OpenCloudOS-Kernel/drivers/usb/gadget/udc/tegra-xudc.c

3928 lines
97 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* NVIDIA Tegra XUSB device mode controller
*
* Copyright (c) 2013-2019, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2015, Google Inc.
*/
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/phy/phy.h>
#include <linux/phy/tegra/xusb.h>
#include <linux/pm_domain.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
#include <linux/usb/otg.h>
#include <linux/usb/role.h>
#include <linux/usb/phy.h>
#include <linux/workqueue.h>
/* XUSB_DEV registers */
#define SPARAM 0x000
#define SPARAM_ERSTMAX_MASK GENMASK(20, 16)
#define SPARAM_ERSTMAX(x) (((x) << 16) & SPARAM_ERSTMAX_MASK)
#define DB 0x004
#define DB_TARGET_MASK GENMASK(15, 8)
#define DB_TARGET(x) (((x) << 8) & DB_TARGET_MASK)
#define DB_STREAMID_MASK GENMASK(31, 16)
#define DB_STREAMID(x) (((x) << 16) & DB_STREAMID_MASK)
#define ERSTSZ 0x008
#define ERSTSZ_ERSTXSZ_SHIFT(x) ((x) * 16)
#define ERSTSZ_ERSTXSZ_MASK GENMASK(15, 0)
#define ERSTXBALO(x) (0x010 + 8 * (x))
#define ERSTXBAHI(x) (0x014 + 8 * (x))
#define ERDPLO 0x020
#define ERDPLO_EHB BIT(3)
#define ERDPHI 0x024
#define EREPLO 0x028
#define EREPLO_ECS BIT(0)
#define EREPLO_SEGI BIT(1)
#define EREPHI 0x02c
#define CTRL 0x030
#define CTRL_RUN BIT(0)
#define CTRL_LSE BIT(1)
#define CTRL_IE BIT(4)
#define CTRL_SMI_EVT BIT(5)
#define CTRL_SMI_DSE BIT(6)
#define CTRL_EWE BIT(7)
#define CTRL_DEVADDR_MASK GENMASK(30, 24)
#define CTRL_DEVADDR(x) (((x) << 24) & CTRL_DEVADDR_MASK)
#define CTRL_ENABLE BIT(31)
#define ST 0x034
#define ST_RC BIT(0)
#define ST_IP BIT(4)
#define RT_IMOD 0x038
#define RT_IMOD_IMODI_MASK GENMASK(15, 0)
#define RT_IMOD_IMODI(x) ((x) & RT_IMOD_IMODI_MASK)
#define RT_IMOD_IMODC_MASK GENMASK(31, 16)
#define RT_IMOD_IMODC(x) (((x) << 16) & RT_IMOD_IMODC_MASK)
#define PORTSC 0x03c
#define PORTSC_CCS BIT(0)
#define PORTSC_PED BIT(1)
#define PORTSC_PR BIT(4)
#define PORTSC_PLS_SHIFT 5
#define PORTSC_PLS_MASK GENMASK(8, 5)
#define PORTSC_PLS_U0 0x0
#define PORTSC_PLS_U2 0x2
#define PORTSC_PLS_U3 0x3
#define PORTSC_PLS_DISABLED 0x4
#define PORTSC_PLS_RXDETECT 0x5
#define PORTSC_PLS_INACTIVE 0x6
#define PORTSC_PLS_RESUME 0xf
#define PORTSC_PLS(x) (((x) << PORTSC_PLS_SHIFT) & PORTSC_PLS_MASK)
#define PORTSC_PS_SHIFT 10
#define PORTSC_PS_MASK GENMASK(13, 10)
#define PORTSC_PS_UNDEFINED 0x0
#define PORTSC_PS_FS 0x1
#define PORTSC_PS_LS 0x2
#define PORTSC_PS_HS 0x3
#define PORTSC_PS_SS 0x4
#define PORTSC_LWS BIT(16)
#define PORTSC_CSC BIT(17)
#define PORTSC_WRC BIT(19)
#define PORTSC_PRC BIT(21)
#define PORTSC_PLC BIT(22)
#define PORTSC_CEC BIT(23)
#define PORTSC_WPR BIT(30)
#define PORTSC_CHANGE_MASK (PORTSC_CSC | PORTSC_WRC | PORTSC_PRC | \
PORTSC_PLC | PORTSC_CEC)
#define ECPLO 0x040
#define ECPHI 0x044
#define MFINDEX 0x048
#define MFINDEX_FRAME_SHIFT 3
#define MFINDEX_FRAME_MASK GENMASK(13, 3)
#define PORTPM 0x04c
#define PORTPM_L1S_MASK GENMASK(1, 0)
#define PORTPM_L1S_DROP 0x0
#define PORTPM_L1S_ACCEPT 0x1
#define PORTPM_L1S_NYET 0x2
#define PORTPM_L1S_STALL 0x3
#define PORTPM_L1S(x) ((x) & PORTPM_L1S_MASK)
#define PORTPM_RWE BIT(3)
#define PORTPM_U2TIMEOUT_MASK GENMASK(15, 8)
#define PORTPM_U1TIMEOUT_MASK GENMASK(23, 16)
#define PORTPM_FLA BIT(24)
#define PORTPM_VBA BIT(25)
#define PORTPM_WOC BIT(26)
#define PORTPM_WOD BIT(27)
#define PORTPM_U1E BIT(28)
#define PORTPM_U2E BIT(29)
#define PORTPM_FRWE BIT(30)
#define PORTPM_PNG_CYA BIT(31)
#define EP_HALT 0x050
#define EP_PAUSE 0x054
#define EP_RELOAD 0x058
#define EP_STCHG 0x05c
#define DEVNOTIF_LO 0x064
#define DEVNOTIF_LO_TRIG BIT(0)
#define DEVNOTIF_LO_TYPE_MASK GENMASK(7, 4)
#define DEVNOTIF_LO_TYPE(x) (((x) << 4) & DEVNOTIF_LO_TYPE_MASK)
#define DEVNOTIF_LO_TYPE_FUNCTION_WAKE 0x1
#define DEVNOTIF_HI 0x068
#define PORTHALT 0x06c
#define PORTHALT_HALT_LTSSM BIT(0)
#define PORTHALT_HALT_REJECT BIT(1)
#define PORTHALT_STCHG_REQ BIT(20)
#define PORTHALT_STCHG_INTR_EN BIT(24)
#define PORT_TM 0x070
#define EP_THREAD_ACTIVE 0x074
#define EP_STOPPED 0x078
#define HSFSPI_COUNT0 0x100
#define HSFSPI_COUNT13 0x134
#define HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK GENMASK(29, 0)
#define HSFSPI_COUNT13_U2_RESUME_K_DURATION(x) ((x) & \
HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK)
#define BLCG 0x840
#define SSPX_CORE_CNT0 0x610
#define SSPX_CORE_CNT0_PING_TBURST_MASK GENMASK(7, 0)
#define SSPX_CORE_CNT0_PING_TBURST(x) ((x) & SSPX_CORE_CNT0_PING_TBURST_MASK)
#define SSPX_CORE_CNT30 0x688
#define SSPX_CORE_CNT30_LMPITP_TIMER_MASK GENMASK(19, 0)
#define SSPX_CORE_CNT30_LMPITP_TIMER(x) ((x) & \
SSPX_CORE_CNT30_LMPITP_TIMER_MASK)
#define SSPX_CORE_CNT32 0x690
#define SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK GENMASK(7, 0)
#define SSPX_CORE_CNT32_POLL_TBURST_MAX(x) ((x) & \
SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK)
#define SSPX_CORE_PADCTL4 0x750
#define SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK GENMASK(19, 0)
#define SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3(x) ((x) & \
SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK)
#define BLCG_DFPCI BIT(0)
#define BLCG_UFPCI BIT(1)
#define BLCG_FE BIT(2)
#define BLCG_COREPLL_PWRDN BIT(8)
#define BLCG_IOPLL_0_PWRDN BIT(9)
#define BLCG_IOPLL_1_PWRDN BIT(10)
#define BLCG_IOPLL_2_PWRDN BIT(11)
#define BLCG_ALL 0x1ff
#define CFG_DEV_SSPI_XFER 0x858
#define CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK GENMASK(31, 0)
#define CFG_DEV_SSPI_XFER_ACKTIMEOUT(x) ((x) & \
CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK)
#define CFG_DEV_FE 0x85c
#define CFG_DEV_FE_PORTREGSEL_MASK GENMASK(1, 0)
#define CFG_DEV_FE_PORTREGSEL_SS_PI 1
#define CFG_DEV_FE_PORTREGSEL_HSFS_PI 2
#define CFG_DEV_FE_PORTREGSEL(x) ((x) & CFG_DEV_FE_PORTREGSEL_MASK)
#define CFG_DEV_FE_INFINITE_SS_RETRY BIT(29)
/* FPCI registers */
#define XUSB_DEV_CFG_1 0x004
#define XUSB_DEV_CFG_1_IO_SPACE_EN BIT(0)
#define XUSB_DEV_CFG_1_MEMORY_SPACE_EN BIT(1)
#define XUSB_DEV_CFG_1_BUS_MASTER_EN BIT(2)
#define XUSB_DEV_CFG_4 0x010
#define XUSB_DEV_CFG_4_BASE_ADDR_MASK GENMASK(31, 15)
#define XUSB_DEV_CFG_5 0x014
/* IPFS registers */
#define XUSB_DEV_CONFIGURATION_0 0x180
#define XUSB_DEV_CONFIGURATION_0_EN_FPCI BIT(0)
#define XUSB_DEV_INTR_MASK_0 0x188
#define XUSB_DEV_INTR_MASK_0_IP_INT_MASK BIT(16)
struct tegra_xudc_ep_context {
__le32 info0;
__le32 info1;
__le32 deq_lo;
__le32 deq_hi;
__le32 tx_info;
__le32 rsvd[11];
};
#define EP_STATE_DISABLED 0
#define EP_STATE_RUNNING 1
#define EP_STATE_HALTED 2
#define EP_STATE_STOPPED 3
#define EP_STATE_ERROR 4
#define EP_TYPE_INVALID 0
#define EP_TYPE_ISOCH_OUT 1
#define EP_TYPE_BULK_OUT 2
#define EP_TYPE_INTERRUPT_OUT 3
#define EP_TYPE_CONTROL 4
#define EP_TYPE_ISCOH_IN 5
#define EP_TYPE_BULK_IN 6
#define EP_TYPE_INTERRUPT_IN 7
#define BUILD_EP_CONTEXT_RW(name, member, shift, mask) \
static inline u32 ep_ctx_read_##name(struct tegra_xudc_ep_context *ctx) \
{ \
return (le32_to_cpu(ctx->member) >> (shift)) & (mask); \
} \
static inline void \
ep_ctx_write_##name(struct tegra_xudc_ep_context *ctx, u32 val) \
{ \
u32 tmp; \
\
tmp = le32_to_cpu(ctx->member) & ~((mask) << (shift)); \
tmp |= (val & (mask)) << (shift); \
ctx->member = cpu_to_le32(tmp); \
}
BUILD_EP_CONTEXT_RW(state, info0, 0, 0x7)
BUILD_EP_CONTEXT_RW(mult, info0, 8, 0x3)
BUILD_EP_CONTEXT_RW(max_pstreams, info0, 10, 0x1f)
BUILD_EP_CONTEXT_RW(lsa, info0, 15, 0x1)
BUILD_EP_CONTEXT_RW(interval, info0, 16, 0xff)
BUILD_EP_CONTEXT_RW(cerr, info1, 1, 0x3)
BUILD_EP_CONTEXT_RW(type, info1, 3, 0x7)
BUILD_EP_CONTEXT_RW(hid, info1, 7, 0x1)
BUILD_EP_CONTEXT_RW(max_burst_size, info1, 8, 0xff)
BUILD_EP_CONTEXT_RW(max_packet_size, info1, 16, 0xffff)
BUILD_EP_CONTEXT_RW(dcs, deq_lo, 0, 0x1)
BUILD_EP_CONTEXT_RW(deq_lo, deq_lo, 4, 0xfffffff)
BUILD_EP_CONTEXT_RW(deq_hi, deq_hi, 0, 0xffffffff)
BUILD_EP_CONTEXT_RW(avg_trb_len, tx_info, 0, 0xffff)
BUILD_EP_CONTEXT_RW(max_esit_payload, tx_info, 16, 0xffff)
BUILD_EP_CONTEXT_RW(edtla, rsvd[0], 0, 0xffffff)
BUILD_EP_CONTEXT_RW(seq_num, rsvd[0], 24, 0xff)
BUILD_EP_CONTEXT_RW(partial_td, rsvd[0], 25, 0x1)
BUILD_EP_CONTEXT_RW(cerrcnt, rsvd[1], 18, 0x3)
BUILD_EP_CONTEXT_RW(data_offset, rsvd[2], 0, 0x1ffff)
BUILD_EP_CONTEXT_RW(numtrbs, rsvd[2], 22, 0x1f)
BUILD_EP_CONTEXT_RW(devaddr, rsvd[6], 0, 0x7f)
static inline u64 ep_ctx_read_deq_ptr(struct tegra_xudc_ep_context *ctx)
{
return ((u64)ep_ctx_read_deq_hi(ctx) << 32) |
(ep_ctx_read_deq_lo(ctx) << 4);
}
static inline void
ep_ctx_write_deq_ptr(struct tegra_xudc_ep_context *ctx, u64 addr)
{
ep_ctx_write_deq_lo(ctx, lower_32_bits(addr) >> 4);
ep_ctx_write_deq_hi(ctx, upper_32_bits(addr));
}
struct tegra_xudc_trb {
__le32 data_lo;
__le32 data_hi;
__le32 status;
__le32 control;
};
#define TRB_TYPE_RSVD 0
#define TRB_TYPE_NORMAL 1
#define TRB_TYPE_SETUP_STAGE 2
#define TRB_TYPE_DATA_STAGE 3
#define TRB_TYPE_STATUS_STAGE 4
#define TRB_TYPE_ISOCH 5
#define TRB_TYPE_LINK 6
#define TRB_TYPE_TRANSFER_EVENT 32
#define TRB_TYPE_PORT_STATUS_CHANGE_EVENT 34
#define TRB_TYPE_STREAM 48
#define TRB_TYPE_SETUP_PACKET_EVENT 63
#define TRB_CMPL_CODE_INVALID 0
#define TRB_CMPL_CODE_SUCCESS 1
#define TRB_CMPL_CODE_DATA_BUFFER_ERR 2
#define TRB_CMPL_CODE_BABBLE_DETECTED_ERR 3
#define TRB_CMPL_CODE_USB_TRANS_ERR 4
#define TRB_CMPL_CODE_TRB_ERR 5
#define TRB_CMPL_CODE_STALL 6
#define TRB_CMPL_CODE_INVALID_STREAM_TYPE_ERR 10
#define TRB_CMPL_CODE_SHORT_PACKET 13
#define TRB_CMPL_CODE_RING_UNDERRUN 14
#define TRB_CMPL_CODE_RING_OVERRUN 15
#define TRB_CMPL_CODE_EVENT_RING_FULL_ERR 21
#define TRB_CMPL_CODE_STOPPED 26
#define TRB_CMPL_CODE_ISOCH_BUFFER_OVERRUN 31
#define TRB_CMPL_CODE_STREAM_NUMP_ERROR 219
#define TRB_CMPL_CODE_PRIME_PIPE_RECEIVED 220
#define TRB_CMPL_CODE_HOST_REJECTED 221
#define TRB_CMPL_CODE_CTRL_DIR_ERR 222
#define TRB_CMPL_CODE_CTRL_SEQNUM_ERR 223
#define BUILD_TRB_RW(name, member, shift, mask) \
static inline u32 trb_read_##name(struct tegra_xudc_trb *trb) \
{ \
return (le32_to_cpu(trb->member) >> (shift)) & (mask); \
} \
static inline void \
trb_write_##name(struct tegra_xudc_trb *trb, u32 val) \
{ \
u32 tmp; \
\
tmp = le32_to_cpu(trb->member) & ~((mask) << (shift)); \
tmp |= (val & (mask)) << (shift); \
trb->member = cpu_to_le32(tmp); \
}
BUILD_TRB_RW(data_lo, data_lo, 0, 0xffffffff)
BUILD_TRB_RW(data_hi, data_hi, 0, 0xffffffff)
BUILD_TRB_RW(seq_num, status, 0, 0xffff)
BUILD_TRB_RW(transfer_len, status, 0, 0xffffff)
BUILD_TRB_RW(td_size, status, 17, 0x1f)
BUILD_TRB_RW(cmpl_code, status, 24, 0xff)
BUILD_TRB_RW(cycle, control, 0, 0x1)
BUILD_TRB_RW(toggle_cycle, control, 1, 0x1)
BUILD_TRB_RW(isp, control, 2, 0x1)
BUILD_TRB_RW(chain, control, 4, 0x1)
BUILD_TRB_RW(ioc, control, 5, 0x1)
BUILD_TRB_RW(type, control, 10, 0x3f)
BUILD_TRB_RW(stream_id, control, 16, 0xffff)
BUILD_TRB_RW(endpoint_id, control, 16, 0x1f)
BUILD_TRB_RW(tlbpc, control, 16, 0xf)
BUILD_TRB_RW(data_stage_dir, control, 16, 0x1)
BUILD_TRB_RW(frame_id, control, 20, 0x7ff)
BUILD_TRB_RW(sia, control, 31, 0x1)
static inline u64 trb_read_data_ptr(struct tegra_xudc_trb *trb)
{
return ((u64)trb_read_data_hi(trb) << 32) |
trb_read_data_lo(trb);
}
static inline void trb_write_data_ptr(struct tegra_xudc_trb *trb, u64 addr)
{
trb_write_data_lo(trb, lower_32_bits(addr));
trb_write_data_hi(trb, upper_32_bits(addr));
}
struct tegra_xudc_request {
struct usb_request usb_req;
size_t buf_queued;
unsigned int trbs_queued;
unsigned int trbs_needed;
bool need_zlp;
struct tegra_xudc_trb *first_trb;
struct tegra_xudc_trb *last_trb;
struct list_head list;
};
struct tegra_xudc_ep {
struct tegra_xudc *xudc;
struct usb_ep usb_ep;
unsigned int index;
char name[8];
struct tegra_xudc_ep_context *context;
#define XUDC_TRANSFER_RING_SIZE 64
struct tegra_xudc_trb *transfer_ring;
dma_addr_t transfer_ring_phys;
unsigned int enq_ptr;
unsigned int deq_ptr;
bool pcs;
bool ring_full;
bool stream_rejected;
struct list_head queue;
const struct usb_endpoint_descriptor *desc;
const struct usb_ss_ep_comp_descriptor *comp_desc;
};
struct tegra_xudc_sel_timing {
__u8 u1sel;
__u8 u1pel;
__le16 u2sel;
__le16 u2pel;
};
enum tegra_xudc_setup_state {
WAIT_FOR_SETUP,
DATA_STAGE_XFER,
DATA_STAGE_RECV,
STATUS_STAGE_XFER,
STATUS_STAGE_RECV,
};
struct tegra_xudc_setup_packet {
struct usb_ctrlrequest ctrl_req;
unsigned int seq_num;
};
struct tegra_xudc_save_regs {
u32 ctrl;
u32 portpm;
};
struct tegra_xudc {
struct device *dev;
const struct tegra_xudc_soc *soc;
struct tegra_xusb_padctl *padctl;
spinlock_t lock;
struct usb_gadget gadget;
struct usb_gadget_driver *driver;
#define XUDC_NR_EVENT_RINGS 2
#define XUDC_EVENT_RING_SIZE 4096
struct tegra_xudc_trb *event_ring[XUDC_NR_EVENT_RINGS];
dma_addr_t event_ring_phys[XUDC_NR_EVENT_RINGS];
unsigned int event_ring_index;
unsigned int event_ring_deq_ptr;
bool ccs;
#define XUDC_NR_EPS 32
struct tegra_xudc_ep ep[XUDC_NR_EPS];
struct tegra_xudc_ep_context *ep_context;
dma_addr_t ep_context_phys;
struct device *genpd_dev_device;
struct device *genpd_dev_ss;
struct device_link *genpd_dl_device;
struct device_link *genpd_dl_ss;
struct dma_pool *transfer_ring_pool;
bool queued_setup_packet;
struct tegra_xudc_setup_packet setup_packet;
enum tegra_xudc_setup_state setup_state;
u16 setup_seq_num;
u16 dev_addr;
u16 isoch_delay;
struct tegra_xudc_sel_timing sel_timing;
u8 test_mode_pattern;
u16 status_buf;
struct tegra_xudc_request *ep0_req;
bool pullup;
unsigned int nr_enabled_eps;
unsigned int nr_isoch_eps;
unsigned int device_state;
unsigned int resume_state;
int irq;
void __iomem *base;
resource_size_t phys_base;
void __iomem *ipfs;
void __iomem *fpci;
struct regulator_bulk_data *supplies;
struct clk_bulk_data *clks;
bool device_mode;
struct work_struct usb_role_sw_work;
struct phy **usb3_phy;
struct phy *curr_usb3_phy;
struct phy **utmi_phy;
struct phy *curr_utmi_phy;
struct tegra_xudc_save_regs saved_regs;
bool suspended;
bool powergated;
struct usb_phy **usbphy;
struct usb_phy *curr_usbphy;
struct notifier_block vbus_nb;
struct completion disconnect_complete;
bool selfpowered;
#define TOGGLE_VBUS_WAIT_MS 100
struct delayed_work plc_reset_work;
bool wait_csc;
struct delayed_work port_reset_war_work;
bool wait_for_sec_prc;
};
#define XUDC_TRB_MAX_BUFFER_SIZE 65536
#define XUDC_MAX_ISOCH_EPS 4
#define XUDC_INTERRUPT_MODERATION_US 0
static struct usb_endpoint_descriptor tegra_xudc_ep0_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = 0,
.bmAttributes = USB_ENDPOINT_XFER_CONTROL,
.wMaxPacketSize = cpu_to_le16(64),
};
struct tegra_xudc_soc {
const char * const *supply_names;
unsigned int num_supplies;
const char * const *clock_names;
unsigned int num_clks;
unsigned int num_phys;
bool u1_enable;
bool u2_enable;
bool lpm_enable;
bool invalid_seq_num;
bool pls_quirk;
bool port_reset_quirk;
bool has_ipfs;
};
static inline u32 fpci_readl(struct tegra_xudc *xudc, unsigned int offset)
{
return readl(xudc->fpci + offset);
}
static inline void fpci_writel(struct tegra_xudc *xudc, u32 val,
unsigned int offset)
{
writel(val, xudc->fpci + offset);
}
static inline u32 ipfs_readl(struct tegra_xudc *xudc, unsigned int offset)
{
return readl(xudc->ipfs + offset);
}
static inline void ipfs_writel(struct tegra_xudc *xudc, u32 val,
unsigned int offset)
{
writel(val, xudc->ipfs + offset);
}
static inline u32 xudc_readl(struct tegra_xudc *xudc, unsigned int offset)
{
return readl(xudc->base + offset);
}
static inline void xudc_writel(struct tegra_xudc *xudc, u32 val,
unsigned int offset)
{
writel(val, xudc->base + offset);
}
static inline int xudc_readl_poll(struct tegra_xudc *xudc,
unsigned int offset, u32 mask, u32 val)
{
u32 regval;
return readl_poll_timeout_atomic(xudc->base + offset, regval,
(regval & mask) == val, 1, 100);
}
static inline struct tegra_xudc *to_xudc(struct usb_gadget *gadget)
{
return container_of(gadget, struct tegra_xudc, gadget);
}
static inline struct tegra_xudc_ep *to_xudc_ep(struct usb_ep *ep)
{
return container_of(ep, struct tegra_xudc_ep, usb_ep);
}
static inline struct tegra_xudc_request *to_xudc_req(struct usb_request *req)
{
return container_of(req, struct tegra_xudc_request, usb_req);
}
static inline void dump_trb(struct tegra_xudc *xudc, const char *type,
struct tegra_xudc_trb *trb)
{
dev_dbg(xudc->dev,
"%s: %p, lo = %#x, hi = %#x, status = %#x, control = %#x\n",
type, trb, trb->data_lo, trb->data_hi, trb->status,
trb->control);
}
static void tegra_xudc_device_mode_on(struct tegra_xudc *xudc)
{
int err;
pm_runtime_get_sync(xudc->dev);
err = phy_power_on(xudc->curr_utmi_phy);
if (err < 0)
dev_err(xudc->dev, "utmi power on failed %d\n", err);
err = phy_power_on(xudc->curr_usb3_phy);
if (err < 0)
dev_err(xudc->dev, "usb3 phy power on failed %d\n", err);
dev_dbg(xudc->dev, "device mode on\n");
phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG,
USB_ROLE_DEVICE);
}
static void tegra_xudc_device_mode_off(struct tegra_xudc *xudc)
{
bool connected = false;
u32 pls, val;
int err;
dev_dbg(xudc->dev, "device mode off\n");
connected = !!(xudc_readl(xudc, PORTSC) & PORTSC_CCS);
reinit_completion(&xudc->disconnect_complete);
phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG, USB_ROLE_NONE);
pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >>
PORTSC_PLS_SHIFT;
/* Direct link to U0 if disconnected in RESUME or U2. */
if (xudc->soc->pls_quirk && xudc->gadget.speed == USB_SPEED_SUPER &&
(pls == PORTSC_PLS_RESUME || pls == PORTSC_PLS_U2)) {
val = xudc_readl(xudc, PORTPM);
val |= PORTPM_FRWE;
xudc_writel(xudc, val, PORTPM);
val = xudc_readl(xudc, PORTSC);
val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK);
val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_U0);
xudc_writel(xudc, val, PORTSC);
}
/* Wait for disconnect event. */
if (connected)
wait_for_completion(&xudc->disconnect_complete);
/* Make sure interrupt handler has completed before powergating. */
synchronize_irq(xudc->irq);
err = phy_power_off(xudc->curr_utmi_phy);
if (err < 0)
dev_err(xudc->dev, "utmi_phy power off failed %d\n", err);
err = phy_power_off(xudc->curr_usb3_phy);
if (err < 0)
dev_err(xudc->dev, "usb3_phy power off failed %d\n", err);
pm_runtime_put(xudc->dev);
}
static void tegra_xudc_usb_role_sw_work(struct work_struct *work)
{
struct tegra_xudc *xudc = container_of(work, struct tegra_xudc,
usb_role_sw_work);
if (xudc->device_mode)
tegra_xudc_device_mode_on(xudc);
else
tegra_xudc_device_mode_off(xudc);
}
static int tegra_xudc_get_phy_index(struct tegra_xudc *xudc,
struct usb_phy *usbphy)
{
unsigned int i;
for (i = 0; i < xudc->soc->num_phys; i++) {
if (xudc->usbphy[i] && usbphy == xudc->usbphy[i])
return i;
}
dev_info(xudc->dev, "phy index could not be found for shared USB PHY");
return -1;
}
static int tegra_xudc_vbus_notify(struct notifier_block *nb,
unsigned long action, void *data)
{
struct tegra_xudc *xudc = container_of(nb, struct tegra_xudc,
vbus_nb);
struct usb_phy *usbphy = (struct usb_phy *)data;
int phy_index;
dev_dbg(xudc->dev, "%s(): event is %d\n", __func__, usbphy->last_event);
if ((xudc->device_mode && usbphy->last_event == USB_EVENT_VBUS) ||
(!xudc->device_mode && usbphy->last_event != USB_EVENT_VBUS)) {
dev_dbg(xudc->dev, "Same role(%d) received. Ignore",
xudc->device_mode);
return NOTIFY_OK;
}
xudc->device_mode = (usbphy->last_event == USB_EVENT_VBUS) ? true :
false;
phy_index = tegra_xudc_get_phy_index(xudc, usbphy);
dev_dbg(xudc->dev, "%s(): current phy index is %d\n", __func__,
phy_index);
if (!xudc->suspended && phy_index != -1) {
xudc->curr_utmi_phy = xudc->utmi_phy[phy_index];
xudc->curr_usb3_phy = xudc->usb3_phy[phy_index];
xudc->curr_usbphy = usbphy;
schedule_work(&xudc->usb_role_sw_work);
}
return NOTIFY_OK;
}
static void tegra_xudc_plc_reset_work(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct tegra_xudc *xudc = container_of(dwork, struct tegra_xudc,
plc_reset_work);
unsigned long flags;
spin_lock_irqsave(&xudc->lock, flags);
if (xudc->wait_csc) {
u32 pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >>
PORTSC_PLS_SHIFT;
if (pls == PORTSC_PLS_INACTIVE) {
dev_info(xudc->dev, "PLS = Inactive. Toggle VBUS\n");
phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG,
USB_ROLE_NONE);
phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG,
USB_ROLE_DEVICE);
xudc->wait_csc = false;
}
}
spin_unlock_irqrestore(&xudc->lock, flags);
}
static void tegra_xudc_port_reset_war_work(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct tegra_xudc *xudc =
container_of(dwork, struct tegra_xudc, port_reset_war_work);
unsigned long flags;
u32 pls;
int ret;
spin_lock_irqsave(&xudc->lock, flags);
if (xudc->device_mode && xudc->wait_for_sec_prc) {
pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >>
PORTSC_PLS_SHIFT;
dev_dbg(xudc->dev, "pls = %x\n", pls);
if (pls == PORTSC_PLS_DISABLED) {
dev_dbg(xudc->dev, "toggle vbus\n");
/* PRC doesn't complete in 100ms, toggle the vbus */
ret = tegra_phy_xusb_utmi_port_reset(
xudc->curr_utmi_phy);
if (ret == 1)
xudc->wait_for_sec_prc = 0;
}
}
spin_unlock_irqrestore(&xudc->lock, flags);
}
static dma_addr_t trb_virt_to_phys(struct tegra_xudc_ep *ep,
struct tegra_xudc_trb *trb)
{
unsigned int index;
index = trb - ep->transfer_ring;
if (WARN_ON(index >= XUDC_TRANSFER_RING_SIZE))
return 0;
return (ep->transfer_ring_phys + index * sizeof(*trb));
}
static struct tegra_xudc_trb *trb_phys_to_virt(struct tegra_xudc_ep *ep,
dma_addr_t addr)
{
struct tegra_xudc_trb *trb;
unsigned int index;
index = (addr - ep->transfer_ring_phys) / sizeof(*trb);
if (WARN_ON(index >= XUDC_TRANSFER_RING_SIZE))
return NULL;
trb = &ep->transfer_ring[index];
return trb;
}
static void ep_reload(struct tegra_xudc *xudc, unsigned int ep)
{
xudc_writel(xudc, BIT(ep), EP_RELOAD);
xudc_readl_poll(xudc, EP_RELOAD, BIT(ep), 0);
}
static void ep_pause(struct tegra_xudc *xudc, unsigned int ep)
{
u32 val;
val = xudc_readl(xudc, EP_PAUSE);
if (val & BIT(ep))
return;
val |= BIT(ep);
xudc_writel(xudc, val, EP_PAUSE);
xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep));
xudc_writel(xudc, BIT(ep), EP_STCHG);
}
static void ep_unpause(struct tegra_xudc *xudc, unsigned int ep)
{
u32 val;
val = xudc_readl(xudc, EP_PAUSE);
if (!(val & BIT(ep)))
return;
val &= ~BIT(ep);
xudc_writel(xudc, val, EP_PAUSE);
xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep));
xudc_writel(xudc, BIT(ep), EP_STCHG);
}
static void ep_unpause_all(struct tegra_xudc *xudc)
{
u32 val;
val = xudc_readl(xudc, EP_PAUSE);
xudc_writel(xudc, 0, EP_PAUSE);
xudc_readl_poll(xudc, EP_STCHG, val, val);
xudc_writel(xudc, val, EP_STCHG);
}
static void ep_halt(struct tegra_xudc *xudc, unsigned int ep)
{
u32 val;
val = xudc_readl(xudc, EP_HALT);
if (val & BIT(ep))
return;
val |= BIT(ep);
xudc_writel(xudc, val, EP_HALT);
xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep));
xudc_writel(xudc, BIT(ep), EP_STCHG);
}
static void ep_unhalt(struct tegra_xudc *xudc, unsigned int ep)
{
u32 val;
val = xudc_readl(xudc, EP_HALT);
if (!(val & BIT(ep)))
return;
val &= ~BIT(ep);
xudc_writel(xudc, val, EP_HALT);
xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep));
xudc_writel(xudc, BIT(ep), EP_STCHG);
}
static void ep_unhalt_all(struct tegra_xudc *xudc)
{
u32 val;
val = xudc_readl(xudc, EP_HALT);
if (!val)
return;
xudc_writel(xudc, 0, EP_HALT);
xudc_readl_poll(xudc, EP_STCHG, val, val);
xudc_writel(xudc, val, EP_STCHG);
}
static void ep_wait_for_stopped(struct tegra_xudc *xudc, unsigned int ep)
{
xudc_readl_poll(xudc, EP_STOPPED, BIT(ep), BIT(ep));
xudc_writel(xudc, BIT(ep), EP_STOPPED);
}
static void ep_wait_for_inactive(struct tegra_xudc *xudc, unsigned int ep)
{
xudc_readl_poll(xudc, EP_THREAD_ACTIVE, BIT(ep), 0);
}
static void tegra_xudc_req_done(struct tegra_xudc_ep *ep,
struct tegra_xudc_request *req, int status)
{
struct tegra_xudc *xudc = ep->xudc;
dev_dbg(xudc->dev, "completing request %p on EP %u with status %d\n",
req, ep->index, status);
if (likely(req->usb_req.status == -EINPROGRESS))
req->usb_req.status = status;
list_del_init(&req->list);
if (usb_endpoint_xfer_control(ep->desc)) {
usb_gadget_unmap_request(&xudc->gadget, &req->usb_req,
(xudc->setup_state ==
DATA_STAGE_XFER));
} else {
usb_gadget_unmap_request(&xudc->gadget, &req->usb_req,
usb_endpoint_dir_in(ep->desc));
}
spin_unlock(&xudc->lock);
usb_gadget_giveback_request(&ep->usb_ep, &req->usb_req);
spin_lock(&xudc->lock);
}
static void tegra_xudc_ep_nuke(struct tegra_xudc_ep *ep, int status)
{
struct tegra_xudc_request *req;
while (!list_empty(&ep->queue)) {
req = list_first_entry(&ep->queue, struct tegra_xudc_request,
list);
tegra_xudc_req_done(ep, req, status);
}
}
static unsigned int ep_available_trbs(struct tegra_xudc_ep *ep)
{
if (ep->ring_full)
return 0;
if (ep->deq_ptr > ep->enq_ptr)
return ep->deq_ptr - ep->enq_ptr - 1;
return XUDC_TRANSFER_RING_SIZE - (ep->enq_ptr - ep->deq_ptr) - 2;
}
static void tegra_xudc_queue_one_trb(struct tegra_xudc_ep *ep,
struct tegra_xudc_request *req,
struct tegra_xudc_trb *trb,
bool ioc)
{
struct tegra_xudc *xudc = ep->xudc;
dma_addr_t buf_addr;
size_t len;
len = min_t(size_t, XUDC_TRB_MAX_BUFFER_SIZE, req->usb_req.length -
req->buf_queued);
if (len > 0)
buf_addr = req->usb_req.dma + req->buf_queued;
else
buf_addr = 0;
trb_write_data_ptr(trb, buf_addr);
trb_write_transfer_len(trb, len);
trb_write_td_size(trb, req->trbs_needed - req->trbs_queued - 1);
if (req->trbs_queued == req->trbs_needed - 1 ||
(req->need_zlp && req->trbs_queued == req->trbs_needed - 2))
trb_write_chain(trb, 0);
else
trb_write_chain(trb, 1);
trb_write_ioc(trb, ioc);
if (usb_endpoint_dir_out(ep->desc) ||
(usb_endpoint_xfer_control(ep->desc) &&
(xudc->setup_state == DATA_STAGE_RECV)))
trb_write_isp(trb, 1);
else
trb_write_isp(trb, 0);
if (usb_endpoint_xfer_control(ep->desc)) {
if (xudc->setup_state == DATA_STAGE_XFER ||
xudc->setup_state == DATA_STAGE_RECV)
trb_write_type(trb, TRB_TYPE_DATA_STAGE);
else
trb_write_type(trb, TRB_TYPE_STATUS_STAGE);
if (xudc->setup_state == DATA_STAGE_XFER ||
xudc->setup_state == STATUS_STAGE_XFER)
trb_write_data_stage_dir(trb, 1);
else
trb_write_data_stage_dir(trb, 0);
} else if (usb_endpoint_xfer_isoc(ep->desc)) {
trb_write_type(trb, TRB_TYPE_ISOCH);
trb_write_sia(trb, 1);
trb_write_frame_id(trb, 0);
trb_write_tlbpc(trb, 0);
} else if (usb_ss_max_streams(ep->comp_desc)) {
trb_write_type(trb, TRB_TYPE_STREAM);
trb_write_stream_id(trb, req->usb_req.stream_id);
} else {
trb_write_type(trb, TRB_TYPE_NORMAL);
trb_write_stream_id(trb, 0);
}
trb_write_cycle(trb, ep->pcs);
req->trbs_queued++;
req->buf_queued += len;
dump_trb(xudc, "TRANSFER", trb);
}
static unsigned int tegra_xudc_queue_trbs(struct tegra_xudc_ep *ep,
struct tegra_xudc_request *req)
{
unsigned int i, count, available;
bool wait_td = false;
available = ep_available_trbs(ep);
count = req->trbs_needed - req->trbs_queued;
if (available < count) {
count = available;
ep->ring_full = true;
}
/*
* To generate zero-length packet on USB bus, SW needs schedule a
* standalone zero-length TD. According to HW's behavior, SW needs
* to schedule TDs in different ways for different endpoint types.
*
* For control endpoint:
* - Data stage TD (IOC = 1, CH = 0)
* - Ring doorbell and wait transfer event
* - Data stage TD for ZLP (IOC = 1, CH = 0)
* - Ring doorbell
*
* For bulk and interrupt endpoints:
* - Normal transfer TD (IOC = 0, CH = 0)
* - Normal transfer TD for ZLP (IOC = 1, CH = 0)
* - Ring doorbell
*/
if (req->need_zlp && usb_endpoint_xfer_control(ep->desc) && count > 1)
wait_td = true;
if (!req->first_trb)
req->first_trb = &ep->transfer_ring[ep->enq_ptr];
for (i = 0; i < count; i++) {
struct tegra_xudc_trb *trb = &ep->transfer_ring[ep->enq_ptr];
bool ioc = false;
if ((i == count - 1) || (wait_td && i == count - 2))
ioc = true;
tegra_xudc_queue_one_trb(ep, req, trb, ioc);
req->last_trb = trb;
ep->enq_ptr++;
if (ep->enq_ptr == XUDC_TRANSFER_RING_SIZE - 1) {
trb = &ep->transfer_ring[ep->enq_ptr];
trb_write_cycle(trb, ep->pcs);
ep->pcs = !ep->pcs;
ep->enq_ptr = 0;
}
if (ioc)
break;
}
return count;
}
static void tegra_xudc_ep_ring_doorbell(struct tegra_xudc_ep *ep)
{
struct tegra_xudc *xudc = ep->xudc;
u32 val;
if (list_empty(&ep->queue))
return;
val = DB_TARGET(ep->index);
if (usb_endpoint_xfer_control(ep->desc)) {
val |= DB_STREAMID(xudc->setup_seq_num);
} else if (usb_ss_max_streams(ep->comp_desc) > 0) {
struct tegra_xudc_request *req;
/* Don't ring doorbell if the stream has been rejected. */
if (ep->stream_rejected)
return;
req = list_first_entry(&ep->queue, struct tegra_xudc_request,
list);
val |= DB_STREAMID(req->usb_req.stream_id);
}
dev_dbg(xudc->dev, "ring doorbell: %#x\n", val);
xudc_writel(xudc, val, DB);
}
static void tegra_xudc_ep_kick_queue(struct tegra_xudc_ep *ep)
{
struct tegra_xudc_request *req;
bool trbs_queued = false;
list_for_each_entry(req, &ep->queue, list) {
if (ep->ring_full)
break;
if (tegra_xudc_queue_trbs(ep, req) > 0)
trbs_queued = true;
}
if (trbs_queued)
tegra_xudc_ep_ring_doorbell(ep);
}
static int
__tegra_xudc_ep_queue(struct tegra_xudc_ep *ep, struct tegra_xudc_request *req)
{
struct tegra_xudc *xudc = ep->xudc;
int err;
if (usb_endpoint_xfer_control(ep->desc) && !list_empty(&ep->queue)) {
dev_err(xudc->dev, "control EP has pending transfers\n");
return -EINVAL;
}
if (usb_endpoint_xfer_control(ep->desc)) {
err = usb_gadget_map_request(&xudc->gadget, &req->usb_req,
(xudc->setup_state ==
DATA_STAGE_XFER));
} else {
err = usb_gadget_map_request(&xudc->gadget, &req->usb_req,
usb_endpoint_dir_in(ep->desc));
}
if (err < 0) {
dev_err(xudc->dev, "failed to map request: %d\n", err);
return err;
}
req->first_trb = NULL;
req->last_trb = NULL;
req->buf_queued = 0;
req->trbs_queued = 0;
req->need_zlp = false;
req->trbs_needed = DIV_ROUND_UP(req->usb_req.length,
XUDC_TRB_MAX_BUFFER_SIZE);
if (req->usb_req.length == 0)
req->trbs_needed++;
if (!usb_endpoint_xfer_isoc(ep->desc) &&
req->usb_req.zero && req->usb_req.length &&
((req->usb_req.length % ep->usb_ep.maxpacket) == 0)) {
req->trbs_needed++;
req->need_zlp = true;
}
req->usb_req.status = -EINPROGRESS;
req->usb_req.actual = 0;
list_add_tail(&req->list, &ep->queue);
tegra_xudc_ep_kick_queue(ep);
return 0;
}
static int
tegra_xudc_ep_queue(struct usb_ep *usb_ep, struct usb_request *usb_req,
gfp_t gfp)
{
struct tegra_xudc_request *req;
struct tegra_xudc_ep *ep;
struct tegra_xudc *xudc;
unsigned long flags;
int ret;
if (!usb_ep || !usb_req)
return -EINVAL;
ep = to_xudc_ep(usb_ep);
req = to_xudc_req(usb_req);
xudc = ep->xudc;
spin_lock_irqsave(&xudc->lock, flags);
if (xudc->powergated || !ep->desc) {
ret = -ESHUTDOWN;
goto unlock;
}
ret = __tegra_xudc_ep_queue(ep, req);
unlock:
spin_unlock_irqrestore(&xudc->lock, flags);
return ret;
}
static void squeeze_transfer_ring(struct tegra_xudc_ep *ep,
struct tegra_xudc_request *req)
{
struct tegra_xudc_trb *trb = req->first_trb;
bool pcs_enq = trb_read_cycle(trb);
bool pcs;
/*
* Clear out all the TRBs part of or after the cancelled request,
* and must correct trb cycle bit to the last un-enqueued state.
*/
while (trb != &ep->transfer_ring[ep->enq_ptr]) {
pcs = trb_read_cycle(trb);
memset(trb, 0, sizeof(*trb));
trb_write_cycle(trb, !pcs);
trb++;
if (trb_read_type(trb) == TRB_TYPE_LINK)
trb = ep->transfer_ring;
}
/* Requests will be re-queued at the start of the cancelled request. */
ep->enq_ptr = req->first_trb - ep->transfer_ring;
/*
* Retrieve the correct cycle bit state from the first trb of
* the cancelled request.
*/
ep->pcs = pcs_enq;
ep->ring_full = false;
list_for_each_entry_continue(req, &ep->queue, list) {
req->usb_req.status = -EINPROGRESS;
req->usb_req.actual = 0;
req->first_trb = NULL;
req->last_trb = NULL;
req->buf_queued = 0;
req->trbs_queued = 0;
}
}
/*
* Determine if the given TRB is in the range [first trb, last trb] for the
* given request.
*/
static bool trb_in_request(struct tegra_xudc_ep *ep,
struct tegra_xudc_request *req,
struct tegra_xudc_trb *trb)
{
dev_dbg(ep->xudc->dev, "%s: request %p -> %p; trb %p\n", __func__,
req->first_trb, req->last_trb, trb);
if (trb >= req->first_trb && (trb <= req->last_trb ||
req->last_trb < req->first_trb))
return true;
if (trb < req->first_trb && trb <= req->last_trb &&
req->last_trb < req->first_trb)
return true;
return false;
}
/*
* Determine if the given TRB is in the range [EP enqueue pointer, first TRB)
* for the given endpoint and request.
*/
static bool trb_before_request(struct tegra_xudc_ep *ep,
struct tegra_xudc_request *req,
struct tegra_xudc_trb *trb)
{
struct tegra_xudc_trb *enq_trb = &ep->transfer_ring[ep->enq_ptr];
dev_dbg(ep->xudc->dev, "%s: request %p -> %p; enq ptr: %p; trb %p\n",
__func__, req->first_trb, req->last_trb, enq_trb, trb);
if (trb < req->first_trb && (enq_trb <= trb ||
req->first_trb < enq_trb))
return true;
if (trb > req->first_trb && req->first_trb < enq_trb && enq_trb <= trb)
return true;
return false;
}
static int
__tegra_xudc_ep_dequeue(struct tegra_xudc_ep *ep,
struct tegra_xudc_request *req)
{
struct tegra_xudc *xudc = ep->xudc;
struct tegra_xudc_request *r;
struct tegra_xudc_trb *deq_trb;
bool busy, kick_queue = false;
int ret = 0;
/* Make sure the request is actually queued to this endpoint. */
list_for_each_entry(r, &ep->queue, list) {
if (r == req)
break;
}
if (r != req)
return -EINVAL;
/* Request hasn't been queued in the transfer ring yet. */
if (!req->trbs_queued) {
tegra_xudc_req_done(ep, req, -ECONNRESET);
return 0;
}
/* Halt DMA for this endpiont. */
if (ep_ctx_read_state(ep->context) == EP_STATE_RUNNING) {
ep_pause(xudc, ep->index);
ep_wait_for_inactive(xudc, ep->index);
}
deq_trb = trb_phys_to_virt(ep, ep_ctx_read_deq_ptr(ep->context));
/* Is the hardware processing the TRB at the dequeue pointer? */
busy = (trb_read_cycle(deq_trb) == ep_ctx_read_dcs(ep->context));
if (trb_in_request(ep, req, deq_trb) && busy) {
/*
* Request has been partially completed or it hasn't
* started processing yet.
*/
dma_addr_t deq_ptr;
squeeze_transfer_ring(ep, req);
req->usb_req.actual = ep_ctx_read_edtla(ep->context);
tegra_xudc_req_done(ep, req, -ECONNRESET);
kick_queue = true;
/* EDTLA is > 0: request has been partially completed */
if (req->usb_req.actual > 0) {
/*
* Abort the pending transfer and update the dequeue
* pointer
*/
ep_ctx_write_edtla(ep->context, 0);
ep_ctx_write_partial_td(ep->context, 0);
ep_ctx_write_data_offset(ep->context, 0);
deq_ptr = trb_virt_to_phys(ep,
&ep->transfer_ring[ep->enq_ptr]);
if (dma_mapping_error(xudc->dev, deq_ptr)) {
ret = -EINVAL;
} else {
ep_ctx_write_deq_ptr(ep->context, deq_ptr);
ep_ctx_write_dcs(ep->context, ep->pcs);
ep_reload(xudc, ep->index);
}
}
} else if (trb_before_request(ep, req, deq_trb) && busy) {
/* Request hasn't started processing yet. */
squeeze_transfer_ring(ep, req);
tegra_xudc_req_done(ep, req, -ECONNRESET);
kick_queue = true;
} else {
/*
* Request has completed, but we haven't processed the
* completion event yet.
*/
tegra_xudc_req_done(ep, req, -ECONNRESET);
ret = -EINVAL;
}
/* Resume the endpoint. */
ep_unpause(xudc, ep->index);
if (kick_queue)
tegra_xudc_ep_kick_queue(ep);
return ret;
}
static int
tegra_xudc_ep_dequeue(struct usb_ep *usb_ep, struct usb_request *usb_req)
{
struct tegra_xudc_request *req;
struct tegra_xudc_ep *ep;
struct tegra_xudc *xudc;
unsigned long flags;
int ret;
if (!usb_ep || !usb_req)
return -EINVAL;
ep = to_xudc_ep(usb_ep);
req = to_xudc_req(usb_req);
xudc = ep->xudc;
spin_lock_irqsave(&xudc->lock, flags);
if (xudc->powergated || !ep->desc) {
ret = -ESHUTDOWN;
goto unlock;
}
ret = __tegra_xudc_ep_dequeue(ep, req);
unlock:
spin_unlock_irqrestore(&xudc->lock, flags);
return ret;
}
static int __tegra_xudc_ep_set_halt(struct tegra_xudc_ep *ep, bool halt)
{
struct tegra_xudc *xudc = ep->xudc;
if (!ep->desc)
return -EINVAL;
if (usb_endpoint_xfer_isoc(ep->desc)) {
dev_err(xudc->dev, "can't halt isoc EP\n");
return -ENOTSUPP;
}
if (!!(xudc_readl(xudc, EP_HALT) & BIT(ep->index)) == halt) {
dev_dbg(xudc->dev, "EP %u already %s\n", ep->index,
halt ? "halted" : "not halted");
return 0;
}
if (halt) {
ep_halt(xudc, ep->index);
} else {
ep_ctx_write_state(ep->context, EP_STATE_DISABLED);
ep_reload(xudc, ep->index);
ep_ctx_write_state(ep->context, EP_STATE_RUNNING);
ep_ctx_write_seq_num(ep->context, 0);
ep_reload(xudc, ep->index);
ep_unpause(xudc, ep->index);
ep_unhalt(xudc, ep->index);
tegra_xudc_ep_ring_doorbell(ep);
}
return 0;
}
static int tegra_xudc_ep_set_halt(struct usb_ep *usb_ep, int value)
{
struct tegra_xudc_ep *ep;
struct tegra_xudc *xudc;
unsigned long flags;
int ret;
if (!usb_ep)
return -EINVAL;
ep = to_xudc_ep(usb_ep);
xudc = ep->xudc;
spin_lock_irqsave(&xudc->lock, flags);
if (xudc->powergated) {
ret = -ESHUTDOWN;
goto unlock;
}
if (value && usb_endpoint_dir_in(ep->desc) &&
!list_empty(&ep->queue)) {
dev_err(xudc->dev, "can't halt EP with requests pending\n");
ret = -EAGAIN;
goto unlock;
}
ret = __tegra_xudc_ep_set_halt(ep, value);
unlock:
spin_unlock_irqrestore(&xudc->lock, flags);
return ret;
}
static void tegra_xudc_ep_context_setup(struct tegra_xudc_ep *ep)
{
const struct usb_endpoint_descriptor *desc = ep->desc;
const struct usb_ss_ep_comp_descriptor *comp_desc = ep->comp_desc;
struct tegra_xudc *xudc = ep->xudc;
u16 maxpacket, maxburst = 0, esit = 0;
u32 val;
maxpacket = usb_endpoint_maxp(desc) & 0x7ff;
if (xudc->gadget.speed == USB_SPEED_SUPER) {
if (!usb_endpoint_xfer_control(desc))
maxburst = comp_desc->bMaxBurst;
if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc))
esit = le16_to_cpu(comp_desc->wBytesPerInterval);
} else if ((xudc->gadget.speed < USB_SPEED_SUPER) &&
(usb_endpoint_xfer_int(desc) ||
usb_endpoint_xfer_isoc(desc))) {
if (xudc->gadget.speed == USB_SPEED_HIGH) {
maxburst = (usb_endpoint_maxp(desc) >> 11) & 0x3;
if (maxburst == 0x3) {
dev_warn(xudc->dev,
"invalid endpoint maxburst\n");
maxburst = 0x2;
}
}
esit = maxpacket * (maxburst + 1);
}
memset(ep->context, 0, sizeof(*ep->context));
ep_ctx_write_state(ep->context, EP_STATE_RUNNING);
ep_ctx_write_interval(ep->context, desc->bInterval);
if (xudc->gadget.speed == USB_SPEED_SUPER) {
if (usb_endpoint_xfer_isoc(desc)) {
ep_ctx_write_mult(ep->context,
comp_desc->bmAttributes & 0x3);
}
if (usb_endpoint_xfer_bulk(desc)) {
ep_ctx_write_max_pstreams(ep->context,
comp_desc->bmAttributes &
0x1f);
ep_ctx_write_lsa(ep->context, 1);
}
}
if (!usb_endpoint_xfer_control(desc) && usb_endpoint_dir_out(desc))
val = usb_endpoint_type(desc);
else
val = usb_endpoint_type(desc) + EP_TYPE_CONTROL;
ep_ctx_write_type(ep->context, val);
ep_ctx_write_cerr(ep->context, 0x3);
ep_ctx_write_max_packet_size(ep->context, maxpacket);
ep_ctx_write_max_burst_size(ep->context, maxburst);
ep_ctx_write_deq_ptr(ep->context, ep->transfer_ring_phys);
ep_ctx_write_dcs(ep->context, ep->pcs);
/* Select a reasonable average TRB length based on endpoint type. */
switch (usb_endpoint_type(desc)) {
case USB_ENDPOINT_XFER_CONTROL:
val = 8;
break;
case USB_ENDPOINT_XFER_INT:
val = 1024;
break;
case USB_ENDPOINT_XFER_BULK:
case USB_ENDPOINT_XFER_ISOC:
default:
val = 3072;
break;
}
ep_ctx_write_avg_trb_len(ep->context, val);
ep_ctx_write_max_esit_payload(ep->context, esit);
ep_ctx_write_cerrcnt(ep->context, 0x3);
}
static void setup_link_trb(struct tegra_xudc_ep *ep,
struct tegra_xudc_trb *trb)
{
trb_write_data_ptr(trb, ep->transfer_ring_phys);
trb_write_type(trb, TRB_TYPE_LINK);
trb_write_toggle_cycle(trb, 1);
}
static int __tegra_xudc_ep_disable(struct tegra_xudc_ep *ep)
{
struct tegra_xudc *xudc = ep->xudc;
if (ep_ctx_read_state(ep->context) == EP_STATE_DISABLED) {
dev_err(xudc->dev, "endpoint %u already disabled\n",
ep->index);
return -EINVAL;
}
ep_ctx_write_state(ep->context, EP_STATE_DISABLED);
ep_reload(xudc, ep->index);
tegra_xudc_ep_nuke(ep, -ESHUTDOWN);
xudc->nr_enabled_eps--;
if (usb_endpoint_xfer_isoc(ep->desc))
xudc->nr_isoch_eps--;
ep->desc = NULL;
ep->comp_desc = NULL;
memset(ep->context, 0, sizeof(*ep->context));
ep_unpause(xudc, ep->index);
ep_unhalt(xudc, ep->index);
if (xudc_readl(xudc, EP_STOPPED) & BIT(ep->index))
xudc_writel(xudc, BIT(ep->index), EP_STOPPED);
/*
* If this is the last endpoint disabled in a de-configure request,
* switch back to address state.
*/
if ((xudc->device_state == USB_STATE_CONFIGURED) &&
(xudc->nr_enabled_eps == 1)) {
u32 val;
xudc->device_state = USB_STATE_ADDRESS;
usb_gadget_set_state(&xudc->gadget, xudc->device_state);
val = xudc_readl(xudc, CTRL);
val &= ~CTRL_RUN;
xudc_writel(xudc, val, CTRL);
}
dev_info(xudc->dev, "ep %u disabled\n", ep->index);
return 0;
}
static int tegra_xudc_ep_disable(struct usb_ep *usb_ep)
{
struct tegra_xudc_ep *ep;
struct tegra_xudc *xudc;
unsigned long flags;
int ret;
if (!usb_ep)
return -EINVAL;
ep = to_xudc_ep(usb_ep);
xudc = ep->xudc;
spin_lock_irqsave(&xudc->lock, flags);
if (xudc->powergated) {
ret = -ESHUTDOWN;
goto unlock;
}
ret = __tegra_xudc_ep_disable(ep);
unlock:
spin_unlock_irqrestore(&xudc->lock, flags);
return ret;
}
static int __tegra_xudc_ep_enable(struct tegra_xudc_ep *ep,
const struct usb_endpoint_descriptor *desc)
{
struct tegra_xudc *xudc = ep->xudc;
unsigned int i;
u32 val;
if (xudc->gadget.speed == USB_SPEED_SUPER &&
!usb_endpoint_xfer_control(desc) && !ep->usb_ep.comp_desc)
return -EINVAL;
/* Disable the EP if it is not disabled */
if (ep_ctx_read_state(ep->context) != EP_STATE_DISABLED)
__tegra_xudc_ep_disable(ep);
ep->desc = desc;
ep->comp_desc = ep->usb_ep.comp_desc;
if (usb_endpoint_xfer_isoc(desc)) {
if (xudc->nr_isoch_eps > XUDC_MAX_ISOCH_EPS) {
dev_err(xudc->dev, "too many isoch endpoints\n");
return -EBUSY;
}
xudc->nr_isoch_eps++;
}
memset(ep->transfer_ring, 0, XUDC_TRANSFER_RING_SIZE *
sizeof(*ep->transfer_ring));
setup_link_trb(ep, &ep->transfer_ring[XUDC_TRANSFER_RING_SIZE - 1]);
ep->enq_ptr = 0;
ep->deq_ptr = 0;
ep->pcs = true;
ep->ring_full = false;
xudc->nr_enabled_eps++;
tegra_xudc_ep_context_setup(ep);
/*
* No need to reload and un-halt EP0. This will be done automatically
* once a valid SETUP packet is received.
*/
if (usb_endpoint_xfer_control(desc))
goto out;
/*
* Transition to configured state once the first non-control
* endpoint is enabled.
*/
if (xudc->device_state == USB_STATE_ADDRESS) {
val = xudc_readl(xudc, CTRL);
val |= CTRL_RUN;
xudc_writel(xudc, val, CTRL);
xudc->device_state = USB_STATE_CONFIGURED;
usb_gadget_set_state(&xudc->gadget, xudc->device_state);
}
if (usb_endpoint_xfer_isoc(desc)) {
/*
* Pause all bulk endpoints when enabling an isoch endpoint
* to ensure the isoch endpoint is allocated enough bandwidth.
*/
for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) {
if (xudc->ep[i].desc &&
usb_endpoint_xfer_bulk(xudc->ep[i].desc))
ep_pause(xudc, i);
}
}
ep_reload(xudc, ep->index);
ep_unpause(xudc, ep->index);
ep_unhalt(xudc, ep->index);
if (usb_endpoint_xfer_isoc(desc)) {
for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) {
if (xudc->ep[i].desc &&
usb_endpoint_xfer_bulk(xudc->ep[i].desc))
ep_unpause(xudc, i);
}
}
out:
dev_info(xudc->dev, "EP %u (type: %s, dir: %s) enabled\n", ep->index,
usb_ep_type_string(usb_endpoint_type(ep->desc)),
usb_endpoint_dir_in(ep->desc) ? "in" : "out");
return 0;
}
static int tegra_xudc_ep_enable(struct usb_ep *usb_ep,
const struct usb_endpoint_descriptor *desc)
{
struct tegra_xudc_ep *ep;
struct tegra_xudc *xudc;
unsigned long flags;
int ret;
if (!usb_ep || !desc || (desc->bDescriptorType != USB_DT_ENDPOINT))
return -EINVAL;
ep = to_xudc_ep(usb_ep);
xudc = ep->xudc;
spin_lock_irqsave(&xudc->lock, flags);
if (xudc->powergated) {
ret = -ESHUTDOWN;
goto unlock;
}
ret = __tegra_xudc_ep_enable(ep, desc);
unlock:
spin_unlock_irqrestore(&xudc->lock, flags);
return ret;
}
static struct usb_request *
tegra_xudc_ep_alloc_request(struct usb_ep *usb_ep, gfp_t gfp)
{
struct tegra_xudc_request *req;
req = kzalloc(sizeof(*req), gfp);
if (!req)
return NULL;
INIT_LIST_HEAD(&req->list);
return &req->usb_req;
}
static void tegra_xudc_ep_free_request(struct usb_ep *usb_ep,
struct usb_request *usb_req)
{
struct tegra_xudc_request *req = to_xudc_req(usb_req);
kfree(req);
}
static struct usb_ep_ops tegra_xudc_ep_ops = {
.enable = tegra_xudc_ep_enable,
.disable = tegra_xudc_ep_disable,
.alloc_request = tegra_xudc_ep_alloc_request,
.free_request = tegra_xudc_ep_free_request,
.queue = tegra_xudc_ep_queue,
.dequeue = tegra_xudc_ep_dequeue,
.set_halt = tegra_xudc_ep_set_halt,
};
static int tegra_xudc_ep0_enable(struct usb_ep *usb_ep,
const struct usb_endpoint_descriptor *desc)
{
return -EBUSY;
}
static int tegra_xudc_ep0_disable(struct usb_ep *usb_ep)
{
return -EBUSY;
}
static struct usb_ep_ops tegra_xudc_ep0_ops = {
.enable = tegra_xudc_ep0_enable,
.disable = tegra_xudc_ep0_disable,
.alloc_request = tegra_xudc_ep_alloc_request,
.free_request = tegra_xudc_ep_free_request,
.queue = tegra_xudc_ep_queue,
.dequeue = tegra_xudc_ep_dequeue,
.set_halt = tegra_xudc_ep_set_halt,
};
static int tegra_xudc_gadget_get_frame(struct usb_gadget *gadget)
{
struct tegra_xudc *xudc = to_xudc(gadget);
unsigned long flags;
int ret;
spin_lock_irqsave(&xudc->lock, flags);
if (xudc->powergated) {
ret = -ESHUTDOWN;
goto unlock;
}
ret = (xudc_readl(xudc, MFINDEX) & MFINDEX_FRAME_MASK) >>
MFINDEX_FRAME_SHIFT;
unlock:
spin_unlock_irqrestore(&xudc->lock, flags);
return ret;
}
static void tegra_xudc_resume_device_state(struct tegra_xudc *xudc)
{
unsigned int i;
u32 val;
ep_unpause_all(xudc);
/* Direct link to U0. */
val = xudc_readl(xudc, PORTSC);
if (((val & PORTSC_PLS_MASK) >> PORTSC_PLS_SHIFT) != PORTSC_PLS_U0) {
val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK);
val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_U0);
xudc_writel(xudc, val, PORTSC);
}
if (xudc->device_state == USB_STATE_SUSPENDED) {
xudc->device_state = xudc->resume_state;
usb_gadget_set_state(&xudc->gadget, xudc->device_state);
xudc->resume_state = 0;
}
/*
* Doorbells may be dropped if they are sent too soon (< ~200ns)
* after unpausing the endpoint. Wait for 500ns just to be safe.
*/
ndelay(500);
for (i = 0; i < ARRAY_SIZE(xudc->ep); i++)
tegra_xudc_ep_ring_doorbell(&xudc->ep[i]);
}
static int tegra_xudc_gadget_wakeup(struct usb_gadget *gadget)
{
struct tegra_xudc *xudc = to_xudc(gadget);
unsigned long flags;
int ret = 0;
u32 val;
spin_lock_irqsave(&xudc->lock, flags);
if (xudc->powergated) {
ret = -ESHUTDOWN;
goto unlock;
}
val = xudc_readl(xudc, PORTPM);
dev_dbg(xudc->dev, "%s: PORTPM=%#x, speed=%x\n", __func__,
val, gadget->speed);
if (((xudc->gadget.speed <= USB_SPEED_HIGH) &&
(val & PORTPM_RWE)) ||
((xudc->gadget.speed == USB_SPEED_SUPER) &&
(val & PORTPM_FRWE))) {
tegra_xudc_resume_device_state(xudc);
/* Send Device Notification packet. */
if (xudc->gadget.speed == USB_SPEED_SUPER) {
val = DEVNOTIF_LO_TYPE(DEVNOTIF_LO_TYPE_FUNCTION_WAKE)
| DEVNOTIF_LO_TRIG;
xudc_writel(xudc, 0, DEVNOTIF_HI);
xudc_writel(xudc, val, DEVNOTIF_LO);
}
}
unlock:
dev_dbg(xudc->dev, "%s: ret value is %d", __func__, ret);
spin_unlock_irqrestore(&xudc->lock, flags);
return ret;
}
static int tegra_xudc_gadget_pullup(struct usb_gadget *gadget, int is_on)
{
struct tegra_xudc *xudc = to_xudc(gadget);
unsigned long flags;
u32 val;
pm_runtime_get_sync(xudc->dev);
spin_lock_irqsave(&xudc->lock, flags);
if (is_on != xudc->pullup) {
val = xudc_readl(xudc, CTRL);
if (is_on)
val |= CTRL_ENABLE;
else
val &= ~CTRL_ENABLE;
xudc_writel(xudc, val, CTRL);
}
xudc->pullup = is_on;
dev_dbg(xudc->dev, "%s: pullup:%d", __func__, is_on);
spin_unlock_irqrestore(&xudc->lock, flags);
pm_runtime_put(xudc->dev);
return 0;
}
static int tegra_xudc_gadget_start(struct usb_gadget *gadget,
struct usb_gadget_driver *driver)
{
struct tegra_xudc *xudc = to_xudc(gadget);
unsigned long flags;
u32 val;
int ret;
unsigned int i;
if (!driver)
return -EINVAL;
pm_runtime_get_sync(xudc->dev);
spin_lock_irqsave(&xudc->lock, flags);
if (xudc->driver) {
ret = -EBUSY;
goto unlock;
}
xudc->setup_state = WAIT_FOR_SETUP;
xudc->device_state = USB_STATE_DEFAULT;
usb_gadget_set_state(&xudc->gadget, xudc->device_state);
ret = __tegra_xudc_ep_enable(&xudc->ep[0], &tegra_xudc_ep0_desc);
if (ret < 0)
goto unlock;
val = xudc_readl(xudc, CTRL);
val |= CTRL_IE | CTRL_LSE;
xudc_writel(xudc, val, CTRL);
val = xudc_readl(xudc, PORTHALT);
val |= PORTHALT_STCHG_INTR_EN;
xudc_writel(xudc, val, PORTHALT);
if (xudc->pullup) {
val = xudc_readl(xudc, CTRL);
val |= CTRL_ENABLE;
xudc_writel(xudc, val, CTRL);
}
for (i = 0; i < xudc->soc->num_phys; i++)
if (xudc->usbphy[i])
otg_set_peripheral(xudc->usbphy[i]->otg, gadget);
xudc->driver = driver;
unlock:
dev_dbg(xudc->dev, "%s: ret value is %d", __func__, ret);
spin_unlock_irqrestore(&xudc->lock, flags);
pm_runtime_put(xudc->dev);
return ret;
}
static int tegra_xudc_gadget_stop(struct usb_gadget *gadget)
{
struct tegra_xudc *xudc = to_xudc(gadget);
unsigned long flags;
u32 val;
unsigned int i;
pm_runtime_get_sync(xudc->dev);
spin_lock_irqsave(&xudc->lock, flags);
for (i = 0; i < xudc->soc->num_phys; i++)
if (xudc->usbphy[i])
otg_set_peripheral(xudc->usbphy[i]->otg, NULL);
val = xudc_readl(xudc, CTRL);
val &= ~(CTRL_IE | CTRL_ENABLE);
xudc_writel(xudc, val, CTRL);
__tegra_xudc_ep_disable(&xudc->ep[0]);
xudc->driver = NULL;
dev_dbg(xudc->dev, "Gadget stopped");
spin_unlock_irqrestore(&xudc->lock, flags);
pm_runtime_put(xudc->dev);
return 0;
}
static int tegra_xudc_gadget_vbus_draw(struct usb_gadget *gadget,
unsigned int m_a)
{
int ret = 0;
struct tegra_xudc *xudc = to_xudc(gadget);
dev_dbg(xudc->dev, "%s: %u mA\n", __func__, m_a);
if (xudc->curr_usbphy->chg_type == SDP_TYPE)
ret = usb_phy_set_power(xudc->curr_usbphy, m_a);
return ret;
}
static int tegra_xudc_set_selfpowered(struct usb_gadget *gadget, int is_on)
{
struct tegra_xudc *xudc = to_xudc(gadget);
dev_dbg(xudc->dev, "%s: %d\n", __func__, is_on);
xudc->selfpowered = !!is_on;
return 0;
}
static struct usb_gadget_ops tegra_xudc_gadget_ops = {
.get_frame = tegra_xudc_gadget_get_frame,
.wakeup = tegra_xudc_gadget_wakeup,
.pullup = tegra_xudc_gadget_pullup,
.udc_start = tegra_xudc_gadget_start,
.udc_stop = tegra_xudc_gadget_stop,
.vbus_draw = tegra_xudc_gadget_vbus_draw,
.set_selfpowered = tegra_xudc_set_selfpowered,
};
static void no_op_complete(struct usb_ep *ep, struct usb_request *req)
{
}
static int
tegra_xudc_ep0_queue_status(struct tegra_xudc *xudc,
void (*cmpl)(struct usb_ep *, struct usb_request *))
{
xudc->ep0_req->usb_req.buf = NULL;
xudc->ep0_req->usb_req.dma = 0;
xudc->ep0_req->usb_req.length = 0;
xudc->ep0_req->usb_req.complete = cmpl;
xudc->ep0_req->usb_req.context = xudc;
return __tegra_xudc_ep_queue(&xudc->ep[0], xudc->ep0_req);
}
static int
tegra_xudc_ep0_queue_data(struct tegra_xudc *xudc, void *buf, size_t len,
void (*cmpl)(struct usb_ep *, struct usb_request *))
{
xudc->ep0_req->usb_req.buf = buf;
xudc->ep0_req->usb_req.length = len;
xudc->ep0_req->usb_req.complete = cmpl;
xudc->ep0_req->usb_req.context = xudc;
return __tegra_xudc_ep_queue(&xudc->ep[0], xudc->ep0_req);
}
static void tegra_xudc_ep0_req_done(struct tegra_xudc *xudc)
{
switch (xudc->setup_state) {
case DATA_STAGE_XFER:
xudc->setup_state = STATUS_STAGE_RECV;
tegra_xudc_ep0_queue_status(xudc, no_op_complete);
break;
case DATA_STAGE_RECV:
xudc->setup_state = STATUS_STAGE_XFER;
tegra_xudc_ep0_queue_status(xudc, no_op_complete);
break;
default:
xudc->setup_state = WAIT_FOR_SETUP;
break;
}
}
static int tegra_xudc_ep0_delegate_req(struct tegra_xudc *xudc,
struct usb_ctrlrequest *ctrl)
{
int ret;
spin_unlock(&xudc->lock);
ret = xudc->driver->setup(&xudc->gadget, ctrl);
spin_lock(&xudc->lock);
return ret;
}
static void set_feature_complete(struct usb_ep *ep, struct usb_request *req)
{
struct tegra_xudc *xudc = req->context;
if (xudc->test_mode_pattern) {
xudc_writel(xudc, xudc->test_mode_pattern, PORT_TM);
xudc->test_mode_pattern = 0;
}
}
static int tegra_xudc_ep0_set_feature(struct tegra_xudc *xudc,
struct usb_ctrlrequest *ctrl)
{
bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
u32 feature = le16_to_cpu(ctrl->wValue);
u32 index = le16_to_cpu(ctrl->wIndex);
u32 val, ep;
int ret;
if (le16_to_cpu(ctrl->wLength) != 0)
return -EINVAL;
switch (ctrl->bRequestType & USB_RECIP_MASK) {
case USB_RECIP_DEVICE:
switch (feature) {
case USB_DEVICE_REMOTE_WAKEUP:
if ((xudc->gadget.speed == USB_SPEED_SUPER) ||
(xudc->device_state == USB_STATE_DEFAULT))
return -EINVAL;
val = xudc_readl(xudc, PORTPM);
if (set)
val |= PORTPM_RWE;
else
val &= ~PORTPM_RWE;
xudc_writel(xudc, val, PORTPM);
break;
case USB_DEVICE_U1_ENABLE:
case USB_DEVICE_U2_ENABLE:
if ((xudc->device_state != USB_STATE_CONFIGURED) ||
(xudc->gadget.speed != USB_SPEED_SUPER))
return -EINVAL;
val = xudc_readl(xudc, PORTPM);
if ((feature == USB_DEVICE_U1_ENABLE) &&
xudc->soc->u1_enable) {
if (set)
val |= PORTPM_U1E;
else
val &= ~PORTPM_U1E;
}
if ((feature == USB_DEVICE_U2_ENABLE) &&
xudc->soc->u2_enable) {
if (set)
val |= PORTPM_U2E;
else
val &= ~PORTPM_U2E;
}
xudc_writel(xudc, val, PORTPM);
break;
case USB_DEVICE_TEST_MODE:
if (xudc->gadget.speed != USB_SPEED_HIGH)
return -EINVAL;
if (!set)
return -EINVAL;
xudc->test_mode_pattern = index >> 8;
break;
default:
return -EINVAL;
}
break;
case USB_RECIP_INTERFACE:
if (xudc->device_state != USB_STATE_CONFIGURED)
return -EINVAL;
switch (feature) {
case USB_INTRF_FUNC_SUSPEND:
if (set) {
val = xudc_readl(xudc, PORTPM);
if (index & USB_INTRF_FUNC_SUSPEND_RW)
val |= PORTPM_FRWE;
else
val &= ~PORTPM_FRWE;
xudc_writel(xudc, val, PORTPM);
}
return tegra_xudc_ep0_delegate_req(xudc, ctrl);
default:
return -EINVAL;
}
break;
case USB_RECIP_ENDPOINT:
ep = (index & USB_ENDPOINT_NUMBER_MASK) * 2 +
((index & USB_DIR_IN) ? 1 : 0);
if ((xudc->device_state == USB_STATE_DEFAULT) ||
((xudc->device_state == USB_STATE_ADDRESS) &&
(index != 0)))
return -EINVAL;
ret = __tegra_xudc_ep_set_halt(&xudc->ep[ep], set);
if (ret < 0)
return ret;
break;
default:
return -EINVAL;
}
return tegra_xudc_ep0_queue_status(xudc, set_feature_complete);
}
static int tegra_xudc_ep0_get_status(struct tegra_xudc *xudc,
struct usb_ctrlrequest *ctrl)
{
struct tegra_xudc_ep_context *ep_ctx;
u32 val, ep, index = le16_to_cpu(ctrl->wIndex);
u16 status = 0;
if (!(ctrl->bRequestType & USB_DIR_IN))
return -EINVAL;
if ((le16_to_cpu(ctrl->wValue) != 0) ||
(le16_to_cpu(ctrl->wLength) != 2))
return -EINVAL;
switch (ctrl->bRequestType & USB_RECIP_MASK) {
case USB_RECIP_DEVICE:
val = xudc_readl(xudc, PORTPM);
if (xudc->selfpowered)
status |= BIT(USB_DEVICE_SELF_POWERED);
if ((xudc->gadget.speed < USB_SPEED_SUPER) &&
(val & PORTPM_RWE))
status |= BIT(USB_DEVICE_REMOTE_WAKEUP);
if (xudc->gadget.speed == USB_SPEED_SUPER) {
if (val & PORTPM_U1E)
status |= BIT(USB_DEV_STAT_U1_ENABLED);
if (val & PORTPM_U2E)
status |= BIT(USB_DEV_STAT_U2_ENABLED);
}
break;
case USB_RECIP_INTERFACE:
if (xudc->gadget.speed == USB_SPEED_SUPER) {
status |= USB_INTRF_STAT_FUNC_RW_CAP;
val = xudc_readl(xudc, PORTPM);
if (val & PORTPM_FRWE)
status |= USB_INTRF_STAT_FUNC_RW;
}
break;
case USB_RECIP_ENDPOINT:
ep = (index & USB_ENDPOINT_NUMBER_MASK) * 2 +
((index & USB_DIR_IN) ? 1 : 0);
ep_ctx = &xudc->ep_context[ep];
if ((xudc->device_state != USB_STATE_CONFIGURED) &&
((xudc->device_state != USB_STATE_ADDRESS) || (ep != 0)))
return -EINVAL;
if (ep_ctx_read_state(ep_ctx) == EP_STATE_DISABLED)
return -EINVAL;
if (xudc_readl(xudc, EP_HALT) & BIT(ep))
status |= BIT(USB_ENDPOINT_HALT);
break;
default:
return -EINVAL;
}
xudc->status_buf = cpu_to_le16(status);
return tegra_xudc_ep0_queue_data(xudc, &xudc->status_buf,
sizeof(xudc->status_buf),
no_op_complete);
}
static void set_sel_complete(struct usb_ep *ep, struct usb_request *req)
{
/* Nothing to do with SEL values */
}
static int tegra_xudc_ep0_set_sel(struct tegra_xudc *xudc,
struct usb_ctrlrequest *ctrl)
{
if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE |
USB_TYPE_STANDARD))
return -EINVAL;
if (xudc->device_state == USB_STATE_DEFAULT)
return -EINVAL;
if ((le16_to_cpu(ctrl->wIndex) != 0) ||
(le16_to_cpu(ctrl->wValue) != 0) ||
(le16_to_cpu(ctrl->wLength) != 6))
return -EINVAL;
return tegra_xudc_ep0_queue_data(xudc, &xudc->sel_timing,
sizeof(xudc->sel_timing),
set_sel_complete);
}
static void set_isoch_delay_complete(struct usb_ep *ep, struct usb_request *req)
{
/* Nothing to do with isoch delay */
}
static int tegra_xudc_ep0_set_isoch_delay(struct tegra_xudc *xudc,
struct usb_ctrlrequest *ctrl)
{
u32 delay = le16_to_cpu(ctrl->wValue);
if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE |
USB_TYPE_STANDARD))
return -EINVAL;
if ((delay > 65535) || (le16_to_cpu(ctrl->wIndex) != 0) ||
(le16_to_cpu(ctrl->wLength) != 0))
return -EINVAL;
xudc->isoch_delay = delay;
return tegra_xudc_ep0_queue_status(xudc, set_isoch_delay_complete);
}
static void set_address_complete(struct usb_ep *ep, struct usb_request *req)
{
struct tegra_xudc *xudc = req->context;
if ((xudc->device_state == USB_STATE_DEFAULT) &&
(xudc->dev_addr != 0)) {
xudc->device_state = USB_STATE_ADDRESS;
usb_gadget_set_state(&xudc->gadget, xudc->device_state);
} else if ((xudc->device_state == USB_STATE_ADDRESS) &&
(xudc->dev_addr == 0)) {
xudc->device_state = USB_STATE_DEFAULT;
usb_gadget_set_state(&xudc->gadget, xudc->device_state);
}
}
static int tegra_xudc_ep0_set_address(struct tegra_xudc *xudc,
struct usb_ctrlrequest *ctrl)
{
struct tegra_xudc_ep *ep0 = &xudc->ep[0];
u32 val, addr = le16_to_cpu(ctrl->wValue);
if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE |
USB_TYPE_STANDARD))
return -EINVAL;
if ((addr > 127) || (le16_to_cpu(ctrl->wIndex) != 0) ||
(le16_to_cpu(ctrl->wLength) != 0))
return -EINVAL;
if (xudc->device_state == USB_STATE_CONFIGURED)
return -EINVAL;
dev_dbg(xudc->dev, "set address: %u\n", addr);
xudc->dev_addr = addr;
val = xudc_readl(xudc, CTRL);
val &= ~(CTRL_DEVADDR_MASK);
val |= CTRL_DEVADDR(addr);
xudc_writel(xudc, val, CTRL);
ep_ctx_write_devaddr(ep0->context, addr);
return tegra_xudc_ep0_queue_status(xudc, set_address_complete);
}
static int tegra_xudc_ep0_standard_req(struct tegra_xudc *xudc,
struct usb_ctrlrequest *ctrl)
{
int ret;
switch (ctrl->bRequest) {
case USB_REQ_GET_STATUS:
dev_dbg(xudc->dev, "USB_REQ_GET_STATUS\n");
ret = tegra_xudc_ep0_get_status(xudc, ctrl);
break;
case USB_REQ_SET_ADDRESS:
dev_dbg(xudc->dev, "USB_REQ_SET_ADDRESS\n");
ret = tegra_xudc_ep0_set_address(xudc, ctrl);
break;
case USB_REQ_SET_SEL:
dev_dbg(xudc->dev, "USB_REQ_SET_SEL\n");
ret = tegra_xudc_ep0_set_sel(xudc, ctrl);
break;
case USB_REQ_SET_ISOCH_DELAY:
dev_dbg(xudc->dev, "USB_REQ_SET_ISOCH_DELAY\n");
ret = tegra_xudc_ep0_set_isoch_delay(xudc, ctrl);
break;
case USB_REQ_CLEAR_FEATURE:
case USB_REQ_SET_FEATURE:
dev_dbg(xudc->dev, "USB_REQ_CLEAR/SET_FEATURE\n");
ret = tegra_xudc_ep0_set_feature(xudc, ctrl);
break;
case USB_REQ_SET_CONFIGURATION:
dev_dbg(xudc->dev, "USB_REQ_SET_CONFIGURATION\n");
/*
* In theory we need to clear RUN bit before status stage of
* deconfig request sent, but this seems to be causing problems.
* Clear RUN once all endpoints are disabled instead.
*/
fallthrough;
default:
ret = tegra_xudc_ep0_delegate_req(xudc, ctrl);
break;
}
return ret;
}
static void tegra_xudc_handle_ep0_setup_packet(struct tegra_xudc *xudc,
struct usb_ctrlrequest *ctrl,
u16 seq_num)
{
int ret;
xudc->setup_seq_num = seq_num;
/* Ensure EP0 is unhalted. */
ep_unhalt(xudc, 0);
/*
* On Tegra210, setup packets with sequence numbers 0xfffe or 0xffff
* are invalid. Halt EP0 until we get a valid packet.
*/
if (xudc->soc->invalid_seq_num &&
(seq_num == 0xfffe || seq_num == 0xffff)) {
dev_warn(xudc->dev, "invalid sequence number detected\n");
ep_halt(xudc, 0);
return;
}
if (ctrl->wLength)
xudc->setup_state = (ctrl->bRequestType & USB_DIR_IN) ?
DATA_STAGE_XFER : DATA_STAGE_RECV;
else
xudc->setup_state = STATUS_STAGE_XFER;
if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD)
ret = tegra_xudc_ep0_standard_req(xudc, ctrl);
else
ret = tegra_xudc_ep0_delegate_req(xudc, ctrl);
if (ret < 0) {
dev_warn(xudc->dev, "setup request failed: %d\n", ret);
xudc->setup_state = WAIT_FOR_SETUP;
ep_halt(xudc, 0);
}
}
static void tegra_xudc_handle_ep0_event(struct tegra_xudc *xudc,
struct tegra_xudc_trb *event)
{
struct usb_ctrlrequest *ctrl = (struct usb_ctrlrequest *)event;
u16 seq_num = trb_read_seq_num(event);
if (xudc->setup_state != WAIT_FOR_SETUP) {
/*
* The controller is in the process of handling another
* setup request. Queue subsequent requests and handle
* the last one once the controller reports a sequence
* number error.
*/
memcpy(&xudc->setup_packet.ctrl_req, ctrl, sizeof(*ctrl));
xudc->setup_packet.seq_num = seq_num;
xudc->queued_setup_packet = true;
} else {
tegra_xudc_handle_ep0_setup_packet(xudc, ctrl, seq_num);
}
}
static struct tegra_xudc_request *
trb_to_request(struct tegra_xudc_ep *ep, struct tegra_xudc_trb *trb)
{
struct tegra_xudc_request *req;
list_for_each_entry(req, &ep->queue, list) {
if (!req->trbs_queued)
break;
if (trb_in_request(ep, req, trb))
return req;
}
return NULL;
}
static void tegra_xudc_handle_transfer_completion(struct tegra_xudc *xudc,
struct tegra_xudc_ep *ep,
struct tegra_xudc_trb *event)
{
struct tegra_xudc_request *req;
struct tegra_xudc_trb *trb;
bool short_packet;
short_packet = (trb_read_cmpl_code(event) ==
TRB_CMPL_CODE_SHORT_PACKET);
trb = trb_phys_to_virt(ep, trb_read_data_ptr(event));
req = trb_to_request(ep, trb);
/*
* TDs are complete on short packet or when the completed TRB is the
* last TRB in the TD (the CHAIN bit is unset).
*/
if (req && (short_packet || (!trb_read_chain(trb) &&
(req->trbs_needed == req->trbs_queued)))) {
struct tegra_xudc_trb *last = req->last_trb;
unsigned int residual;
residual = trb_read_transfer_len(event);
req->usb_req.actual = req->usb_req.length - residual;
dev_dbg(xudc->dev, "bytes transferred %u / %u\n",
req->usb_req.actual, req->usb_req.length);
tegra_xudc_req_done(ep, req, 0);
if (ep->desc && usb_endpoint_xfer_control(ep->desc))
tegra_xudc_ep0_req_done(xudc);
/*
* Advance the dequeue pointer past the end of the current TD
* on short packet completion.
*/
if (short_packet) {
ep->deq_ptr = (last - ep->transfer_ring) + 1;
if (ep->deq_ptr == XUDC_TRANSFER_RING_SIZE - 1)
ep->deq_ptr = 0;
}
} else if (!req) {
dev_warn(xudc->dev, "transfer event on dequeued request\n");
}
if (ep->desc)
tegra_xudc_ep_kick_queue(ep);
}
static void tegra_xudc_handle_transfer_event(struct tegra_xudc *xudc,
struct tegra_xudc_trb *event)
{
unsigned int ep_index = trb_read_endpoint_id(event);
struct tegra_xudc_ep *ep = &xudc->ep[ep_index];
struct tegra_xudc_trb *trb;
u16 comp_code;
if (ep_ctx_read_state(ep->context) == EP_STATE_DISABLED) {
dev_warn(xudc->dev, "transfer event on disabled EP %u\n",
ep_index);
return;
}
/* Update transfer ring dequeue pointer. */
trb = trb_phys_to_virt(ep, trb_read_data_ptr(event));
comp_code = trb_read_cmpl_code(event);
if (comp_code != TRB_CMPL_CODE_BABBLE_DETECTED_ERR) {
ep->deq_ptr = (trb - ep->transfer_ring) + 1;
if (ep->deq_ptr == XUDC_TRANSFER_RING_SIZE - 1)
ep->deq_ptr = 0;
ep->ring_full = false;
}
switch (comp_code) {
case TRB_CMPL_CODE_SUCCESS:
case TRB_CMPL_CODE_SHORT_PACKET:
tegra_xudc_handle_transfer_completion(xudc, ep, event);
break;
case TRB_CMPL_CODE_HOST_REJECTED:
dev_info(xudc->dev, "stream rejected on EP %u\n", ep_index);
ep->stream_rejected = true;
break;
case TRB_CMPL_CODE_PRIME_PIPE_RECEIVED:
dev_info(xudc->dev, "prime pipe received on EP %u\n", ep_index);
if (ep->stream_rejected) {
ep->stream_rejected = false;
/*
* An EP is stopped when a stream is rejected. Wait
* for the EP to report that it is stopped and then
* un-stop it.
*/
ep_wait_for_stopped(xudc, ep_index);
}
tegra_xudc_ep_ring_doorbell(ep);
break;
case TRB_CMPL_CODE_BABBLE_DETECTED_ERR:
/*
* Wait for the EP to be stopped so the controller stops
* processing doorbells.
*/
ep_wait_for_stopped(xudc, ep_index);
ep->enq_ptr = ep->deq_ptr;
tegra_xudc_ep_nuke(ep, -EIO);
/* FALLTHROUGH */
case TRB_CMPL_CODE_STREAM_NUMP_ERROR:
case TRB_CMPL_CODE_CTRL_DIR_ERR:
case TRB_CMPL_CODE_INVALID_STREAM_TYPE_ERR:
case TRB_CMPL_CODE_RING_UNDERRUN:
case TRB_CMPL_CODE_RING_OVERRUN:
case TRB_CMPL_CODE_ISOCH_BUFFER_OVERRUN:
case TRB_CMPL_CODE_USB_TRANS_ERR:
case TRB_CMPL_CODE_TRB_ERR:
dev_err(xudc->dev, "completion error %#x on EP %u\n",
comp_code, ep_index);
ep_halt(xudc, ep_index);
break;
case TRB_CMPL_CODE_CTRL_SEQNUM_ERR:
dev_info(xudc->dev, "sequence number error\n");
/*
* Kill any queued control request and skip to the last
* setup packet we received.
*/
tegra_xudc_ep_nuke(ep, -EINVAL);
xudc->setup_state = WAIT_FOR_SETUP;
if (!xudc->queued_setup_packet)
break;
tegra_xudc_handle_ep0_setup_packet(xudc,
&xudc->setup_packet.ctrl_req,
xudc->setup_packet.seq_num);
xudc->queued_setup_packet = false;
break;
case TRB_CMPL_CODE_STOPPED:
dev_dbg(xudc->dev, "stop completion code on EP %u\n",
ep_index);
/* Disconnected. */
tegra_xudc_ep_nuke(ep, -ECONNREFUSED);
break;
default:
dev_dbg(xudc->dev, "completion event %#x on EP %u\n",
comp_code, ep_index);
break;
}
}
static void tegra_xudc_reset(struct tegra_xudc *xudc)
{
struct tegra_xudc_ep *ep0 = &xudc->ep[0];
dma_addr_t deq_ptr;
unsigned int i;
xudc->setup_state = WAIT_FOR_SETUP;
xudc->device_state = USB_STATE_DEFAULT;
usb_gadget_set_state(&xudc->gadget, xudc->device_state);
ep_unpause_all(xudc);
for (i = 0; i < ARRAY_SIZE(xudc->ep); i++)
tegra_xudc_ep_nuke(&xudc->ep[i], -ESHUTDOWN);
/*
* Reset sequence number and dequeue pointer to flush the transfer
* ring.
*/
ep0->deq_ptr = ep0->enq_ptr;
ep0->ring_full = false;
xudc->setup_seq_num = 0;
xudc->queued_setup_packet = false;
ep_ctx_write_seq_num(ep0->context, xudc->setup_seq_num);
deq_ptr = trb_virt_to_phys(ep0, &ep0->transfer_ring[ep0->deq_ptr]);
if (!dma_mapping_error(xudc->dev, deq_ptr)) {
ep_ctx_write_deq_ptr(ep0->context, deq_ptr);
ep_ctx_write_dcs(ep0->context, ep0->pcs);
}
ep_unhalt_all(xudc);
ep_reload(xudc, 0);
ep_unpause(xudc, 0);
}
static void tegra_xudc_port_connect(struct tegra_xudc *xudc)
{
struct tegra_xudc_ep *ep0 = &xudc->ep[0];
u16 maxpacket;
u32 val;
val = (xudc_readl(xudc, PORTSC) & PORTSC_PS_MASK) >> PORTSC_PS_SHIFT;
switch (val) {
case PORTSC_PS_LS:
xudc->gadget.speed = USB_SPEED_LOW;
break;
case PORTSC_PS_FS:
xudc->gadget.speed = USB_SPEED_FULL;
break;
case PORTSC_PS_HS:
xudc->gadget.speed = USB_SPEED_HIGH;
break;
case PORTSC_PS_SS:
xudc->gadget.speed = USB_SPEED_SUPER;
break;
default:
xudc->gadget.speed = USB_SPEED_UNKNOWN;
break;
}
xudc->device_state = USB_STATE_DEFAULT;
usb_gadget_set_state(&xudc->gadget, xudc->device_state);
xudc->setup_state = WAIT_FOR_SETUP;
if (xudc->gadget.speed == USB_SPEED_SUPER)
maxpacket = 512;
else
maxpacket = 64;
ep_ctx_write_max_packet_size(ep0->context, maxpacket);
tegra_xudc_ep0_desc.wMaxPacketSize = cpu_to_le16(maxpacket);
usb_ep_set_maxpacket_limit(&ep0->usb_ep, maxpacket);
if (!xudc->soc->u1_enable) {
val = xudc_readl(xudc, PORTPM);
val &= ~(PORTPM_U1TIMEOUT_MASK);
xudc_writel(xudc, val, PORTPM);
}
if (!xudc->soc->u2_enable) {
val = xudc_readl(xudc, PORTPM);
val &= ~(PORTPM_U2TIMEOUT_MASK);
xudc_writel(xudc, val, PORTPM);
}
if (xudc->gadget.speed <= USB_SPEED_HIGH) {
val = xudc_readl(xudc, PORTPM);
val &= ~(PORTPM_L1S_MASK);
if (xudc->soc->lpm_enable)
val |= PORTPM_L1S(PORTPM_L1S_ACCEPT);
else
val |= PORTPM_L1S(PORTPM_L1S_NYET);
xudc_writel(xudc, val, PORTPM);
}
val = xudc_readl(xudc, ST);
if (val & ST_RC)
xudc_writel(xudc, ST_RC, ST);
}
static void tegra_xudc_port_disconnect(struct tegra_xudc *xudc)
{
tegra_xudc_reset(xudc);
if (xudc->driver && xudc->driver->disconnect) {
spin_unlock(&xudc->lock);
xudc->driver->disconnect(&xudc->gadget);
spin_lock(&xudc->lock);
}
xudc->device_state = USB_STATE_NOTATTACHED;
usb_gadget_set_state(&xudc->gadget, xudc->device_state);
complete(&xudc->disconnect_complete);
}
static void tegra_xudc_port_reset(struct tegra_xudc *xudc)
{
tegra_xudc_reset(xudc);
if (xudc->driver) {
spin_unlock(&xudc->lock);
usb_gadget_udc_reset(&xudc->gadget, xudc->driver);
spin_lock(&xudc->lock);
}
tegra_xudc_port_connect(xudc);
}
static void tegra_xudc_port_suspend(struct tegra_xudc *xudc)
{
dev_dbg(xudc->dev, "port suspend\n");
xudc->resume_state = xudc->device_state;
xudc->device_state = USB_STATE_SUSPENDED;
usb_gadget_set_state(&xudc->gadget, xudc->device_state);
if (xudc->driver->suspend) {
spin_unlock(&xudc->lock);
xudc->driver->suspend(&xudc->gadget);
spin_lock(&xudc->lock);
}
}
static void tegra_xudc_port_resume(struct tegra_xudc *xudc)
{
dev_dbg(xudc->dev, "port resume\n");
tegra_xudc_resume_device_state(xudc);
if (xudc->driver->resume) {
spin_unlock(&xudc->lock);
xudc->driver->resume(&xudc->gadget);
spin_lock(&xudc->lock);
}
}
static inline void clear_port_change(struct tegra_xudc *xudc, u32 flag)
{
u32 val;
val = xudc_readl(xudc, PORTSC);
val &= ~PORTSC_CHANGE_MASK;
val |= flag;
xudc_writel(xudc, val, PORTSC);
}
static void __tegra_xudc_handle_port_status(struct tegra_xudc *xudc)
{
u32 portsc, porthalt;
porthalt = xudc_readl(xudc, PORTHALT);
if ((porthalt & PORTHALT_STCHG_REQ) &&
(porthalt & PORTHALT_HALT_LTSSM)) {
dev_dbg(xudc->dev, "STCHG_REQ, PORTHALT = %#x\n", porthalt);
porthalt &= ~PORTHALT_HALT_LTSSM;
xudc_writel(xudc, porthalt, PORTHALT);
}
portsc = xudc_readl(xudc, PORTSC);
if ((portsc & PORTSC_PRC) && (portsc & PORTSC_PR)) {
dev_dbg(xudc->dev, "PRC, PR, PORTSC = %#x\n", portsc);
clear_port_change(xudc, PORTSC_PRC | PORTSC_PED);
#define TOGGLE_VBUS_WAIT_MS 100
if (xudc->soc->port_reset_quirk) {
schedule_delayed_work(&xudc->port_reset_war_work,
msecs_to_jiffies(TOGGLE_VBUS_WAIT_MS));
xudc->wait_for_sec_prc = 1;
}
}
if ((portsc & PORTSC_PRC) && !(portsc & PORTSC_PR)) {
dev_dbg(xudc->dev, "PRC, Not PR, PORTSC = %#x\n", portsc);
clear_port_change(xudc, PORTSC_PRC | PORTSC_PED);
tegra_xudc_port_reset(xudc);
cancel_delayed_work(&xudc->port_reset_war_work);
xudc->wait_for_sec_prc = 0;
}
portsc = xudc_readl(xudc, PORTSC);
if (portsc & PORTSC_WRC) {
dev_dbg(xudc->dev, "WRC, PORTSC = %#x\n", portsc);
clear_port_change(xudc, PORTSC_WRC | PORTSC_PED);
if (!(xudc_readl(xudc, PORTSC) & PORTSC_WPR))
tegra_xudc_port_reset(xudc);
}
portsc = xudc_readl(xudc, PORTSC);
if (portsc & PORTSC_CSC) {
dev_dbg(xudc->dev, "CSC, PORTSC = %#x\n", portsc);
clear_port_change(xudc, PORTSC_CSC);
if (portsc & PORTSC_CCS)
tegra_xudc_port_connect(xudc);
else
tegra_xudc_port_disconnect(xudc);
if (xudc->wait_csc) {
cancel_delayed_work(&xudc->plc_reset_work);
xudc->wait_csc = false;
}
}
portsc = xudc_readl(xudc, PORTSC);
if (portsc & PORTSC_PLC) {
u32 pls = (portsc & PORTSC_PLS_MASK) >> PORTSC_PLS_SHIFT;
dev_dbg(xudc->dev, "PLC, PORTSC = %#x\n", portsc);
clear_port_change(xudc, PORTSC_PLC);
switch (pls) {
case PORTSC_PLS_U3:
tegra_xudc_port_suspend(xudc);
break;
case PORTSC_PLS_U0:
if (xudc->gadget.speed < USB_SPEED_SUPER)
tegra_xudc_port_resume(xudc);
break;
case PORTSC_PLS_RESUME:
if (xudc->gadget.speed == USB_SPEED_SUPER)
tegra_xudc_port_resume(xudc);
break;
case PORTSC_PLS_INACTIVE:
schedule_delayed_work(&xudc->plc_reset_work,
msecs_to_jiffies(TOGGLE_VBUS_WAIT_MS));
xudc->wait_csc = true;
break;
default:
break;
}
}
if (portsc & PORTSC_CEC) {
dev_warn(xudc->dev, "CEC, PORTSC = %#x\n", portsc);
clear_port_change(xudc, PORTSC_CEC);
}
dev_dbg(xudc->dev, "PORTSC = %#x\n", xudc_readl(xudc, PORTSC));
}
static void tegra_xudc_handle_port_status(struct tegra_xudc *xudc)
{
while ((xudc_readl(xudc, PORTSC) & PORTSC_CHANGE_MASK) ||
(xudc_readl(xudc, PORTHALT) & PORTHALT_STCHG_REQ))
__tegra_xudc_handle_port_status(xudc);
}
static void tegra_xudc_handle_event(struct tegra_xudc *xudc,
struct tegra_xudc_trb *event)
{
u32 type = trb_read_type(event);
dump_trb(xudc, "EVENT", event);
switch (type) {
case TRB_TYPE_PORT_STATUS_CHANGE_EVENT:
tegra_xudc_handle_port_status(xudc);
break;
case TRB_TYPE_TRANSFER_EVENT:
tegra_xudc_handle_transfer_event(xudc, event);
break;
case TRB_TYPE_SETUP_PACKET_EVENT:
tegra_xudc_handle_ep0_event(xudc, event);
break;
default:
dev_info(xudc->dev, "Unrecognized TRB type = %#x\n", type);
break;
}
}
static void tegra_xudc_process_event_ring(struct tegra_xudc *xudc)
{
struct tegra_xudc_trb *event;
dma_addr_t erdp;
while (true) {
event = xudc->event_ring[xudc->event_ring_index] +
xudc->event_ring_deq_ptr;
if (trb_read_cycle(event) != xudc->ccs)
break;
tegra_xudc_handle_event(xudc, event);
xudc->event_ring_deq_ptr++;
if (xudc->event_ring_deq_ptr == XUDC_EVENT_RING_SIZE) {
xudc->event_ring_deq_ptr = 0;
xudc->event_ring_index++;
}
if (xudc->event_ring_index == XUDC_NR_EVENT_RINGS) {
xudc->event_ring_index = 0;
xudc->ccs = !xudc->ccs;
}
}
erdp = xudc->event_ring_phys[xudc->event_ring_index] +
xudc->event_ring_deq_ptr * sizeof(*event);
xudc_writel(xudc, upper_32_bits(erdp), ERDPHI);
xudc_writel(xudc, lower_32_bits(erdp) | ERDPLO_EHB, ERDPLO);
}
static irqreturn_t tegra_xudc_irq(int irq, void *data)
{
struct tegra_xudc *xudc = data;
unsigned long flags;
u32 val;
val = xudc_readl(xudc, ST);
if (!(val & ST_IP))
return IRQ_NONE;
xudc_writel(xudc, ST_IP, ST);
spin_lock_irqsave(&xudc->lock, flags);
tegra_xudc_process_event_ring(xudc);
spin_unlock_irqrestore(&xudc->lock, flags);
return IRQ_HANDLED;
}
static int tegra_xudc_alloc_ep(struct tegra_xudc *xudc, unsigned int index)
{
struct tegra_xudc_ep *ep = &xudc->ep[index];
ep->xudc = xudc;
ep->index = index;
ep->context = &xudc->ep_context[index];
INIT_LIST_HEAD(&ep->queue);
/*
* EP1 would be the input endpoint corresponding to EP0, but since
* EP0 is bi-directional, EP1 is unused.
*/
if (index == 1)
return 0;
ep->transfer_ring = dma_pool_alloc(xudc->transfer_ring_pool,
GFP_KERNEL,
&ep->transfer_ring_phys);
if (!ep->transfer_ring)
return -ENOMEM;
if (index) {
snprintf(ep->name, sizeof(ep->name), "ep%u%s", index / 2,
(index % 2 == 0) ? "out" : "in");
ep->usb_ep.name = ep->name;
usb_ep_set_maxpacket_limit(&ep->usb_ep, 1024);
ep->usb_ep.max_streams = 16;
ep->usb_ep.ops = &tegra_xudc_ep_ops;
ep->usb_ep.caps.type_bulk = true;
ep->usb_ep.caps.type_int = true;
if (index & 1)
ep->usb_ep.caps.dir_in = true;
else
ep->usb_ep.caps.dir_out = true;
list_add_tail(&ep->usb_ep.ep_list, &xudc->gadget.ep_list);
} else {
strscpy(ep->name, "ep0", 3);
ep->usb_ep.name = ep->name;
usb_ep_set_maxpacket_limit(&ep->usb_ep, 512);
ep->usb_ep.ops = &tegra_xudc_ep0_ops;
ep->usb_ep.caps.type_control = true;
ep->usb_ep.caps.dir_in = true;
ep->usb_ep.caps.dir_out = true;
}
return 0;
}
static void tegra_xudc_free_ep(struct tegra_xudc *xudc, unsigned int index)
{
struct tegra_xudc_ep *ep = &xudc->ep[index];
/*
* EP1 would be the input endpoint corresponding to EP0, but since
* EP0 is bi-directional, EP1 is unused.
*/
if (index == 1)
return;
dma_pool_free(xudc->transfer_ring_pool, ep->transfer_ring,
ep->transfer_ring_phys);
}
static int tegra_xudc_alloc_eps(struct tegra_xudc *xudc)
{
struct usb_request *req;
unsigned int i;
int err;
xudc->ep_context =
dma_alloc_coherent(xudc->dev, XUDC_NR_EPS *
sizeof(*xudc->ep_context),
&xudc->ep_context_phys, GFP_KERNEL);
if (!xudc->ep_context)
return -ENOMEM;
xudc->transfer_ring_pool =
dmam_pool_create(dev_name(xudc->dev), xudc->dev,
XUDC_TRANSFER_RING_SIZE *
sizeof(struct tegra_xudc_trb),
sizeof(struct tegra_xudc_trb), 0);
if (!xudc->transfer_ring_pool) {
err = -ENOMEM;
goto free_ep_context;
}
INIT_LIST_HEAD(&xudc->gadget.ep_list);
for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) {
err = tegra_xudc_alloc_ep(xudc, i);
if (err < 0)
goto free_eps;
}
req = tegra_xudc_ep_alloc_request(&xudc->ep[0].usb_ep, GFP_KERNEL);
if (!req) {
err = -ENOMEM;
goto free_eps;
}
xudc->ep0_req = to_xudc_req(req);
return 0;
free_eps:
for (; i > 0; i--)
tegra_xudc_free_ep(xudc, i - 1);
free_ep_context:
dma_free_coherent(xudc->dev, XUDC_NR_EPS * sizeof(*xudc->ep_context),
xudc->ep_context, xudc->ep_context_phys);
return err;
}
static void tegra_xudc_init_eps(struct tegra_xudc *xudc)
{
xudc_writel(xudc, lower_32_bits(xudc->ep_context_phys), ECPLO);
xudc_writel(xudc, upper_32_bits(xudc->ep_context_phys), ECPHI);
}
static void tegra_xudc_free_eps(struct tegra_xudc *xudc)
{
unsigned int i;
tegra_xudc_ep_free_request(&xudc->ep[0].usb_ep,
&xudc->ep0_req->usb_req);
for (i = 0; i < ARRAY_SIZE(xudc->ep); i++)
tegra_xudc_free_ep(xudc, i);
dma_free_coherent(xudc->dev, XUDC_NR_EPS * sizeof(*xudc->ep_context),
xudc->ep_context, xudc->ep_context_phys);
}
static int tegra_xudc_alloc_event_ring(struct tegra_xudc *xudc)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) {
xudc->event_ring[i] =
dma_alloc_coherent(xudc->dev, XUDC_EVENT_RING_SIZE *
sizeof(*xudc->event_ring[i]),
&xudc->event_ring_phys[i],
GFP_KERNEL);
if (!xudc->event_ring[i])
goto free_dma;
}
return 0;
free_dma:
for (; i > 0; i--) {
dma_free_coherent(xudc->dev, XUDC_EVENT_RING_SIZE *
sizeof(*xudc->event_ring[i - 1]),
xudc->event_ring[i - 1],
xudc->event_ring_phys[i - 1]);
}
return -ENOMEM;
}
static void tegra_xudc_init_event_ring(struct tegra_xudc *xudc)
{
unsigned int i;
u32 val;
val = xudc_readl(xudc, SPARAM);
val &= ~(SPARAM_ERSTMAX_MASK);
val |= SPARAM_ERSTMAX(XUDC_NR_EVENT_RINGS);
xudc_writel(xudc, val, SPARAM);
for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) {
memset(xudc->event_ring[i], 0, XUDC_EVENT_RING_SIZE *
sizeof(*xudc->event_ring[i]));
val = xudc_readl(xudc, ERSTSZ);
val &= ~(ERSTSZ_ERSTXSZ_MASK << ERSTSZ_ERSTXSZ_SHIFT(i));
val |= XUDC_EVENT_RING_SIZE << ERSTSZ_ERSTXSZ_SHIFT(i);
xudc_writel(xudc, val, ERSTSZ);
xudc_writel(xudc, lower_32_bits(xudc->event_ring_phys[i]),
ERSTXBALO(i));
xudc_writel(xudc, upper_32_bits(xudc->event_ring_phys[i]),
ERSTXBAHI(i));
}
val = lower_32_bits(xudc->event_ring_phys[0]);
xudc_writel(xudc, val, ERDPLO);
val |= EREPLO_ECS;
xudc_writel(xudc, val, EREPLO);
val = upper_32_bits(xudc->event_ring_phys[0]);
xudc_writel(xudc, val, ERDPHI);
xudc_writel(xudc, val, EREPHI);
xudc->ccs = true;
xudc->event_ring_index = 0;
xudc->event_ring_deq_ptr = 0;
}
static void tegra_xudc_free_event_ring(struct tegra_xudc *xudc)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) {
dma_free_coherent(xudc->dev, XUDC_EVENT_RING_SIZE *
sizeof(*xudc->event_ring[i]),
xudc->event_ring[i],
xudc->event_ring_phys[i]);
}
}
static void tegra_xudc_fpci_ipfs_init(struct tegra_xudc *xudc)
{
u32 val;
if (xudc->soc->has_ipfs) {
val = ipfs_readl(xudc, XUSB_DEV_CONFIGURATION_0);
val |= XUSB_DEV_CONFIGURATION_0_EN_FPCI;
ipfs_writel(xudc, val, XUSB_DEV_CONFIGURATION_0);
usleep_range(10, 15);
}
/* Enable bus master */
val = XUSB_DEV_CFG_1_IO_SPACE_EN | XUSB_DEV_CFG_1_MEMORY_SPACE_EN |
XUSB_DEV_CFG_1_BUS_MASTER_EN;
fpci_writel(xudc, val, XUSB_DEV_CFG_1);
/* Program BAR0 space */
val = fpci_readl(xudc, XUSB_DEV_CFG_4);
val &= ~(XUSB_DEV_CFG_4_BASE_ADDR_MASK);
val |= xudc->phys_base & (XUSB_DEV_CFG_4_BASE_ADDR_MASK);
fpci_writel(xudc, val, XUSB_DEV_CFG_4);
fpci_writel(xudc, upper_32_bits(xudc->phys_base), XUSB_DEV_CFG_5);
usleep_range(100, 200);
if (xudc->soc->has_ipfs) {
/* Enable interrupt assertion */
val = ipfs_readl(xudc, XUSB_DEV_INTR_MASK_0);
val |= XUSB_DEV_INTR_MASK_0_IP_INT_MASK;
ipfs_writel(xudc, val, XUSB_DEV_INTR_MASK_0);
}
}
static void tegra_xudc_device_params_init(struct tegra_xudc *xudc)
{
u32 val, imod;
if (xudc->soc->has_ipfs) {
val = xudc_readl(xudc, BLCG);
val |= BLCG_ALL;
val &= ~(BLCG_DFPCI | BLCG_UFPCI | BLCG_FE |
BLCG_COREPLL_PWRDN);
val |= BLCG_IOPLL_0_PWRDN;
val |= BLCG_IOPLL_1_PWRDN;
val |= BLCG_IOPLL_2_PWRDN;
xudc_writel(xudc, val, BLCG);
}
/* Set a reasonable U3 exit timer value. */
val = xudc_readl(xudc, SSPX_CORE_PADCTL4);
val &= ~(SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK);
val |= SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3(0x5dc0);
xudc_writel(xudc, val, SSPX_CORE_PADCTL4);
/* Default ping LFPS tBurst is too large. */
val = xudc_readl(xudc, SSPX_CORE_CNT0);
val &= ~(SSPX_CORE_CNT0_PING_TBURST_MASK);
val |= SSPX_CORE_CNT0_PING_TBURST(0xa);
xudc_writel(xudc, val, SSPX_CORE_CNT0);
/* Default tPortConfiguration timeout is too small. */
val = xudc_readl(xudc, SSPX_CORE_CNT30);
val &= ~(SSPX_CORE_CNT30_LMPITP_TIMER_MASK);
val |= SSPX_CORE_CNT30_LMPITP_TIMER(0x978);
xudc_writel(xudc, val, SSPX_CORE_CNT30);
if (xudc->soc->lpm_enable) {
/* Set L1 resume duration to 95 us. */
val = xudc_readl(xudc, HSFSPI_COUNT13);
val &= ~(HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK);
val |= HSFSPI_COUNT13_U2_RESUME_K_DURATION(0x2c88);
xudc_writel(xudc, val, HSFSPI_COUNT13);
}
/*
* Compliacne suite appears to be violating polling LFPS tBurst max
* of 1.4us. Send 1.45us instead.
*/
val = xudc_readl(xudc, SSPX_CORE_CNT32);
val &= ~(SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK);
val |= SSPX_CORE_CNT32_POLL_TBURST_MAX(0xb0);
xudc_writel(xudc, val, SSPX_CORE_CNT32);
/* Direct HS/FS port instance to RxDetect. */
val = xudc_readl(xudc, CFG_DEV_FE);
val &= ~(CFG_DEV_FE_PORTREGSEL_MASK);
val |= CFG_DEV_FE_PORTREGSEL(CFG_DEV_FE_PORTREGSEL_HSFS_PI);
xudc_writel(xudc, val, CFG_DEV_FE);
val = xudc_readl(xudc, PORTSC);
val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK);
val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_RXDETECT);
xudc_writel(xudc, val, PORTSC);
/* Direct SS port instance to RxDetect. */
val = xudc_readl(xudc, CFG_DEV_FE);
val &= ~(CFG_DEV_FE_PORTREGSEL_MASK);
val |= CFG_DEV_FE_PORTREGSEL_SS_PI & CFG_DEV_FE_PORTREGSEL_MASK;
xudc_writel(xudc, val, CFG_DEV_FE);
val = xudc_readl(xudc, PORTSC);
val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK);
val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_RXDETECT);
xudc_writel(xudc, val, PORTSC);
/* Restore port instance. */
val = xudc_readl(xudc, CFG_DEV_FE);
val &= ~(CFG_DEV_FE_PORTREGSEL_MASK);
xudc_writel(xudc, val, CFG_DEV_FE);
/*
* Enable INFINITE_SS_RETRY to prevent device from entering
* Disabled.Error when attached to buggy SuperSpeed hubs.
*/
val = xudc_readl(xudc, CFG_DEV_FE);
val |= CFG_DEV_FE_INFINITE_SS_RETRY;
xudc_writel(xudc, val, CFG_DEV_FE);
/* Set interrupt moderation. */
imod = XUDC_INTERRUPT_MODERATION_US * 4;
val = xudc_readl(xudc, RT_IMOD);
val &= ~((RT_IMOD_IMODI_MASK) | (RT_IMOD_IMODC_MASK));
val |= (RT_IMOD_IMODI(imod) | RT_IMOD_IMODC(imod));
xudc_writel(xudc, val, RT_IMOD);
/* increase SSPI transaction timeout from 32us to 512us */
val = xudc_readl(xudc, CFG_DEV_SSPI_XFER);
val &= ~(CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK);
val |= CFG_DEV_SSPI_XFER_ACKTIMEOUT(0xf000);
xudc_writel(xudc, val, CFG_DEV_SSPI_XFER);
}
static int tegra_xudc_phy_get(struct tegra_xudc *xudc)
{
int err = 0, usb3;
unsigned int i;
xudc->utmi_phy = devm_kcalloc(xudc->dev, xudc->soc->num_phys,
sizeof(*xudc->utmi_phy), GFP_KERNEL);
if (!xudc->utmi_phy)
return -ENOMEM;
xudc->usb3_phy = devm_kcalloc(xudc->dev, xudc->soc->num_phys,
sizeof(*xudc->usb3_phy), GFP_KERNEL);
if (!xudc->usb3_phy)
return -ENOMEM;
xudc->usbphy = devm_kcalloc(xudc->dev, xudc->soc->num_phys,
sizeof(*xudc->usbphy), GFP_KERNEL);
if (!xudc->usbphy)
return -ENOMEM;
xudc->vbus_nb.notifier_call = tegra_xudc_vbus_notify;
for (i = 0; i < xudc->soc->num_phys; i++) {
char phy_name[] = "usb.-.";
/* Get USB2 phy */
snprintf(phy_name, sizeof(phy_name), "usb2-%d", i);
xudc->utmi_phy[i] = devm_phy_optional_get(xudc->dev, phy_name);
if (IS_ERR(xudc->utmi_phy[i])) {
err = PTR_ERR(xudc->utmi_phy[i]);
if (err != -EPROBE_DEFER)
dev_err(xudc->dev, "failed to get usb2-%d phy: %d\n",
i, err);
goto clean_up;
} else if (xudc->utmi_phy[i]) {
/* Get usb-phy, if utmi phy is available */
xudc->usbphy[i] = devm_usb_get_phy_by_node(xudc->dev,
xudc->utmi_phy[i]->dev.of_node,
&xudc->vbus_nb);
if (IS_ERR(xudc->usbphy[i])) {
err = PTR_ERR(xudc->usbphy[i]);
dev_err(xudc->dev, "failed to get usbphy-%d: %d\n",
i, err);
goto clean_up;
}
} else if (!xudc->utmi_phy[i]) {
/* if utmi phy is not available, ignore USB3 phy get */
continue;
}
/* Get USB3 phy */
usb3 = tegra_xusb_padctl_get_usb3_companion(xudc->padctl, i);
if (usb3 < 0)
continue;
snprintf(phy_name, sizeof(phy_name), "usb3-%d", usb3);
xudc->usb3_phy[i] = devm_phy_optional_get(xudc->dev, phy_name);
if (IS_ERR(xudc->usb3_phy[i])) {
err = PTR_ERR(xudc->usb3_phy[i]);
if (err != -EPROBE_DEFER)
dev_err(xudc->dev, "failed to get usb3-%d phy: %d\n",
usb3, err);
goto clean_up;
} else if (xudc->usb3_phy[i])
dev_dbg(xudc->dev, "usb3_phy-%d registered", usb3);
}
return err;
clean_up:
for (i = 0; i < xudc->soc->num_phys; i++) {
xudc->usb3_phy[i] = NULL;
xudc->utmi_phy[i] = NULL;
xudc->usbphy[i] = NULL;
}
return err;
}
static void tegra_xudc_phy_exit(struct tegra_xudc *xudc)
{
unsigned int i;
for (i = 0; i < xudc->soc->num_phys; i++) {
phy_exit(xudc->usb3_phy[i]);
phy_exit(xudc->utmi_phy[i]);
}
}
static int tegra_xudc_phy_init(struct tegra_xudc *xudc)
{
int err;
unsigned int i;
for (i = 0; i < xudc->soc->num_phys; i++) {
err = phy_init(xudc->utmi_phy[i]);
if (err < 0) {
dev_err(xudc->dev, "utmi phy init failed: %d\n", err);
goto exit_phy;
}
err = phy_init(xudc->usb3_phy[i]);
if (err < 0) {
dev_err(xudc->dev, "usb3 phy init failed: %d\n", err);
goto exit_phy;
}
}
return 0;
exit_phy:
tegra_xudc_phy_exit(xudc);
return err;
}
static const char * const tegra210_xudc_supply_names[] = {
"hvdd-usb",
"avddio-usb",
};
static const char * const tegra210_xudc_clock_names[] = {
"dev",
"ss",
"ss_src",
"hs_src",
"fs_src",
};
static const char * const tegra186_xudc_clock_names[] = {
"dev",
"ss",
"ss_src",
"fs_src",
};
static struct tegra_xudc_soc tegra210_xudc_soc_data = {
.supply_names = tegra210_xudc_supply_names,
.num_supplies = ARRAY_SIZE(tegra210_xudc_supply_names),
.clock_names = tegra210_xudc_clock_names,
.num_clks = ARRAY_SIZE(tegra210_xudc_clock_names),
.num_phys = 4,
.u1_enable = false,
.u2_enable = true,
.lpm_enable = false,
.invalid_seq_num = true,
.pls_quirk = true,
.port_reset_quirk = true,
.has_ipfs = true,
};
static struct tegra_xudc_soc tegra186_xudc_soc_data = {
.clock_names = tegra186_xudc_clock_names,
.num_clks = ARRAY_SIZE(tegra186_xudc_clock_names),
.num_phys = 4,
.u1_enable = true,
.u2_enable = true,
.lpm_enable = false,
.invalid_seq_num = false,
.pls_quirk = false,
.port_reset_quirk = false,
.has_ipfs = false,
};
static const struct of_device_id tegra_xudc_of_match[] = {
{
.compatible = "nvidia,tegra210-xudc",
.data = &tegra210_xudc_soc_data
},
{
.compatible = "nvidia,tegra186-xudc",
.data = &tegra186_xudc_soc_data
},
{ }
};
MODULE_DEVICE_TABLE(of, tegra_xudc_of_match);
static void tegra_xudc_powerdomain_remove(struct tegra_xudc *xudc)
{
if (xudc->genpd_dl_ss)
device_link_del(xudc->genpd_dl_ss);
if (xudc->genpd_dl_device)
device_link_del(xudc->genpd_dl_device);
if (xudc->genpd_dev_ss)
dev_pm_domain_detach(xudc->genpd_dev_ss, true);
if (xudc->genpd_dev_device)
dev_pm_domain_detach(xudc->genpd_dev_device, true);
}
static int tegra_xudc_powerdomain_init(struct tegra_xudc *xudc)
{
struct device *dev = xudc->dev;
int err;
xudc->genpd_dev_device = dev_pm_domain_attach_by_name(dev,
"dev");
if (IS_ERR(xudc->genpd_dev_device)) {
err = PTR_ERR(xudc->genpd_dev_device);
dev_err(dev, "failed to get dev pm-domain: %d\n", err);
return err;
}
xudc->genpd_dev_ss = dev_pm_domain_attach_by_name(dev, "ss");
if (IS_ERR(xudc->genpd_dev_ss)) {
err = PTR_ERR(xudc->genpd_dev_ss);
dev_err(dev, "failed to get superspeed pm-domain: %d\n", err);
return err;
}
xudc->genpd_dl_device = device_link_add(dev, xudc->genpd_dev_device,
DL_FLAG_PM_RUNTIME |
DL_FLAG_STATELESS);
if (!xudc->genpd_dl_device) {
dev_err(dev, "adding usb device device link failed!\n");
return -ENODEV;
}
xudc->genpd_dl_ss = device_link_add(dev, xudc->genpd_dev_ss,
DL_FLAG_PM_RUNTIME |
DL_FLAG_STATELESS);
if (!xudc->genpd_dl_ss) {
dev_err(dev, "adding superspeed device link failed!\n");
return -ENODEV;
}
return 0;
}
static int tegra_xudc_probe(struct platform_device *pdev)
{
struct tegra_xudc *xudc;
struct resource *res;
unsigned int i;
int err;
xudc = devm_kzalloc(&pdev->dev, sizeof(*xudc), GFP_ATOMIC);
if (!xudc)
return -ENOMEM;
xudc->dev = &pdev->dev;
platform_set_drvdata(pdev, xudc);
xudc->soc = of_device_get_match_data(&pdev->dev);
if (!xudc->soc)
return -ENODEV;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
xudc->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(xudc->base))
return PTR_ERR(xudc->base);
xudc->phys_base = res->start;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fpci");
xudc->fpci = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(xudc->fpci))
return PTR_ERR(xudc->fpci);
if (xudc->soc->has_ipfs) {
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"ipfs");
xudc->ipfs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(xudc->ipfs))
return PTR_ERR(xudc->ipfs);
}
xudc->irq = platform_get_irq(pdev, 0);
if (xudc->irq < 0)
return xudc->irq;
err = devm_request_irq(&pdev->dev, xudc->irq, tegra_xudc_irq, 0,
dev_name(&pdev->dev), xudc);
if (err < 0) {
dev_err(xudc->dev, "failed to claim IRQ#%u: %d\n", xudc->irq,
err);
return err;
}
xudc->clks = devm_kcalloc(&pdev->dev, xudc->soc->num_clks,
sizeof(*xudc->clks), GFP_KERNEL);
if (!xudc->clks)
return -ENOMEM;
for (i = 0; i < xudc->soc->num_clks; i++)
xudc->clks[i].id = xudc->soc->clock_names[i];
err = devm_clk_bulk_get(&pdev->dev, xudc->soc->num_clks,
xudc->clks);
if (err) {
dev_err(xudc->dev, "failed to request clks %d\n", err);
return err;
}
xudc->supplies = devm_kcalloc(&pdev->dev, xudc->soc->num_supplies,
sizeof(*xudc->supplies), GFP_KERNEL);
if (!xudc->supplies)
return -ENOMEM;
for (i = 0; i < xudc->soc->num_supplies; i++)
xudc->supplies[i].supply = xudc->soc->supply_names[i];
err = devm_regulator_bulk_get(&pdev->dev, xudc->soc->num_supplies,
xudc->supplies);
if (err) {
dev_err(xudc->dev, "failed to request regulators %d\n", err);
return err;
}
xudc->padctl = tegra_xusb_padctl_get(&pdev->dev);
if (IS_ERR(xudc->padctl))
return PTR_ERR(xudc->padctl);
err = regulator_bulk_enable(xudc->soc->num_supplies, xudc->supplies);
if (err) {
dev_err(xudc->dev, "failed to enable regulators %d\n", err);
goto put_padctl;
}
err = tegra_xudc_phy_get(xudc);
if (err)
goto disable_regulator;
err = tegra_xudc_powerdomain_init(xudc);
if (err)
goto put_powerdomains;
err = tegra_xudc_phy_init(xudc);
if (err)
goto put_powerdomains;
err = tegra_xudc_alloc_event_ring(xudc);
if (err)
goto disable_phy;
err = tegra_xudc_alloc_eps(xudc);
if (err)
goto free_event_ring;
spin_lock_init(&xudc->lock);
init_completion(&xudc->disconnect_complete);
INIT_WORK(&xudc->usb_role_sw_work, tegra_xudc_usb_role_sw_work);
INIT_DELAYED_WORK(&xudc->plc_reset_work, tegra_xudc_plc_reset_work);
INIT_DELAYED_WORK(&xudc->port_reset_war_work,
tegra_xudc_port_reset_war_work);
pm_runtime_enable(&pdev->dev);
xudc->gadget.ops = &tegra_xudc_gadget_ops;
xudc->gadget.ep0 = &xudc->ep[0].usb_ep;
xudc->gadget.name = "tegra-xudc";
xudc->gadget.max_speed = USB_SPEED_SUPER;
err = usb_add_gadget_udc(&pdev->dev, &xudc->gadget);
if (err) {
dev_err(&pdev->dev, "failed to add USB gadget: %d\n", err);
goto free_eps;
}
return 0;
free_eps:
tegra_xudc_free_eps(xudc);
free_event_ring:
tegra_xudc_free_event_ring(xudc);
disable_phy:
tegra_xudc_phy_exit(xudc);
put_powerdomains:
tegra_xudc_powerdomain_remove(xudc);
disable_regulator:
regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies);
put_padctl:
tegra_xusb_padctl_put(xudc->padctl);
return err;
}
static int tegra_xudc_remove(struct platform_device *pdev)
{
struct tegra_xudc *xudc = platform_get_drvdata(pdev);
unsigned int i;
pm_runtime_get_sync(xudc->dev);
cancel_delayed_work(&xudc->plc_reset_work);
cancel_work_sync(&xudc->usb_role_sw_work);
usb_del_gadget_udc(&xudc->gadget);
tegra_xudc_free_eps(xudc);
tegra_xudc_free_event_ring(xudc);
tegra_xudc_powerdomain_remove(xudc);
regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies);
for (i = 0; i < xudc->soc->num_phys; i++) {
phy_power_off(xudc->utmi_phy[i]);
phy_power_off(xudc->usb3_phy[i]);
}
tegra_xudc_phy_exit(xudc);
pm_runtime_disable(xudc->dev);
pm_runtime_put(xudc->dev);
tegra_xusb_padctl_put(xudc->padctl);
return 0;
}
static int __maybe_unused tegra_xudc_powergate(struct tegra_xudc *xudc)
{
unsigned long flags;
dev_dbg(xudc->dev, "entering ELPG\n");
spin_lock_irqsave(&xudc->lock, flags);
xudc->powergated = true;
xudc->saved_regs.ctrl = xudc_readl(xudc, CTRL);
xudc->saved_regs.portpm = xudc_readl(xudc, PORTPM);
xudc_writel(xudc, 0, CTRL);
spin_unlock_irqrestore(&xudc->lock, flags);
clk_bulk_disable_unprepare(xudc->soc->num_clks, xudc->clks);
regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies);
dev_dbg(xudc->dev, "entering ELPG done\n");
return 0;
}
static int __maybe_unused tegra_xudc_unpowergate(struct tegra_xudc *xudc)
{
unsigned long flags;
int err;
dev_dbg(xudc->dev, "exiting ELPG\n");
err = regulator_bulk_enable(xudc->soc->num_supplies,
xudc->supplies);
if (err < 0)
return err;
err = clk_bulk_prepare_enable(xudc->soc->num_clks, xudc->clks);
if (err < 0)
return err;
tegra_xudc_fpci_ipfs_init(xudc);
tegra_xudc_device_params_init(xudc);
tegra_xudc_init_event_ring(xudc);
tegra_xudc_init_eps(xudc);
xudc_writel(xudc, xudc->saved_regs.portpm, PORTPM);
xudc_writel(xudc, xudc->saved_regs.ctrl, CTRL);
spin_lock_irqsave(&xudc->lock, flags);
xudc->powergated = false;
spin_unlock_irqrestore(&xudc->lock, flags);
dev_dbg(xudc->dev, "exiting ELPG done\n");
return 0;
}
static int __maybe_unused tegra_xudc_suspend(struct device *dev)
{
struct tegra_xudc *xudc = dev_get_drvdata(dev);
unsigned long flags;
spin_lock_irqsave(&xudc->lock, flags);
xudc->suspended = true;
spin_unlock_irqrestore(&xudc->lock, flags);
flush_work(&xudc->usb_role_sw_work);
/* Forcibly disconnect before powergating. */
tegra_xudc_device_mode_off(xudc);
if (!pm_runtime_status_suspended(dev))
tegra_xudc_powergate(xudc);
pm_runtime_disable(dev);
return 0;
}
static int __maybe_unused tegra_xudc_resume(struct device *dev)
{
struct tegra_xudc *xudc = dev_get_drvdata(dev);
unsigned long flags;
int err;
err = tegra_xudc_unpowergate(xudc);
if (err < 0)
return err;
spin_lock_irqsave(&xudc->lock, flags);
xudc->suspended = false;
spin_unlock_irqrestore(&xudc->lock, flags);
schedule_work(&xudc->usb_role_sw_work);
pm_runtime_enable(dev);
return 0;
}
static int __maybe_unused tegra_xudc_runtime_suspend(struct device *dev)
{
struct tegra_xudc *xudc = dev_get_drvdata(dev);
return tegra_xudc_powergate(xudc);
}
static int __maybe_unused tegra_xudc_runtime_resume(struct device *dev)
{
struct tegra_xudc *xudc = dev_get_drvdata(dev);
return tegra_xudc_unpowergate(xudc);
}
static const struct dev_pm_ops tegra_xudc_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(tegra_xudc_suspend, tegra_xudc_resume)
SET_RUNTIME_PM_OPS(tegra_xudc_runtime_suspend,
tegra_xudc_runtime_resume, NULL)
};
static struct platform_driver tegra_xudc_driver = {
.probe = tegra_xudc_probe,
.remove = tegra_xudc_remove,
.driver = {
.name = "tegra-xudc",
.pm = &tegra_xudc_pm_ops,
.of_match_table = tegra_xudc_of_match,
},
};
module_platform_driver(tegra_xudc_driver);
MODULE_DESCRIPTION("NVIDIA Tegra XUSB Device Controller");
MODULE_AUTHOR("Andrew Bresticker <abrestic@chromium.org>");
MODULE_AUTHOR("Hui Fu <hfu@nvidia.com>");
MODULE_AUTHOR("Nagarjuna Kristam <nkristam@nvidia.com>");
MODULE_LICENSE("GPL v2");