kvm_hv_syndbg_set_msr(vcpu->vcpu_id,
to_hv_vcpu(vcpu)->vp_index, msr, data);
switch (msr) {
case HV_X64_MSR_SYNDBG_CONTROL:
syndbg->control.control = data;
if (!host)
syndbg_exit(vcpu, msr);
break;
case HV_X64_MSR_SYNDBG_STATUS:
syndbg->control.status = data;
break;
case HV_X64_MSR_SYNDBG_SEND_BUFFER:
syndbg->control.send_page = data;
break;
case HV_X64_MSR_SYNDBG_RECV_BUFFER:
syndbg->control.recv_page = data;
break;
case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
syndbg->control.pending_page = data;
if (!host)
syndbg_exit(vcpu, msr);
break;
case HV_X64_MSR_SYNDBG_OPTIONS:
syndbg->options = data;
break;
default:
break;
}
return 0;
}
static int syndbg_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
{
struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
return 1;
switch (msr) {
case HV_X64_MSR_SYNDBG_CONTROL:
*pdata = syndbg->control.control;
break;
case HV_X64_MSR_SYNDBG_STATUS:
*pdata = syndbg->control.status;
break;
case HV_X64_MSR_SYNDBG_SEND_BUFFER:
*pdata = syndbg->control.send_page;
break;
case HV_X64_MSR_SYNDBG_RECV_BUFFER:
*pdata = syndbg->control.recv_page;
break;
case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
*pdata = syndbg->control.pending_page;
break;
case HV_X64_MSR_SYNDBG_OPTIONS:
*pdata = syndbg->options;
break;
default:
break;
}
trace_kvm_hv_syndbg_get_msr(vcpu->vcpu_id, kvm_hv_get_vpindex(vcpu), msr, *pdata);
return 0;
}
static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata,
bool host)
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
{
int ret;
if (!synic->active && !host)
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
return 1;
ret = 0;
switch (msr) {
case HV_X64_MSR_SCONTROL:
*pdata = synic->control;
break;
case HV_X64_MSR_SVERSION:
*pdata = synic->version;
break;
case HV_X64_MSR_SIEFP:
*pdata = synic->evt_page;
break;
case HV_X64_MSR_SIMP:
*pdata = synic->msg_page;
break;
case HV_X64_MSR_EOM:
*pdata = 0;
break;
case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
*pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]);
break;
default:
ret = 1;
break;
}
return ret;
}
static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
{
struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
struct kvm_lapic_irq irq;
int ret, vector;
if (sint >= ARRAY_SIZE(synic->sint))
return -EINVAL;
vector = synic_get_sint_vector(synic_read_sint(synic, sint));
if (vector < 0)
return -ENOENT;
memset(&irq, 0, sizeof(irq));
irq.shorthand = APIC_DEST_SELF;
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
irq.dest_mode = APIC_DEST_PHYSICAL;
irq.delivery_mode = APIC_DM_FIXED;
irq.vector = vector;
irq.level = 1;
ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL);
trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret);
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
return ret;
}
int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint)
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
{
struct kvm_vcpu_hv_synic *synic;
synic = synic_get(kvm, vpidx);
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
if (!synic)
return -EINVAL;
return synic_set_irq(synic, sint);
}
void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector)
{
struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
int i;
trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector);
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
kvm_hv_notify_acked_sint(vcpu, i);
}
static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi)
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
{
struct kvm_vcpu_hv_synic *synic;
synic = synic_get(kvm, vpidx);
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
if (!synic)
return -EINVAL;
if (sint >= ARRAY_SIZE(synic->sint_to_gsi))
return -EINVAL;
atomic_set(&synic->sint_to_gsi[sint], gsi);
return 0;
}
void kvm_hv_irq_routing_update(struct kvm *kvm)
{
struct kvm_irq_routing_table *irq_rt;
struct kvm_kernel_irq_routing_entry *e;
u32 gsi;
irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu,
lockdep_is_held(&kvm->irq_lock));
for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) {
hlist_for_each_entry(e, &irq_rt->map[gsi], link) {
if (e->type == KVM_IRQ_ROUTING_HV_SINT)
kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu,
e->hv_sint.sint, gsi);
}
}
}
static void synic_init(struct kvm_vcpu_hv_synic *synic)
{
int i;
memset(synic, 0, sizeof(*synic));
synic->version = HV_SYNIC_VERSION_1;
for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED);
atomic_set(&synic->sint_to_gsi[i], -1);
}
}
static u64 get_time_ref_counter(struct kvm *kvm)
{
struct kvm_hv *hv = to_kvm_hv(kvm);
struct kvm_vcpu *vcpu;
u64 tsc;
/*
* The guest has not set up the TSC page or the clock isn't
* stable, fall back to get_kvmclock_ns.
*/
if (!hv->tsc_ref.tsc_sequence)
return div_u64(get_kvmclock_ns(kvm), 100);
vcpu = kvm_get_vcpu(kvm, 0);
tsc = kvm_read_l1_tsc(vcpu, rdtsc());
return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64)
+ hv->tsc_ref.tsc_offset;
}
static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
bool vcpu_kick)
{
struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
set_bit(stimer->index,
to_hv_vcpu(vcpu)->stimer_pending_bitmap);
kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
if (vcpu_kick)
kvm_vcpu_kick(vcpu);
}
static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer)
{
struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
trace_kvm_hv_stimer_cleanup(hv_stimer_to_vcpu(stimer)->vcpu_id,
stimer->index);
hrtimer_cancel(&stimer->timer);
clear_bit(stimer->index,
to_hv_vcpu(vcpu)->stimer_pending_bitmap);
stimer->msg_pending = false;
stimer->exp_time = 0;
}
static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer)
{
struct kvm_vcpu_hv_stimer *stimer;
stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer);
trace_kvm_hv_stimer_callback(hv_stimer_to_vcpu(stimer)->vcpu_id,
stimer->index);
stimer_mark_pending(stimer, true);
return HRTIMER_NORESTART;
}
/*
* stimer_start() assumptions:
* a) stimer->count is not equal to 0
* b) stimer->config has HV_STIMER_ENABLE flag
*/
static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
{
u64 time_now;
ktime_t ktime_now;
time_now = get_time_ref_counter(hv_stimer_to_vcpu(stimer)->kvm);
ktime_now = ktime_get();
if (stimer->config.periodic) {
if (stimer->exp_time) {
if (time_now >= stimer->exp_time) {
u64 remainder;
div64_u64_rem(time_now - stimer->exp_time,
stimer->count, &remainder);
stimer->exp_time =
time_now + (stimer->count - remainder);
}
} else
stimer->exp_time = time_now + stimer->count;
trace_kvm_hv_stimer_start_periodic(
hv_stimer_to_vcpu(stimer)->vcpu_id,
stimer->index,
time_now, stimer->exp_time);
hrtimer_start(&stimer->timer,
ktime_add_ns(ktime_now,
100 * (stimer->exp_time - time_now)),
HRTIMER_MODE_ABS);
return 0;
}
stimer->exp_time = stimer->count;
if (time_now >= stimer->count) {
/*
* Expire timer according to Hypervisor Top-Level Functional
* specification v4(15.3.1):
* "If a one shot is enabled and the specified count is in
* the past, it will expire immediately."
*/
stimer_mark_pending(stimer, false);
return 0;
}
trace_kvm_hv_stimer_start_one_shot(hv_stimer_to_vcpu(stimer)->vcpu_id,
stimer->index,
time_now, stimer->count);
hrtimer_start(&stimer->timer,
ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)),
HRTIMER_MODE_ABS);
return 0;
}
static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
bool host)
{
union hv_stimer_config new_config = {.as_uint64 = config},
old_config = {.as_uint64 = stimer->config.as_uint64};
struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
if (!synic->active && !host)
return 1;
trace_kvm_hv_stimer_set_config(hv_stimer_to_vcpu(stimer)->vcpu_id,
stimer->index, config, host);
stimer_cleanup(stimer);
if (old_config.enable &&
!new_config.direct_mode && new_config.sintx == 0)
new_config.enable = 0;
stimer->config.as_uint64 = new_config.as_uint64;
x86/kvm/hyper-v: avoid spurious pending stimer on vCPU init When userspace initializes guest vCPUs it may want to zero all supported MSRs including Hyper-V related ones including HV_X64_MSR_STIMERn_CONFIG/ HV_X64_MSR_STIMERn_COUNT. With commit f3b138c5d89a ("kvm/x86: Update SynIC timers on guest entry only") we began doing stimer_mark_pending() unconditionally on every config change. The issue I'm observing manifests itself as following: - Qemu writes 0 to STIMERn_{CONFIG,COUNT} MSRs and marks all stimers as pending in stimer_pending_bitmap, arms KVM_REQ_HV_STIMER; - kvm_hv_has_stimer_pending() starts returning true; - kvm_vcpu_has_events() starts returning true; - kvm_arch_vcpu_runnable() starts returning true; - when kvm_arch_vcpu_ioctl_run() gets into (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED) case: - kvm_vcpu_block() gets in 'kvm_vcpu_check_block(vcpu) < 0' and returns immediately, avoiding normal wait path; - -EAGAIN is returned from kvm_arch_vcpu_ioctl_run() immediately forcing userspace to retry. So instead of normal wait path we get a busy loop on all secondary vCPUs before they get INIT signal. This seems to be undesirable, especially given that this happens even when Hyper-V extensions are not used. Generally, it seems to be pointless to mark an stimer as pending in stimer_pending_bitmap and arm KVM_REQ_HV_STIMER as the only thing kvm_hv_process_stimers() will do is clear the corresponding bit. We may just not mark disabled timers as pending instead. Fixes: f3b138c5d89a ("kvm/x86: Update SynIC timers on guest entry only") Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-14 01:13:42 +08:00
if (stimer->config.enable)
stimer_mark_pending(stimer, false);
return 0;
}
static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
bool host)
{
struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
if (!synic->active && !host)
return 1;
trace_kvm_hv_stimer_set_count(hv_stimer_to_vcpu(stimer)->vcpu_id,
stimer->index, count, host);
stimer_cleanup(stimer);
stimer->count = count;
if (stimer->count == 0)
stimer->config.enable = 0;
else if (stimer->config.auto_enable)
stimer->config.enable = 1;
x86/kvm/hyper-v: avoid spurious pending stimer on vCPU init When userspace initializes guest vCPUs it may want to zero all supported MSRs including Hyper-V related ones including HV_X64_MSR_STIMERn_CONFIG/ HV_X64_MSR_STIMERn_COUNT. With commit f3b138c5d89a ("kvm/x86: Update SynIC timers on guest entry only") we began doing stimer_mark_pending() unconditionally on every config change. The issue I'm observing manifests itself as following: - Qemu writes 0 to STIMERn_{CONFIG,COUNT} MSRs and marks all stimers as pending in stimer_pending_bitmap, arms KVM_REQ_HV_STIMER; - kvm_hv_has_stimer_pending() starts returning true; - kvm_vcpu_has_events() starts returning true; - kvm_arch_vcpu_runnable() starts returning true; - when kvm_arch_vcpu_ioctl_run() gets into (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED) case: - kvm_vcpu_block() gets in 'kvm_vcpu_check_block(vcpu) < 0' and returns immediately, avoiding normal wait path; - -EAGAIN is returned from kvm_arch_vcpu_ioctl_run() immediately forcing userspace to retry. So instead of normal wait path we get a busy loop on all secondary vCPUs before they get INIT signal. This seems to be undesirable, especially given that this happens even when Hyper-V extensions are not used. Generally, it seems to be pointless to mark an stimer as pending in stimer_pending_bitmap and arm KVM_REQ_HV_STIMER as the only thing kvm_hv_process_stimers() will do is clear the corresponding bit. We may just not mark disabled timers as pending instead. Fixes: f3b138c5d89a ("kvm/x86: Update SynIC timers on guest entry only") Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-14 01:13:42 +08:00
if (stimer->config.enable)
stimer_mark_pending(stimer, false);
return 0;
}
static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
{
*pconfig = stimer->config.as_uint64;
return 0;
}
static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
{
*pcount = stimer->count;
return 0;
}
static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
struct hv_message *src_msg, bool no_retry)
{
struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
int msg_off = offsetof(struct hv_message_page, sint_message[sint]);
gfn_t msg_page_gfn;
struct hv_message_header hv_hdr;
int r;
if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
return -ENOENT;
msg_page_gfn = synic->msg_page >> PAGE_SHIFT;
/*
* Strictly following the spec-mandated ordering would assume setting
* .msg_pending before checking .message_type. However, this function
* is only called in vcpu context so the entire update is atomic from
* guest POV and thus the exact order here doesn't matter.
*/
r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type,
msg_off + offsetof(struct hv_message,
header.message_type),
sizeof(hv_hdr.message_type));
if (r < 0)
return r;
if (hv_hdr.message_type != HVMSG_NONE) {
if (no_retry)
return 0;
hv_hdr.message_flags.msg_pending = 1;
r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn,
&hv_hdr.message_flags,
msg_off +
offsetof(struct hv_message,
header.message_flags),
sizeof(hv_hdr.message_flags));
if (r < 0)
return r;
return -EAGAIN;
}
r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off,
sizeof(src_msg->header) +
src_msg->header.payload_size);
if (r < 0)
return r;
r = synic_set_irq(synic, sint);
if (r < 0)
return r;
if (r == 0)
return -EFAULT;
return 0;
}
static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
{
struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
struct hv_message *msg = &stimer->msg;
struct hv_timer_message_payload *payload =
(struct hv_timer_message_payload *)&msg->u.payload;
/*
* To avoid piling up periodic ticks, don't retry message
* delivery for them (within "lazy" lost ticks policy).
*/
bool no_retry = stimer->config.periodic;
payload->expiration_time = stimer->exp_time;
payload->delivery_time = get_time_ref_counter(vcpu->kvm);
return synic_deliver_msg(to_hv_synic(vcpu),
stimer->config.sintx, msg,
no_retry);
}
static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer)
{
struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
struct kvm_lapic_irq irq = {
.delivery_mode = APIC_DM_FIXED,
.vector = stimer->config.apic_vector
};
KVM: hyperv: Fix Direct Synthetic timers assert an interrupt w/o lapic_in_kernel Reported by syzkaller: kasan: GPF could be caused by NULL-ptr deref or user memory access general protection fault: 0000 [#1] PREEMPT SMP KASAN RIP: 0010:__apic_accept_irq+0x46/0x740 arch/x86/kvm/lapic.c:1029 Call Trace: kvm_apic_set_irq+0xb4/0x140 arch/x86/kvm/lapic.c:558 stimer_notify_direct arch/x86/kvm/hyperv.c:648 [inline] stimer_expiration arch/x86/kvm/hyperv.c:659 [inline] kvm_hv_process_stimers+0x594/0x1650 arch/x86/kvm/hyperv.c:686 vcpu_enter_guest+0x2b2a/0x54b0 arch/x86/kvm/x86.c:7896 vcpu_run+0x393/0xd40 arch/x86/kvm/x86.c:8152 kvm_arch_vcpu_ioctl_run+0x636/0x900 arch/x86/kvm/x86.c:8360 kvm_vcpu_ioctl+0x6cf/0xaf0 arch/x86/kvm/../../../virt/kvm/kvm_main.c:2765 The testcase programs HV_X64_MSR_STIMERn_CONFIG/HV_X64_MSR_STIMERn_COUNT, in addition, there is no lapic in the kernel, the counters value are small enough in order that kvm_hv_process_stimers() inject this already-expired timer interrupt into the guest through lapic in the kernel which triggers the NULL deferencing. This patch fixes it by don't advertise direct mode synthetic timers and discarding the inject when lapic is not in kernel. syzkaller source: https://syzkaller.appspot.com/x/repro.c?x=1752fe0a600000 Reported-by: syzbot+dff25ee91f0c7d5c1695@syzkaller.appspotmail.com Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Wanpeng Li <wanpengli@tencent.com> Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-16 15:42:32 +08:00
if (lapic_in_kernel(vcpu))
return !kvm_apic_set_irq(vcpu, &irq, NULL);
return 0;
}
static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
{
int r, direct = stimer->config.direct_mode;
stimer->msg_pending = true;
if (!direct)
r = stimer_send_msg(stimer);
else
r = stimer_notify_direct(stimer);
trace_kvm_hv_stimer_expiration(hv_stimer_to_vcpu(stimer)->vcpu_id,
stimer->index, direct, r);
if (!r) {
stimer->msg_pending = false;
if (!(stimer->config.periodic))
stimer->config.enable = 0;
}
}
void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
{
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
struct kvm_vcpu_hv_stimer *stimer;
u64 time_now, exp_time;
int i;
if (!hv_vcpu)
return;
for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) {
stimer = &hv_vcpu->stimer[i];
if (stimer->config.enable) {
exp_time = stimer->exp_time;
if (exp_time) {
time_now =
get_time_ref_counter(vcpu->kvm);
if (time_now >= exp_time)
stimer_expiration(stimer);
}
if ((stimer->config.enable) &&
stimer->count) {
if (!stimer->msg_pending)
stimer_start(stimer);
} else
stimer_cleanup(stimer);
}
}
}
void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
{
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
int i;
if (!hv_vcpu)
return;
for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
stimer_cleanup(&hv_vcpu->stimer[i]);
kfree(hv_vcpu);
vcpu->arch.hyperv = NULL;
}
bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu)
{
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
if (!hv_vcpu)
return false;
if (!(hv_vcpu->hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE))
return false;
return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
}
EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled);
bool kvm_hv_get_assist_page(struct kvm_vcpu *vcpu,
struct hv_vp_assist_page *assist_page)
{
if (!kvm_hv_assist_page_enabled(vcpu))
return false;
return !kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data,
assist_page, sizeof(*assist_page));
}
EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page);
static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
{
struct hv_message *msg = &stimer->msg;
struct hv_timer_message_payload *payload =
(struct hv_timer_message_payload *)&msg->u.payload;
memset(&msg->header, 0, sizeof(msg->header));
msg->header.message_type = HVMSG_TIMER_EXPIRED;
msg->header.payload_size = sizeof(*payload);
payload->timer_index = stimer->index;
payload->expiration_time = 0;
payload->delivery_time = 0;
}
static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index)
{
memset(stimer, 0, sizeof(*stimer));
stimer->index = timer_index;
hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
stimer->timer.function = stimer_timer_callback;
stimer_prepare_msg(stimer);
}
static int kvm_hv_vcpu_init(struct kvm_vcpu *vcpu)
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
{
struct kvm_vcpu_hv *hv_vcpu;
int i;
hv_vcpu = kzalloc(sizeof(struct kvm_vcpu_hv), GFP_KERNEL_ACCOUNT);
if (!hv_vcpu)
return -ENOMEM;
vcpu->arch.hyperv = hv_vcpu;
hv_vcpu->vcpu = vcpu;
synic_init(&hv_vcpu->synic);
bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
stimer_init(&hv_vcpu->stimer[i], i);
hv_vcpu->vp_index = kvm_vcpu_get_idx(vcpu);
return 0;
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
}
int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages)
{
struct kvm_vcpu_hv_synic *synic;
int r;
if (!to_hv_vcpu(vcpu)) {
r = kvm_hv_vcpu_init(vcpu);
if (r)
return r;
}
synic = to_hv_synic(vcpu);
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
/*
* Hyper-V SynIC auto EOI SINT's are
* not compatible with APICV, so request
* to deactivate APICV permanently.
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
*/
kvm_request_apicv_update(vcpu->kvm, false, APICV_INHIBIT_REASON_HYPERV);
synic->active = true;
synic->dont_zero_synic_pages = dont_zero_synic_pages;
synic->control = HV_SYNIC_CONTROL_ENABLE;
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
return 0;
}
static bool kvm_hv_msr_partition_wide(u32 msr)
{
bool r = false;
switch (msr) {
case HV_X64_MSR_GUEST_OS_ID:
case HV_X64_MSR_HYPERCALL:
case HV_X64_MSR_REFERENCE_TSC:
case HV_X64_MSR_TIME_REF_COUNT:
case HV_X64_MSR_CRASH_CTL:
case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
case HV_X64_MSR_RESET:
case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
case HV_X64_MSR_TSC_EMULATION_CONTROL:
case HV_X64_MSR_TSC_EMULATION_STATUS:
case HV_X64_MSR_SYNDBG_OPTIONS:
case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
r = true;
break;
}
return r;
}
static int kvm_hv_msr_get_crash_data(struct kvm *kvm, u32 index, u64 *pdata)
{
struct kvm_hv *hv = to_kvm_hv(kvm);
size_t size = ARRAY_SIZE(hv->hv_crash_param);
if (WARN_ON_ONCE(index >= size))
return -EINVAL;
*pdata = hv->hv_crash_param[array_index_nospec(index, size)];
return 0;
}
static int kvm_hv_msr_get_crash_ctl(struct kvm *kvm, u64 *pdata)
{
struct kvm_hv *hv = to_kvm_hv(kvm);
*pdata = hv->hv_crash_ctl;
return 0;
}
static int kvm_hv_msr_set_crash_ctl(struct kvm *kvm, u64 data)
{
struct kvm_hv *hv = to_kvm_hv(kvm);
hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY;
return 0;
}
static int kvm_hv_msr_set_crash_data(struct kvm *kvm, u32 index, u64 data)
{
struct kvm_hv *hv = to_kvm_hv(kvm);
size_t size = ARRAY_SIZE(hv->hv_crash_param);
if (WARN_ON_ONCE(index >= size))
return -EINVAL;
hv->hv_crash_param[array_index_nospec(index, size)] = data;
return 0;
}
/*
* The kvmclock and Hyper-V TSC page use similar formulas, and converting
* between them is possible:
*
* kvmclock formula:
* nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
* + system_time
*
* Hyper-V formula:
* nsec/100 = ticks * scale / 2^64 + offset
*
* When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
* By dividing the kvmclock formula by 100 and equating what's left we get:
* ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
* scale / 2^64 = tsc_to_system_mul * 2^(tsc_shift-32) / 100
* scale = tsc_to_system_mul * 2^(32+tsc_shift) / 100
*
* Now expand the kvmclock formula and divide by 100:
* nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
* - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
* + system_time
* nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
* - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
* + system_time / 100
*
* Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
* nsec/100 = ticks * scale / 2^64
* - tsc_timestamp * scale / 2^64
* + system_time / 100
*
* Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
* offset = system_time / 100 - tsc_timestamp * scale / 2^64
*
* These two equivalencies are implemented in this function.
*/
static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock,
struct ms_hyperv_tsc_page *tsc_ref)
{
u64 max_mul;
if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT))
return false;
/*
* check if scale would overflow, if so we use the time ref counter
* tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
* tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
* tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
*/
max_mul = 100ull << (32 - hv_clock->tsc_shift);
if (hv_clock->tsc_to_system_mul >= max_mul)
return false;
/*
* Otherwise compute the scale and offset according to the formulas
* derived above.
*/
tsc_ref->tsc_scale =
mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift),
hv_clock->tsc_to_system_mul,
100);
tsc_ref->tsc_offset = hv_clock->system_time;
do_div(tsc_ref->tsc_offset, 100);
tsc_ref->tsc_offset -=
mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64);
return true;
}
void kvm_hv_setup_tsc_page(struct kvm *kvm,
struct pvclock_vcpu_time_info *hv_clock)
{
struct kvm_hv *hv = to_kvm_hv(kvm);
u32 tsc_seq;
u64 gfn;
BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence));
BUILD_BUG_ON(offsetof(struct ms_hyperv_tsc_page, tsc_sequence) != 0);
if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
return;
mutex_lock(&hv->hv_lock);
if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
goto out_unlock;
gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
/*
* Because the TSC parameters only vary when there is a
* change in the master clock, do not bother with caching.
*/
if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn),
&tsc_seq, sizeof(tsc_seq))))
goto out_unlock;
/*
* While we're computing and writing the parameters, force the
* guest to use the time reference count MSR.
*/
hv->tsc_ref.tsc_sequence = 0;
if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
&hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
goto out_unlock;
if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref))
goto out_unlock;
/* Ensure sequence is zero before writing the rest of the struct. */
smp_wmb();
if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
goto out_unlock;
/*
* Now switch to the TSC page mechanism by writing the sequence.
*/
tsc_seq++;
if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0)
tsc_seq = 1;
/* Write the struct entirely before the non-zero sequence. */
smp_wmb();
hv->tsc_ref.tsc_sequence = tsc_seq;
kvm_write_guest(kvm, gfn_to_gpa(gfn),
&hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence));
out_unlock:
mutex_unlock(&hv->hv_lock);
}
static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data,
bool host)
{
struct kvm *kvm = vcpu->kvm;
struct kvm_hv *hv = to_kvm_hv(kvm);
switch (msr) {
case HV_X64_MSR_GUEST_OS_ID:
hv->hv_guest_os_id = data;
/* setting guest os id to zero disables hypercall page */
if (!hv->hv_guest_os_id)
hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
break;
case HV_X64_MSR_HYPERCALL: {
u8 instructions[9];
int i = 0;
u64 addr;
/* if guest os id is not set hypercall should remain disabled */
if (!hv->hv_guest_os_id)
break;
if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
hv->hv_hypercall = data;
break;
}
/*
* If Xen and Hyper-V hypercalls are both enabled, disambiguate
* the same way Xen itself does, by setting the bit 31 of EAX
* which is RsvdZ in the 32-bit Hyper-V hypercall ABI and just
* going to be clobbered on 64-bit.
*/
if (kvm_xen_hypercall_enabled(kvm)) {
/* orl $0x80000000, %eax */
instructions[i++] = 0x0d;
instructions[i++] = 0x00;
instructions[i++] = 0x00;
instructions[i++] = 0x00;
instructions[i++] = 0x80;
}
/* vmcall/vmmcall */
static_call(kvm_x86_patch_hypercall)(vcpu, instructions + i);
i += 3;
/* ret */
((unsigned char *)instructions)[i++] = 0xc3;
addr = data & HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_MASK;
if (kvm_vcpu_write_guest(vcpu, addr, instructions, i))
return 1;
hv->hv_hypercall = data;
break;
}
case HV_X64_MSR_REFERENCE_TSC:
hv->hv_tsc_page = data;
if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE)
kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
break;
case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
return kvm_hv_msr_set_crash_data(kvm,
msr - HV_X64_MSR_CRASH_P0,
data);
case HV_X64_MSR_CRASH_CTL:
if (host)
return kvm_hv_msr_set_crash_ctl(kvm, data);
if (data & HV_CRASH_CTL_CRASH_NOTIFY) {
vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
hv->hv_crash_param[0],
hv->hv_crash_param[1],
hv->hv_crash_param[2],
hv->hv_crash_param[3],
hv->hv_crash_param[4]);
/* Send notification about crash to user space */
kvm_make_request(KVM_REQ_HV_CRASH, vcpu);
}
break;
case HV_X64_MSR_RESET:
if (data == 1) {
vcpu_debug(vcpu, "hyper-v reset requested\n");
kvm_make_request(KVM_REQ_HV_RESET, vcpu);
}
break;
case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
hv->hv_reenlightenment_control = data;
break;
case HV_X64_MSR_TSC_EMULATION_CONTROL:
hv->hv_tsc_emulation_control = data;
break;
case HV_X64_MSR_TSC_EMULATION_STATUS:
hv->hv_tsc_emulation_status = data;
break;
case HV_X64_MSR_TIME_REF_COUNT:
/* read-only, but still ignore it if host-initiated */
if (!host)
return 1;
break;
case HV_X64_MSR_SYNDBG_OPTIONS:
case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
return syndbg_set_msr(vcpu, msr, data, host);
default:
vcpu_unimpl(vcpu, "Hyper-V unhandled wrmsr: 0x%x data 0x%llx\n",
msr, data);
return 1;
}
return 0;
}
/* Calculate cpu time spent by current task in 100ns units */
static u64 current_task_runtime_100ns(void)
{
u64 utime, stime;
task_cputime_adjusted(current, &utime, &stime);
return div_u64(utime + stime, 100);
}
static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
{
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
switch (msr) {
case HV_X64_MSR_VP_INDEX: {
struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
int vcpu_idx = kvm_vcpu_get_idx(vcpu);
u32 new_vp_index = (u32)data;
if (!host || new_vp_index >= KVM_MAX_VCPUS)
return 1;
if (new_vp_index == hv_vcpu->vp_index)
return 0;
/*
* The VP index is initialized to vcpu_index by
* kvm_hv_vcpu_postcreate so they initially match. Now the
* VP index is changing, adjust num_mismatched_vp_indexes if
* it now matches or no longer matches vcpu_idx.
*/
if (hv_vcpu->vp_index == vcpu_idx)
atomic_inc(&hv->num_mismatched_vp_indexes);
else if (new_vp_index == vcpu_idx)
atomic_dec(&hv->num_mismatched_vp_indexes);
hv_vcpu->vp_index = new_vp_index;
break;
}
case HV_X64_MSR_VP_ASSIST_PAGE: {
u64 gfn;
unsigned long addr;
if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
hv_vcpu->hv_vapic = data;
if (kvm_lapic_enable_pv_eoi(vcpu, 0, 0))
return 1;
break;
}
gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT;
addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
if (kvm_is_error_hva(addr))
return 1;
/*
* Clear apic_assist portion of struct hv_vp_assist_page
* only, there can be valuable data in the rest which needs
* to be preserved e.g. on migration.
*/
if (__put_user(0, (u32 __user *)addr))
return 1;
hv_vcpu->hv_vapic = data;
kvm_vcpu_mark_page_dirty(vcpu, gfn);
if (kvm_lapic_enable_pv_eoi(vcpu,
gfn_to_gpa(gfn) | KVM_MSR_ENABLED,
sizeof(struct hv_vp_assist_page)))
return 1;
break;
}
case HV_X64_MSR_EOI:
return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
case HV_X64_MSR_ICR:
return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
case HV_X64_MSR_TPR:
return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
case HV_X64_MSR_VP_RUNTIME:
if (!host)
return 1;
hv_vcpu->runtime_offset = data - current_task_runtime_100ns();
break;
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
case HV_X64_MSR_SCONTROL:
case HV_X64_MSR_SVERSION:
case HV_X64_MSR_SIEFP:
case HV_X64_MSR_SIMP:
case HV_X64_MSR_EOM:
case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
return synic_set_msr(to_hv_synic(vcpu), msr, data, host);
case HV_X64_MSR_STIMER0_CONFIG:
case HV_X64_MSR_STIMER1_CONFIG:
case HV_X64_MSR_STIMER2_CONFIG:
case HV_X64_MSR_STIMER3_CONFIG: {
int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
return stimer_set_config(to_hv_stimer(vcpu, timer_index),
data, host);
}
case HV_X64_MSR_STIMER0_COUNT:
case HV_X64_MSR_STIMER1_COUNT:
case HV_X64_MSR_STIMER2_COUNT:
case HV_X64_MSR_STIMER3_COUNT: {
int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
return stimer_set_count(to_hv_stimer(vcpu, timer_index),
data, host);
}
case HV_X64_MSR_TSC_FREQUENCY:
case HV_X64_MSR_APIC_FREQUENCY:
/* read-only, but still ignore it if host-initiated */
if (!host)
return 1;
break;
default:
vcpu_unimpl(vcpu, "Hyper-V unhandled wrmsr: 0x%x data 0x%llx\n",
msr, data);
return 1;
}
return 0;
}
static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
bool host)
{
u64 data = 0;
struct kvm *kvm = vcpu->kvm;
struct kvm_hv *hv = to_kvm_hv(kvm);
switch (msr) {
case HV_X64_MSR_GUEST_OS_ID:
data = hv->hv_guest_os_id;
break;
case HV_X64_MSR_HYPERCALL:
data = hv->hv_hypercall;
break;
case HV_X64_MSR_TIME_REF_COUNT:
data = get_time_ref_counter(kvm);
break;
case HV_X64_MSR_REFERENCE_TSC:
data = hv->hv_tsc_page;
break;
case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
return kvm_hv_msr_get_crash_data(kvm,
msr - HV_X64_MSR_CRASH_P0,
pdata);
case HV_X64_MSR_CRASH_CTL:
return kvm_hv_msr_get_crash_ctl(kvm, pdata);
case HV_X64_MSR_RESET:
data = 0;
break;
case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
data = hv->hv_reenlightenment_control;
break;
case HV_X64_MSR_TSC_EMULATION_CONTROL:
data = hv->hv_tsc_emulation_control;
break;
case HV_X64_MSR_TSC_EMULATION_STATUS:
data = hv->hv_tsc_emulation_status;
break;
case HV_X64_MSR_SYNDBG_OPTIONS:
case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
return syndbg_get_msr(vcpu, msr, pdata, host);
default:
vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
return 1;
}
*pdata = data;
return 0;
}
static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
bool host)
{
u64 data = 0;
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
switch (msr) {
case HV_X64_MSR_VP_INDEX:
data = hv_vcpu->vp_index;
break;
case HV_X64_MSR_EOI:
return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
case HV_X64_MSR_ICR:
return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
case HV_X64_MSR_TPR:
return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
case HV_X64_MSR_VP_ASSIST_PAGE:
data = hv_vcpu->hv_vapic;
break;
case HV_X64_MSR_VP_RUNTIME:
data = current_task_runtime_100ns() + hv_vcpu->runtime_offset;
break;
kvm/x86: Hyper-V synthetic interrupt controller SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-11-10 20:36:34 +08:00
case HV_X64_MSR_SCONTROL:
case HV_X64_MSR_SVERSION:
case HV_X64_MSR_SIEFP:
case HV_X64_MSR_SIMP:
case HV_X64_MSR_EOM:
case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
return synic_get_msr(to_hv_synic(vcpu), msr, pdata, host);
case HV_X64_MSR_STIMER0_CONFIG:
case HV_X64_MSR_STIMER1_CONFIG:
case HV_X64_MSR_STIMER2_CONFIG:
case HV_X64_MSR_STIMER3_CONFIG: {
int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
return stimer_get_config(to_hv_stimer(vcpu, timer_index),
pdata);
}
case HV_X64_MSR_STIMER0_COUNT:
case HV_X64_MSR_STIMER1_COUNT:
case HV_X64_MSR_STIMER2_COUNT:
case HV_X64_MSR_STIMER3_COUNT: {
int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
return stimer_get_count(to_hv_stimer(vcpu, timer_index),
pdata);
}
case HV_X64_MSR_TSC_FREQUENCY:
data = (u64)vcpu->arch.virtual_tsc_khz * 1000;
break;
case HV_X64_MSR_APIC_FREQUENCY:
data = APIC_BUS_FREQUENCY;
break;
default:
vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
return 1;
}
*pdata = data;
return 0;
}
int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
{
struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
if (!host && !vcpu->arch.hyperv_enabled)
return 1;
if (!to_hv_vcpu(vcpu)) {
if (kvm_hv_vcpu_init(vcpu))
return 1;
}
if (kvm_hv_msr_partition_wide(msr)) {
int r;
mutex_lock(&hv->hv_lock);
r = kvm_hv_set_msr_pw(vcpu, msr, data, host);
mutex_unlock(&hv->hv_lock);
return r;
} else
return kvm_hv_set_msr(vcpu, msr, data, host);
}
int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
{
struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
if (!host && !vcpu->arch.hyperv_enabled)
return 1;
if (!to_hv_vcpu(vcpu)) {
if (kvm_hv_vcpu_init(vcpu))
return 1;
}
if (kvm_hv_msr_partition_wide(msr)) {
int r;
mutex_lock(&hv->hv_lock);
r = kvm_hv_get_msr_pw(vcpu, msr, pdata, host);
mutex_unlock(&hv->hv_lock);
return r;
} else
return kvm_hv_get_msr(vcpu, msr, pdata, host);
}
static __always_inline unsigned long *sparse_set_to_vcpu_mask(
struct kvm *kvm, u64 *sparse_banks, u64 valid_bank_mask,
u64 *vp_bitmap, unsigned long *vcpu_bitmap)
{
struct kvm_hv *hv = to_kvm_hv(kvm);
struct kvm_vcpu *vcpu;
int i, bank, sbank = 0;
memset(vp_bitmap, 0,
KVM_HV_MAX_SPARSE_VCPU_SET_BITS * sizeof(*vp_bitmap));
for_each_set_bit(bank, (unsigned long *)&valid_bank_mask,
KVM_HV_MAX_SPARSE_VCPU_SET_BITS)
vp_bitmap[bank] = sparse_banks[sbank++];
if (likely(!atomic_read(&hv->num_mismatched_vp_indexes))) {
/* for all vcpus vp_index == vcpu_idx */
return (unsigned long *)vp_bitmap;
}
bitmap_zero(vcpu_bitmap, KVM_MAX_VCPUS);
kvm_for_each_vcpu(i, vcpu, kvm) {
if (test_bit(kvm_hv_get_vpindex(vcpu), (unsigned long *)vp_bitmap))
__set_bit(i, vcpu_bitmap);
}
return vcpu_bitmap;
}
static u64 kvm_hv_flush_tlb(struct kvm_vcpu *vcpu, u64 ingpa, u16 rep_cnt, bool ex)
{
struct kvm *kvm = vcpu->kvm;
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
struct hv_tlb_flush_ex flush_ex;
struct hv_tlb_flush flush;
u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
unsigned long *vcpu_mask;
u64 valid_bank_mask;
u64 sparse_banks[64];
int sparse_banks_len;
bool all_cpus;
if (!ex) {
if (unlikely(kvm_read_guest(kvm, ingpa, &flush, sizeof(flush))))
return HV_STATUS_INVALID_HYPERCALL_INPUT;
trace_kvm_hv_flush_tlb(flush.processor_mask,
flush.address_space, flush.flags);
valid_bank_mask = BIT_ULL(0);
sparse_banks[0] = flush.processor_mask;
/*
* Work around possible WS2012 bug: it sends hypercalls
* with processor_mask = 0x0 and HV_FLUSH_ALL_PROCESSORS clear,
* while also expecting us to flush something and crashing if
* we don't. Let's treat processor_mask == 0 same as
* HV_FLUSH_ALL_PROCESSORS.
*/
all_cpus = (flush.flags & HV_FLUSH_ALL_PROCESSORS) ||
flush.processor_mask == 0;
} else {
if (unlikely(kvm_read_guest(kvm, ingpa, &flush_ex,
sizeof(flush_ex))))
return HV_STATUS_INVALID_HYPERCALL_INPUT;
trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask,
flush_ex.hv_vp_set.format,
flush_ex.address_space,
flush_ex.flags);
valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask;
all_cpus = flush_ex.hv_vp_set.format !=
HV_GENERIC_SET_SPARSE_4K;
sparse_banks_len =
bitmap_weight((unsigned long *)&valid_bank_mask, 64) *
sizeof(sparse_banks[0]);
if (!sparse_banks_len && !all_cpus)
goto ret_success;
if (!all_cpus &&
kvm_read_guest(kvm,
ingpa + offsetof(struct hv_tlb_flush_ex,
hv_vp_set.bank_contents),
sparse_banks,
sparse_banks_len))
return HV_STATUS_INVALID_HYPERCALL_INPUT;
}
cpumask_clear(&hv_vcpu->tlb_flush);
vcpu_mask = all_cpus ? NULL :
sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
vp_bitmap, vcpu_bitmap);
/*
* vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't
* analyze it here, flush TLB regardless of the specified address space.
*/
kvm_make_vcpus_request_mask(kvm, KVM_REQ_HV_TLB_FLUSH,
NULL, vcpu_mask, &hv_vcpu->tlb_flush);
ret_success:
/* We always do full TLB flush, set rep_done = rep_cnt. */
return (u64)HV_STATUS_SUCCESS |
((u64)rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
}
static void kvm_send_ipi_to_many(struct kvm *kvm, u32 vector,
unsigned long *vcpu_bitmap)
{
struct kvm_lapic_irq irq = {
.delivery_mode = APIC_DM_FIXED,
.vector = vector
};
struct kvm_vcpu *vcpu;
int i;
kvm_for_each_vcpu(i, vcpu, kvm) {
if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
continue;
/* We fail only when APIC is disabled */
kvm_apic_set_irq(vcpu, &irq, NULL);
}
}
static u64 kvm_hv_send_ipi(struct kvm_vcpu *vcpu, u64 ingpa, u64 outgpa,
bool ex, bool fast)
{
struct kvm *kvm = vcpu->kvm;
struct hv_send_ipi_ex send_ipi_ex;
struct hv_send_ipi send_ipi;
u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
unsigned long *vcpu_mask;
unsigned long valid_bank_mask;
u64 sparse_banks[64];
int sparse_banks_len;
u32 vector;
bool all_cpus;
if (!ex) {
if (!fast) {
if (unlikely(kvm_read_guest(kvm, ingpa, &send_ipi,
sizeof(send_ipi))))
return HV_STATUS_INVALID_HYPERCALL_INPUT;
sparse_banks[0] = send_ipi.cpu_mask;
vector = send_ipi.vector;
} else {
/* 'reserved' part of hv_send_ipi should be 0 */
if (unlikely(ingpa >> 32 != 0))
return HV_STATUS_INVALID_HYPERCALL_INPUT;
sparse_banks[0] = outgpa;
vector = (u32)ingpa;
}
all_cpus = false;
valid_bank_mask = BIT_ULL(0);
trace_kvm_hv_send_ipi(vector, sparse_banks[0]);
} else {
if (unlikely(kvm_read_guest(kvm, ingpa, &send_ipi_ex,
sizeof(send_ipi_ex))))
return HV_STATUS_INVALID_HYPERCALL_INPUT;
trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector,
send_ipi_ex.vp_set.format,
send_ipi_ex.vp_set.valid_bank_mask);
vector = send_ipi_ex.vector;
valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask;
sparse_banks_len = bitmap_weight(&valid_bank_mask, 64) *
sizeof(sparse_banks[0]);
all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL;
if (!sparse_banks_len)
goto ret_success;
if (!all_cpus &&
kvm_read_guest(kvm,
ingpa + offsetof(struct hv_send_ipi_ex,
vp_set.bank_contents),
sparse_banks,
sparse_banks_len))
return HV_STATUS_INVALID_HYPERCALL_INPUT;
}
if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR))
return HV_STATUS_INVALID_HYPERCALL_INPUT;
vcpu_mask = all_cpus ? NULL :
sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
vp_bitmap, vcpu_bitmap);
kvm_send_ipi_to_many(kvm, vector, vcpu_mask);
ret_success:
return HV_STATUS_SUCCESS;
}
void kvm_hv_set_cpuid(struct kvm_vcpu *vcpu)
{
struct kvm_cpuid_entry2 *entry;
entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_INTERFACE, 0);
if (entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX)
vcpu->arch.hyperv_enabled = true;
else
vcpu->arch.hyperv_enabled = false;
}
bool kvm_hv_hypercall_enabled(struct kvm_vcpu *vcpu)
{
return vcpu->arch.hyperv_enabled && to_kvm_hv(vcpu->kvm)->hv_guest_os_id;
}
static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
{
bool longmode;
longmode = is_64_bit_mode(vcpu);
if (longmode)
kvm_rax_write(vcpu, result);
else {
kvm_rdx_write(vcpu, result >> 32);
kvm_rax_write(vcpu, result & 0xffffffff);
}
}
static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result)
{
kvm_hv_hypercall_set_result(vcpu, result);
++vcpu->stat.hypercalls;
return kvm_skip_emulated_instruction(vcpu);
}
static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
{
return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result);
}
static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, bool fast, u64 param)
{
struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
struct eventfd_ctx *eventfd;
if (unlikely(!fast)) {
int ret;
gpa_t gpa = param;
if ((gpa & (__alignof__(param) - 1)) ||
offset_in_page(gpa) + sizeof(param) > PAGE_SIZE)
return HV_STATUS_INVALID_ALIGNMENT;
ret = kvm_vcpu_read_guest(vcpu, gpa, &param, sizeof(param));
if (ret < 0)
return HV_STATUS_INVALID_ALIGNMENT;
}
/*
* Per spec, bits 32-47 contain the extra "flag number". However, we
* have no use for it, and in all known usecases it is zero, so just
* report lookup failure if it isn't.
*/
if (param & 0xffff00000000ULL)
return HV_STATUS_INVALID_PORT_ID;
/* remaining bits are reserved-zero */
if (param & ~KVM_HYPERV_CONN_ID_MASK)
return HV_STATUS_INVALID_HYPERCALL_INPUT;
/* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */
rcu_read_lock();
eventfd = idr_find(&hv->conn_to_evt, param);
rcu_read_unlock();
if (!eventfd)
return HV_STATUS_INVALID_PORT_ID;
eventfd_signal(eventfd, 1);
return HV_STATUS_SUCCESS;
}
int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
{
u64 param, ingpa, outgpa, ret = HV_STATUS_SUCCESS;
uint16_t code, rep_idx, rep_cnt;
bool fast, rep;
/*
* hypercall generates UD from non zero cpl and real mode
* per HYPER-V spec
*/
if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || !is_protmode(vcpu)) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
#ifdef CONFIG_X86_64
if (is_64_bit_mode(vcpu)) {
param = kvm_rcx_read(vcpu);
ingpa = kvm_rdx_read(vcpu);
outgpa = kvm_r8_read(vcpu);
} else
#endif
{
param = ((u64)kvm_rdx_read(vcpu) << 32) |
(kvm_rax_read(vcpu) & 0xffffffff);
ingpa = ((u64)kvm_rbx_read(vcpu) << 32) |
(kvm_rcx_read(vcpu) & 0xffffffff);
outgpa = ((u64)kvm_rdi_read(vcpu) << 32) |
(kvm_rsi_read(vcpu) & 0xffffffff);
}
code = param & 0xffff;
fast = !!(param & HV_HYPERCALL_FAST_BIT);
rep_cnt = (param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff;
rep_idx = (param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff;
rep = !!(rep_cnt || rep_idx);
trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
switch (code) {
case HVCALL_NOTIFY_LONG_SPIN_WAIT:
if (unlikely(rep)) {
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
break;
}
kvm_vcpu_on_spin(vcpu, true);
break;
case HVCALL_SIGNAL_EVENT:
if (unlikely(rep)) {
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
break;
}
ret = kvm_hvcall_signal_event(vcpu, fast, ingpa);
if (ret != HV_STATUS_INVALID_PORT_ID)
break;
fallthrough; /* maybe userspace knows this conn_id */
case HVCALL_POST_MESSAGE:
/* don't bother userspace if it has no way to handle it */
if (unlikely(rep || !to_hv_synic(vcpu)->active)) {
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
break;
}
vcpu->run->exit_reason = KVM_EXIT_HYPERV;
vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
vcpu->run->hyperv.u.hcall.input = param;
vcpu->run->hyperv.u.hcall.params[0] = ingpa;
vcpu->run->hyperv.u.hcall.params[1] = outgpa;
vcpu->arch.complete_userspace_io =
kvm_hv_hypercall_complete_userspace;
return 0;
case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
if (unlikely(fast || !rep_cnt || rep_idx)) {
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
break;
}
ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false);
break;
case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
if (unlikely(fast || rep)) {
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
break;
}
ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false);
break;
case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
if (unlikely(fast || !rep_cnt || rep_idx)) {
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
break;
}
ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
break;
case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
if (unlikely(fast || rep)) {
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
break;
}
ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
break;
case HVCALL_SEND_IPI:
if (unlikely(rep)) {
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
break;
}
ret = kvm_hv_send_ipi(vcpu, ingpa, outgpa, false, fast);
break;
case HVCALL_SEND_IPI_EX:
if (unlikely(fast || rep)) {
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
break;
}
ret = kvm_hv_send_ipi(vcpu, ingpa, outgpa, true, false);
break;
case HVCALL_POST_DEBUG_DATA:
case HVCALL_RETRIEVE_DEBUG_DATA:
if (unlikely(fast)) {
ret = HV_STATUS_INVALID_PARAMETER;
break;
}
fallthrough;
case HVCALL_RESET_DEBUG_SESSION: {
struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
if (!kvm_hv_is_syndbg_enabled(vcpu)) {
ret = HV_STATUS_INVALID_HYPERCALL_CODE;
break;
}
if (!(syndbg->options & HV_X64_SYNDBG_OPTION_USE_HCALLS)) {
ret = HV_STATUS_OPERATION_DENIED;
break;
}
vcpu->run->exit_reason = KVM_EXIT_HYPERV;
vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
vcpu->run->hyperv.u.hcall.input = param;
vcpu->run->hyperv.u.hcall.params[0] = ingpa;
vcpu->run->hyperv.u.hcall.params[1] = outgpa;
vcpu->arch.complete_userspace_io =
kvm_hv_hypercall_complete_userspace;
return 0;
}
default:
ret = HV_STATUS_INVALID_HYPERCALL_CODE;
break;
}
return kvm_hv_hypercall_complete(vcpu, ret);
}
void kvm_hv_init_vm(struct kvm *kvm)
{
struct kvm_hv *hv = to_kvm_hv(kvm);
mutex_init(&hv->hv_lock);
idr_init(&hv->conn_to_evt);
}
void kvm_hv_destroy_vm(struct kvm *kvm)
{
struct kvm_hv *hv = to_kvm_hv(kvm);
struct eventfd_ctx *eventfd;
int i;
idr_for_each_entry(&hv->conn_to_evt, eventfd, i)
eventfd_ctx_put(eventfd);
idr_destroy(&hv->conn_to_evt);
}
static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd)
{
struct kvm_hv *hv = to_kvm_hv(kvm);
struct eventfd_ctx *eventfd;
int ret;
eventfd = eventfd_ctx_fdget(fd);
if (IS_ERR(eventfd))
return PTR_ERR(eventfd);
mutex_lock(&hv->hv_lock);
ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1,
GFP_KERNEL_ACCOUNT);
mutex_unlock(&hv->hv_lock);
if (ret >= 0)
return 0;
if (ret == -ENOSPC)
ret = -EEXIST;
eventfd_ctx_put(eventfd);
return ret;
}
static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id)
{
struct kvm_hv *hv = to_kvm_hv(kvm);
struct eventfd_ctx *eventfd;
mutex_lock(&hv->hv_lock);
eventfd = idr_remove(&hv->conn_to_evt, conn_id);
mutex_unlock(&hv->hv_lock);
if (!eventfd)
return -ENOENT;
synchronize_srcu(&kvm->srcu);
eventfd_ctx_put(eventfd);
return 0;
}
int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
{
if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) ||
(args->conn_id & ~KVM_HYPERV_CONN_ID_MASK))
return -EINVAL;
if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN)
return kvm_hv_eventfd_deassign(kvm, args->conn_id);
return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd);
}
int kvm_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid,
struct kvm_cpuid_entry2 __user *entries)
{
uint16_t evmcs_ver = 0;
struct kvm_cpuid_entry2 cpuid_entries[] = {
{ .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS },
{ .function = HYPERV_CPUID_INTERFACE },
{ .function = HYPERV_CPUID_VERSION },
{ .function = HYPERV_CPUID_FEATURES },
{ .function = HYPERV_CPUID_ENLIGHTMENT_INFO },
{ .function = HYPERV_CPUID_IMPLEMENT_LIMITS },
{ .function = HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS },
{ .function = HYPERV_CPUID_SYNDBG_INTERFACE },
{ .function = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES },
{ .function = HYPERV_CPUID_NESTED_FEATURES },
};
int i, nent = ARRAY_SIZE(cpuid_entries);
if (kvm_x86_ops.nested_ops->get_evmcs_version)
evmcs_ver = kvm_x86_ops.nested_ops->get_evmcs_version(vcpu);
/* Skip NESTED_FEATURES if eVMCS is not supported */
if (!evmcs_ver)
--nent;
if (cpuid->nent < nent)
return -E2BIG;
if (cpuid->nent > nent)
cpuid->nent = nent;
for (i = 0; i < nent; i++) {
struct kvm_cpuid_entry2 *ent = &cpuid_entries[i];
u32 signature[3];
switch (ent->function) {
case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS:
memcpy(signature, "Linux KVM Hv", 12);
ent->eax = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
ent->ebx = signature[0];
ent->ecx = signature[1];
ent->edx = signature[2];
break;
case HYPERV_CPUID_INTERFACE:
ent->eax = HYPERV_CPUID_SIGNATURE_EAX;
break;
case HYPERV_CPUID_VERSION:
/*
* We implement some Hyper-V 2016 functions so let's use
* this version.
*/
ent->eax = 0x00003839;
ent->ebx = 0x000A0000;
break;
case HYPERV_CPUID_FEATURES:
ent->eax |= HV_MSR_VP_RUNTIME_AVAILABLE;
ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE;
ent->eax |= HV_MSR_SYNIC_AVAILABLE;
ent->eax |= HV_MSR_SYNTIMER_AVAILABLE;
ent->eax |= HV_MSR_APIC_ACCESS_AVAILABLE;
ent->eax |= HV_MSR_HYPERCALL_AVAILABLE;
ent->eax |= HV_MSR_VP_INDEX_AVAILABLE;
ent->eax |= HV_MSR_RESET_AVAILABLE;
ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE;
ent->eax |= HV_ACCESS_FREQUENCY_MSRS;
ent->eax |= HV_ACCESS_REENLIGHTENMENT;
ent->ebx |= HV_POST_MESSAGES;
ent->ebx |= HV_SIGNAL_EVENTS;
ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE;
ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
KVM: hyperv: Fix Direct Synthetic timers assert an interrupt w/o lapic_in_kernel Reported by syzkaller: kasan: GPF could be caused by NULL-ptr deref or user memory access general protection fault: 0000 [#1] PREEMPT SMP KASAN RIP: 0010:__apic_accept_irq+0x46/0x740 arch/x86/kvm/lapic.c:1029 Call Trace: kvm_apic_set_irq+0xb4/0x140 arch/x86/kvm/lapic.c:558 stimer_notify_direct arch/x86/kvm/hyperv.c:648 [inline] stimer_expiration arch/x86/kvm/hyperv.c:659 [inline] kvm_hv_process_stimers+0x594/0x1650 arch/x86/kvm/hyperv.c:686 vcpu_enter_guest+0x2b2a/0x54b0 arch/x86/kvm/x86.c:7896 vcpu_run+0x393/0xd40 arch/x86/kvm/x86.c:8152 kvm_arch_vcpu_ioctl_run+0x636/0x900 arch/x86/kvm/x86.c:8360 kvm_vcpu_ioctl+0x6cf/0xaf0 arch/x86/kvm/../../../virt/kvm/kvm_main.c:2765 The testcase programs HV_X64_MSR_STIMERn_CONFIG/HV_X64_MSR_STIMERn_COUNT, in addition, there is no lapic in the kernel, the counters value are small enough in order that kvm_hv_process_stimers() inject this already-expired timer interrupt into the guest through lapic in the kernel which triggers the NULL deferencing. This patch fixes it by don't advertise direct mode synthetic timers and discarding the inject when lapic is not in kernel. syzkaller source: https://syzkaller.appspot.com/x/repro.c?x=1752fe0a600000 Reported-by: syzbot+dff25ee91f0c7d5c1695@syzkaller.appspotmail.com Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Wanpeng Li <wanpengli@tencent.com> Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-16 15:42:32 +08:00
ARM: - Move the arch-specific code into arch/arm64/kvm - Start the post-32bit cleanup - Cherry-pick a few non-invasive pre-NV patches x86: - Rework of TLB flushing - Rework of event injection, especially with respect to nested virtualization - Nested AMD event injection facelift, building on the rework of generic code and fixing a lot of corner cases - Nested AMD live migration support - Optimization for TSC deadline MSR writes and IPIs - Various cleanups - Asynchronous page fault cleanups (from tglx, common topic branch with tip tree) - Interrupt-based delivery of asynchronous "page ready" events (host side) - Hyper-V MSRs and hypercalls for guest debugging - VMX preemption timer fixes s390: - Cleanups Generic: - switch vCPU thread wakeup from swait to rcuwait The other architectures, and the guest side of the asynchronous page fault work, will come next week. -----BEGIN PGP SIGNATURE----- iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl7VJcYUHHBib256aW5p QHJlZGhhdC5jb20ACgkQv/vSX3jHroPf6QgAq4wU5wdd1lTGz/i3DIhNVJNJgJlp ozLzRdMaJbdbn5RpAK6PEBd9+pt3+UlojpFB3gpJh2Nazv2OzV4yLQgXXXyyMEx1 5Hg7b4UCJYDrbkCiegNRv7f/4FWDkQ9dx++RZITIbxeskBBCEI+I7GnmZhGWzuC4 7kj4ytuKAySF2OEJu0VQF6u0CvrNYfYbQIRKBXjtOwuRK4Q6L63FGMJpYo159MBQ asg3B1jB5TcuGZ9zrjL5LkuzaP4qZZHIRs+4kZsH9I6MODHGUxKonrkablfKxyKy CFK+iaHCuEXXty5K0VmWM3nrTfvpEjVjbMc7e1QGBQ5oXsDM0pqn84syRg== =v7Wn -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull kvm updates from Paolo Bonzini: "ARM: - Move the arch-specific code into arch/arm64/kvm - Start the post-32bit cleanup - Cherry-pick a few non-invasive pre-NV patches x86: - Rework of TLB flushing - Rework of event injection, especially with respect to nested virtualization - Nested AMD event injection facelift, building on the rework of generic code and fixing a lot of corner cases - Nested AMD live migration support - Optimization for TSC deadline MSR writes and IPIs - Various cleanups - Asynchronous page fault cleanups (from tglx, common topic branch with tip tree) - Interrupt-based delivery of asynchronous "page ready" events (host side) - Hyper-V MSRs and hypercalls for guest debugging - VMX preemption timer fixes s390: - Cleanups Generic: - switch vCPU thread wakeup from swait to rcuwait The other architectures, and the guest side of the asynchronous page fault work, will come next week" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (256 commits) KVM: selftests: fix rdtsc() for vmx_tsc_adjust_test KVM: check userspace_addr for all memslots KVM: selftests: update hyperv_cpuid with SynDBG tests x86/kvm/hyper-v: Add support for synthetic debugger via hypercalls x86/kvm/hyper-v: enable hypercalls regardless of hypercall page x86/kvm/hyper-v: Add support for synthetic debugger interface x86/hyper-v: Add synthetic debugger definitions KVM: selftests: VMX preemption timer migration test KVM: nVMX: Fix VMX preemption timer migration x86/kvm/hyper-v: Explicitly align hcall param for kvm_hyperv_exit KVM: x86/pmu: Support full width counting KVM: x86/pmu: Tweak kvm_pmu_get_msr to pass 'struct msr_data' in KVM: x86: announce KVM_FEATURE_ASYNC_PF_INT KVM: x86: acknowledgment mechanism for async pf page ready notifications KVM: x86: interrupt based APF 'page ready' event delivery KVM: introduce kvm_read_guest_offset_cached() KVM: rename kvm_arch_can_inject_async_page_present() to kvm_arch_can_dequeue_async_page_present() KVM: x86: extend struct kvm_vcpu_pv_apf_data with token info Revert "KVM: async_pf: Fix #DF due to inject "Page not Present" and "Page Ready" exceptions simultaneously" KVM: VMX: Replace zero-length array with flexible-array ...
2020-06-04 06:13:47 +08:00
ent->ebx |= HV_DEBUGGING;
ent->edx |= HV_X64_GUEST_DEBUGGING_AVAILABLE;
ent->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
KVM: hyperv: Fix Direct Synthetic timers assert an interrupt w/o lapic_in_kernel Reported by syzkaller: kasan: GPF could be caused by NULL-ptr deref or user memory access general protection fault: 0000 [#1] PREEMPT SMP KASAN RIP: 0010:__apic_accept_irq+0x46/0x740 arch/x86/kvm/lapic.c:1029 Call Trace: kvm_apic_set_irq+0xb4/0x140 arch/x86/kvm/lapic.c:558 stimer_notify_direct arch/x86/kvm/hyperv.c:648 [inline] stimer_expiration arch/x86/kvm/hyperv.c:659 [inline] kvm_hv_process_stimers+0x594/0x1650 arch/x86/kvm/hyperv.c:686 vcpu_enter_guest+0x2b2a/0x54b0 arch/x86/kvm/x86.c:7896 vcpu_run+0x393/0xd40 arch/x86/kvm/x86.c:8152 kvm_arch_vcpu_ioctl_run+0x636/0x900 arch/x86/kvm/x86.c:8360 kvm_vcpu_ioctl+0x6cf/0xaf0 arch/x86/kvm/../../../virt/kvm/kvm_main.c:2765 The testcase programs HV_X64_MSR_STIMERn_CONFIG/HV_X64_MSR_STIMERn_COUNT, in addition, there is no lapic in the kernel, the counters value are small enough in order that kvm_hv_process_stimers() inject this already-expired timer interrupt into the guest through lapic in the kernel which triggers the NULL deferencing. This patch fixes it by don't advertise direct mode synthetic timers and discarding the inject when lapic is not in kernel. syzkaller source: https://syzkaller.appspot.com/x/repro.c?x=1752fe0a600000 Reported-by: syzbot+dff25ee91f0c7d5c1695@syzkaller.appspotmail.com Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Wanpeng Li <wanpengli@tencent.com> Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-16 15:42:32 +08:00
/*
* Direct Synthetic timers only make sense with in-kernel
* LAPIC
*/
if (!vcpu || lapic_in_kernel(vcpu))
KVM: hyperv: Fix Direct Synthetic timers assert an interrupt w/o lapic_in_kernel Reported by syzkaller: kasan: GPF could be caused by NULL-ptr deref or user memory access general protection fault: 0000 [#1] PREEMPT SMP KASAN RIP: 0010:__apic_accept_irq+0x46/0x740 arch/x86/kvm/lapic.c:1029 Call Trace: kvm_apic_set_irq+0xb4/0x140 arch/x86/kvm/lapic.c:558 stimer_notify_direct arch/x86/kvm/hyperv.c:648 [inline] stimer_expiration arch/x86/kvm/hyperv.c:659 [inline] kvm_hv_process_stimers+0x594/0x1650 arch/x86/kvm/hyperv.c:686 vcpu_enter_guest+0x2b2a/0x54b0 arch/x86/kvm/x86.c:7896 vcpu_run+0x393/0xd40 arch/x86/kvm/x86.c:8152 kvm_arch_vcpu_ioctl_run+0x636/0x900 arch/x86/kvm/x86.c:8360 kvm_vcpu_ioctl+0x6cf/0xaf0 arch/x86/kvm/../../../virt/kvm/kvm_main.c:2765 The testcase programs HV_X64_MSR_STIMERn_CONFIG/HV_X64_MSR_STIMERn_COUNT, in addition, there is no lapic in the kernel, the counters value are small enough in order that kvm_hv_process_stimers() inject this already-expired timer interrupt into the guest through lapic in the kernel which triggers the NULL deferencing. This patch fixes it by don't advertise direct mode synthetic timers and discarding the inject when lapic is not in kernel. syzkaller source: https://syzkaller.appspot.com/x/repro.c?x=1752fe0a600000 Reported-by: syzbot+dff25ee91f0c7d5c1695@syzkaller.appspotmail.com Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Wanpeng Li <wanpengli@tencent.com> Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-16 15:42:32 +08:00
ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE;
break;
case HYPERV_CPUID_ENLIGHTMENT_INFO:
ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED;
ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED;
if (evmcs_ver)
ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
KVM: x86: hyper-v: set NoNonArchitecturalCoreSharing CPUID bit when SMT is impossible Hyper-V 2019 doesn't expose MD_CLEAR CPUID bit to guests when it cannot guarantee that two virtual processors won't end up running on sibling SMT threads without knowing about it. This is done as an optimization as in this case there is nothing the guest can do to protect itself against MDS and issuing additional flush requests is just pointless. On bare metal the topology is known, however, when Hyper-V is running nested (e.g. on top of KVM) it needs an additional piece of information: a confirmation that the exposed topology (wrt vCPU placement on different SMT threads) is trustworthy. NoNonArchitecturalCoreSharing (CPUID 0x40000004 EAX bit 18) is described in TLFS as follows: "Indicates that a virtual processor will never share a physical core with another virtual processor, except for virtual processors that are reported as sibling SMT threads." From KVM we can give such guarantee in two cases: - SMT is unsupported or forcefully disabled (just 'disabled' doesn't work as it can become re-enabled during the lifetime of the guest). - vCPUs are properly pinned so the scheduler won't put them on sibling SMT threads (when they're not reported as such). This patch reports NoNonArchitecturalCoreSharing bit in to userspace in the first case. The second case is outside of KVM's domain of responsibility (as vCPU pinning is actually done by someone who manages KVM's userspace - e.g. libvirt pinning QEMU threads). Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-17 00:22:57 +08:00
if (!cpu_smt_possible())
ent->eax |= HV_X64_NO_NONARCH_CORESHARING;
/*
* Default number of spinlock retry attempts, matches
* HyperV 2016.
*/
ent->ebx = 0x00000FFF;
break;
case HYPERV_CPUID_IMPLEMENT_LIMITS:
/* Maximum number of virtual processors */
ent->eax = KVM_MAX_VCPUS;
/*
* Maximum number of logical processors, matches
* HyperV 2016.
*/
ent->ebx = 64;
break;
case HYPERV_CPUID_NESTED_FEATURES:
ent->eax = evmcs_ver;
break;
case HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS:
memcpy(signature, "Linux KVM Hv", 12);
ent->eax = 0;
ent->ebx = signature[0];
ent->ecx = signature[1];
ent->edx = signature[2];
break;
case HYPERV_CPUID_SYNDBG_INTERFACE:
memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
ent->eax = signature[0];
break;
case HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES:
ent->eax |= HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
break;
default:
break;
}
}
if (copy_to_user(entries, cpuid_entries,
nent * sizeof(struct kvm_cpuid_entry2)))
return -EFAULT;
return 0;
}