OpenCloudOS-Kernel/lib/radix-tree.c

1631 lines
44 KiB
C
Raw Normal View History

/*
* Copyright (C) 2001 Momchil Velikov
* Portions Copyright (C) 2001 Christoph Hellwig
* Copyright (C) 2005 SGI, Christoph Lameter
[PATCH] radix-tree: RCU lockless readside Make radix tree lookups safe to be performed without locks. Readers are protected against nodes being deleted by using RCU based freeing. Readers are protected against new node insertion by using memory barriers to ensure the node itself will be properly written before it is visible in the radix tree. Each radix tree node keeps a record of their height (above leaf nodes). This height does not change after insertion -- when the radix tree is extended, higher nodes are only inserted in the top. So a lookup can take the pointer to what is *now* the root node, and traverse down it even if the tree is concurrently extended and this node becomes a subtree of a new root. "Direct" pointers (tree height of 0, where root->rnode points directly to the data item) are handled by using the low bit of the pointer to signal whether rnode is a direct pointer or a pointer to a radix tree node. When a reader wants to traverse the next branch, they will take a copy of the pointer. This pointer will be either NULL (and the branch is empty) or non-NULL (and will point to a valid node). [akpm@osdl.org: cleanups] [Lee.Schermerhorn@hp.com: bugfixes, comments, simplifications] [clameter@sgi.com: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 12:33:44 +08:00
* Copyright (C) 2006 Nick Piggin
radix-tree: introduce bit-optimized iterator A series of radix tree cleanups, and usage of them in the core pagecache code. Micro-benchmark: lookup 14 slots (typical page-vector size) in radix-tree there earch <step> slot filled and tagged before/after - nsec per full scan through tree * Intel Sandy Bridge i7-2620M 4Mb L3 New code always faster * AMD Athlon 6000+ 2x1Mb L2, without L3 New code generally faster, Minor degradation (marked with "*") for huge sparse trees * i386 on Sandy Bridge New code faster for common cases: tagged and dense trees. Some degradations for non-tagged lookup on sparse trees. Ideally, there might help __ffs() analog for searching first non-zero long element in array, gcc sometimes cannot optimize this loop corretly. Numbers: CPU: Intel Sandy Bridge i7-2620M 4Mb L3 radix-tree with 1024 slots: tagged lookup step 1 before 7156 after 3613 step 2 before 5399 after 2696 step 3 before 4779 after 1928 step 4 before 4456 after 1429 step 5 before 4292 after 1213 step 6 before 4183 after 1052 step 7 before 4157 after 951 step 8 before 4016 after 812 step 9 before 3952 after 851 step 10 before 3937 after 732 step 11 before 4023 after 709 step 12 before 3872 after 657 step 13 before 3892 after 633 step 14 before 3720 after 591 step 15 before 3879 after 578 step 16 before 3561 after 513 normal lookup step 1 before 4266 after 3301 step 2 before 2695 after 2129 step 3 before 2083 after 1712 step 4 before 1801 after 1534 step 5 before 1628 after 1313 step 6 before 1551 after 1263 step 7 before 1475 after 1185 step 8 before 1432 after 1167 step 9 before 1373 after 1092 step 10 before 1339 after 1134 step 11 before 1292 after 1056 step 12 before 1319 after 1030 step 13 before 1276 after 1004 step 14 before 1256 after 987 step 15 before 1228 after 992 step 16 before 1247 after 999 radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1086102841 after 674196409 step 2 before 816839155 after 498138306 step 7 before 599728907 after 240676762 step 15 before 555729253 after 185219677 step 63 before 606637748 after 128585664 step 64 before 608384432 after 102945089 step 65 before 596987114 after 123996019 step 128 before 304459225 after 56783056 step 256 before 158846855 after 31232481 step 512 before 86085652 after 18950595 step 12345 before 6517189 after 1674057 normal lookup step 1 before 626064869 after 544418266 step 2 before 418809975 after 336321473 step 7 before 242303598 after 207755560 step 15 before 208380563 after 176496355 step 63 before 186854206 after 167283638 step 64 before 176188060 after 170143976 step 65 before 185139608 after 167487116 step 128 before 88181865 after 86913490 step 256 before 45733628 after 45143534 step 512 before 24506038 after 23859036 step 12345 before 2177425 after 2018662 * AMD Athlon 6000+ 2x1Mb L2, without L3 radix-tree with 1024 slots: tag-lookup step 1 before 8164 after 5379 step 2 before 5818 after 5581 step 3 before 4959 after 4213 step 4 before 4371 after 3386 step 5 before 4204 after 2997 step 6 before 4950 after 2744 step 7 before 4598 after 2480 step 8 before 4251 after 2288 step 9 before 4262 after 2243 step 10 before 4175 after 2131 step 11 before 3999 after 2024 step 12 before 3979 after 1994 step 13 before 3842 after 1929 step 14 before 3750 after 1810 step 15 before 3735 after 1810 step 16 before 3532 after 1660 normal-lookup step 1 before 7875 after 5847 step 2 before 4808 after 4071 step 3 before 4073 after 3462 step 4 before 3677 after 3074 step 5 before 4308 after 2978 step 6 before 3911 after 3807 step 7 before 3635 after 3522 step 8 before 3313 after 3202 step 9 before 3280 after 3257 step 10 before 3166 after 3083 step 11 before 3066 after 3026 step 12 before 2985 after 2982 step 13 before 2925 after 2924 step 14 before 2834 after 2808 step 15 before 2805 after 2803 step 16 before 2647 after 2622 radix-tree with 1024*1024*128 slots: tag-lookup step 1 before 1288059720 after 951736580 step 2 before 961292300 after 884212140 step 7 before 768905140 after 547267580 step 15 before 771319480 after 456550640 step 63 before 504847640 after 242704304 step 64 before 392484800 after 177920786 step 65 before 491162160 after 246895264 step 128 before 208084064 after 97348392 step 256 before 112401035 after 51408126 step 512 before 75825834 after 29145070 step 12345 before 5603166 after 2847330 normal-lookup step 1 before 1025677120 after 861375100 step 2 before 647220080 after 572258540 step 7 before 505518960 after 484041813 step 15 before 430483053 after 444815320 * step 63 before 388113453 after 404250546 * step 64 before 374154666 after 396027440 * step 65 before 381423973 after 396704853 * step 128 before 190078700 after 202619384 * step 256 before 100886756 after 102829108 * step 512 before 64074505 after 56158720 step 12345 before 4237289 after 4422299 * * i686 on Sandy bridge radix-tree with 1024 slots: tagged lookup step 1 before 7990 after 4019 step 2 before 5698 after 2897 step 3 before 5013 after 2475 step 4 before 4630 after 1721 step 5 before 4346 after 1759 step 6 before 4299 after 1556 step 7 before 4098 after 1513 step 8 before 4115 after 1222 step 9 before 3983 after 1390 step 10 before 4077 after 1207 step 11 before 3921 after 1231 step 12 before 3894 after 1116 step 13 before 3840 after 1147 step 14 before 3799 after 1090 step 15 before 3797 after 1059 step 16 before 3783 after 745 normal lookup step 1 before 5103 after 3499 step 2 before 3299 after 2550 step 3 before 2489 after 2370 step 4 before 2034 after 2302 * step 5 before 1846 after 2268 * step 6 before 1752 after 2249 * step 7 before 1679 after 2164 * step 8 before 1627 after 2153 * step 9 before 1542 after 2095 * step 10 before 1479 after 2109 * step 11 before 1469 after 2009 * step 12 before 1445 after 2039 * step 13 before 1411 after 2013 * step 14 before 1374 after 2046 * step 15 before 1340 after 1975 * step 16 before 1331 after 2000 * radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1225865377 after 667153553 step 2 before 842427423 after 471533007 step 7 before 609296153 after 276260116 step 15 before 544232060 after 226859105 step 63 before 519209199 after 141343043 step 64 before 588980279 after 141951339 step 65 before 521099710 after 138282060 step 128 before 298476778 after 83390628 step 256 before 149358342 after 43602609 step 512 before 76994713 after 22911077 step 12345 before 5328666 after 1472111 normal lookup step 1 before 819284564 after 533635310 step 2 before 512421605 after 364956155 step 7 before 271443305 after 305721345 * step 15 before 223591630 after 273960216 * step 63 before 190320247 after 217770207 * step 64 before 178538168 after 267411372 * step 65 before 186400423 after 215347937 * step 128 before 88106045 after 140540612 * step 256 before 44812420 after 70660377 * step 512 before 24435438 after 36328275 * step 12345 before 2123924 after 2148062 * bloat-o-meter delta for this patchset + patchset with related shmem cleanups bloat-o-meter: x86_64 add/remove: 4/3 grow/shrink: 5/6 up/down: 928/-939 (-11) function old new delta radix_tree_next_chunk - 499 +499 shmem_unuse 428 554 +126 shmem_radix_tree_replace 131 227 +96 find_get_pages_tag 354 419 +65 find_get_pages_contig 345 407 +62 find_get_pages 362 396 +34 __kstrtab_radix_tree_next_chunk - 22 +22 __ksymtab_radix_tree_next_chunk - 16 +16 __kcrctab_radix_tree_next_chunk - 8 +8 radix_tree_gang_lookup_slot 204 203 -1 static.shmem_xattr_set 384 381 -3 radix_tree_gang_lookup_tag_slot 208 191 -17 radix_tree_gang_lookup 231 187 -44 radix_tree_gang_lookup_tag 247 199 -48 shmem_unlock_mapping 278 190 -88 __lookup 217 - -217 __lookup_tag 242 - -242 radix_tree_locate_item 279 - -279 bloat-o-meter: i386 add/remove: 3/3 grow/shrink: 8/9 up/down: 1075/-1275 (-200) function old new delta radix_tree_next_chunk - 757 +757 shmem_unuse 352 449 +97 find_get_pages_contig 269 322 +53 shmem_radix_tree_replace 113 154 +41 find_get_pages_tag 277 318 +41 dcache_dir_lseek 426 458 +32 __kstrtab_radix_tree_next_chunk - 22 +22 vc_do_resize 968 977 +9 snd_pcm_lib_read1 725 733 +8 __ksymtab_radix_tree_next_chunk - 8 +8 netlbl_cipsov4_list 1120 1127 +7 find_get_pages 293 291 -2 new_slab 467 459 -8 bitfill_unaligned_rev 425 417 -8 radix_tree_gang_lookup_tag_slot 177 146 -31 blk_dump_cmd 267 229 -38 radix_tree_gang_lookup_slot 212 134 -78 shmem_unlock_mapping 221 128 -93 radix_tree_gang_lookup_tag 275 162 -113 radix_tree_gang_lookup 255 126 -129 __lookup 227 - -227 __lookup_tag 271 - -271 radix_tree_locate_item 277 - -277 This patch: Implement a clean, simple and effective radix-tree iteration routine. Iterating divided into two phases: * lookup next chunk in radix-tree leaf node * iterating through slots in this chunk Main iterator function radix_tree_next_chunk() returns pointer to first slot, and stores in the struct radix_tree_iter index of next-to-last slot. For tagged-iterating it also constuct bitmask of tags for retunted chunk. All additional logic implemented as static-inline functions and macroses. Also adds radix_tree_find_next_bit() static-inline variant of find_next_bit() optimized for small constant size arrays, because find_next_bit() too heavy for searching in an array with one/two long elements. [akpm@linux-foundation.org: rework comments a bit] Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Tested-by: Hugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-29 05:42:53 +08:00
* Copyright (C) 2012 Konstantin Khlebnikov
* Copyright (C) 2016 Intel, Matthew Wilcox
* Copyright (C) 2016 Intel, Ross Zwisler
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/bitmap.h>
#include <linux/bitops.h>
#include <linux/bug.h>
#include <linux/cpu.h>
#include <linux/errno.h>
#include <linux/export.h>
#include <linux/idr.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/kmemleak.h>
#include <linux/percpu.h>
#include <linux/preempt.h> /* in_interrupt() */
#include <linux/radix-tree.h>
#include <linux/rcupdate.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/xarray.h>
/*
* Radix tree node cache.
*/
struct kmem_cache *radix_tree_node_cachep;
/*
* The radix tree is variable-height, so an insert operation not only has
* to build the branch to its corresponding item, it also has to build the
* branch to existing items if the size has to be increased (by
* radix_tree_extend).
*
* The worst case is a zero height tree with just a single item at index 0,
* and then inserting an item at index ULONG_MAX. This requires 2 new branches
* of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
* Hence:
*/
#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
/*
* The IDR does not have to be as high as the radix tree since it uses
* signed integers, not unsigned longs.
*/
#define IDR_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(int) - 1)
#define IDR_MAX_PATH (DIV_ROUND_UP(IDR_INDEX_BITS, \
RADIX_TREE_MAP_SHIFT))
#define IDR_PRELOAD_SIZE (IDR_MAX_PATH * 2 - 1)
/*
* The IDA is even shorter since it uses a bitmap at the last level.
*/
#define IDA_INDEX_BITS (8 * sizeof(int) - 1 - ilog2(IDA_BITMAP_BITS))
#define IDA_MAX_PATH (DIV_ROUND_UP(IDA_INDEX_BITS, \
RADIX_TREE_MAP_SHIFT))
#define IDA_PRELOAD_SIZE (IDA_MAX_PATH * 2 - 1)
/*
* Per-cpu pool of preloaded nodes
*/
struct radix_tree_preload {
unsigned nr;
/* nodes->parent points to next preallocated node */
struct radix_tree_node *nodes;
};
static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
radix-tree: improve multiorder iterators This fixes several interlinked problems with the iterators in the presence of multiorder entries. 1. radix_tree_iter_next() would only advance by one slot, which would result in the iterators returning the same entry more than once if there were sibling entries. 2. radix_tree_next_slot() could return an internal pointer instead of a user pointer if a tagged multiorder entry was immediately followed by an entry of lower order. 3. radix_tree_next_slot() expanded to a lot more code than it used to when multiorder support was compiled in. And I wasn't comfortable with entry_to_node() being in a header file. Fixing radix_tree_iter_next() for the presence of sibling entries necessarily involves examining the contents of the radix tree, so we now need to pass 'slot' to radix_tree_iter_next(), and we need to change the calling convention so it is called *before* dropping the lock which protects the tree. Also rename it to radix_tree_iter_resume(), as some people thought it was necessary to call radix_tree_iter_next() each time around the loop. radix_tree_next_slot() becomes closer to how it looked before multiorder support was introduced. It only checks to see if the next entry in the chunk is a sibling entry or a pointer to a node; this should be rare enough that handling this case out of line is not a performance impact (and such impact is amortised by the fact that the entry we just processed was a multiorder entry). Also, radix_tree_next_slot() used to force a new chunk lookup for untagged entries, which is more expensive than the out of line sibling entry skipping. Link: http://lkml.kernel.org/r/1480369871-5271-55-git-send-email-mawilcox@linuxonhyperv.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-15 07:08:49 +08:00
static inline struct radix_tree_node *entry_to_node(void *ptr)
{
return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
}
static inline void *node_to_entry(void *ptr)
{
return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
}
#define RADIX_TREE_RETRY XA_RETRY_ENTRY
static inline unsigned long
get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot)
{
return parent ? slot - parent->slots : 0;
}
static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
struct radix_tree_node **nodep, unsigned long index)
{
unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
void __rcu **entry = rcu_dereference_raw(parent->slots[offset]);
*nodep = (void *)entry;
return offset;
}
static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
{
return root->xa_flags & (__GFP_BITS_MASK & ~GFP_ZONEMASK);
}
radix-tree: fix small lockless radix-tree bug We shrink a radix tree when its root node has only one child, in the left most slot. The child becomes the new root node. To perform this operation in a manner compatible with concurrent lockless lookups, we atomically switch the root pointer from the parent to its child. However a concurrent lockless lookup may now have loaded a pointer to the parent (and is presently deciding what to do next). For this reason, we also have to keep the parent node in a valid state after shrinking the tree, until the next RCU grace period -- otherwise this lookup with the parent pointer may not do the right thing. Notably, we need to keep the child in the left most slot there in case that is requested by the lookup. This is all pretty standard RCU stuff. It is worth repeating because in my eagerness to obey the radix tree node constructor scheme, I had broken it by zeroing the radix tree node before the grace period. What could happen is that a lookup can load the parent pointer, then decide it wants to follow the left most child slot, only to find the slot contained NULL due to the concurrent shrinker having zeroed the parent node before waiting for a grace period. The lookup would return a false negative as a result. Fix it by doing that clearing in the RCU callback. I would normally want to rip out the constructor entirely, but radix tree nodes are one of those places where they make sense (only few cachelines will be touched soon after allocation). This was never actually found in any lockless pagecache testing or by the test harness, but by seeing the odd problem with my scalable vmap rewrite. I have not tickled the test harness into reproducing it yet, but I'll keep working at it. Fortunately, it is not a problem anywhere lockless pagecache is used in mainline kernels (pagecache probe is not a guarantee, and brd does not have concurrent lookups and deletes). Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-06-13 06:21:52 +08:00
static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
int offset)
{
__set_bit(offset, node->tags[tag]);
}
static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
int offset)
{
__clear_bit(offset, node->tags[tag]);
}
static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
radix-tree: fix small lockless radix-tree bug We shrink a radix tree when its root node has only one child, in the left most slot. The child becomes the new root node. To perform this operation in a manner compatible with concurrent lockless lookups, we atomically switch the root pointer from the parent to its child. However a concurrent lockless lookup may now have loaded a pointer to the parent (and is presently deciding what to do next). For this reason, we also have to keep the parent node in a valid state after shrinking the tree, until the next RCU grace period -- otherwise this lookup with the parent pointer may not do the right thing. Notably, we need to keep the child in the left most slot there in case that is requested by the lookup. This is all pretty standard RCU stuff. It is worth repeating because in my eagerness to obey the radix tree node constructor scheme, I had broken it by zeroing the radix tree node before the grace period. What could happen is that a lookup can load the parent pointer, then decide it wants to follow the left most child slot, only to find the slot contained NULL due to the concurrent shrinker having zeroed the parent node before waiting for a grace period. The lookup would return a false negative as a result. Fix it by doing that clearing in the RCU callback. I would normally want to rip out the constructor entirely, but radix tree nodes are one of those places where they make sense (only few cachelines will be touched soon after allocation). This was never actually found in any lockless pagecache testing or by the test harness, but by seeing the odd problem with my scalable vmap rewrite. I have not tickled the test harness into reproducing it yet, but I'll keep working at it. Fortunately, it is not a problem anywhere lockless pagecache is used in mainline kernels (pagecache probe is not a guarantee, and brd does not have concurrent lookups and deletes). Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-06-13 06:21:52 +08:00
int offset)
{
return test_bit(offset, node->tags[tag]);
}
static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
radix-tree: fix small lockless radix-tree bug We shrink a radix tree when its root node has only one child, in the left most slot. The child becomes the new root node. To perform this operation in a manner compatible with concurrent lockless lookups, we atomically switch the root pointer from the parent to its child. However a concurrent lockless lookup may now have loaded a pointer to the parent (and is presently deciding what to do next). For this reason, we also have to keep the parent node in a valid state after shrinking the tree, until the next RCU grace period -- otherwise this lookup with the parent pointer may not do the right thing. Notably, we need to keep the child in the left most slot there in case that is requested by the lookup. This is all pretty standard RCU stuff. It is worth repeating because in my eagerness to obey the radix tree node constructor scheme, I had broken it by zeroing the radix tree node before the grace period. What could happen is that a lookup can load the parent pointer, then decide it wants to follow the left most child slot, only to find the slot contained NULL due to the concurrent shrinker having zeroed the parent node before waiting for a grace period. The lookup would return a false negative as a result. Fix it by doing that clearing in the RCU callback. I would normally want to rip out the constructor entirely, but radix tree nodes are one of those places where they make sense (only few cachelines will be touched soon after allocation). This was never actually found in any lockless pagecache testing or by the test harness, but by seeing the odd problem with my scalable vmap rewrite. I have not tickled the test harness into reproducing it yet, but I'll keep working at it. Fortunately, it is not a problem anywhere lockless pagecache is used in mainline kernels (pagecache probe is not a guarantee, and brd does not have concurrent lookups and deletes). Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-06-13 06:21:52 +08:00
{
root->xa_flags |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT));
radix-tree: fix small lockless radix-tree bug We shrink a radix tree when its root node has only one child, in the left most slot. The child becomes the new root node. To perform this operation in a manner compatible with concurrent lockless lookups, we atomically switch the root pointer from the parent to its child. However a concurrent lockless lookup may now have loaded a pointer to the parent (and is presently deciding what to do next). For this reason, we also have to keep the parent node in a valid state after shrinking the tree, until the next RCU grace period -- otherwise this lookup with the parent pointer may not do the right thing. Notably, we need to keep the child in the left most slot there in case that is requested by the lookup. This is all pretty standard RCU stuff. It is worth repeating because in my eagerness to obey the radix tree node constructor scheme, I had broken it by zeroing the radix tree node before the grace period. What could happen is that a lookup can load the parent pointer, then decide it wants to follow the left most child slot, only to find the slot contained NULL due to the concurrent shrinker having zeroed the parent node before waiting for a grace period. The lookup would return a false negative as a result. Fix it by doing that clearing in the RCU callback. I would normally want to rip out the constructor entirely, but radix tree nodes are one of those places where they make sense (only few cachelines will be touched soon after allocation). This was never actually found in any lockless pagecache testing or by the test harness, but by seeing the odd problem with my scalable vmap rewrite. I have not tickled the test harness into reproducing it yet, but I'll keep working at it. Fortunately, it is not a problem anywhere lockless pagecache is used in mainline kernels (pagecache probe is not a guarantee, and brd does not have concurrent lookups and deletes). Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-06-13 06:21:52 +08:00
}
static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
radix-tree: fix small lockless radix-tree bug We shrink a radix tree when its root node has only one child, in the left most slot. The child becomes the new root node. To perform this operation in a manner compatible with concurrent lockless lookups, we atomically switch the root pointer from the parent to its child. However a concurrent lockless lookup may now have loaded a pointer to the parent (and is presently deciding what to do next). For this reason, we also have to keep the parent node in a valid state after shrinking the tree, until the next RCU grace period -- otherwise this lookup with the parent pointer may not do the right thing. Notably, we need to keep the child in the left most slot there in case that is requested by the lookup. This is all pretty standard RCU stuff. It is worth repeating because in my eagerness to obey the radix tree node constructor scheme, I had broken it by zeroing the radix tree node before the grace period. What could happen is that a lookup can load the parent pointer, then decide it wants to follow the left most child slot, only to find the slot contained NULL due to the concurrent shrinker having zeroed the parent node before waiting for a grace period. The lookup would return a false negative as a result. Fix it by doing that clearing in the RCU callback. I would normally want to rip out the constructor entirely, but radix tree nodes are one of those places where they make sense (only few cachelines will be touched soon after allocation). This was never actually found in any lockless pagecache testing or by the test harness, but by seeing the odd problem with my scalable vmap rewrite. I have not tickled the test harness into reproducing it yet, but I'll keep working at it. Fortunately, it is not a problem anywhere lockless pagecache is used in mainline kernels (pagecache probe is not a guarantee, and brd does not have concurrent lookups and deletes). Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-06-13 06:21:52 +08:00
{
root->xa_flags &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT));
radix-tree: fix small lockless radix-tree bug We shrink a radix tree when its root node has only one child, in the left most slot. The child becomes the new root node. To perform this operation in a manner compatible with concurrent lockless lookups, we atomically switch the root pointer from the parent to its child. However a concurrent lockless lookup may now have loaded a pointer to the parent (and is presently deciding what to do next). For this reason, we also have to keep the parent node in a valid state after shrinking the tree, until the next RCU grace period -- otherwise this lookup with the parent pointer may not do the right thing. Notably, we need to keep the child in the left most slot there in case that is requested by the lookup. This is all pretty standard RCU stuff. It is worth repeating because in my eagerness to obey the radix tree node constructor scheme, I had broken it by zeroing the radix tree node before the grace period. What could happen is that a lookup can load the parent pointer, then decide it wants to follow the left most child slot, only to find the slot contained NULL due to the concurrent shrinker having zeroed the parent node before waiting for a grace period. The lookup would return a false negative as a result. Fix it by doing that clearing in the RCU callback. I would normally want to rip out the constructor entirely, but radix tree nodes are one of those places where they make sense (only few cachelines will be touched soon after allocation). This was never actually found in any lockless pagecache testing or by the test harness, but by seeing the odd problem with my scalable vmap rewrite. I have not tickled the test harness into reproducing it yet, but I'll keep working at it. Fortunately, it is not a problem anywhere lockless pagecache is used in mainline kernels (pagecache probe is not a guarantee, and brd does not have concurrent lookups and deletes). Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-06-13 06:21:52 +08:00
}
static inline void root_tag_clear_all(struct radix_tree_root *root)
{
root->xa_flags &= (__force gfp_t)((1 << ROOT_TAG_SHIFT) - 1);
radix-tree: fix small lockless radix-tree bug We shrink a radix tree when its root node has only one child, in the left most slot. The child becomes the new root node. To perform this operation in a manner compatible with concurrent lockless lookups, we atomically switch the root pointer from the parent to its child. However a concurrent lockless lookup may now have loaded a pointer to the parent (and is presently deciding what to do next). For this reason, we also have to keep the parent node in a valid state after shrinking the tree, until the next RCU grace period -- otherwise this lookup with the parent pointer may not do the right thing. Notably, we need to keep the child in the left most slot there in case that is requested by the lookup. This is all pretty standard RCU stuff. It is worth repeating because in my eagerness to obey the radix tree node constructor scheme, I had broken it by zeroing the radix tree node before the grace period. What could happen is that a lookup can load the parent pointer, then decide it wants to follow the left most child slot, only to find the slot contained NULL due to the concurrent shrinker having zeroed the parent node before waiting for a grace period. The lookup would return a false negative as a result. Fix it by doing that clearing in the RCU callback. I would normally want to rip out the constructor entirely, but radix tree nodes are one of those places where they make sense (only few cachelines will be touched soon after allocation). This was never actually found in any lockless pagecache testing or by the test harness, but by seeing the odd problem with my scalable vmap rewrite. I have not tickled the test harness into reproducing it yet, but I'll keep working at it. Fortunately, it is not a problem anywhere lockless pagecache is used in mainline kernels (pagecache probe is not a guarantee, and brd does not have concurrent lookups and deletes). Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-06-13 06:21:52 +08:00
}
static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
radix-tree: fix small lockless radix-tree bug We shrink a radix tree when its root node has only one child, in the left most slot. The child becomes the new root node. To perform this operation in a manner compatible with concurrent lockless lookups, we atomically switch the root pointer from the parent to its child. However a concurrent lockless lookup may now have loaded a pointer to the parent (and is presently deciding what to do next). For this reason, we also have to keep the parent node in a valid state after shrinking the tree, until the next RCU grace period -- otherwise this lookup with the parent pointer may not do the right thing. Notably, we need to keep the child in the left most slot there in case that is requested by the lookup. This is all pretty standard RCU stuff. It is worth repeating because in my eagerness to obey the radix tree node constructor scheme, I had broken it by zeroing the radix tree node before the grace period. What could happen is that a lookup can load the parent pointer, then decide it wants to follow the left most child slot, only to find the slot contained NULL due to the concurrent shrinker having zeroed the parent node before waiting for a grace period. The lookup would return a false negative as a result. Fix it by doing that clearing in the RCU callback. I would normally want to rip out the constructor entirely, but radix tree nodes are one of those places where they make sense (only few cachelines will be touched soon after allocation). This was never actually found in any lockless pagecache testing or by the test harness, but by seeing the odd problem with my scalable vmap rewrite. I have not tickled the test harness into reproducing it yet, but I'll keep working at it. Fortunately, it is not a problem anywhere lockless pagecache is used in mainline kernels (pagecache probe is not a guarantee, and brd does not have concurrent lookups and deletes). Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-06-13 06:21:52 +08:00
{
return (__force int)root->xa_flags & (1 << (tag + ROOT_TAG_SHIFT));
radix-tree: fix small lockless radix-tree bug We shrink a radix tree when its root node has only one child, in the left most slot. The child becomes the new root node. To perform this operation in a manner compatible with concurrent lockless lookups, we atomically switch the root pointer from the parent to its child. However a concurrent lockless lookup may now have loaded a pointer to the parent (and is presently deciding what to do next). For this reason, we also have to keep the parent node in a valid state after shrinking the tree, until the next RCU grace period -- otherwise this lookup with the parent pointer may not do the right thing. Notably, we need to keep the child in the left most slot there in case that is requested by the lookup. This is all pretty standard RCU stuff. It is worth repeating because in my eagerness to obey the radix tree node constructor scheme, I had broken it by zeroing the radix tree node before the grace period. What could happen is that a lookup can load the parent pointer, then decide it wants to follow the left most child slot, only to find the slot contained NULL due to the concurrent shrinker having zeroed the parent node before waiting for a grace period. The lookup would return a false negative as a result. Fix it by doing that clearing in the RCU callback. I would normally want to rip out the constructor entirely, but radix tree nodes are one of those places where they make sense (only few cachelines will be touched soon after allocation). This was never actually found in any lockless pagecache testing or by the test harness, but by seeing the odd problem with my scalable vmap rewrite. I have not tickled the test harness into reproducing it yet, but I'll keep working at it. Fortunately, it is not a problem anywhere lockless pagecache is used in mainline kernels (pagecache probe is not a guarantee, and brd does not have concurrent lookups and deletes). Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-06-13 06:21:52 +08:00
}
static inline unsigned root_tags_get(const struct radix_tree_root *root)
radix-tree: fix small lockless radix-tree bug We shrink a radix tree when its root node has only one child, in the left most slot. The child becomes the new root node. To perform this operation in a manner compatible with concurrent lockless lookups, we atomically switch the root pointer from the parent to its child. However a concurrent lockless lookup may now have loaded a pointer to the parent (and is presently deciding what to do next). For this reason, we also have to keep the parent node in a valid state after shrinking the tree, until the next RCU grace period -- otherwise this lookup with the parent pointer may not do the right thing. Notably, we need to keep the child in the left most slot there in case that is requested by the lookup. This is all pretty standard RCU stuff. It is worth repeating because in my eagerness to obey the radix tree node constructor scheme, I had broken it by zeroing the radix tree node before the grace period. What could happen is that a lookup can load the parent pointer, then decide it wants to follow the left most child slot, only to find the slot contained NULL due to the concurrent shrinker having zeroed the parent node before waiting for a grace period. The lookup would return a false negative as a result. Fix it by doing that clearing in the RCU callback. I would normally want to rip out the constructor entirely, but radix tree nodes are one of those places where they make sense (only few cachelines will be touched soon after allocation). This was never actually found in any lockless pagecache testing or by the test harness, but by seeing the odd problem with my scalable vmap rewrite. I have not tickled the test harness into reproducing it yet, but I'll keep working at it. Fortunately, it is not a problem anywhere lockless pagecache is used in mainline kernels (pagecache probe is not a guarantee, and brd does not have concurrent lookups and deletes). Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-06-13 06:21:52 +08:00
{
return (__force unsigned)root->xa_flags >> ROOT_TAG_SHIFT;
radix-tree: fix small lockless radix-tree bug We shrink a radix tree when its root node has only one child, in the left most slot. The child becomes the new root node. To perform this operation in a manner compatible with concurrent lockless lookups, we atomically switch the root pointer from the parent to its child. However a concurrent lockless lookup may now have loaded a pointer to the parent (and is presently deciding what to do next). For this reason, we also have to keep the parent node in a valid state after shrinking the tree, until the next RCU grace period -- otherwise this lookup with the parent pointer may not do the right thing. Notably, we need to keep the child in the left most slot there in case that is requested by the lookup. This is all pretty standard RCU stuff. It is worth repeating because in my eagerness to obey the radix tree node constructor scheme, I had broken it by zeroing the radix tree node before the grace period. What could happen is that a lookup can load the parent pointer, then decide it wants to follow the left most child slot, only to find the slot contained NULL due to the concurrent shrinker having zeroed the parent node before waiting for a grace period. The lookup would return a false negative as a result. Fix it by doing that clearing in the RCU callback. I would normally want to rip out the constructor entirely, but radix tree nodes are one of those places where they make sense (only few cachelines will be touched soon after allocation). This was never actually found in any lockless pagecache testing or by the test harness, but by seeing the odd problem with my scalable vmap rewrite. I have not tickled the test harness into reproducing it yet, but I'll keep working at it. Fortunately, it is not a problem anywhere lockless pagecache is used in mainline kernels (pagecache probe is not a guarantee, and brd does not have concurrent lookups and deletes). Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-06-13 06:21:52 +08:00
}
static inline bool is_idr(const struct radix_tree_root *root)
{
return !!(root->xa_flags & ROOT_IS_IDR);
}
radix-tree: fix small lockless radix-tree bug We shrink a radix tree when its root node has only one child, in the left most slot. The child becomes the new root node. To perform this operation in a manner compatible with concurrent lockless lookups, we atomically switch the root pointer from the parent to its child. However a concurrent lockless lookup may now have loaded a pointer to the parent (and is presently deciding what to do next). For this reason, we also have to keep the parent node in a valid state after shrinking the tree, until the next RCU grace period -- otherwise this lookup with the parent pointer may not do the right thing. Notably, we need to keep the child in the left most slot there in case that is requested by the lookup. This is all pretty standard RCU stuff. It is worth repeating because in my eagerness to obey the radix tree node constructor scheme, I had broken it by zeroing the radix tree node before the grace period. What could happen is that a lookup can load the parent pointer, then decide it wants to follow the left most child slot, only to find the slot contained NULL due to the concurrent shrinker having zeroed the parent node before waiting for a grace period. The lookup would return a false negative as a result. Fix it by doing that clearing in the RCU callback. I would normally want to rip out the constructor entirely, but radix tree nodes are one of those places where they make sense (only few cachelines will be touched soon after allocation). This was never actually found in any lockless pagecache testing or by the test harness, but by seeing the odd problem with my scalable vmap rewrite. I have not tickled the test harness into reproducing it yet, but I'll keep working at it. Fortunately, it is not a problem anywhere lockless pagecache is used in mainline kernels (pagecache probe is not a guarantee, and brd does not have concurrent lookups and deletes). Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-06-13 06:21:52 +08:00
/*
* Returns 1 if any slot in the node has this tag set.
* Otherwise returns 0.
*/
static inline int any_tag_set(const struct radix_tree_node *node,
unsigned int tag)
radix-tree: fix small lockless radix-tree bug We shrink a radix tree when its root node has only one child, in the left most slot. The child becomes the new root node. To perform this operation in a manner compatible with concurrent lockless lookups, we atomically switch the root pointer from the parent to its child. However a concurrent lockless lookup may now have loaded a pointer to the parent (and is presently deciding what to do next). For this reason, we also have to keep the parent node in a valid state after shrinking the tree, until the next RCU grace period -- otherwise this lookup with the parent pointer may not do the right thing. Notably, we need to keep the child in the left most slot there in case that is requested by the lookup. This is all pretty standard RCU stuff. It is worth repeating because in my eagerness to obey the radix tree node constructor scheme, I had broken it by zeroing the radix tree node before the grace period. What could happen is that a lookup can load the parent pointer, then decide it wants to follow the left most child slot, only to find the slot contained NULL due to the concurrent shrinker having zeroed the parent node before waiting for a grace period. The lookup would return a false negative as a result. Fix it by doing that clearing in the RCU callback. I would normally want to rip out the constructor entirely, but radix tree nodes are one of those places where they make sense (only few cachelines will be touched soon after allocation). This was never actually found in any lockless pagecache testing or by the test harness, but by seeing the odd problem with my scalable vmap rewrite. I have not tickled the test harness into reproducing it yet, but I'll keep working at it. Fortunately, it is not a problem anywhere lockless pagecache is used in mainline kernels (pagecache probe is not a guarantee, and brd does not have concurrent lookups and deletes). Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-06-13 06:21:52 +08:00
{
unsigned idx;
radix-tree: fix small lockless radix-tree bug We shrink a radix tree when its root node has only one child, in the left most slot. The child becomes the new root node. To perform this operation in a manner compatible with concurrent lockless lookups, we atomically switch the root pointer from the parent to its child. However a concurrent lockless lookup may now have loaded a pointer to the parent (and is presently deciding what to do next). For this reason, we also have to keep the parent node in a valid state after shrinking the tree, until the next RCU grace period -- otherwise this lookup with the parent pointer may not do the right thing. Notably, we need to keep the child in the left most slot there in case that is requested by the lookup. This is all pretty standard RCU stuff. It is worth repeating because in my eagerness to obey the radix tree node constructor scheme, I had broken it by zeroing the radix tree node before the grace period. What could happen is that a lookup can load the parent pointer, then decide it wants to follow the left most child slot, only to find the slot contained NULL due to the concurrent shrinker having zeroed the parent node before waiting for a grace period. The lookup would return a false negative as a result. Fix it by doing that clearing in the RCU callback. I would normally want to rip out the constructor entirely, but radix tree nodes are one of those places where they make sense (only few cachelines will be touched soon after allocation). This was never actually found in any lockless pagecache testing or by the test harness, but by seeing the odd problem with my scalable vmap rewrite. I have not tickled the test harness into reproducing it yet, but I'll keep working at it. Fortunately, it is not a problem anywhere lockless pagecache is used in mainline kernels (pagecache probe is not a guarantee, and brd does not have concurrent lookups and deletes). Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-06-13 06:21:52 +08:00
for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
if (node->tags[tag][idx])
return 1;
}
return 0;
}
radix-tree: introduce bit-optimized iterator A series of radix tree cleanups, and usage of them in the core pagecache code. Micro-benchmark: lookup 14 slots (typical page-vector size) in radix-tree there earch <step> slot filled and tagged before/after - nsec per full scan through tree * Intel Sandy Bridge i7-2620M 4Mb L3 New code always faster * AMD Athlon 6000+ 2x1Mb L2, without L3 New code generally faster, Minor degradation (marked with "*") for huge sparse trees * i386 on Sandy Bridge New code faster for common cases: tagged and dense trees. Some degradations for non-tagged lookup on sparse trees. Ideally, there might help __ffs() analog for searching first non-zero long element in array, gcc sometimes cannot optimize this loop corretly. Numbers: CPU: Intel Sandy Bridge i7-2620M 4Mb L3 radix-tree with 1024 slots: tagged lookup step 1 before 7156 after 3613 step 2 before 5399 after 2696 step 3 before 4779 after 1928 step 4 before 4456 after 1429 step 5 before 4292 after 1213 step 6 before 4183 after 1052 step 7 before 4157 after 951 step 8 before 4016 after 812 step 9 before 3952 after 851 step 10 before 3937 after 732 step 11 before 4023 after 709 step 12 before 3872 after 657 step 13 before 3892 after 633 step 14 before 3720 after 591 step 15 before 3879 after 578 step 16 before 3561 after 513 normal lookup step 1 before 4266 after 3301 step 2 before 2695 after 2129 step 3 before 2083 after 1712 step 4 before 1801 after 1534 step 5 before 1628 after 1313 step 6 before 1551 after 1263 step 7 before 1475 after 1185 step 8 before 1432 after 1167 step 9 before 1373 after 1092 step 10 before 1339 after 1134 step 11 before 1292 after 1056 step 12 before 1319 after 1030 step 13 before 1276 after 1004 step 14 before 1256 after 987 step 15 before 1228 after 992 step 16 before 1247 after 999 radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1086102841 after 674196409 step 2 before 816839155 after 498138306 step 7 before 599728907 after 240676762 step 15 before 555729253 after 185219677 step 63 before 606637748 after 128585664 step 64 before 608384432 after 102945089 step 65 before 596987114 after 123996019 step 128 before 304459225 after 56783056 step 256 before 158846855 after 31232481 step 512 before 86085652 after 18950595 step 12345 before 6517189 after 1674057 normal lookup step 1 before 626064869 after 544418266 step 2 before 418809975 after 336321473 step 7 before 242303598 after 207755560 step 15 before 208380563 after 176496355 step 63 before 186854206 after 167283638 step 64 before 176188060 after 170143976 step 65 before 185139608 after 167487116 step 128 before 88181865 after 86913490 step 256 before 45733628 after 45143534 step 512 before 24506038 after 23859036 step 12345 before 2177425 after 2018662 * AMD Athlon 6000+ 2x1Mb L2, without L3 radix-tree with 1024 slots: tag-lookup step 1 before 8164 after 5379 step 2 before 5818 after 5581 step 3 before 4959 after 4213 step 4 before 4371 after 3386 step 5 before 4204 after 2997 step 6 before 4950 after 2744 step 7 before 4598 after 2480 step 8 before 4251 after 2288 step 9 before 4262 after 2243 step 10 before 4175 after 2131 step 11 before 3999 after 2024 step 12 before 3979 after 1994 step 13 before 3842 after 1929 step 14 before 3750 after 1810 step 15 before 3735 after 1810 step 16 before 3532 after 1660 normal-lookup step 1 before 7875 after 5847 step 2 before 4808 after 4071 step 3 before 4073 after 3462 step 4 before 3677 after 3074 step 5 before 4308 after 2978 step 6 before 3911 after 3807 step 7 before 3635 after 3522 step 8 before 3313 after 3202 step 9 before 3280 after 3257 step 10 before 3166 after 3083 step 11 before 3066 after 3026 step 12 before 2985 after 2982 step 13 before 2925 after 2924 step 14 before 2834 after 2808 step 15 before 2805 after 2803 step 16 before 2647 after 2622 radix-tree with 1024*1024*128 slots: tag-lookup step 1 before 1288059720 after 951736580 step 2 before 961292300 after 884212140 step 7 before 768905140 after 547267580 step 15 before 771319480 after 456550640 step 63 before 504847640 after 242704304 step 64 before 392484800 after 177920786 step 65 before 491162160 after 246895264 step 128 before 208084064 after 97348392 step 256 before 112401035 after 51408126 step 512 before 75825834 after 29145070 step 12345 before 5603166 after 2847330 normal-lookup step 1 before 1025677120 after 861375100 step 2 before 647220080 after 572258540 step 7 before 505518960 after 484041813 step 15 before 430483053 after 444815320 * step 63 before 388113453 after 404250546 * step 64 before 374154666 after 396027440 * step 65 before 381423973 after 396704853 * step 128 before 190078700 after 202619384 * step 256 before 100886756 after 102829108 * step 512 before 64074505 after 56158720 step 12345 before 4237289 after 4422299 * * i686 on Sandy bridge radix-tree with 1024 slots: tagged lookup step 1 before 7990 after 4019 step 2 before 5698 after 2897 step 3 before 5013 after 2475 step 4 before 4630 after 1721 step 5 before 4346 after 1759 step 6 before 4299 after 1556 step 7 before 4098 after 1513 step 8 before 4115 after 1222 step 9 before 3983 after 1390 step 10 before 4077 after 1207 step 11 before 3921 after 1231 step 12 before 3894 after 1116 step 13 before 3840 after 1147 step 14 before 3799 after 1090 step 15 before 3797 after 1059 step 16 before 3783 after 745 normal lookup step 1 before 5103 after 3499 step 2 before 3299 after 2550 step 3 before 2489 after 2370 step 4 before 2034 after 2302 * step 5 before 1846 after 2268 * step 6 before 1752 after 2249 * step 7 before 1679 after 2164 * step 8 before 1627 after 2153 * step 9 before 1542 after 2095 * step 10 before 1479 after 2109 * step 11 before 1469 after 2009 * step 12 before 1445 after 2039 * step 13 before 1411 after 2013 * step 14 before 1374 after 2046 * step 15 before 1340 after 1975 * step 16 before 1331 after 2000 * radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1225865377 after 667153553 step 2 before 842427423 after 471533007 step 7 before 609296153 after 276260116 step 15 before 544232060 after 226859105 step 63 before 519209199 after 141343043 step 64 before 588980279 after 141951339 step 65 before 521099710 after 138282060 step 128 before 298476778 after 83390628 step 256 before 149358342 after 43602609 step 512 before 76994713 after 22911077 step 12345 before 5328666 after 1472111 normal lookup step 1 before 819284564 after 533635310 step 2 before 512421605 after 364956155 step 7 before 271443305 after 305721345 * step 15 before 223591630 after 273960216 * step 63 before 190320247 after 217770207 * step 64 before 178538168 after 267411372 * step 65 before 186400423 after 215347937 * step 128 before 88106045 after 140540612 * step 256 before 44812420 after 70660377 * step 512 before 24435438 after 36328275 * step 12345 before 2123924 after 2148062 * bloat-o-meter delta for this patchset + patchset with related shmem cleanups bloat-o-meter: x86_64 add/remove: 4/3 grow/shrink: 5/6 up/down: 928/-939 (-11) function old new delta radix_tree_next_chunk - 499 +499 shmem_unuse 428 554 +126 shmem_radix_tree_replace 131 227 +96 find_get_pages_tag 354 419 +65 find_get_pages_contig 345 407 +62 find_get_pages 362 396 +34 __kstrtab_radix_tree_next_chunk - 22 +22 __ksymtab_radix_tree_next_chunk - 16 +16 __kcrctab_radix_tree_next_chunk - 8 +8 radix_tree_gang_lookup_slot 204 203 -1 static.shmem_xattr_set 384 381 -3 radix_tree_gang_lookup_tag_slot 208 191 -17 radix_tree_gang_lookup 231 187 -44 radix_tree_gang_lookup_tag 247 199 -48 shmem_unlock_mapping 278 190 -88 __lookup 217 - -217 __lookup_tag 242 - -242 radix_tree_locate_item 279 - -279 bloat-o-meter: i386 add/remove: 3/3 grow/shrink: 8/9 up/down: 1075/-1275 (-200) function old new delta radix_tree_next_chunk - 757 +757 shmem_unuse 352 449 +97 find_get_pages_contig 269 322 +53 shmem_radix_tree_replace 113 154 +41 find_get_pages_tag 277 318 +41 dcache_dir_lseek 426 458 +32 __kstrtab_radix_tree_next_chunk - 22 +22 vc_do_resize 968 977 +9 snd_pcm_lib_read1 725 733 +8 __ksymtab_radix_tree_next_chunk - 8 +8 netlbl_cipsov4_list 1120 1127 +7 find_get_pages 293 291 -2 new_slab 467 459 -8 bitfill_unaligned_rev 425 417 -8 radix_tree_gang_lookup_tag_slot 177 146 -31 blk_dump_cmd 267 229 -38 radix_tree_gang_lookup_slot 212 134 -78 shmem_unlock_mapping 221 128 -93 radix_tree_gang_lookup_tag 275 162 -113 radix_tree_gang_lookup 255 126 -129 __lookup 227 - -227 __lookup_tag 271 - -271 radix_tree_locate_item 277 - -277 This patch: Implement a clean, simple and effective radix-tree iteration routine. Iterating divided into two phases: * lookup next chunk in radix-tree leaf node * iterating through slots in this chunk Main iterator function radix_tree_next_chunk() returns pointer to first slot, and stores in the struct radix_tree_iter index of next-to-last slot. For tagged-iterating it also constuct bitmask of tags for retunted chunk. All additional logic implemented as static-inline functions and macroses. Also adds radix_tree_find_next_bit() static-inline variant of find_next_bit() optimized for small constant size arrays, because find_next_bit() too heavy for searching in an array with one/two long elements. [akpm@linux-foundation.org: rework comments a bit] Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Tested-by: Hugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-29 05:42:53 +08:00
static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag)
{
bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE);
}
radix-tree: introduce bit-optimized iterator A series of radix tree cleanups, and usage of them in the core pagecache code. Micro-benchmark: lookup 14 slots (typical page-vector size) in radix-tree there earch <step> slot filled and tagged before/after - nsec per full scan through tree * Intel Sandy Bridge i7-2620M 4Mb L3 New code always faster * AMD Athlon 6000+ 2x1Mb L2, without L3 New code generally faster, Minor degradation (marked with "*") for huge sparse trees * i386 on Sandy Bridge New code faster for common cases: tagged and dense trees. Some degradations for non-tagged lookup on sparse trees. Ideally, there might help __ffs() analog for searching first non-zero long element in array, gcc sometimes cannot optimize this loop corretly. Numbers: CPU: Intel Sandy Bridge i7-2620M 4Mb L3 radix-tree with 1024 slots: tagged lookup step 1 before 7156 after 3613 step 2 before 5399 after 2696 step 3 before 4779 after 1928 step 4 before 4456 after 1429 step 5 before 4292 after 1213 step 6 before 4183 after 1052 step 7 before 4157 after 951 step 8 before 4016 after 812 step 9 before 3952 after 851 step 10 before 3937 after 732 step 11 before 4023 after 709 step 12 before 3872 after 657 step 13 before 3892 after 633 step 14 before 3720 after 591 step 15 before 3879 after 578 step 16 before 3561 after 513 normal lookup step 1 before 4266 after 3301 step 2 before 2695 after 2129 step 3 before 2083 after 1712 step 4 before 1801 after 1534 step 5 before 1628 after 1313 step 6 before 1551 after 1263 step 7 before 1475 after 1185 step 8 before 1432 after 1167 step 9 before 1373 after 1092 step 10 before 1339 after 1134 step 11 before 1292 after 1056 step 12 before 1319 after 1030 step 13 before 1276 after 1004 step 14 before 1256 after 987 step 15 before 1228 after 992 step 16 before 1247 after 999 radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1086102841 after 674196409 step 2 before 816839155 after 498138306 step 7 before 599728907 after 240676762 step 15 before 555729253 after 185219677 step 63 before 606637748 after 128585664 step 64 before 608384432 after 102945089 step 65 before 596987114 after 123996019 step 128 before 304459225 after 56783056 step 256 before 158846855 after 31232481 step 512 before 86085652 after 18950595 step 12345 before 6517189 after 1674057 normal lookup step 1 before 626064869 after 544418266 step 2 before 418809975 after 336321473 step 7 before 242303598 after 207755560 step 15 before 208380563 after 176496355 step 63 before 186854206 after 167283638 step 64 before 176188060 after 170143976 step 65 before 185139608 after 167487116 step 128 before 88181865 after 86913490 step 256 before 45733628 after 45143534 step 512 before 24506038 after 23859036 step 12345 before 2177425 after 2018662 * AMD Athlon 6000+ 2x1Mb L2, without L3 radix-tree with 1024 slots: tag-lookup step 1 before 8164 after 5379 step 2 before 5818 after 5581 step 3 before 4959 after 4213 step 4 before 4371 after 3386 step 5 before 4204 after 2997 step 6 before 4950 after 2744 step 7 before 4598 after 2480 step 8 before 4251 after 2288 step 9 before 4262 after 2243 step 10 before 4175 after 2131 step 11 before 3999 after 2024 step 12 before 3979 after 1994 step 13 before 3842 after 1929 step 14 before 3750 after 1810 step 15 before 3735 after 1810 step 16 before 3532 after 1660 normal-lookup step 1 before 7875 after 5847 step 2 before 4808 after 4071 step 3 before 4073 after 3462 step 4 before 3677 after 3074 step 5 before 4308 after 2978 step 6 before 3911 after 3807 step 7 before 3635 after 3522 step 8 before 3313 after 3202 step 9 before 3280 after 3257 step 10 before 3166 after 3083 step 11 before 3066 after 3026 step 12 before 2985 after 2982 step 13 before 2925 after 2924 step 14 before 2834 after 2808 step 15 before 2805 after 2803 step 16 before 2647 after 2622 radix-tree with 1024*1024*128 slots: tag-lookup step 1 before 1288059720 after 951736580 step 2 before 961292300 after 884212140 step 7 before 768905140 after 547267580 step 15 before 771319480 after 456550640 step 63 before 504847640 after 242704304 step 64 before 392484800 after 177920786 step 65 before 491162160 after 246895264 step 128 before 208084064 after 97348392 step 256 before 112401035 after 51408126 step 512 before 75825834 after 29145070 step 12345 before 5603166 after 2847330 normal-lookup step 1 before 1025677120 after 861375100 step 2 before 647220080 after 572258540 step 7 before 505518960 after 484041813 step 15 before 430483053 after 444815320 * step 63 before 388113453 after 404250546 * step 64 before 374154666 after 396027440 * step 65 before 381423973 after 396704853 * step 128 before 190078700 after 202619384 * step 256 before 100886756 after 102829108 * step 512 before 64074505 after 56158720 step 12345 before 4237289 after 4422299 * * i686 on Sandy bridge radix-tree with 1024 slots: tagged lookup step 1 before 7990 after 4019 step 2 before 5698 after 2897 step 3 before 5013 after 2475 step 4 before 4630 after 1721 step 5 before 4346 after 1759 step 6 before 4299 after 1556 step 7 before 4098 after 1513 step 8 before 4115 after 1222 step 9 before 3983 after 1390 step 10 before 4077 after 1207 step 11 before 3921 after 1231 step 12 before 3894 after 1116 step 13 before 3840 after 1147 step 14 before 3799 after 1090 step 15 before 3797 after 1059 step 16 before 3783 after 745 normal lookup step 1 before 5103 after 3499 step 2 before 3299 after 2550 step 3 before 2489 after 2370 step 4 before 2034 after 2302 * step 5 before 1846 after 2268 * step 6 before 1752 after 2249 * step 7 before 1679 after 2164 * step 8 before 1627 after 2153 * step 9 before 1542 after 2095 * step 10 before 1479 after 2109 * step 11 before 1469 after 2009 * step 12 before 1445 after 2039 * step 13 before 1411 after 2013 * step 14 before 1374 after 2046 * step 15 before 1340 after 1975 * step 16 before 1331 after 2000 * radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1225865377 after 667153553 step 2 before 842427423 after 471533007 step 7 before 609296153 after 276260116 step 15 before 544232060 after 226859105 step 63 before 519209199 after 141343043 step 64 before 588980279 after 141951339 step 65 before 521099710 after 138282060 step 128 before 298476778 after 83390628 step 256 before 149358342 after 43602609 step 512 before 76994713 after 22911077 step 12345 before 5328666 after 1472111 normal lookup step 1 before 819284564 after 533635310 step 2 before 512421605 after 364956155 step 7 before 271443305 after 305721345 * step 15 before 223591630 after 273960216 * step 63 before 190320247 after 217770207 * step 64 before 178538168 after 267411372 * step 65 before 186400423 after 215347937 * step 128 before 88106045 after 140540612 * step 256 before 44812420 after 70660377 * step 512 before 24435438 after 36328275 * step 12345 before 2123924 after 2148062 * bloat-o-meter delta for this patchset + patchset with related shmem cleanups bloat-o-meter: x86_64 add/remove: 4/3 grow/shrink: 5/6 up/down: 928/-939 (-11) function old new delta radix_tree_next_chunk - 499 +499 shmem_unuse 428 554 +126 shmem_radix_tree_replace 131 227 +96 find_get_pages_tag 354 419 +65 find_get_pages_contig 345 407 +62 find_get_pages 362 396 +34 __kstrtab_radix_tree_next_chunk - 22 +22 __ksymtab_radix_tree_next_chunk - 16 +16 __kcrctab_radix_tree_next_chunk - 8 +8 radix_tree_gang_lookup_slot 204 203 -1 static.shmem_xattr_set 384 381 -3 radix_tree_gang_lookup_tag_slot 208 191 -17 radix_tree_gang_lookup 231 187 -44 radix_tree_gang_lookup_tag 247 199 -48 shmem_unlock_mapping 278 190 -88 __lookup 217 - -217 __lookup_tag 242 - -242 radix_tree_locate_item 279 - -279 bloat-o-meter: i386 add/remove: 3/3 grow/shrink: 8/9 up/down: 1075/-1275 (-200) function old new delta radix_tree_next_chunk - 757 +757 shmem_unuse 352 449 +97 find_get_pages_contig 269 322 +53 shmem_radix_tree_replace 113 154 +41 find_get_pages_tag 277 318 +41 dcache_dir_lseek 426 458 +32 __kstrtab_radix_tree_next_chunk - 22 +22 vc_do_resize 968 977 +9 snd_pcm_lib_read1 725 733 +8 __ksymtab_radix_tree_next_chunk - 8 +8 netlbl_cipsov4_list 1120 1127 +7 find_get_pages 293 291 -2 new_slab 467 459 -8 bitfill_unaligned_rev 425 417 -8 radix_tree_gang_lookup_tag_slot 177 146 -31 blk_dump_cmd 267 229 -38 radix_tree_gang_lookup_slot 212 134 -78 shmem_unlock_mapping 221 128 -93 radix_tree_gang_lookup_tag 275 162 -113 radix_tree_gang_lookup 255 126 -129 __lookup 227 - -227 __lookup_tag 271 - -271 radix_tree_locate_item 277 - -277 This patch: Implement a clean, simple and effective radix-tree iteration routine. Iterating divided into two phases: * lookup next chunk in radix-tree leaf node * iterating through slots in this chunk Main iterator function radix_tree_next_chunk() returns pointer to first slot, and stores in the struct radix_tree_iter index of next-to-last slot. For tagged-iterating it also constuct bitmask of tags for retunted chunk. All additional logic implemented as static-inline functions and macroses. Also adds radix_tree_find_next_bit() static-inline variant of find_next_bit() optimized for small constant size arrays, because find_next_bit() too heavy for searching in an array with one/two long elements. [akpm@linux-foundation.org: rework comments a bit] Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Tested-by: Hugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-29 05:42:53 +08:00
/**
* radix_tree_find_next_bit - find the next set bit in a memory region
*
* @addr: The address to base the search on
* @size: The bitmap size in bits
* @offset: The bitnumber to start searching at
*
* Unrollable variant of find_next_bit() for constant size arrays.
* Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
* Returns next bit offset, or size if nothing found.
*/
static __always_inline unsigned long
radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
unsigned long offset)
radix-tree: introduce bit-optimized iterator A series of radix tree cleanups, and usage of them in the core pagecache code. Micro-benchmark: lookup 14 slots (typical page-vector size) in radix-tree there earch <step> slot filled and tagged before/after - nsec per full scan through tree * Intel Sandy Bridge i7-2620M 4Mb L3 New code always faster * AMD Athlon 6000+ 2x1Mb L2, without L3 New code generally faster, Minor degradation (marked with "*") for huge sparse trees * i386 on Sandy Bridge New code faster for common cases: tagged and dense trees. Some degradations for non-tagged lookup on sparse trees. Ideally, there might help __ffs() analog for searching first non-zero long element in array, gcc sometimes cannot optimize this loop corretly. Numbers: CPU: Intel Sandy Bridge i7-2620M 4Mb L3 radix-tree with 1024 slots: tagged lookup step 1 before 7156 after 3613 step 2 before 5399 after 2696 step 3 before 4779 after 1928 step 4 before 4456 after 1429 step 5 before 4292 after 1213 step 6 before 4183 after 1052 step 7 before 4157 after 951 step 8 before 4016 after 812 step 9 before 3952 after 851 step 10 before 3937 after 732 step 11 before 4023 after 709 step 12 before 3872 after 657 step 13 before 3892 after 633 step 14 before 3720 after 591 step 15 before 3879 after 578 step 16 before 3561 after 513 normal lookup step 1 before 4266 after 3301 step 2 before 2695 after 2129 step 3 before 2083 after 1712 step 4 before 1801 after 1534 step 5 before 1628 after 1313 step 6 before 1551 after 1263 step 7 before 1475 after 1185 step 8 before 1432 after 1167 step 9 before 1373 after 1092 step 10 before 1339 after 1134 step 11 before 1292 after 1056 step 12 before 1319 after 1030 step 13 before 1276 after 1004 step 14 before 1256 after 987 step 15 before 1228 after 992 step 16 before 1247 after 999 radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1086102841 after 674196409 step 2 before 816839155 after 498138306 step 7 before 599728907 after 240676762 step 15 before 555729253 after 185219677 step 63 before 606637748 after 128585664 step 64 before 608384432 after 102945089 step 65 before 596987114 after 123996019 step 128 before 304459225 after 56783056 step 256 before 158846855 after 31232481 step 512 before 86085652 after 18950595 step 12345 before 6517189 after 1674057 normal lookup step 1 before 626064869 after 544418266 step 2 before 418809975 after 336321473 step 7 before 242303598 after 207755560 step 15 before 208380563 after 176496355 step 63 before 186854206 after 167283638 step 64 before 176188060 after 170143976 step 65 before 185139608 after 167487116 step 128 before 88181865 after 86913490 step 256 before 45733628 after 45143534 step 512 before 24506038 after 23859036 step 12345 before 2177425 after 2018662 * AMD Athlon 6000+ 2x1Mb L2, without L3 radix-tree with 1024 slots: tag-lookup step 1 before 8164 after 5379 step 2 before 5818 after 5581 step 3 before 4959 after 4213 step 4 before 4371 after 3386 step 5 before 4204 after 2997 step 6 before 4950 after 2744 step 7 before 4598 after 2480 step 8 before 4251 after 2288 step 9 before 4262 after 2243 step 10 before 4175 after 2131 step 11 before 3999 after 2024 step 12 before 3979 after 1994 step 13 before 3842 after 1929 step 14 before 3750 after 1810 step 15 before 3735 after 1810 step 16 before 3532 after 1660 normal-lookup step 1 before 7875 after 5847 step 2 before 4808 after 4071 step 3 before 4073 after 3462 step 4 before 3677 after 3074 step 5 before 4308 after 2978 step 6 before 3911 after 3807 step 7 before 3635 after 3522 step 8 before 3313 after 3202 step 9 before 3280 after 3257 step 10 before 3166 after 3083 step 11 before 3066 after 3026 step 12 before 2985 after 2982 step 13 before 2925 after 2924 step 14 before 2834 after 2808 step 15 before 2805 after 2803 step 16 before 2647 after 2622 radix-tree with 1024*1024*128 slots: tag-lookup step 1 before 1288059720 after 951736580 step 2 before 961292300 after 884212140 step 7 before 768905140 after 547267580 step 15 before 771319480 after 456550640 step 63 before 504847640 after 242704304 step 64 before 392484800 after 177920786 step 65 before 491162160 after 246895264 step 128 before 208084064 after 97348392 step 256 before 112401035 after 51408126 step 512 before 75825834 after 29145070 step 12345 before 5603166 after 2847330 normal-lookup step 1 before 1025677120 after 861375100 step 2 before 647220080 after 572258540 step 7 before 505518960 after 484041813 step 15 before 430483053 after 444815320 * step 63 before 388113453 after 404250546 * step 64 before 374154666 after 396027440 * step 65 before 381423973 after 396704853 * step 128 before 190078700 after 202619384 * step 256 before 100886756 after 102829108 * step 512 before 64074505 after 56158720 step 12345 before 4237289 after 4422299 * * i686 on Sandy bridge radix-tree with 1024 slots: tagged lookup step 1 before 7990 after 4019 step 2 before 5698 after 2897 step 3 before 5013 after 2475 step 4 before 4630 after 1721 step 5 before 4346 after 1759 step 6 before 4299 after 1556 step 7 before 4098 after 1513 step 8 before 4115 after 1222 step 9 before 3983 after 1390 step 10 before 4077 after 1207 step 11 before 3921 after 1231 step 12 before 3894 after 1116 step 13 before 3840 after 1147 step 14 before 3799 after 1090 step 15 before 3797 after 1059 step 16 before 3783 after 745 normal lookup step 1 before 5103 after 3499 step 2 before 3299 after 2550 step 3 before 2489 after 2370 step 4 before 2034 after 2302 * step 5 before 1846 after 2268 * step 6 before 1752 after 2249 * step 7 before 1679 after 2164 * step 8 before 1627 after 2153 * step 9 before 1542 after 2095 * step 10 before 1479 after 2109 * step 11 before 1469 after 2009 * step 12 before 1445 after 2039 * step 13 before 1411 after 2013 * step 14 before 1374 after 2046 * step 15 before 1340 after 1975 * step 16 before 1331 after 2000 * radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1225865377 after 667153553 step 2 before 842427423 after 471533007 step 7 before 609296153 after 276260116 step 15 before 544232060 after 226859105 step 63 before 519209199 after 141343043 step 64 before 588980279 after 141951339 step 65 before 521099710 after 138282060 step 128 before 298476778 after 83390628 step 256 before 149358342 after 43602609 step 512 before 76994713 after 22911077 step 12345 before 5328666 after 1472111 normal lookup step 1 before 819284564 after 533635310 step 2 before 512421605 after 364956155 step 7 before 271443305 after 305721345 * step 15 before 223591630 after 273960216 * step 63 before 190320247 after 217770207 * step 64 before 178538168 after 267411372 * step 65 before 186400423 after 215347937 * step 128 before 88106045 after 140540612 * step 256 before 44812420 after 70660377 * step 512 before 24435438 after 36328275 * step 12345 before 2123924 after 2148062 * bloat-o-meter delta for this patchset + patchset with related shmem cleanups bloat-o-meter: x86_64 add/remove: 4/3 grow/shrink: 5/6 up/down: 928/-939 (-11) function old new delta radix_tree_next_chunk - 499 +499 shmem_unuse 428 554 +126 shmem_radix_tree_replace 131 227 +96 find_get_pages_tag 354 419 +65 find_get_pages_contig 345 407 +62 find_get_pages 362 396 +34 __kstrtab_radix_tree_next_chunk - 22 +22 __ksymtab_radix_tree_next_chunk - 16 +16 __kcrctab_radix_tree_next_chunk - 8 +8 radix_tree_gang_lookup_slot 204 203 -1 static.shmem_xattr_set 384 381 -3 radix_tree_gang_lookup_tag_slot 208 191 -17 radix_tree_gang_lookup 231 187 -44 radix_tree_gang_lookup_tag 247 199 -48 shmem_unlock_mapping 278 190 -88 __lookup 217 - -217 __lookup_tag 242 - -242 radix_tree_locate_item 279 - -279 bloat-o-meter: i386 add/remove: 3/3 grow/shrink: 8/9 up/down: 1075/-1275 (-200) function old new delta radix_tree_next_chunk - 757 +757 shmem_unuse 352 449 +97 find_get_pages_contig 269 322 +53 shmem_radix_tree_replace 113 154 +41 find_get_pages_tag 277 318 +41 dcache_dir_lseek 426 458 +32 __kstrtab_radix_tree_next_chunk - 22 +22 vc_do_resize 968 977 +9 snd_pcm_lib_read1 725 733 +8 __ksymtab_radix_tree_next_chunk - 8 +8 netlbl_cipsov4_list 1120 1127 +7 find_get_pages 293 291 -2 new_slab 467 459 -8 bitfill_unaligned_rev 425 417 -8 radix_tree_gang_lookup_tag_slot 177 146 -31 blk_dump_cmd 267 229 -38 radix_tree_gang_lookup_slot 212 134 -78 shmem_unlock_mapping 221 128 -93 radix_tree_gang_lookup_tag 275 162 -113 radix_tree_gang_lookup 255 126 -129 __lookup 227 - -227 __lookup_tag 271 - -271 radix_tree_locate_item 277 - -277 This patch: Implement a clean, simple and effective radix-tree iteration routine. Iterating divided into two phases: * lookup next chunk in radix-tree leaf node * iterating through slots in this chunk Main iterator function radix_tree_next_chunk() returns pointer to first slot, and stores in the struct radix_tree_iter index of next-to-last slot. For tagged-iterating it also constuct bitmask of tags for retunted chunk. All additional logic implemented as static-inline functions and macroses. Also adds radix_tree_find_next_bit() static-inline variant of find_next_bit() optimized for small constant size arrays, because find_next_bit() too heavy for searching in an array with one/two long elements. [akpm@linux-foundation.org: rework comments a bit] Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Tested-by: Hugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-29 05:42:53 +08:00
{
const unsigned long *addr = node->tags[tag];
radix-tree: introduce bit-optimized iterator A series of radix tree cleanups, and usage of them in the core pagecache code. Micro-benchmark: lookup 14 slots (typical page-vector size) in radix-tree there earch <step> slot filled and tagged before/after - nsec per full scan through tree * Intel Sandy Bridge i7-2620M 4Mb L3 New code always faster * AMD Athlon 6000+ 2x1Mb L2, without L3 New code generally faster, Minor degradation (marked with "*") for huge sparse trees * i386 on Sandy Bridge New code faster for common cases: tagged and dense trees. Some degradations for non-tagged lookup on sparse trees. Ideally, there might help __ffs() analog for searching first non-zero long element in array, gcc sometimes cannot optimize this loop corretly. Numbers: CPU: Intel Sandy Bridge i7-2620M 4Mb L3 radix-tree with 1024 slots: tagged lookup step 1 before 7156 after 3613 step 2 before 5399 after 2696 step 3 before 4779 after 1928 step 4 before 4456 after 1429 step 5 before 4292 after 1213 step 6 before 4183 after 1052 step 7 before 4157 after 951 step 8 before 4016 after 812 step 9 before 3952 after 851 step 10 before 3937 after 732 step 11 before 4023 after 709 step 12 before 3872 after 657 step 13 before 3892 after 633 step 14 before 3720 after 591 step 15 before 3879 after 578 step 16 before 3561 after 513 normal lookup step 1 before 4266 after 3301 step 2 before 2695 after 2129 step 3 before 2083 after 1712 step 4 before 1801 after 1534 step 5 before 1628 after 1313 step 6 before 1551 after 1263 step 7 before 1475 after 1185 step 8 before 1432 after 1167 step 9 before 1373 after 1092 step 10 before 1339 after 1134 step 11 before 1292 after 1056 step 12 before 1319 after 1030 step 13 before 1276 after 1004 step 14 before 1256 after 987 step 15 before 1228 after 992 step 16 before 1247 after 999 radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1086102841 after 674196409 step 2 before 816839155 after 498138306 step 7 before 599728907 after 240676762 step 15 before 555729253 after 185219677 step 63 before 606637748 after 128585664 step 64 before 608384432 after 102945089 step 65 before 596987114 after 123996019 step 128 before 304459225 after 56783056 step 256 before 158846855 after 31232481 step 512 before 86085652 after 18950595 step 12345 before 6517189 after 1674057 normal lookup step 1 before 626064869 after 544418266 step 2 before 418809975 after 336321473 step 7 before 242303598 after 207755560 step 15 before 208380563 after 176496355 step 63 before 186854206 after 167283638 step 64 before 176188060 after 170143976 step 65 before 185139608 after 167487116 step 128 before 88181865 after 86913490 step 256 before 45733628 after 45143534 step 512 before 24506038 after 23859036 step 12345 before 2177425 after 2018662 * AMD Athlon 6000+ 2x1Mb L2, without L3 radix-tree with 1024 slots: tag-lookup step 1 before 8164 after 5379 step 2 before 5818 after 5581 step 3 before 4959 after 4213 step 4 before 4371 after 3386 step 5 before 4204 after 2997 step 6 before 4950 after 2744 step 7 before 4598 after 2480 step 8 before 4251 after 2288 step 9 before 4262 after 2243 step 10 before 4175 after 2131 step 11 before 3999 after 2024 step 12 before 3979 after 1994 step 13 before 3842 after 1929 step 14 before 3750 after 1810 step 15 before 3735 after 1810 step 16 before 3532 after 1660 normal-lookup step 1 before 7875 after 5847 step 2 before 4808 after 4071 step 3 before 4073 after 3462 step 4 before 3677 after 3074 step 5 before 4308 after 2978 step 6 before 3911 after 3807 step 7 before 3635 after 3522 step 8 before 3313 after 3202 step 9 before 3280 after 3257 step 10 before 3166 after 3083 step 11 before 3066 after 3026 step 12 before 2985 after 2982 step 13 before 2925 after 2924 step 14 before 2834 after 2808 step 15 before 2805 after 2803 step 16 before 2647 after 2622 radix-tree with 1024*1024*128 slots: tag-lookup step 1 before 1288059720 after 951736580 step 2 before 961292300 after 884212140 step 7 before 768905140 after 547267580 step 15 before 771319480 after 456550640 step 63 before 504847640 after 242704304 step 64 before 392484800 after 177920786 step 65 before 491162160 after 246895264 step 128 before 208084064 after 97348392 step 256 before 112401035 after 51408126 step 512 before 75825834 after 29145070 step 12345 before 5603166 after 2847330 normal-lookup step 1 before 1025677120 after 861375100 step 2 before 647220080 after 572258540 step 7 before 505518960 after 484041813 step 15 before 430483053 after 444815320 * step 63 before 388113453 after 404250546 * step 64 before 374154666 after 396027440 * step 65 before 381423973 after 396704853 * step 128 before 190078700 after 202619384 * step 256 before 100886756 after 102829108 * step 512 before 64074505 after 56158720 step 12345 before 4237289 after 4422299 * * i686 on Sandy bridge radix-tree with 1024 slots: tagged lookup step 1 before 7990 after 4019 step 2 before 5698 after 2897 step 3 before 5013 after 2475 step 4 before 4630 after 1721 step 5 before 4346 after 1759 step 6 before 4299 after 1556 step 7 before 4098 after 1513 step 8 before 4115 after 1222 step 9 before 3983 after 1390 step 10 before 4077 after 1207 step 11 before 3921 after 1231 step 12 before 3894 after 1116 step 13 before 3840 after 1147 step 14 before 3799 after 1090 step 15 before 3797 after 1059 step 16 before 3783 after 745 normal lookup step 1 before 5103 after 3499 step 2 before 3299 after 2550 step 3 before 2489 after 2370 step 4 before 2034 after 2302 * step 5 before 1846 after 2268 * step 6 before 1752 after 2249 * step 7 before 1679 after 2164 * step 8 before 1627 after 2153 * step 9 before 1542 after 2095 * step 10 before 1479 after 2109 * step 11 before 1469 after 2009 * step 12 before 1445 after 2039 * step 13 before 1411 after 2013 * step 14 before 1374 after 2046 * step 15 before 1340 after 1975 * step 16 before 1331 after 2000 * radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1225865377 after 667153553 step 2 before 842427423 after 471533007 step 7 before 609296153 after 276260116 step 15 before 544232060 after 226859105 step 63 before 519209199 after 141343043 step 64 before 588980279 after 141951339 step 65 before 521099710 after 138282060 step 128 before 298476778 after 83390628 step 256 before 149358342 after 43602609 step 512 before 76994713 after 22911077 step 12345 before 5328666 after 1472111 normal lookup step 1 before 819284564 after 533635310 step 2 before 512421605 after 364956155 step 7 before 271443305 after 305721345 * step 15 before 223591630 after 273960216 * step 63 before 190320247 after 217770207 * step 64 before 178538168 after 267411372 * step 65 before 186400423 after 215347937 * step 128 before 88106045 after 140540612 * step 256 before 44812420 after 70660377 * step 512 before 24435438 after 36328275 * step 12345 before 2123924 after 2148062 * bloat-o-meter delta for this patchset + patchset with related shmem cleanups bloat-o-meter: x86_64 add/remove: 4/3 grow/shrink: 5/6 up/down: 928/-939 (-11) function old new delta radix_tree_next_chunk - 499 +499 shmem_unuse 428 554 +126 shmem_radix_tree_replace 131 227 +96 find_get_pages_tag 354 419 +65 find_get_pages_contig 345 407 +62 find_get_pages 362 396 +34 __kstrtab_radix_tree_next_chunk - 22 +22 __ksymtab_radix_tree_next_chunk - 16 +16 __kcrctab_radix_tree_next_chunk - 8 +8 radix_tree_gang_lookup_slot 204 203 -1 static.shmem_xattr_set 384 381 -3 radix_tree_gang_lookup_tag_slot 208 191 -17 radix_tree_gang_lookup 231 187 -44 radix_tree_gang_lookup_tag 247 199 -48 shmem_unlock_mapping 278 190 -88 __lookup 217 - -217 __lookup_tag 242 - -242 radix_tree_locate_item 279 - -279 bloat-o-meter: i386 add/remove: 3/3 grow/shrink: 8/9 up/down: 1075/-1275 (-200) function old new delta radix_tree_next_chunk - 757 +757 shmem_unuse 352 449 +97 find_get_pages_contig 269 322 +53 shmem_radix_tree_replace 113 154 +41 find_get_pages_tag 277 318 +41 dcache_dir_lseek 426 458 +32 __kstrtab_radix_tree_next_chunk - 22 +22 vc_do_resize 968 977 +9 snd_pcm_lib_read1 725 733 +8 __ksymtab_radix_tree_next_chunk - 8 +8 netlbl_cipsov4_list 1120 1127 +7 find_get_pages 293 291 -2 new_slab 467 459 -8 bitfill_unaligned_rev 425 417 -8 radix_tree_gang_lookup_tag_slot 177 146 -31 blk_dump_cmd 267 229 -38 radix_tree_gang_lookup_slot 212 134 -78 shmem_unlock_mapping 221 128 -93 radix_tree_gang_lookup_tag 275 162 -113 radix_tree_gang_lookup 255 126 -129 __lookup 227 - -227 __lookup_tag 271 - -271 radix_tree_locate_item 277 - -277 This patch: Implement a clean, simple and effective radix-tree iteration routine. Iterating divided into two phases: * lookup next chunk in radix-tree leaf node * iterating through slots in this chunk Main iterator function radix_tree_next_chunk() returns pointer to first slot, and stores in the struct radix_tree_iter index of next-to-last slot. For tagged-iterating it also constuct bitmask of tags for retunted chunk. All additional logic implemented as static-inline functions and macroses. Also adds radix_tree_find_next_bit() static-inline variant of find_next_bit() optimized for small constant size arrays, because find_next_bit() too heavy for searching in an array with one/two long elements. [akpm@linux-foundation.org: rework comments a bit] Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Tested-by: Hugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-29 05:42:53 +08:00
if (offset < RADIX_TREE_MAP_SIZE) {
radix-tree: introduce bit-optimized iterator A series of radix tree cleanups, and usage of them in the core pagecache code. Micro-benchmark: lookup 14 slots (typical page-vector size) in radix-tree there earch <step> slot filled and tagged before/after - nsec per full scan through tree * Intel Sandy Bridge i7-2620M 4Mb L3 New code always faster * AMD Athlon 6000+ 2x1Mb L2, without L3 New code generally faster, Minor degradation (marked with "*") for huge sparse trees * i386 on Sandy Bridge New code faster for common cases: tagged and dense trees. Some degradations for non-tagged lookup on sparse trees. Ideally, there might help __ffs() analog for searching first non-zero long element in array, gcc sometimes cannot optimize this loop corretly. Numbers: CPU: Intel Sandy Bridge i7-2620M 4Mb L3 radix-tree with 1024 slots: tagged lookup step 1 before 7156 after 3613 step 2 before 5399 after 2696 step 3 before 4779 after 1928 step 4 before 4456 after 1429 step 5 before 4292 after 1213 step 6 before 4183 after 1052 step 7 before 4157 after 951 step 8 before 4016 after 812 step 9 before 3952 after 851 step 10 before 3937 after 732 step 11 before 4023 after 709 step 12 before 3872 after 657 step 13 before 3892 after 633 step 14 before 3720 after 591 step 15 before 3879 after 578 step 16 before 3561 after 513 normal lookup step 1 before 4266 after 3301 step 2 before 2695 after 2129 step 3 before 2083 after 1712 step 4 before 1801 after 1534 step 5 before 1628 after 1313 step 6 before 1551 after 1263 step 7 before 1475 after 1185 step 8 before 1432 after 1167 step 9 before 1373 after 1092 step 10 before 1339 after 1134 step 11 before 1292 after 1056 step 12 before 1319 after 1030 step 13 before 1276 after 1004 step 14 before 1256 after 987 step 15 before 1228 after 992 step 16 before 1247 after 999 radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1086102841 after 674196409 step 2 before 816839155 after 498138306 step 7 before 599728907 after 240676762 step 15 before 555729253 after 185219677 step 63 before 606637748 after 128585664 step 64 before 608384432 after 102945089 step 65 before 596987114 after 123996019 step 128 before 304459225 after 56783056 step 256 before 158846855 after 31232481 step 512 before 86085652 after 18950595 step 12345 before 6517189 after 1674057 normal lookup step 1 before 626064869 after 544418266 step 2 before 418809975 after 336321473 step 7 before 242303598 after 207755560 step 15 before 208380563 after 176496355 step 63 before 186854206 after 167283638 step 64 before 176188060 after 170143976 step 65 before 185139608 after 167487116 step 128 before 88181865 after 86913490 step 256 before 45733628 after 45143534 step 512 before 24506038 after 23859036 step 12345 before 2177425 after 2018662 * AMD Athlon 6000+ 2x1Mb L2, without L3 radix-tree with 1024 slots: tag-lookup step 1 before 8164 after 5379 step 2 before 5818 after 5581 step 3 before 4959 after 4213 step 4 before 4371 after 3386 step 5 before 4204 after 2997 step 6 before 4950 after 2744 step 7 before 4598 after 2480 step 8 before 4251 after 2288 step 9 before 4262 after 2243 step 10 before 4175 after 2131 step 11 before 3999 after 2024 step 12 before 3979 after 1994 step 13 before 3842 after 1929 step 14 before 3750 after 1810 step 15 before 3735 after 1810 step 16 before 3532 after 1660 normal-lookup step 1 before 7875 after 5847 step 2 before 4808 after 4071 step 3 before 4073 after 3462 step 4 before 3677 after 3074 step 5 before 4308 after 2978 step 6 before 3911 after 3807 step 7 before 3635 after 3522 step 8 before 3313 after 3202 step 9 before 3280 after 3257 step 10 before 3166 after 3083 step 11 before 3066 after 3026 step 12 before 2985 after 2982 step 13 before 2925 after 2924 step 14 before 2834 after 2808 step 15 before 2805 after 2803 step 16 before 2647 after 2622 radix-tree with 1024*1024*128 slots: tag-lookup step 1 before 1288059720 after 951736580 step 2 before 961292300 after 884212140 step 7 before 768905140 after 547267580 step 15 before 771319480 after 456550640 step 63 before 504847640 after 242704304 step 64 before 392484800 after 177920786 step 65 before 491162160 after 246895264 step 128 before 208084064 after 97348392 step 256 before 112401035 after 51408126 step 512 before 75825834 after 29145070 step 12345 before 5603166 after 2847330 normal-lookup step 1 before 1025677120 after 861375100 step 2 before 647220080 after 572258540 step 7 before 505518960 after 484041813 step 15 before 430483053 after 444815320 * step 63 before 388113453 after 404250546 * step 64 before 374154666 after 396027440 * step 65 before 381423973 after 396704853 * step 128 before 190078700 after 202619384 * step 256 before 100886756 after 102829108 * step 512 before 64074505 after 56158720 step 12345 before 4237289 after 4422299 * * i686 on Sandy bridge radix-tree with 1024 slots: tagged lookup step 1 before 7990 after 4019 step 2 before 5698 after 2897 step 3 before 5013 after 2475 step 4 before 4630 after 1721 step 5 before 4346 after 1759 step 6 before 4299 after 1556 step 7 before 4098 after 1513 step 8 before 4115 after 1222 step 9 before 3983 after 1390 step 10 before 4077 after 1207 step 11 before 3921 after 1231 step 12 before 3894 after 1116 step 13 before 3840 after 1147 step 14 before 3799 after 1090 step 15 before 3797 after 1059 step 16 before 3783 after 745 normal lookup step 1 before 5103 after 3499 step 2 before 3299 after 2550 step 3 before 2489 after 2370 step 4 before 2034 after 2302 * step 5 before 1846 after 2268 * step 6 before 1752 after 2249 * step 7 before 1679 after 2164 * step 8 before 1627 after 2153 * step 9 before 1542 after 2095 * step 10 before 1479 after 2109 * step 11 before 1469 after 2009 * step 12 before 1445 after 2039 * step 13 before 1411 after 2013 * step 14 before 1374 after 2046 * step 15 before 1340 after 1975 * step 16 before 1331 after 2000 * radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1225865377 after 667153553 step 2 before 842427423 after 471533007 step 7 before 609296153 after 276260116 step 15 before 544232060 after 226859105 step 63 before 519209199 after 141343043 step 64 before 588980279 after 141951339 step 65 before 521099710 after 138282060 step 128 before 298476778 after 83390628 step 256 before 149358342 after 43602609 step 512 before 76994713 after 22911077 step 12345 before 5328666 after 1472111 normal lookup step 1 before 819284564 after 533635310 step 2 before 512421605 after 364956155 step 7 before 271443305 after 305721345 * step 15 before 223591630 after 273960216 * step 63 before 190320247 after 217770207 * step 64 before 178538168 after 267411372 * step 65 before 186400423 after 215347937 * step 128 before 88106045 after 140540612 * step 256 before 44812420 after 70660377 * step 512 before 24435438 after 36328275 * step 12345 before 2123924 after 2148062 * bloat-o-meter delta for this patchset + patchset with related shmem cleanups bloat-o-meter: x86_64 add/remove: 4/3 grow/shrink: 5/6 up/down: 928/-939 (-11) function old new delta radix_tree_next_chunk - 499 +499 shmem_unuse 428 554 +126 shmem_radix_tree_replace 131 227 +96 find_get_pages_tag 354 419 +65 find_get_pages_contig 345 407 +62 find_get_pages 362 396 +34 __kstrtab_radix_tree_next_chunk - 22 +22 __ksymtab_radix_tree_next_chunk - 16 +16 __kcrctab_radix_tree_next_chunk - 8 +8 radix_tree_gang_lookup_slot 204 203 -1 static.shmem_xattr_set 384 381 -3 radix_tree_gang_lookup_tag_slot 208 191 -17 radix_tree_gang_lookup 231 187 -44 radix_tree_gang_lookup_tag 247 199 -48 shmem_unlock_mapping 278 190 -88 __lookup 217 - -217 __lookup_tag 242 - -242 radix_tree_locate_item 279 - -279 bloat-o-meter: i386 add/remove: 3/3 grow/shrink: 8/9 up/down: 1075/-1275 (-200) function old new delta radix_tree_next_chunk - 757 +757 shmem_unuse 352 449 +97 find_get_pages_contig 269 322 +53 shmem_radix_tree_replace 113 154 +41 find_get_pages_tag 277 318 +41 dcache_dir_lseek 426 458 +32 __kstrtab_radix_tree_next_chunk - 22 +22 vc_do_resize 968 977 +9 snd_pcm_lib_read1 725 733 +8 __ksymtab_radix_tree_next_chunk - 8 +8 netlbl_cipsov4_list 1120 1127 +7 find_get_pages 293 291 -2 new_slab 467 459 -8 bitfill_unaligned_rev 425 417 -8 radix_tree_gang_lookup_tag_slot 177 146 -31 blk_dump_cmd 267 229 -38 radix_tree_gang_lookup_slot 212 134 -78 shmem_unlock_mapping 221 128 -93 radix_tree_gang_lookup_tag 275 162 -113 radix_tree_gang_lookup 255 126 -129 __lookup 227 - -227 __lookup_tag 271 - -271 radix_tree_locate_item 277 - -277 This patch: Implement a clean, simple and effective radix-tree iteration routine. Iterating divided into two phases: * lookup next chunk in radix-tree leaf node * iterating through slots in this chunk Main iterator function radix_tree_next_chunk() returns pointer to first slot, and stores in the struct radix_tree_iter index of next-to-last slot. For tagged-iterating it also constuct bitmask of tags for retunted chunk. All additional logic implemented as static-inline functions and macroses. Also adds radix_tree_find_next_bit() static-inline variant of find_next_bit() optimized for small constant size arrays, because find_next_bit() too heavy for searching in an array with one/two long elements. [akpm@linux-foundation.org: rework comments a bit] Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Tested-by: Hugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-29 05:42:53 +08:00
unsigned long tmp;
addr += offset / BITS_PER_LONG;
tmp = *addr >> (offset % BITS_PER_LONG);
if (tmp)
return __ffs(tmp) + offset;
offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
while (offset < RADIX_TREE_MAP_SIZE) {
radix-tree: introduce bit-optimized iterator A series of radix tree cleanups, and usage of them in the core pagecache code. Micro-benchmark: lookup 14 slots (typical page-vector size) in radix-tree there earch <step> slot filled and tagged before/after - nsec per full scan through tree * Intel Sandy Bridge i7-2620M 4Mb L3 New code always faster * AMD Athlon 6000+ 2x1Mb L2, without L3 New code generally faster, Minor degradation (marked with "*") for huge sparse trees * i386 on Sandy Bridge New code faster for common cases: tagged and dense trees. Some degradations for non-tagged lookup on sparse trees. Ideally, there might help __ffs() analog for searching first non-zero long element in array, gcc sometimes cannot optimize this loop corretly. Numbers: CPU: Intel Sandy Bridge i7-2620M 4Mb L3 radix-tree with 1024 slots: tagged lookup step 1 before 7156 after 3613 step 2 before 5399 after 2696 step 3 before 4779 after 1928 step 4 before 4456 after 1429 step 5 before 4292 after 1213 step 6 before 4183 after 1052 step 7 before 4157 after 951 step 8 before 4016 after 812 step 9 before 3952 after 851 step 10 before 3937 after 732 step 11 before 4023 after 709 step 12 before 3872 after 657 step 13 before 3892 after 633 step 14 before 3720 after 591 step 15 before 3879 after 578 step 16 before 3561 after 513 normal lookup step 1 before 4266 after 3301 step 2 before 2695 after 2129 step 3 before 2083 after 1712 step 4 before 1801 after 1534 step 5 before 1628 after 1313 step 6 before 1551 after 1263 step 7 before 1475 after 1185 step 8 before 1432 after 1167 step 9 before 1373 after 1092 step 10 before 1339 after 1134 step 11 before 1292 after 1056 step 12 before 1319 after 1030 step 13 before 1276 after 1004 step 14 before 1256 after 987 step 15 before 1228 after 992 step 16 before 1247 after 999 radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1086102841 after 674196409 step 2 before 816839155 after 498138306 step 7 before 599728907 after 240676762 step 15 before 555729253 after 185219677 step 63 before 606637748 after 128585664 step 64 before 608384432 after 102945089 step 65 before 596987114 after 123996019 step 128 before 304459225 after 56783056 step 256 before 158846855 after 31232481 step 512 before 86085652 after 18950595 step 12345 before 6517189 after 1674057 normal lookup step 1 before 626064869 after 544418266 step 2 before 418809975 after 336321473 step 7 before 242303598 after 207755560 step 15 before 208380563 after 176496355 step 63 before 186854206 after 167283638 step 64 before 176188060 after 170143976 step 65 before 185139608 after 167487116 step 128 before 88181865 after 86913490 step 256 before 45733628 after 45143534 step 512 before 24506038 after 23859036 step 12345 before 2177425 after 2018662 * AMD Athlon 6000+ 2x1Mb L2, without L3 radix-tree with 1024 slots: tag-lookup step 1 before 8164 after 5379 step 2 before 5818 after 5581 step 3 before 4959 after 4213 step 4 before 4371 after 3386 step 5 before 4204 after 2997 step 6 before 4950 after 2744 step 7 before 4598 after 2480 step 8 before 4251 after 2288 step 9 before 4262 after 2243 step 10 before 4175 after 2131 step 11 before 3999 after 2024 step 12 before 3979 after 1994 step 13 before 3842 after 1929 step 14 before 3750 after 1810 step 15 before 3735 after 1810 step 16 before 3532 after 1660 normal-lookup step 1 before 7875 after 5847 step 2 before 4808 after 4071 step 3 before 4073 after 3462 step 4 before 3677 after 3074 step 5 before 4308 after 2978 step 6 before 3911 after 3807 step 7 before 3635 after 3522 step 8 before 3313 after 3202 step 9 before 3280 after 3257 step 10 before 3166 after 3083 step 11 before 3066 after 3026 step 12 before 2985 after 2982 step 13 before 2925 after 2924 step 14 before 2834 after 2808 step 15 before 2805 after 2803 step 16 before 2647 after 2622 radix-tree with 1024*1024*128 slots: tag-lookup step 1 before 1288059720 after 951736580 step 2 before 961292300 after 884212140 step 7 before 768905140 after 547267580 step 15 before 771319480 after 456550640 step 63 before 504847640 after 242704304 step 64 before 392484800 after 177920786 step 65 before 491162160 after 246895264 step 128 before 208084064 after 97348392 step 256 before 112401035 after 51408126 step 512 before 75825834 after 29145070 step 12345 before 5603166 after 2847330 normal-lookup step 1 before 1025677120 after 861375100 step 2 before 647220080 after 572258540 step 7 before 505518960 after 484041813 step 15 before 430483053 after 444815320 * step 63 before 388113453 after 404250546 * step 64 before 374154666 after 396027440 * step 65 before 381423973 after 396704853 * step 128 before 190078700 after 202619384 * step 256 before 100886756 after 102829108 * step 512 before 64074505 after 56158720 step 12345 before 4237289 after 4422299 * * i686 on Sandy bridge radix-tree with 1024 slots: tagged lookup step 1 before 7990 after 4019 step 2 before 5698 after 2897 step 3 before 5013 after 2475 step 4 before 4630 after 1721 step 5 before 4346 after 1759 step 6 before 4299 after 1556 step 7 before 4098 after 1513 step 8 before 4115 after 1222 step 9 before 3983 after 1390 step 10 before 4077 after 1207 step 11 before 3921 after 1231 step 12 before 3894 after 1116 step 13 before 3840 after 1147 step 14 before 3799 after 1090 step 15 before 3797 after 1059 step 16 before 3783 after 745 normal lookup step 1 before 5103 after 3499 step 2 before 3299 after 2550 step 3 before 2489 after 2370 step 4 before 2034 after 2302 * step 5 before 1846 after 2268 * step 6 before 1752 after 2249 * step 7 before 1679 after 2164 * step 8 before 1627 after 2153 * step 9 before 1542 after 2095 * step 10 before 1479 after 2109 * step 11 before 1469 after 2009 * step 12 before 1445 after 2039 * step 13 before 1411 after 2013 * step 14 before 1374 after 2046 * step 15 before 1340 after 1975 * step 16 before 1331 after 2000 * radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1225865377 after 667153553 step 2 before 842427423 after 471533007 step 7 before 609296153 after 276260116 step 15 before 544232060 after 226859105 step 63 before 519209199 after 141343043 step 64 before 588980279 after 141951339 step 65 before 521099710 after 138282060 step 128 before 298476778 after 83390628 step 256 before 149358342 after 43602609 step 512 before 76994713 after 22911077 step 12345 before 5328666 after 1472111 normal lookup step 1 before 819284564 after 533635310 step 2 before 512421605 after 364956155 step 7 before 271443305 after 305721345 * step 15 before 223591630 after 273960216 * step 63 before 190320247 after 217770207 * step 64 before 178538168 after 267411372 * step 65 before 186400423 after 215347937 * step 128 before 88106045 after 140540612 * step 256 before 44812420 after 70660377 * step 512 before 24435438 after 36328275 * step 12345 before 2123924 after 2148062 * bloat-o-meter delta for this patchset + patchset with related shmem cleanups bloat-o-meter: x86_64 add/remove: 4/3 grow/shrink: 5/6 up/down: 928/-939 (-11) function old new delta radix_tree_next_chunk - 499 +499 shmem_unuse 428 554 +126 shmem_radix_tree_replace 131 227 +96 find_get_pages_tag 354 419 +65 find_get_pages_contig 345 407 +62 find_get_pages 362 396 +34 __kstrtab_radix_tree_next_chunk - 22 +22 __ksymtab_radix_tree_next_chunk - 16 +16 __kcrctab_radix_tree_next_chunk - 8 +8 radix_tree_gang_lookup_slot 204 203 -1 static.shmem_xattr_set 384 381 -3 radix_tree_gang_lookup_tag_slot 208 191 -17 radix_tree_gang_lookup 231 187 -44 radix_tree_gang_lookup_tag 247 199 -48 shmem_unlock_mapping 278 190 -88 __lookup 217 - -217 __lookup_tag 242 - -242 radix_tree_locate_item 279 - -279 bloat-o-meter: i386 add/remove: 3/3 grow/shrink: 8/9 up/down: 1075/-1275 (-200) function old new delta radix_tree_next_chunk - 757 +757 shmem_unuse 352 449 +97 find_get_pages_contig 269 322 +53 shmem_radix_tree_replace 113 154 +41 find_get_pages_tag 277 318 +41 dcache_dir_lseek 426 458 +32 __kstrtab_radix_tree_next_chunk - 22 +22 vc_do_resize 968 977 +9 snd_pcm_lib_read1 725 733 +8 __ksymtab_radix_tree_next_chunk - 8 +8 netlbl_cipsov4_list 1120 1127 +7 find_get_pages 293 291 -2 new_slab 467 459 -8 bitfill_unaligned_rev 425 417 -8 radix_tree_gang_lookup_tag_slot 177 146 -31 blk_dump_cmd 267 229 -38 radix_tree_gang_lookup_slot 212 134 -78 shmem_unlock_mapping 221 128 -93 radix_tree_gang_lookup_tag 275 162 -113 radix_tree_gang_lookup 255 126 -129 __lookup 227 - -227 __lookup_tag 271 - -271 radix_tree_locate_item 277 - -277 This patch: Implement a clean, simple and effective radix-tree iteration routine. Iterating divided into two phases: * lookup next chunk in radix-tree leaf node * iterating through slots in this chunk Main iterator function radix_tree_next_chunk() returns pointer to first slot, and stores in the struct radix_tree_iter index of next-to-last slot. For tagged-iterating it also constuct bitmask of tags for retunted chunk. All additional logic implemented as static-inline functions and macroses. Also adds radix_tree_find_next_bit() static-inline variant of find_next_bit() optimized for small constant size arrays, because find_next_bit() too heavy for searching in an array with one/two long elements. [akpm@linux-foundation.org: rework comments a bit] Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Tested-by: Hugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-29 05:42:53 +08:00
tmp = *++addr;
if (tmp)
return __ffs(tmp) + offset;
offset += BITS_PER_LONG;
}
}
return RADIX_TREE_MAP_SIZE;
radix-tree: introduce bit-optimized iterator A series of radix tree cleanups, and usage of them in the core pagecache code. Micro-benchmark: lookup 14 slots (typical page-vector size) in radix-tree there earch <step> slot filled and tagged before/after - nsec per full scan through tree * Intel Sandy Bridge i7-2620M 4Mb L3 New code always faster * AMD Athlon 6000+ 2x1Mb L2, without L3 New code generally faster, Minor degradation (marked with "*") for huge sparse trees * i386 on Sandy Bridge New code faster for common cases: tagged and dense trees. Some degradations for non-tagged lookup on sparse trees. Ideally, there might help __ffs() analog for searching first non-zero long element in array, gcc sometimes cannot optimize this loop corretly. Numbers: CPU: Intel Sandy Bridge i7-2620M 4Mb L3 radix-tree with 1024 slots: tagged lookup step 1 before 7156 after 3613 step 2 before 5399 after 2696 step 3 before 4779 after 1928 step 4 before 4456 after 1429 step 5 before 4292 after 1213 step 6 before 4183 after 1052 step 7 before 4157 after 951 step 8 before 4016 after 812 step 9 before 3952 after 851 step 10 before 3937 after 732 step 11 before 4023 after 709 step 12 before 3872 after 657 step 13 before 3892 after 633 step 14 before 3720 after 591 step 15 before 3879 after 578 step 16 before 3561 after 513 normal lookup step 1 before 4266 after 3301 step 2 before 2695 after 2129 step 3 before 2083 after 1712 step 4 before 1801 after 1534 step 5 before 1628 after 1313 step 6 before 1551 after 1263 step 7 before 1475 after 1185 step 8 before 1432 after 1167 step 9 before 1373 after 1092 step 10 before 1339 after 1134 step 11 before 1292 after 1056 step 12 before 1319 after 1030 step 13 before 1276 after 1004 step 14 before 1256 after 987 step 15 before 1228 after 992 step 16 before 1247 after 999 radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1086102841 after 674196409 step 2 before 816839155 after 498138306 step 7 before 599728907 after 240676762 step 15 before 555729253 after 185219677 step 63 before 606637748 after 128585664 step 64 before 608384432 after 102945089 step 65 before 596987114 after 123996019 step 128 before 304459225 after 56783056 step 256 before 158846855 after 31232481 step 512 before 86085652 after 18950595 step 12345 before 6517189 after 1674057 normal lookup step 1 before 626064869 after 544418266 step 2 before 418809975 after 336321473 step 7 before 242303598 after 207755560 step 15 before 208380563 after 176496355 step 63 before 186854206 after 167283638 step 64 before 176188060 after 170143976 step 65 before 185139608 after 167487116 step 128 before 88181865 after 86913490 step 256 before 45733628 after 45143534 step 512 before 24506038 after 23859036 step 12345 before 2177425 after 2018662 * AMD Athlon 6000+ 2x1Mb L2, without L3 radix-tree with 1024 slots: tag-lookup step 1 before 8164 after 5379 step 2 before 5818 after 5581 step 3 before 4959 after 4213 step 4 before 4371 after 3386 step 5 before 4204 after 2997 step 6 before 4950 after 2744 step 7 before 4598 after 2480 step 8 before 4251 after 2288 step 9 before 4262 after 2243 step 10 before 4175 after 2131 step 11 before 3999 after 2024 step 12 before 3979 after 1994 step 13 before 3842 after 1929 step 14 before 3750 after 1810 step 15 before 3735 after 1810 step 16 before 3532 after 1660 normal-lookup step 1 before 7875 after 5847 step 2 before 4808 after 4071 step 3 before 4073 after 3462 step 4 before 3677 after 3074 step 5 before 4308 after 2978 step 6 before 3911 after 3807 step 7 before 3635 after 3522 step 8 before 3313 after 3202 step 9 before 3280 after 3257 step 10 before 3166 after 3083 step 11 before 3066 after 3026 step 12 before 2985 after 2982 step 13 before 2925 after 2924 step 14 before 2834 after 2808 step 15 before 2805 after 2803 step 16 before 2647 after 2622 radix-tree with 1024*1024*128 slots: tag-lookup step 1 before 1288059720 after 951736580 step 2 before 961292300 after 884212140 step 7 before 768905140 after 547267580 step 15 before 771319480 after 456550640 step 63 before 504847640 after 242704304 step 64 before 392484800 after 177920786 step 65 before 491162160 after 246895264 step 128 before 208084064 after 97348392 step 256 before 112401035 after 51408126 step 512 before 75825834 after 29145070 step 12345 before 5603166 after 2847330 normal-lookup step 1 before 1025677120 after 861375100 step 2 before 647220080 after 572258540 step 7 before 505518960 after 484041813 step 15 before 430483053 after 444815320 * step 63 before 388113453 after 404250546 * step 64 before 374154666 after 396027440 * step 65 before 381423973 after 396704853 * step 128 before 190078700 after 202619384 * step 256 before 100886756 after 102829108 * step 512 before 64074505 after 56158720 step 12345 before 4237289 after 4422299 * * i686 on Sandy bridge radix-tree with 1024 slots: tagged lookup step 1 before 7990 after 4019 step 2 before 5698 after 2897 step 3 before 5013 after 2475 step 4 before 4630 after 1721 step 5 before 4346 after 1759 step 6 before 4299 after 1556 step 7 before 4098 after 1513 step 8 before 4115 after 1222 step 9 before 3983 after 1390 step 10 before 4077 after 1207 step 11 before 3921 after 1231 step 12 before 3894 after 1116 step 13 before 3840 after 1147 step 14 before 3799 after 1090 step 15 before 3797 after 1059 step 16 before 3783 after 745 normal lookup step 1 before 5103 after 3499 step 2 before 3299 after 2550 step 3 before 2489 after 2370 step 4 before 2034 after 2302 * step 5 before 1846 after 2268 * step 6 before 1752 after 2249 * step 7 before 1679 after 2164 * step 8 before 1627 after 2153 * step 9 before 1542 after 2095 * step 10 before 1479 after 2109 * step 11 before 1469 after 2009 * step 12 before 1445 after 2039 * step 13 before 1411 after 2013 * step 14 before 1374 after 2046 * step 15 before 1340 after 1975 * step 16 before 1331 after 2000 * radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1225865377 after 667153553 step 2 before 842427423 after 471533007 step 7 before 609296153 after 276260116 step 15 before 544232060 after 226859105 step 63 before 519209199 after 141343043 step 64 before 588980279 after 141951339 step 65 before 521099710 after 138282060 step 128 before 298476778 after 83390628 step 256 before 149358342 after 43602609 step 512 before 76994713 after 22911077 step 12345 before 5328666 after 1472111 normal lookup step 1 before 819284564 after 533635310 step 2 before 512421605 after 364956155 step 7 before 271443305 after 305721345 * step 15 before 223591630 after 273960216 * step 63 before 190320247 after 217770207 * step 64 before 178538168 after 267411372 * step 65 before 186400423 after 215347937 * step 128 before 88106045 after 140540612 * step 256 before 44812420 after 70660377 * step 512 before 24435438 after 36328275 * step 12345 before 2123924 after 2148062 * bloat-o-meter delta for this patchset + patchset with related shmem cleanups bloat-o-meter: x86_64 add/remove: 4/3 grow/shrink: 5/6 up/down: 928/-939 (-11) function old new delta radix_tree_next_chunk - 499 +499 shmem_unuse 428 554 +126 shmem_radix_tree_replace 131 227 +96 find_get_pages_tag 354 419 +65 find_get_pages_contig 345 407 +62 find_get_pages 362 396 +34 __kstrtab_radix_tree_next_chunk - 22 +22 __ksymtab_radix_tree_next_chunk - 16 +16 __kcrctab_radix_tree_next_chunk - 8 +8 radix_tree_gang_lookup_slot 204 203 -1 static.shmem_xattr_set 384 381 -3 radix_tree_gang_lookup_tag_slot 208 191 -17 radix_tree_gang_lookup 231 187 -44 radix_tree_gang_lookup_tag 247 199 -48 shmem_unlock_mapping 278 190 -88 __lookup 217 - -217 __lookup_tag 242 - -242 radix_tree_locate_item 279 - -279 bloat-o-meter: i386 add/remove: 3/3 grow/shrink: 8/9 up/down: 1075/-1275 (-200) function old new delta radix_tree_next_chunk - 757 +757 shmem_unuse 352 449 +97 find_get_pages_contig 269 322 +53 shmem_radix_tree_replace 113 154 +41 find_get_pages_tag 277 318 +41 dcache_dir_lseek 426 458 +32 __kstrtab_radix_tree_next_chunk - 22 +22 vc_do_resize 968 977 +9 snd_pcm_lib_read1 725 733 +8 __ksymtab_radix_tree_next_chunk - 8 +8 netlbl_cipsov4_list 1120 1127 +7 find_get_pages 293 291 -2 new_slab 467 459 -8 bitfill_unaligned_rev 425 417 -8 radix_tree_gang_lookup_tag_slot 177 146 -31 blk_dump_cmd 267 229 -38 radix_tree_gang_lookup_slot 212 134 -78 shmem_unlock_mapping 221 128 -93 radix_tree_gang_lookup_tag 275 162 -113 radix_tree_gang_lookup 255 126 -129 __lookup 227 - -227 __lookup_tag 271 - -271 radix_tree_locate_item 277 - -277 This patch: Implement a clean, simple and effective radix-tree iteration routine. Iterating divided into two phases: * lookup next chunk in radix-tree leaf node * iterating through slots in this chunk Main iterator function radix_tree_next_chunk() returns pointer to first slot, and stores in the struct radix_tree_iter index of next-to-last slot. For tagged-iterating it also constuct bitmask of tags for retunted chunk. All additional logic implemented as static-inline functions and macroses. Also adds radix_tree_find_next_bit() static-inline variant of find_next_bit() optimized for small constant size arrays, because find_next_bit() too heavy for searching in an array with one/two long elements. [akpm@linux-foundation.org: rework comments a bit] Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Tested-by: Hugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-29 05:42:53 +08:00
}
static unsigned int iter_offset(const struct radix_tree_iter *iter)
{
return iter->index & RADIX_TREE_MAP_MASK;
}
/*
* The maximum index which can be stored in a radix tree
*/
static inline unsigned long shift_maxindex(unsigned int shift)
{
return (RADIX_TREE_MAP_SIZE << shift) - 1;
}
static inline unsigned long node_maxindex(const struct radix_tree_node *node)
{
return shift_maxindex(node->shift);
}
static unsigned long next_index(unsigned long index,
const struct radix_tree_node *node,
unsigned long offset)
{
return (index & ~node_maxindex(node)) + (offset << node->shift);
}
/*
* This assumes that the caller has performed appropriate preallocation, and
* that the caller has pinned this thread of control to the current CPU.
*/
static struct radix_tree_node *
radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent,
struct radix_tree_root *root,
unsigned int shift, unsigned int offset,
unsigned int count, unsigned int nr_values)
{
radix-tree: avoid atomic allocations for preloaded insertions Most pagecache (and some other) radix tree insertions have the great opportunity to preallocate a few nodes with relaxed gfp flags. But the preallocation is squandered when it comes time to allocate a node, we default to first attempting a GFP_ATOMIC allocation -- that doesn't normally fail, but it can eat into atomic memory reserves that we don't need to be using. Another upshot of this is that it removes the sometimes highly contended zone->lock from underneath tree_lock. Pagecache insertions are always performed with a radix tree preload, and after this change, such a situation will never fall back to kmem_cache_alloc within radix_tree_node_alloc. David Miller reports seeing this allocation fail on a highly threaded sparc64 system: [527319.459981] dd: page allocation failure. order:0, mode:0x20 [527319.460403] Call Trace: [527319.460568] [00000000004b71e0] __slab_alloc+0x1b0/0x6a8 [527319.460636] [00000000004b7bbc] kmem_cache_alloc+0x4c/0xa8 [527319.460698] [000000000055309c] radix_tree_node_alloc+0x20/0x90 [527319.460763] [0000000000553238] radix_tree_insert+0x12c/0x260 [527319.460830] [0000000000495cd0] add_to_page_cache+0x38/0xb0 [527319.460893] [00000000004e4794] mpage_readpages+0x6c/0x134 [527319.460955] [000000000049c7fc] __do_page_cache_readahead+0x170/0x280 [527319.461028] [000000000049cc88] ondemand_readahead+0x208/0x214 [527319.461094] [0000000000496018] do_generic_mapping_read+0xe8/0x428 [527319.461152] [0000000000497948] generic_file_aio_read+0x108/0x170 [527319.461217] [00000000004badac] do_sync_read+0x88/0xd0 [527319.461292] [00000000004bb5cc] vfs_read+0x78/0x10c [527319.461361] [00000000004bb920] sys_read+0x34/0x60 [527319.461424] [0000000000406294] linux_sparc_syscall32+0x3c/0x40 The calltrace is significant: __do_page_cache_readahead allocates a number of pages with GFP_KERNEL, and hence it should have reclaimed sufficient memory to satisfy GFP_ATOMIC allocations. However after the list of pages goes to mpage_readpages, there can be significant intervals (including disk IO) before all the pages are inserted into the radix-tree. So the reserves can easily be depleted at that point. The patch is confirmed to fix the problem. Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: "David S. Miller" <davem@davemloft.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 14:29:10 +08:00
struct radix_tree_node *ret = NULL;
lib/radix-tree.c: make radix_tree_node_alloc() work correctly within interrupt With users of radix_tree_preload() run from interrupt (block/blk-ioc.c is one such possible user), the following race can happen: radix_tree_preload() ... radix_tree_insert() radix_tree_node_alloc() if (rtp->nr) { ret = rtp->nodes[rtp->nr - 1]; <interrupt> ... radix_tree_preload() ... radix_tree_insert() radix_tree_node_alloc() if (rtp->nr) { ret = rtp->nodes[rtp->nr - 1]; And we give out one radix tree node twice. That clearly results in radix tree corruption with different results (usually OOPS) depending on which two users of radix tree race. We fix the problem by making radix_tree_node_alloc() always allocate fresh radix tree nodes when in interrupt. Using preloading when in interrupt doesn't make sense since all the allocations have to be atomic anyway and we cannot steal nodes from process-context users because some users rely on radix_tree_insert() succeeding after radix_tree_preload(). in_interrupt() check is somewhat ugly but we cannot simply key off passed gfp_mask as that is acquired from root_gfp_mask() and thus the same for all preload users. Another part of the fix is to avoid node preallocation in radix_tree_preload() when passed gfp_mask doesn't allow waiting. Again, preallocation in such case doesn't make sense and when preallocation would happen in interrupt we could possibly leak some allocated nodes. However, some users of radix_tree_preload() require following radix_tree_insert() to succeed. To avoid unexpected effects for these users, radix_tree_preload() only warns if passed gfp mask doesn't allow waiting and we provide a new function radix_tree_maybe_preload() for those users which get different gfp mask from different call sites and which are prepared to handle radix_tree_insert() failure. Signed-off-by: Jan Kara <jack@suse.cz> Cc: Jens Axboe <jaxboe@fusionio.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 05:26:05 +08:00
/*
* Preload code isn't irq safe and it doesn't make sense to use
* preloading during an interrupt anyway as all the allocations have
* to be atomic. So just do normal allocation when in interrupt.
lib/radix-tree.c: make radix_tree_node_alloc() work correctly within interrupt With users of radix_tree_preload() run from interrupt (block/blk-ioc.c is one such possible user), the following race can happen: radix_tree_preload() ... radix_tree_insert() radix_tree_node_alloc() if (rtp->nr) { ret = rtp->nodes[rtp->nr - 1]; <interrupt> ... radix_tree_preload() ... radix_tree_insert() radix_tree_node_alloc() if (rtp->nr) { ret = rtp->nodes[rtp->nr - 1]; And we give out one radix tree node twice. That clearly results in radix tree corruption with different results (usually OOPS) depending on which two users of radix tree race. We fix the problem by making radix_tree_node_alloc() always allocate fresh radix tree nodes when in interrupt. Using preloading when in interrupt doesn't make sense since all the allocations have to be atomic anyway and we cannot steal nodes from process-context users because some users rely on radix_tree_insert() succeeding after radix_tree_preload(). in_interrupt() check is somewhat ugly but we cannot simply key off passed gfp_mask as that is acquired from root_gfp_mask() and thus the same for all preload users. Another part of the fix is to avoid node preallocation in radix_tree_preload() when passed gfp_mask doesn't allow waiting. Again, preallocation in such case doesn't make sense and when preallocation would happen in interrupt we could possibly leak some allocated nodes. However, some users of radix_tree_preload() require following radix_tree_insert() to succeed. To avoid unexpected effects for these users, radix_tree_preload() only warns if passed gfp mask doesn't allow waiting and we provide a new function radix_tree_maybe_preload() for those users which get different gfp mask from different call sites and which are prepared to handle radix_tree_insert() failure. Signed-off-by: Jan Kara <jack@suse.cz> Cc: Jens Axboe <jaxboe@fusionio.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 05:26:05 +08:00
*/
mm, page_alloc: distinguish between being unable to sleep, unwilling to sleep and avoiding waking kswapd __GFP_WAIT has been used to identify atomic context in callers that hold spinlocks or are in interrupts. They are expected to be high priority and have access one of two watermarks lower than "min" which can be referred to as the "atomic reserve". __GFP_HIGH users get access to the first lower watermark and can be called the "high priority reserve". Over time, callers had a requirement to not block when fallback options were available. Some have abused __GFP_WAIT leading to a situation where an optimisitic allocation with a fallback option can access atomic reserves. This patch uses __GFP_ATOMIC to identify callers that are truely atomic, cannot sleep and have no alternative. High priority users continue to use __GFP_HIGH. __GFP_DIRECT_RECLAIM identifies callers that can sleep and are willing to enter direct reclaim. __GFP_KSWAPD_RECLAIM to identify callers that want to wake kswapd for background reclaim. __GFP_WAIT is redefined as a caller that is willing to enter direct reclaim and wake kswapd for background reclaim. This patch then converts a number of sites o __GFP_ATOMIC is used by callers that are high priority and have memory pools for those requests. GFP_ATOMIC uses this flag. o Callers that have a limited mempool to guarantee forward progress clear __GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall into this category where kswapd will still be woken but atomic reserves are not used as there is a one-entry mempool to guarantee progress. o Callers that are checking if they are non-blocking should use the helper gfpflags_allow_blocking() where possible. This is because checking for __GFP_WAIT as was done historically now can trigger false positives. Some exceptions like dm-crypt.c exist where the code intent is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to flag manipulations. o Callers that built their own GFP flags instead of starting with GFP_KERNEL and friends now also need to specify __GFP_KSWAPD_RECLAIM. The first key hazard to watch out for is callers that removed __GFP_WAIT and was depending on access to atomic reserves for inconspicuous reasons. In some cases it may be appropriate for them to use __GFP_HIGH. The second key hazard is callers that assembled their own combination of GFP flags instead of starting with something like GFP_KERNEL. They may now wish to specify __GFP_KSWAPD_RECLAIM. It's almost certainly harmless if it's missed in most cases as other activity will wake kswapd. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-07 08:28:21 +08:00
if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
struct radix_tree_preload *rtp;
/*
* Even if the caller has preloaded, try to allocate from the
* cache first for the new node to get accounted to the memory
* cgroup.
*/
ret = kmem_cache_alloc(radix_tree_node_cachep,
gfp_mask | __GFP_NOWARN);
if (ret)
goto out;
radix-tree: avoid atomic allocations for preloaded insertions Most pagecache (and some other) radix tree insertions have the great opportunity to preallocate a few nodes with relaxed gfp flags. But the preallocation is squandered when it comes time to allocate a node, we default to first attempting a GFP_ATOMIC allocation -- that doesn't normally fail, but it can eat into atomic memory reserves that we don't need to be using. Another upshot of this is that it removes the sometimes highly contended zone->lock from underneath tree_lock. Pagecache insertions are always performed with a radix tree preload, and after this change, such a situation will never fall back to kmem_cache_alloc within radix_tree_node_alloc. David Miller reports seeing this allocation fail on a highly threaded sparc64 system: [527319.459981] dd: page allocation failure. order:0, mode:0x20 [527319.460403] Call Trace: [527319.460568] [00000000004b71e0] __slab_alloc+0x1b0/0x6a8 [527319.460636] [00000000004b7bbc] kmem_cache_alloc+0x4c/0xa8 [527319.460698] [000000000055309c] radix_tree_node_alloc+0x20/0x90 [527319.460763] [0000000000553238] radix_tree_insert+0x12c/0x260 [527319.460830] [0000000000495cd0] add_to_page_cache+0x38/0xb0 [527319.460893] [00000000004e4794] mpage_readpages+0x6c/0x134 [527319.460955] [000000000049c7fc] __do_page_cache_readahead+0x170/0x280 [527319.461028] [000000000049cc88] ondemand_readahead+0x208/0x214 [527319.461094] [0000000000496018] do_generic_mapping_read+0xe8/0x428 [527319.461152] [0000000000497948] generic_file_aio_read+0x108/0x170 [527319.461217] [00000000004badac] do_sync_read+0x88/0xd0 [527319.461292] [00000000004bb5cc] vfs_read+0x78/0x10c [527319.461361] [00000000004bb920] sys_read+0x34/0x60 [527319.461424] [0000000000406294] linux_sparc_syscall32+0x3c/0x40 The calltrace is significant: __do_page_cache_readahead allocates a number of pages with GFP_KERNEL, and hence it should have reclaimed sufficient memory to satisfy GFP_ATOMIC allocations. However after the list of pages goes to mpage_readpages, there can be significant intervals (including disk IO) before all the pages are inserted into the radix-tree. So the reserves can easily be depleted at that point. The patch is confirmed to fix the problem. Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: "David S. Miller" <davem@davemloft.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 14:29:10 +08:00
/*
* Provided the caller has preloaded here, we will always
* succeed in getting a node here (and never reach
* kmem_cache_alloc)
*/
rtp = this_cpu_ptr(&radix_tree_preloads);
if (rtp->nr) {
ret = rtp->nodes;
rtp->nodes = ret->parent;
rtp->nr--;
}
/*
* Update the allocation stack trace as this is more useful
* for debugging.
*/
kmemleak_update_trace(ret);
goto out;
}
ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
out:
BUG_ON(radix_tree_is_internal_node(ret));
if (ret) {
ret->shift = shift;
ret->offset = offset;
ret->count = count;
ret->nr_values = nr_values;
ret->parent = parent;
ret->array = root;
}
return ret;
}
void radix_tree_node_rcu_free(struct rcu_head *head)
[PATCH] radix-tree: RCU lockless readside Make radix tree lookups safe to be performed without locks. Readers are protected against nodes being deleted by using RCU based freeing. Readers are protected against new node insertion by using memory barriers to ensure the node itself will be properly written before it is visible in the radix tree. Each radix tree node keeps a record of their height (above leaf nodes). This height does not change after insertion -- when the radix tree is extended, higher nodes are only inserted in the top. So a lookup can take the pointer to what is *now* the root node, and traverse down it even if the tree is concurrently extended and this node becomes a subtree of a new root. "Direct" pointers (tree height of 0, where root->rnode points directly to the data item) are handled by using the low bit of the pointer to signal whether rnode is a direct pointer or a pointer to a radix tree node. When a reader wants to traverse the next branch, they will take a copy of the pointer. This pointer will be either NULL (and the branch is empty) or non-NULL (and will point to a valid node). [akpm@osdl.org: cleanups] [Lee.Schermerhorn@hp.com: bugfixes, comments, simplifications] [clameter@sgi.com: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 12:33:44 +08:00
{
struct radix_tree_node *node =
container_of(head, struct radix_tree_node, rcu_head);
radix-tree: fix small lockless radix-tree bug We shrink a radix tree when its root node has only one child, in the left most slot. The child becomes the new root node. To perform this operation in a manner compatible with concurrent lockless lookups, we atomically switch the root pointer from the parent to its child. However a concurrent lockless lookup may now have loaded a pointer to the parent (and is presently deciding what to do next). For this reason, we also have to keep the parent node in a valid state after shrinking the tree, until the next RCU grace period -- otherwise this lookup with the parent pointer may not do the right thing. Notably, we need to keep the child in the left most slot there in case that is requested by the lookup. This is all pretty standard RCU stuff. It is worth repeating because in my eagerness to obey the radix tree node constructor scheme, I had broken it by zeroing the radix tree node before the grace period. What could happen is that a lookup can load the parent pointer, then decide it wants to follow the left most child slot, only to find the slot contained NULL due to the concurrent shrinker having zeroed the parent node before waiting for a grace period. The lookup would return a false negative as a result. Fix it by doing that clearing in the RCU callback. I would normally want to rip out the constructor entirely, but radix tree nodes are one of those places where they make sense (only few cachelines will be touched soon after allocation). This was never actually found in any lockless pagecache testing or by the test harness, but by seeing the odd problem with my scalable vmap rewrite. I have not tickled the test harness into reproducing it yet, but I'll keep working at it. Fortunately, it is not a problem anywhere lockless pagecache is used in mainline kernels (pagecache probe is not a guarantee, and brd does not have concurrent lookups and deletes). Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-06-13 06:21:52 +08:00
/*
* Must only free zeroed nodes into the slab. We can be left with
* non-NULL entries by radix_tree_free_nodes, so clear the entries
* and tags here.
radix-tree: fix small lockless radix-tree bug We shrink a radix tree when its root node has only one child, in the left most slot. The child becomes the new root node. To perform this operation in a manner compatible with concurrent lockless lookups, we atomically switch the root pointer from the parent to its child. However a concurrent lockless lookup may now have loaded a pointer to the parent (and is presently deciding what to do next). For this reason, we also have to keep the parent node in a valid state after shrinking the tree, until the next RCU grace period -- otherwise this lookup with the parent pointer may not do the right thing. Notably, we need to keep the child in the left most slot there in case that is requested by the lookup. This is all pretty standard RCU stuff. It is worth repeating because in my eagerness to obey the radix tree node constructor scheme, I had broken it by zeroing the radix tree node before the grace period. What could happen is that a lookup can load the parent pointer, then decide it wants to follow the left most child slot, only to find the slot contained NULL due to the concurrent shrinker having zeroed the parent node before waiting for a grace period. The lookup would return a false negative as a result. Fix it by doing that clearing in the RCU callback. I would normally want to rip out the constructor entirely, but radix tree nodes are one of those places where they make sense (only few cachelines will be touched soon after allocation). This was never actually found in any lockless pagecache testing or by the test harness, but by seeing the odd problem with my scalable vmap rewrite. I have not tickled the test harness into reproducing it yet, but I'll keep working at it. Fortunately, it is not a problem anywhere lockless pagecache is used in mainline kernels (pagecache probe is not a guarantee, and brd does not have concurrent lookups and deletes). Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-06-13 06:21:52 +08:00
*/
memset(node->slots, 0, sizeof(node->slots));
memset(node->tags, 0, sizeof(node->tags));
INIT_LIST_HEAD(&node->private_list);
radix-tree: fix small lockless radix-tree bug We shrink a radix tree when its root node has only one child, in the left most slot. The child becomes the new root node. To perform this operation in a manner compatible with concurrent lockless lookups, we atomically switch the root pointer from the parent to its child. However a concurrent lockless lookup may now have loaded a pointer to the parent (and is presently deciding what to do next). For this reason, we also have to keep the parent node in a valid state after shrinking the tree, until the next RCU grace period -- otherwise this lookup with the parent pointer may not do the right thing. Notably, we need to keep the child in the left most slot there in case that is requested by the lookup. This is all pretty standard RCU stuff. It is worth repeating because in my eagerness to obey the radix tree node constructor scheme, I had broken it by zeroing the radix tree node before the grace period. What could happen is that a lookup can load the parent pointer, then decide it wants to follow the left most child slot, only to find the slot contained NULL due to the concurrent shrinker having zeroed the parent node before waiting for a grace period. The lookup would return a false negative as a result. Fix it by doing that clearing in the RCU callback. I would normally want to rip out the constructor entirely, but radix tree nodes are one of those places where they make sense (only few cachelines will be touched soon after allocation). This was never actually found in any lockless pagecache testing or by the test harness, but by seeing the odd problem with my scalable vmap rewrite. I have not tickled the test harness into reproducing it yet, but I'll keep working at it. Fortunately, it is not a problem anywhere lockless pagecache is used in mainline kernels (pagecache probe is not a guarantee, and brd does not have concurrent lookups and deletes). Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-06-13 06:21:52 +08:00
[PATCH] radix-tree: RCU lockless readside Make radix tree lookups safe to be performed without locks. Readers are protected against nodes being deleted by using RCU based freeing. Readers are protected against new node insertion by using memory barriers to ensure the node itself will be properly written before it is visible in the radix tree. Each radix tree node keeps a record of their height (above leaf nodes). This height does not change after insertion -- when the radix tree is extended, higher nodes are only inserted in the top. So a lookup can take the pointer to what is *now* the root node, and traverse down it even if the tree is concurrently extended and this node becomes a subtree of a new root. "Direct" pointers (tree height of 0, where root->rnode points directly to the data item) are handled by using the low bit of the pointer to signal whether rnode is a direct pointer or a pointer to a radix tree node. When a reader wants to traverse the next branch, they will take a copy of the pointer. This pointer will be either NULL (and the branch is empty) or non-NULL (and will point to a valid node). [akpm@osdl.org: cleanups] [Lee.Schermerhorn@hp.com: bugfixes, comments, simplifications] [clameter@sgi.com: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 12:33:44 +08:00
kmem_cache_free(radix_tree_node_cachep, node);
}
static inline void
radix_tree_node_free(struct radix_tree_node *node)
{
[PATCH] radix-tree: RCU lockless readside Make radix tree lookups safe to be performed without locks. Readers are protected against nodes being deleted by using RCU based freeing. Readers are protected against new node insertion by using memory barriers to ensure the node itself will be properly written before it is visible in the radix tree. Each radix tree node keeps a record of their height (above leaf nodes). This height does not change after insertion -- when the radix tree is extended, higher nodes are only inserted in the top. So a lookup can take the pointer to what is *now* the root node, and traverse down it even if the tree is concurrently extended and this node becomes a subtree of a new root. "Direct" pointers (tree height of 0, where root->rnode points directly to the data item) are handled by using the low bit of the pointer to signal whether rnode is a direct pointer or a pointer to a radix tree node. When a reader wants to traverse the next branch, they will take a copy of the pointer. This pointer will be either NULL (and the branch is empty) or non-NULL (and will point to a valid node). [akpm@osdl.org: cleanups] [Lee.Schermerhorn@hp.com: bugfixes, comments, simplifications] [clameter@sgi.com: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 12:33:44 +08:00
call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
}
/*
* Load up this CPU's radix_tree_node buffer with sufficient objects to
* ensure that the addition of a single element in the tree cannot fail. On
* success, return zero, with preemption disabled. On error, return -ENOMEM
* with preemption not disabled.
FS-Cache: Use radix tree preload correctly in tracking of pages to be stored __fscache_write_page() attempts to load the radix tree preallocation pool for the CPU it is on before calling radix_tree_insert(), as the insertion must be done inside a pair of spinlocks. Use of the preallocation pool, however, is contingent on the radix tree being initialised without __GFP_WAIT specified. __fscache_acquire_cookie() was passing GFP_NOFS to INIT_RADIX_TREE() - but that includes __GFP_WAIT. The solution is to AND out __GFP_WAIT. Additionally, the banner comment to radix_tree_preload() is altered to make note of this prerequisite. Possibly there should be a WARN_ON() too. Without this fix, I have seen the following recursive deadlock caused by radix_tree_insert() attempting to allocate memory inside the spinlocked region, which resulted in FS-Cache being called back into to release memory - which required the spinlock already held. ============================================= [ INFO: possible recursive locking detected ] 2.6.32-rc6-cachefs #24 --------------------------------------------- nfsiod/7916 is trying to acquire lock: (&cookie->lock){+.+.-.}, at: [<ffffffffa0076872>] __fscache_uncache_page+0xdb/0x160 [fscache] but task is already holding lock: (&cookie->lock){+.+.-.}, at: [<ffffffffa0076acc>] __fscache_write_page+0x15c/0x3f3 [fscache] other info that might help us debug this: 5 locks held by nfsiod/7916: #0: (nfsiod){+.+.+.}, at: [<ffffffff81048290>] worker_thread+0x19a/0x2e2 #1: (&task->u.tk_work#2){+.+.+.}, at: [<ffffffff81048290>] worker_thread+0x19a/0x2e2 #2: (&cookie->lock){+.+.-.}, at: [<ffffffffa0076acc>] __fscache_write_page+0x15c/0x3f3 [fscache] #3: (&object->lock#2){+.+.-.}, at: [<ffffffffa0076b07>] __fscache_write_page+0x197/0x3f3 [fscache] #4: (&cookie->stores_lock){+.+...}, at: [<ffffffffa0076b0f>] __fscache_write_page+0x19f/0x3f3 [fscache] stack backtrace: Pid: 7916, comm: nfsiod Not tainted 2.6.32-rc6-cachefs #24 Call Trace: [<ffffffff8105ac7f>] __lock_acquire+0x1649/0x16e3 [<ffffffff81059ded>] ? __lock_acquire+0x7b7/0x16e3 [<ffffffff8100e27d>] ? dump_trace+0x248/0x257 [<ffffffff8105ad70>] lock_acquire+0x57/0x6d [<ffffffffa0076872>] ? __fscache_uncache_page+0xdb/0x160 [fscache] [<ffffffff8135467c>] _spin_lock+0x2c/0x3b [<ffffffffa0076872>] ? __fscache_uncache_page+0xdb/0x160 [fscache] [<ffffffffa0076872>] __fscache_uncache_page+0xdb/0x160 [fscache] [<ffffffffa0077eb7>] ? __fscache_check_page_write+0x0/0x71 [fscache] [<ffffffffa00b4755>] nfs_fscache_release_page+0x86/0xc4 [nfs] [<ffffffffa00907f0>] nfs_release_page+0x3c/0x41 [nfs] [<ffffffff81087ffb>] try_to_release_page+0x32/0x3b [<ffffffff81092c2b>] shrink_page_list+0x316/0x4ac [<ffffffff81058a9b>] ? mark_held_locks+0x52/0x70 [<ffffffff8135451b>] ? _spin_unlock_irq+0x2b/0x31 [<ffffffff81093153>] shrink_inactive_list+0x392/0x67c [<ffffffff81058a9b>] ? mark_held_locks+0x52/0x70 [<ffffffff810934ca>] shrink_list+0x8d/0x8f [<ffffffff81093744>] shrink_zone+0x278/0x33c [<ffffffff81052c70>] ? ktime_get_ts+0xad/0xba [<ffffffff8109453b>] try_to_free_pages+0x22e/0x392 [<ffffffff8109184c>] ? isolate_pages_global+0x0/0x212 [<ffffffff8108e16b>] __alloc_pages_nodemask+0x3dc/0x5cf [<ffffffff810ae24a>] cache_alloc_refill+0x34d/0x6c1 [<ffffffff811bcf74>] ? radix_tree_node_alloc+0x52/0x5c [<ffffffff810ae929>] kmem_cache_alloc+0xb2/0x118 [<ffffffff811bcf74>] radix_tree_node_alloc+0x52/0x5c [<ffffffff811bcfd5>] radix_tree_insert+0x57/0x19c [<ffffffffa0076b53>] __fscache_write_page+0x1e3/0x3f3 [fscache] [<ffffffffa00b4248>] __nfs_readpage_to_fscache+0x58/0x11e [nfs] [<ffffffffa009bb77>] nfs_readpage_release+0x34/0x9b [nfs] [<ffffffffa009c0d9>] nfs_readpage_release_full+0x32/0x4b [nfs] [<ffffffffa0006cff>] rpc_release_calldata+0x12/0x14 [sunrpc] [<ffffffffa0006e2d>] rpc_free_task+0x59/0x61 [sunrpc] [<ffffffffa0006f03>] rpc_async_release+0x10/0x12 [sunrpc] [<ffffffff810482e5>] worker_thread+0x1ef/0x2e2 [<ffffffff81048290>] ? worker_thread+0x19a/0x2e2 [<ffffffff81352433>] ? thread_return+0x3e/0x101 [<ffffffffa0006ef3>] ? rpc_async_release+0x0/0x12 [sunrpc] [<ffffffff8104bff5>] ? autoremove_wake_function+0x0/0x34 [<ffffffff81058d25>] ? trace_hardirqs_on+0xd/0xf [<ffffffff810480f6>] ? worker_thread+0x0/0x2e2 [<ffffffff8104bd21>] kthread+0x7a/0x82 [<ffffffff8100beda>] child_rip+0xa/0x20 [<ffffffff8100b87c>] ? restore_args+0x0/0x30 [<ffffffff8104c2b9>] ? add_wait_queue+0x15/0x44 [<ffffffff8104bca7>] ? kthread+0x0/0x82 [<ffffffff8100bed0>] ? child_rip+0x0/0x20 Signed-off-by: David Howells <dhowells@redhat.com>
2009-11-20 02:11:14 +08:00
*
* To make use of this facility, the radix tree must be initialised without
mm, page_alloc: distinguish between being unable to sleep, unwilling to sleep and avoiding waking kswapd __GFP_WAIT has been used to identify atomic context in callers that hold spinlocks or are in interrupts. They are expected to be high priority and have access one of two watermarks lower than "min" which can be referred to as the "atomic reserve". __GFP_HIGH users get access to the first lower watermark and can be called the "high priority reserve". Over time, callers had a requirement to not block when fallback options were available. Some have abused __GFP_WAIT leading to a situation where an optimisitic allocation with a fallback option can access atomic reserves. This patch uses __GFP_ATOMIC to identify callers that are truely atomic, cannot sleep and have no alternative. High priority users continue to use __GFP_HIGH. __GFP_DIRECT_RECLAIM identifies callers that can sleep and are willing to enter direct reclaim. __GFP_KSWAPD_RECLAIM to identify callers that want to wake kswapd for background reclaim. __GFP_WAIT is redefined as a caller that is willing to enter direct reclaim and wake kswapd for background reclaim. This patch then converts a number of sites o __GFP_ATOMIC is used by callers that are high priority and have memory pools for those requests. GFP_ATOMIC uses this flag. o Callers that have a limited mempool to guarantee forward progress clear __GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall into this category where kswapd will still be woken but atomic reserves are not used as there is a one-entry mempool to guarantee progress. o Callers that are checking if they are non-blocking should use the helper gfpflags_allow_blocking() where possible. This is because checking for __GFP_WAIT as was done historically now can trigger false positives. Some exceptions like dm-crypt.c exist where the code intent is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to flag manipulations. o Callers that built their own GFP flags instead of starting with GFP_KERNEL and friends now also need to specify __GFP_KSWAPD_RECLAIM. The first key hazard to watch out for is callers that removed __GFP_WAIT and was depending on access to atomic reserves for inconspicuous reasons. In some cases it may be appropriate for them to use __GFP_HIGH. The second key hazard is callers that assembled their own combination of GFP flags instead of starting with something like GFP_KERNEL. They may now wish to specify __GFP_KSWAPD_RECLAIM. It's almost certainly harmless if it's missed in most cases as other activity will wake kswapd. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-07 08:28:21 +08:00
* __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
*/
static __must_check int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
{
struct radix_tree_preload *rtp;
struct radix_tree_node *node;
int ret = -ENOMEM;
/*
* Nodes preloaded by one cgroup can be be used by another cgroup, so
* they should never be accounted to any particular memory cgroup.
*/
gfp_mask &= ~__GFP_ACCOUNT;
preempt_disable();
rtp = this_cpu_ptr(&radix_tree_preloads);
while (rtp->nr < nr) {
preempt_enable();
node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
if (node == NULL)
goto out;
preempt_disable();
rtp = this_cpu_ptr(&radix_tree_preloads);
if (rtp->nr < nr) {
node->parent = rtp->nodes;
rtp->nodes = node;
rtp->nr++;
} else {
kmem_cache_free(radix_tree_node_cachep, node);
}
}
ret = 0;
out:
return ret;
}
lib/radix-tree.c: make radix_tree_node_alloc() work correctly within interrupt With users of radix_tree_preload() run from interrupt (block/blk-ioc.c is one such possible user), the following race can happen: radix_tree_preload() ... radix_tree_insert() radix_tree_node_alloc() if (rtp->nr) { ret = rtp->nodes[rtp->nr - 1]; <interrupt> ... radix_tree_preload() ... radix_tree_insert() radix_tree_node_alloc() if (rtp->nr) { ret = rtp->nodes[rtp->nr - 1]; And we give out one radix tree node twice. That clearly results in radix tree corruption with different results (usually OOPS) depending on which two users of radix tree race. We fix the problem by making radix_tree_node_alloc() always allocate fresh radix tree nodes when in interrupt. Using preloading when in interrupt doesn't make sense since all the allocations have to be atomic anyway and we cannot steal nodes from process-context users because some users rely on radix_tree_insert() succeeding after radix_tree_preload(). in_interrupt() check is somewhat ugly but we cannot simply key off passed gfp_mask as that is acquired from root_gfp_mask() and thus the same for all preload users. Another part of the fix is to avoid node preallocation in radix_tree_preload() when passed gfp_mask doesn't allow waiting. Again, preallocation in such case doesn't make sense and when preallocation would happen in interrupt we could possibly leak some allocated nodes. However, some users of radix_tree_preload() require following radix_tree_insert() to succeed. To avoid unexpected effects for these users, radix_tree_preload() only warns if passed gfp mask doesn't allow waiting and we provide a new function radix_tree_maybe_preload() for those users which get different gfp mask from different call sites and which are prepared to handle radix_tree_insert() failure. Signed-off-by: Jan Kara <jack@suse.cz> Cc: Jens Axboe <jaxboe@fusionio.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 05:26:05 +08:00
/*
* Load up this CPU's radix_tree_node buffer with sufficient objects to
* ensure that the addition of a single element in the tree cannot fail. On
* success, return zero, with preemption disabled. On error, return -ENOMEM
* with preemption not disabled.
*
* To make use of this facility, the radix tree must be initialised without
mm, page_alloc: distinguish between being unable to sleep, unwilling to sleep and avoiding waking kswapd __GFP_WAIT has been used to identify atomic context in callers that hold spinlocks or are in interrupts. They are expected to be high priority and have access one of two watermarks lower than "min" which can be referred to as the "atomic reserve". __GFP_HIGH users get access to the first lower watermark and can be called the "high priority reserve". Over time, callers had a requirement to not block when fallback options were available. Some have abused __GFP_WAIT leading to a situation where an optimisitic allocation with a fallback option can access atomic reserves. This patch uses __GFP_ATOMIC to identify callers that are truely atomic, cannot sleep and have no alternative. High priority users continue to use __GFP_HIGH. __GFP_DIRECT_RECLAIM identifies callers that can sleep and are willing to enter direct reclaim. __GFP_KSWAPD_RECLAIM to identify callers that want to wake kswapd for background reclaim. __GFP_WAIT is redefined as a caller that is willing to enter direct reclaim and wake kswapd for background reclaim. This patch then converts a number of sites o __GFP_ATOMIC is used by callers that are high priority and have memory pools for those requests. GFP_ATOMIC uses this flag. o Callers that have a limited mempool to guarantee forward progress clear __GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall into this category where kswapd will still be woken but atomic reserves are not used as there is a one-entry mempool to guarantee progress. o Callers that are checking if they are non-blocking should use the helper gfpflags_allow_blocking() where possible. This is because checking for __GFP_WAIT as was done historically now can trigger false positives. Some exceptions like dm-crypt.c exist where the code intent is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to flag manipulations. o Callers that built their own GFP flags instead of starting with GFP_KERNEL and friends now also need to specify __GFP_KSWAPD_RECLAIM. The first key hazard to watch out for is callers that removed __GFP_WAIT and was depending on access to atomic reserves for inconspicuous reasons. In some cases it may be appropriate for them to use __GFP_HIGH. The second key hazard is callers that assembled their own combination of GFP flags instead of starting with something like GFP_KERNEL. They may now wish to specify __GFP_KSWAPD_RECLAIM. It's almost certainly harmless if it's missed in most cases as other activity will wake kswapd. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-07 08:28:21 +08:00
* __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
lib/radix-tree.c: make radix_tree_node_alloc() work correctly within interrupt With users of radix_tree_preload() run from interrupt (block/blk-ioc.c is one such possible user), the following race can happen: radix_tree_preload() ... radix_tree_insert() radix_tree_node_alloc() if (rtp->nr) { ret = rtp->nodes[rtp->nr - 1]; <interrupt> ... radix_tree_preload() ... radix_tree_insert() radix_tree_node_alloc() if (rtp->nr) { ret = rtp->nodes[rtp->nr - 1]; And we give out one radix tree node twice. That clearly results in radix tree corruption with different results (usually OOPS) depending on which two users of radix tree race. We fix the problem by making radix_tree_node_alloc() always allocate fresh radix tree nodes when in interrupt. Using preloading when in interrupt doesn't make sense since all the allocations have to be atomic anyway and we cannot steal nodes from process-context users because some users rely on radix_tree_insert() succeeding after radix_tree_preload(). in_interrupt() check is somewhat ugly but we cannot simply key off passed gfp_mask as that is acquired from root_gfp_mask() and thus the same for all preload users. Another part of the fix is to avoid node preallocation in radix_tree_preload() when passed gfp_mask doesn't allow waiting. Again, preallocation in such case doesn't make sense and when preallocation would happen in interrupt we could possibly leak some allocated nodes. However, some users of radix_tree_preload() require following radix_tree_insert() to succeed. To avoid unexpected effects for these users, radix_tree_preload() only warns if passed gfp mask doesn't allow waiting and we provide a new function radix_tree_maybe_preload() for those users which get different gfp mask from different call sites and which are prepared to handle radix_tree_insert() failure. Signed-off-by: Jan Kara <jack@suse.cz> Cc: Jens Axboe <jaxboe@fusionio.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 05:26:05 +08:00
*/
int radix_tree_preload(gfp_t gfp_mask)
{
/* Warn on non-sensical use... */
mm, page_alloc: distinguish between being unable to sleep, unwilling to sleep and avoiding waking kswapd __GFP_WAIT has been used to identify atomic context in callers that hold spinlocks or are in interrupts. They are expected to be high priority and have access one of two watermarks lower than "min" which can be referred to as the "atomic reserve". __GFP_HIGH users get access to the first lower watermark and can be called the "high priority reserve". Over time, callers had a requirement to not block when fallback options were available. Some have abused __GFP_WAIT leading to a situation where an optimisitic allocation with a fallback option can access atomic reserves. This patch uses __GFP_ATOMIC to identify callers that are truely atomic, cannot sleep and have no alternative. High priority users continue to use __GFP_HIGH. __GFP_DIRECT_RECLAIM identifies callers that can sleep and are willing to enter direct reclaim. __GFP_KSWAPD_RECLAIM to identify callers that want to wake kswapd for background reclaim. __GFP_WAIT is redefined as a caller that is willing to enter direct reclaim and wake kswapd for background reclaim. This patch then converts a number of sites o __GFP_ATOMIC is used by callers that are high priority and have memory pools for those requests. GFP_ATOMIC uses this flag. o Callers that have a limited mempool to guarantee forward progress clear __GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall into this category where kswapd will still be woken but atomic reserves are not used as there is a one-entry mempool to guarantee progress. o Callers that are checking if they are non-blocking should use the helper gfpflags_allow_blocking() where possible. This is because checking for __GFP_WAIT as was done historically now can trigger false positives. Some exceptions like dm-crypt.c exist where the code intent is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to flag manipulations. o Callers that built their own GFP flags instead of starting with GFP_KERNEL and friends now also need to specify __GFP_KSWAPD_RECLAIM. The first key hazard to watch out for is callers that removed __GFP_WAIT and was depending on access to atomic reserves for inconspicuous reasons. In some cases it may be appropriate for them to use __GFP_HIGH. The second key hazard is callers that assembled their own combination of GFP flags instead of starting with something like GFP_KERNEL. They may now wish to specify __GFP_KSWAPD_RECLAIM. It's almost certainly harmless if it's missed in most cases as other activity will wake kswapd. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-07 08:28:21 +08:00
WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
lib/radix-tree.c: make radix_tree_node_alloc() work correctly within interrupt With users of radix_tree_preload() run from interrupt (block/blk-ioc.c is one such possible user), the following race can happen: radix_tree_preload() ... radix_tree_insert() radix_tree_node_alloc() if (rtp->nr) { ret = rtp->nodes[rtp->nr - 1]; <interrupt> ... radix_tree_preload() ... radix_tree_insert() radix_tree_node_alloc() if (rtp->nr) { ret = rtp->nodes[rtp->nr - 1]; And we give out one radix tree node twice. That clearly results in radix tree corruption with different results (usually OOPS) depending on which two users of radix tree race. We fix the problem by making radix_tree_node_alloc() always allocate fresh radix tree nodes when in interrupt. Using preloading when in interrupt doesn't make sense since all the allocations have to be atomic anyway and we cannot steal nodes from process-context users because some users rely on radix_tree_insert() succeeding after radix_tree_preload(). in_interrupt() check is somewhat ugly but we cannot simply key off passed gfp_mask as that is acquired from root_gfp_mask() and thus the same for all preload users. Another part of the fix is to avoid node preallocation in radix_tree_preload() when passed gfp_mask doesn't allow waiting. Again, preallocation in such case doesn't make sense and when preallocation would happen in interrupt we could possibly leak some allocated nodes. However, some users of radix_tree_preload() require following radix_tree_insert() to succeed. To avoid unexpected effects for these users, radix_tree_preload() only warns if passed gfp mask doesn't allow waiting and we provide a new function radix_tree_maybe_preload() for those users which get different gfp mask from different call sites and which are prepared to handle radix_tree_insert() failure. Signed-off-by: Jan Kara <jack@suse.cz> Cc: Jens Axboe <jaxboe@fusionio.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 05:26:05 +08:00
}
EXPORT_SYMBOL(radix_tree_preload);
lib/radix-tree.c: make radix_tree_node_alloc() work correctly within interrupt With users of radix_tree_preload() run from interrupt (block/blk-ioc.c is one such possible user), the following race can happen: radix_tree_preload() ... radix_tree_insert() radix_tree_node_alloc() if (rtp->nr) { ret = rtp->nodes[rtp->nr - 1]; <interrupt> ... radix_tree_preload() ... radix_tree_insert() radix_tree_node_alloc() if (rtp->nr) { ret = rtp->nodes[rtp->nr - 1]; And we give out one radix tree node twice. That clearly results in radix tree corruption with different results (usually OOPS) depending on which two users of radix tree race. We fix the problem by making radix_tree_node_alloc() always allocate fresh radix tree nodes when in interrupt. Using preloading when in interrupt doesn't make sense since all the allocations have to be atomic anyway and we cannot steal nodes from process-context users because some users rely on radix_tree_insert() succeeding after radix_tree_preload(). in_interrupt() check is somewhat ugly but we cannot simply key off passed gfp_mask as that is acquired from root_gfp_mask() and thus the same for all preload users. Another part of the fix is to avoid node preallocation in radix_tree_preload() when passed gfp_mask doesn't allow waiting. Again, preallocation in such case doesn't make sense and when preallocation would happen in interrupt we could possibly leak some allocated nodes. However, some users of radix_tree_preload() require following radix_tree_insert() to succeed. To avoid unexpected effects for these users, radix_tree_preload() only warns if passed gfp mask doesn't allow waiting and we provide a new function radix_tree_maybe_preload() for those users which get different gfp mask from different call sites and which are prepared to handle radix_tree_insert() failure. Signed-off-by: Jan Kara <jack@suse.cz> Cc: Jens Axboe <jaxboe@fusionio.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 05:26:05 +08:00
/*
* The same as above function, except we don't guarantee preloading happens.
* We do it, if we decide it helps. On success, return zero with preemption
* disabled. On error, return -ENOMEM with preemption not disabled.
*/
int radix_tree_maybe_preload(gfp_t gfp_mask)
{
mm, page_alloc: distinguish between being unable to sleep, unwilling to sleep and avoiding waking kswapd __GFP_WAIT has been used to identify atomic context in callers that hold spinlocks or are in interrupts. They are expected to be high priority and have access one of two watermarks lower than "min" which can be referred to as the "atomic reserve". __GFP_HIGH users get access to the first lower watermark and can be called the "high priority reserve". Over time, callers had a requirement to not block when fallback options were available. Some have abused __GFP_WAIT leading to a situation where an optimisitic allocation with a fallback option can access atomic reserves. This patch uses __GFP_ATOMIC to identify callers that are truely atomic, cannot sleep and have no alternative. High priority users continue to use __GFP_HIGH. __GFP_DIRECT_RECLAIM identifies callers that can sleep and are willing to enter direct reclaim. __GFP_KSWAPD_RECLAIM to identify callers that want to wake kswapd for background reclaim. __GFP_WAIT is redefined as a caller that is willing to enter direct reclaim and wake kswapd for background reclaim. This patch then converts a number of sites o __GFP_ATOMIC is used by callers that are high priority and have memory pools for those requests. GFP_ATOMIC uses this flag. o Callers that have a limited mempool to guarantee forward progress clear __GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall into this category where kswapd will still be woken but atomic reserves are not used as there is a one-entry mempool to guarantee progress. o Callers that are checking if they are non-blocking should use the helper gfpflags_allow_blocking() where possible. This is because checking for __GFP_WAIT as was done historically now can trigger false positives. Some exceptions like dm-crypt.c exist where the code intent is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to flag manipulations. o Callers that built their own GFP flags instead of starting with GFP_KERNEL and friends now also need to specify __GFP_KSWAPD_RECLAIM. The first key hazard to watch out for is callers that removed __GFP_WAIT and was depending on access to atomic reserves for inconspicuous reasons. In some cases it may be appropriate for them to use __GFP_HIGH. The second key hazard is callers that assembled their own combination of GFP flags instead of starting with something like GFP_KERNEL. They may now wish to specify __GFP_KSWAPD_RECLAIM. It's almost certainly harmless if it's missed in most cases as other activity will wake kswapd. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-07 08:28:21 +08:00
if (gfpflags_allow_blocking(gfp_mask))
return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
lib/radix-tree.c: make radix_tree_node_alloc() work correctly within interrupt With users of radix_tree_preload() run from interrupt (block/blk-ioc.c is one such possible user), the following race can happen: radix_tree_preload() ... radix_tree_insert() radix_tree_node_alloc() if (rtp->nr) { ret = rtp->nodes[rtp->nr - 1]; <interrupt> ... radix_tree_preload() ... radix_tree_insert() radix_tree_node_alloc() if (rtp->nr) { ret = rtp->nodes[rtp->nr - 1]; And we give out one radix tree node twice. That clearly results in radix tree corruption with different results (usually OOPS) depending on which two users of radix tree race. We fix the problem by making radix_tree_node_alloc() always allocate fresh radix tree nodes when in interrupt. Using preloading when in interrupt doesn't make sense since all the allocations have to be atomic anyway and we cannot steal nodes from process-context users because some users rely on radix_tree_insert() succeeding after radix_tree_preload(). in_interrupt() check is somewhat ugly but we cannot simply key off passed gfp_mask as that is acquired from root_gfp_mask() and thus the same for all preload users. Another part of the fix is to avoid node preallocation in radix_tree_preload() when passed gfp_mask doesn't allow waiting. Again, preallocation in such case doesn't make sense and when preallocation would happen in interrupt we could possibly leak some allocated nodes. However, some users of radix_tree_preload() require following radix_tree_insert() to succeed. To avoid unexpected effects for these users, radix_tree_preload() only warns if passed gfp mask doesn't allow waiting and we provide a new function radix_tree_maybe_preload() for those users which get different gfp mask from different call sites and which are prepared to handle radix_tree_insert() failure. Signed-off-by: Jan Kara <jack@suse.cz> Cc: Jens Axboe <jaxboe@fusionio.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 05:26:05 +08:00
/* Preloading doesn't help anything with this gfp mask, skip it */
preempt_disable();
return 0;
}
EXPORT_SYMBOL(radix_tree_maybe_preload);
static unsigned radix_tree_load_root(const struct radix_tree_root *root,
struct radix_tree_node **nodep, unsigned long *maxindex)
{
struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
*nodep = node;
if (likely(radix_tree_is_internal_node(node))) {
node = entry_to_node(node);
*maxindex = node_maxindex(node);
return node->shift + RADIX_TREE_MAP_SHIFT;
}
*maxindex = 0;
return 0;
}
/*
* Extend a radix tree so it can store key @index.
*/
static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp,
unsigned long index, unsigned int shift)
{
void *entry;
unsigned int maxshift;
int tag;
/* Figure out what the shift should be. */
maxshift = shift;
while (index > shift_maxindex(maxshift))
maxshift += RADIX_TREE_MAP_SHIFT;
entry = rcu_dereference_raw(root->xa_head);
if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE)))
goto out;
do {
struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL,
root, shift, 0, 1, 0);
if (!node)
return -ENOMEM;
if (is_idr(root)) {
all_tag_set(node, IDR_FREE);
if (!root_tag_get(root, IDR_FREE)) {
tag_clear(node, IDR_FREE, 0);
root_tag_set(root, IDR_FREE);
}
} else {
/* Propagate the aggregated tag info to the new child */
for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
if (root_tag_get(root, tag))
tag_set(node, tag, 0);
}
}
BUG_ON(shift > BITS_PER_LONG);
if (radix_tree_is_internal_node(entry)) {
entry_to_node(entry)->parent = node;
} else if (xa_is_value(entry)) {
/* Moving a value entry root->xa_head to a node */
node->nr_values = 1;
}
/*
* entry was already in the radix tree, so we do not need
* rcu_assign_pointer here
*/
node->slots[0] = (void __rcu *)entry;
entry = node_to_entry(node);
rcu_assign_pointer(root->xa_head, entry);
shift += RADIX_TREE_MAP_SHIFT;
} while (shift <= maxshift);
out:
return maxshift + RADIX_TREE_MAP_SHIFT;
}
/**
* radix_tree_shrink - shrink radix tree to minimum height
* @root radix tree root
*/
static inline bool radix_tree_shrink(struct radix_tree_root *root)
{
bool shrunk = false;
for (;;) {
struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
struct radix_tree_node *child;
if (!radix_tree_is_internal_node(node))
break;
node = entry_to_node(node);
/*
* The candidate node has more than one child, or its child
* is not at the leftmost slot, we cannot shrink.
*/
if (node->count != 1)
break;
child = rcu_dereference_raw(node->slots[0]);
if (!child)
break;
idr: Permit any valid kernel pointer to be stored An upcoming change to the encoding of internal entries will set the bottom two bits to 0b10. Unfortunately, m68k only aligns some data structures to 2 bytes, so the IDR will interpret them as internal entries and things will go badly wrong. Change the radix tree so that it stops either when the node indicates that it's the bottom of the tree (shift == 0) or when the entry is not an internal entry. This means we cannot insert an arbitrary kernel pointer as a multiorder entry, but the IDR does not permit multiorder entries. Annoyingly, this means the IDR can no longer take advantage of the radix tree's ability to store a single entry at offset 0 without allocating memory. A pointer which is 2-byte aligned cannot be stored directly in the root as it would be indistinguishable from a node, so we must allocate a node in order to store a 2-byte pointer at index 0. The idr_replace() function does not take a GFP flags argument, so cannot allocate memory. If a user inserts a 4-byte aligned pointer at index 0 and then replaces it with a 2-byte aligned pointer, we must be able to store it. Arbitrary pointer values are still not permitted; pointers of the form 2 + (i * 4) for values of i between 0 and 1023 are reserved for the implementation. These are not valid kernel pointers as they would point into the zero page. This change does cause a runtime memory consumption regression for the IDA. I will recover that later. Signed-off-by: Matthew Wilcox <willy@infradead.org> Tested-by: Guenter Roeck <linux@roeck-us.net>
2018-06-25 18:56:50 +08:00
/*
* For an IDR, we must not shrink entry 0 into the root in
* case somebody calls idr_replace() with a pointer that
* appears to be an internal entry
*/
if (!node->shift && is_idr(root))
break;
if (radix_tree_is_internal_node(child))
entry_to_node(child)->parent = NULL;
/*
* We don't need rcu_assign_pointer(), since we are simply
* moving the node from one part of the tree to another: if it
* was safe to dereference the old pointer to it
* (node->slots[0]), it will be safe to dereference the new
* one (root->xa_head) as far as dependent read barriers go.
*/
root->xa_head = (void __rcu *)child;
if (is_idr(root) && !tag_get(node, IDR_FREE, 0))
root_tag_clear(root, IDR_FREE);
/*
* We have a dilemma here. The node's slot[0] must not be
* NULLed in case there are concurrent lookups expecting to
* find the item. However if this was a bottom-level node,
* then it may be subject to the slot pointer being visible
* to callers dereferencing it. If item corresponding to
* slot[0] is subsequently deleted, these callers would expect
* their slot to become empty sooner or later.
*
* For example, lockless pagecache will look up a slot, deref
* the page pointer, and if the page has 0 refcount it means it
* was concurrently deleted from pagecache so try the deref
* again. Fortunately there is already a requirement for logic
* to retry the entire slot lookup -- the indirect pointer
* problem (replacing direct root node with an indirect pointer
* also results in a stale slot). So tag the slot as indirect
* to force callers to retry.
*/
node->count = 0;
if (!radix_tree_is_internal_node(child)) {
node->slots[0] = (void __rcu *)RADIX_TREE_RETRY;
}
mm: workingset: fix use-after-free in shadow node shrinker Several people report seeing warnings about inconsistent radix tree nodes followed by crashes in the workingset code, which all looked like use-after-free access from the shadow node shrinker. Dave Jones managed to reproduce the issue with a debug patch applied, which confirmed that the radix tree shrinking indeed frees shadow nodes while they are still linked to the shadow LRU: WARNING: CPU: 2 PID: 53 at lib/radix-tree.c:643 delete_node+0x1e4/0x200 CPU: 2 PID: 53 Comm: kswapd0 Not tainted 4.10.0-rc2-think+ #3 Call Trace: delete_node+0x1e4/0x200 __radix_tree_delete_node+0xd/0x10 shadow_lru_isolate+0xe6/0x220 __list_lru_walk_one.isra.4+0x9b/0x190 list_lru_walk_one+0x23/0x30 scan_shadow_nodes+0x2e/0x40 shrink_slab.part.44+0x23d/0x5d0 shrink_node+0x22c/0x330 kswapd+0x392/0x8f0 This is the WARN_ON_ONCE(!list_empty(&node->private_list)) placed in the inlined radix_tree_shrink(). The problem is with 14b468791fa9 ("mm: workingset: move shadow entry tracking to radix tree exceptional tracking"), which passes an update callback into the radix tree to link and unlink shadow leaf nodes when tree entries change, but forgot to pass the callback when reclaiming a shadow node. While the reclaimed shadow node itself is unlinked by the shrinker, its deletion from the tree can cause the left-most leaf node in the tree to be shrunk. If that happens to be a shadow node as well, we don't unlink it from the LRU as we should. Consider this tree, where the s are shadow entries: root->rnode | [0 n] | | [s ] [sssss] Now the shadow node shrinker reclaims the rightmost leaf node through the shadow node LRU: root->rnode | [0 ] | [s ] Because the parent of the deleted node is the first level below the root and has only one child in the left-most slot, the intermediate level is shrunk and the node containing the single shadow is put in its place: root->rnode | [s ] The shrinker again sees a single left-most slot in a first level node and thus decides to store the shadow in root->rnode directly and free the node - which is a leaf node on the shadow node LRU. root->rnode | s Without the update callback, the freed node remains on the shadow LRU, where it causes later shrinker runs to crash. Pass the node updater callback into __radix_tree_delete_node() in case the deletion causes the left-most branch in the tree to collapse too. Also add warnings when linked nodes are freed right away, rather than wait for the use-after-free when the list is scanned much later. Fixes: 14b468791fa9 ("mm: workingset: move shadow entry tracking to radix tree exceptional tracking") Reported-by: Dave Chinner <david@fromorbit.com> Reported-by: Hugh Dickins <hughd@google.com> Reported-by: Andrea Arcangeli <aarcange@redhat.com> Reported-and-tested-by: Dave Jones <davej@codemonkey.org.uk> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Chris Leech <cleech@redhat.com> Cc: Lee Duncan <lduncan@suse.com> Cc: Jan Kara <jack@suse.cz> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <mawilcox@linuxonhyperv.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-07 08:21:43 +08:00
WARN_ON_ONCE(!list_empty(&node->private_list));
radix_tree_node_free(node);
shrunk = true;
}
return shrunk;
}
static bool delete_node(struct radix_tree_root *root,
struct radix_tree_node *node)
{
bool deleted = false;
do {
struct radix_tree_node *parent;
if (node->count) {
if (node_to_entry(node) ==
rcu_dereference_raw(root->xa_head))
deleted |= radix_tree_shrink(root);
return deleted;
}
parent = node->parent;
if (parent) {
parent->slots[node->offset] = NULL;
parent->count--;
} else {
/*
* Shouldn't the tags already have all been cleared
* by the caller?
*/
if (!is_idr(root))
root_tag_clear_all(root);
root->xa_head = NULL;
}
mm: workingset: fix use-after-free in shadow node shrinker Several people report seeing warnings about inconsistent radix tree nodes followed by crashes in the workingset code, which all looked like use-after-free access from the shadow node shrinker. Dave Jones managed to reproduce the issue with a debug patch applied, which confirmed that the radix tree shrinking indeed frees shadow nodes while they are still linked to the shadow LRU: WARNING: CPU: 2 PID: 53 at lib/radix-tree.c:643 delete_node+0x1e4/0x200 CPU: 2 PID: 53 Comm: kswapd0 Not tainted 4.10.0-rc2-think+ #3 Call Trace: delete_node+0x1e4/0x200 __radix_tree_delete_node+0xd/0x10 shadow_lru_isolate+0xe6/0x220 __list_lru_walk_one.isra.4+0x9b/0x190 list_lru_walk_one+0x23/0x30 scan_shadow_nodes+0x2e/0x40 shrink_slab.part.44+0x23d/0x5d0 shrink_node+0x22c/0x330 kswapd+0x392/0x8f0 This is the WARN_ON_ONCE(!list_empty(&node->private_list)) placed in the inlined radix_tree_shrink(). The problem is with 14b468791fa9 ("mm: workingset: move shadow entry tracking to radix tree exceptional tracking"), which passes an update callback into the radix tree to link and unlink shadow leaf nodes when tree entries change, but forgot to pass the callback when reclaiming a shadow node. While the reclaimed shadow node itself is unlinked by the shrinker, its deletion from the tree can cause the left-most leaf node in the tree to be shrunk. If that happens to be a shadow node as well, we don't unlink it from the LRU as we should. Consider this tree, where the s are shadow entries: root->rnode | [0 n] | | [s ] [sssss] Now the shadow node shrinker reclaims the rightmost leaf node through the shadow node LRU: root->rnode | [0 ] | [s ] Because the parent of the deleted node is the first level below the root and has only one child in the left-most slot, the intermediate level is shrunk and the node containing the single shadow is put in its place: root->rnode | [s ] The shrinker again sees a single left-most slot in a first level node and thus decides to store the shadow in root->rnode directly and free the node - which is a leaf node on the shadow node LRU. root->rnode | s Without the update callback, the freed node remains on the shadow LRU, where it causes later shrinker runs to crash. Pass the node updater callback into __radix_tree_delete_node() in case the deletion causes the left-most branch in the tree to collapse too. Also add warnings when linked nodes are freed right away, rather than wait for the use-after-free when the list is scanned much later. Fixes: 14b468791fa9 ("mm: workingset: move shadow entry tracking to radix tree exceptional tracking") Reported-by: Dave Chinner <david@fromorbit.com> Reported-by: Hugh Dickins <hughd@google.com> Reported-by: Andrea Arcangeli <aarcange@redhat.com> Reported-and-tested-by: Dave Jones <davej@codemonkey.org.uk> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Chris Leech <cleech@redhat.com> Cc: Lee Duncan <lduncan@suse.com> Cc: Jan Kara <jack@suse.cz> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <mawilcox@linuxonhyperv.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-07 08:21:43 +08:00
WARN_ON_ONCE(!list_empty(&node->private_list));
radix_tree_node_free(node);
deleted = true;
node = parent;
} while (node);
return deleted;
}
/**
* __radix_tree_create - create a slot in a radix tree
* @root: radix tree root
* @index: index key
* @nodep: returns node
* @slotp: returns slot
*
* Create, if necessary, and return the node and slot for an item
* at position @index in the radix tree @root.
*
* Until there is more than one item in the tree, no nodes are
* allocated and @root->xa_head is used as a direct slot instead of
* pointing to a node, in which case *@nodep will be NULL.
*
* Returns -ENOMEM, or 0 for success.
*/
static int __radix_tree_create(struct radix_tree_root *root,
unsigned long index, struct radix_tree_node **nodep,
void __rcu ***slotp)
{
struct radix_tree_node *node = NULL, *child;
void __rcu **slot = (void __rcu **)&root->xa_head;
unsigned long maxindex;
unsigned int shift, offset = 0;
unsigned long max = index;
gfp_t gfp = root_gfp_mask(root);
shift = radix_tree_load_root(root, &child, &maxindex);
/* Make sure the tree is high enough. */
if (max > maxindex) {
int error = radix_tree_extend(root, gfp, max, shift);
if (error < 0)
return error;
shift = error;
child = rcu_dereference_raw(root->xa_head);
}
while (shift > 0) {
shift -= RADIX_TREE_MAP_SHIFT;
if (child == NULL) {
/* Have to add a child node. */
child = radix_tree_node_alloc(gfp, node, root, shift,
offset, 0, 0);
if (!child)
return -ENOMEM;
rcu_assign_pointer(*slot, node_to_entry(child));
if (node)
node->count++;
} else if (!radix_tree_is_internal_node(child))
break;
/* Go a level down */
node = entry_to_node(child);
offset = radix_tree_descend(node, &child, index);
slot = &node->slots[offset];
}
if (nodep)
*nodep = node;
if (slotp)
*slotp = slot;
return 0;
}
/*
* Free any nodes below this node. The tree is presumed to not need
* shrinking, and any user data in the tree is presumed to not need a
* destructor called on it. If we need to add a destructor, we can
* add that functionality later. Note that we may not clear tags or
* slots from the tree as an RCU walker may still have a pointer into
* this subtree. We could replace the entries with RADIX_TREE_RETRY,
* but we'll still have to clear those in rcu_free.
*/
static void radix_tree_free_nodes(struct radix_tree_node *node)
{
unsigned offset = 0;
struct radix_tree_node *child = entry_to_node(node);
for (;;) {
void *entry = rcu_dereference_raw(child->slots[offset]);
if (xa_is_node(entry) && child->shift) {
child = entry_to_node(entry);
offset = 0;
continue;
}
offset++;
while (offset == RADIX_TREE_MAP_SIZE) {
struct radix_tree_node *old = child;
offset = child->offset + 1;
child = child->parent;
WARN_ON_ONCE(!list_empty(&old->private_list));
radix_tree_node_free(old);
if (old == entry_to_node(node))
return;
}
}
}
static inline int insert_entries(struct radix_tree_node *node,
void __rcu **slot, void *item, bool replace)
{
if (*slot)
return -EEXIST;
rcu_assign_pointer(*slot, item);
if (node) {
node->count++;
if (xa_is_value(item))
node->nr_values++;
}
return 1;
}
/**
* __radix_tree_insert - insert into a radix tree
* @root: radix tree root
* @index: index key
* @item: item to insert
*
* Insert an item into the radix tree at position @index.
*/
int radix_tree_insert(struct radix_tree_root *root, unsigned long index,
void *item)
{
struct radix_tree_node *node;
void __rcu **slot;
int error;
BUG_ON(radix_tree_is_internal_node(item));
error = __radix_tree_create(root, index, &node, &slot);
if (error)
return error;
error = insert_entries(node, slot, item, false);
if (error < 0)
return error;
if (node) {
unsigned offset = get_slot_offset(node, slot);
BUG_ON(tag_get(node, 0, offset));
BUG_ON(tag_get(node, 1, offset));
BUG_ON(tag_get(node, 2, offset));
} else {
BUG_ON(root_tags_get(root));
}
return 0;
}
EXPORT_SYMBOL(radix_tree_insert);
/**
* __radix_tree_lookup - lookup an item in a radix tree
* @root: radix tree root
* @index: index key
* @nodep: returns node
* @slotp: returns slot
*
* Lookup and return the item at position @index in the radix
* tree @root.
*
* Until there is more than one item in the tree, no nodes are
* allocated and @root->xa_head is used as a direct slot instead of
* pointing to a node, in which case *@nodep will be NULL.
[PATCH] radix-tree: RCU lockless readside Make radix tree lookups safe to be performed without locks. Readers are protected against nodes being deleted by using RCU based freeing. Readers are protected against new node insertion by using memory barriers to ensure the node itself will be properly written before it is visible in the radix tree. Each radix tree node keeps a record of their height (above leaf nodes). This height does not change after insertion -- when the radix tree is extended, higher nodes are only inserted in the top. So a lookup can take the pointer to what is *now* the root node, and traverse down it even if the tree is concurrently extended and this node becomes a subtree of a new root. "Direct" pointers (tree height of 0, where root->rnode points directly to the data item) are handled by using the low bit of the pointer to signal whether rnode is a direct pointer or a pointer to a radix tree node. When a reader wants to traverse the next branch, they will take a copy of the pointer. This pointer will be either NULL (and the branch is empty) or non-NULL (and will point to a valid node). [akpm@osdl.org: cleanups] [Lee.Schermerhorn@hp.com: bugfixes, comments, simplifications] [clameter@sgi.com: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 12:33:44 +08:00
*/
void *__radix_tree_lookup(const struct radix_tree_root *root,
unsigned long index, struct radix_tree_node **nodep,
void __rcu ***slotp)
{
struct radix_tree_node *node, *parent;
unsigned long maxindex;
void __rcu **slot;
restart:
parent = NULL;
slot = (void __rcu **)&root->xa_head;
radix_tree_load_root(root, &node, &maxindex);
if (index > maxindex)
return NULL;
while (radix_tree_is_internal_node(node)) {
unsigned offset;
if (node == RADIX_TREE_RETRY)
goto restart;
parent = entry_to_node(node);
offset = radix_tree_descend(parent, &node, index);
slot = parent->slots + offset;
idr: Permit any valid kernel pointer to be stored An upcoming change to the encoding of internal entries will set the bottom two bits to 0b10. Unfortunately, m68k only aligns some data structures to 2 bytes, so the IDR will interpret them as internal entries and things will go badly wrong. Change the radix tree so that it stops either when the node indicates that it's the bottom of the tree (shift == 0) or when the entry is not an internal entry. This means we cannot insert an arbitrary kernel pointer as a multiorder entry, but the IDR does not permit multiorder entries. Annoyingly, this means the IDR can no longer take advantage of the radix tree's ability to store a single entry at offset 0 without allocating memory. A pointer which is 2-byte aligned cannot be stored directly in the root as it would be indistinguishable from a node, so we must allocate a node in order to store a 2-byte pointer at index 0. The idr_replace() function does not take a GFP flags argument, so cannot allocate memory. If a user inserts a 4-byte aligned pointer at index 0 and then replaces it with a 2-byte aligned pointer, we must be able to store it. Arbitrary pointer values are still not permitted; pointers of the form 2 + (i * 4) for values of i between 0 and 1023 are reserved for the implementation. These are not valid kernel pointers as they would point into the zero page. This change does cause a runtime memory consumption regression for the IDA. I will recover that later. Signed-off-by: Matthew Wilcox <willy@infradead.org> Tested-by: Guenter Roeck <linux@roeck-us.net>
2018-06-25 18:56:50 +08:00
if (parent->shift == 0)
break;
}
if (nodep)
*nodep = parent;
if (slotp)
*slotp = slot;
return node;
}
/**
* radix_tree_lookup_slot - lookup a slot in a radix tree
* @root: radix tree root
* @index: index key
*
* Returns: the slot corresponding to the position @index in the
* radix tree @root. This is useful for update-if-exists operations.
*
* This function can be called under rcu_read_lock iff the slot is not
* modified by radix_tree_replace_slot, otherwise it must be called
* exclusive from other writers. Any dereference of the slot must be done
* using radix_tree_deref_slot.
*/
void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root,
unsigned long index)
{
void __rcu **slot;
if (!__radix_tree_lookup(root, index, NULL, &slot))
return NULL;
return slot;
}
EXPORT_SYMBOL(radix_tree_lookup_slot);
/**
* radix_tree_lookup - perform lookup operation on a radix tree
* @root: radix tree root
* @index: index key
*
* Lookup the item at the position @index in the radix tree @root.
[PATCH] radix-tree: RCU lockless readside Make radix tree lookups safe to be performed without locks. Readers are protected against nodes being deleted by using RCU based freeing. Readers are protected against new node insertion by using memory barriers to ensure the node itself will be properly written before it is visible in the radix tree. Each radix tree node keeps a record of their height (above leaf nodes). This height does not change after insertion -- when the radix tree is extended, higher nodes are only inserted in the top. So a lookup can take the pointer to what is *now* the root node, and traverse down it even if the tree is concurrently extended and this node becomes a subtree of a new root. "Direct" pointers (tree height of 0, where root->rnode points directly to the data item) are handled by using the low bit of the pointer to signal whether rnode is a direct pointer or a pointer to a radix tree node. When a reader wants to traverse the next branch, they will take a copy of the pointer. This pointer will be either NULL (and the branch is empty) or non-NULL (and will point to a valid node). [akpm@osdl.org: cleanups] [Lee.Schermerhorn@hp.com: bugfixes, comments, simplifications] [clameter@sgi.com: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 12:33:44 +08:00
*
* This function can be called under rcu_read_lock, however the caller
* must manage lifetimes of leaf nodes (eg. RCU may also be used to free
* them safely). No RCU barriers are required to access or modify the
* returned item, however.
*/
void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
{
return __radix_tree_lookup(root, index, NULL, NULL);
}
EXPORT_SYMBOL(radix_tree_lookup);
static void replace_slot(void __rcu **slot, void *item,
struct radix_tree_node *node, int count, int values)
{
if (node && (count || values)) {
node->count += count;
node->nr_values += values;
}
rcu_assign_pointer(*slot, item);
}
static bool node_tag_get(const struct radix_tree_root *root,
const struct radix_tree_node *node,
unsigned int tag, unsigned int offset)
{
if (node)
return tag_get(node, tag, offset);
return root_tag_get(root, tag);
}
/*
* IDR users want to be able to store NULL in the tree, so if the slot isn't
* free, don't adjust the count, even if it's transitioning between NULL and
* non-NULL. For the IDA, we mark slots as being IDR_FREE while they still
* have empty bits, but it only stores NULL in slots when they're being
* deleted.
*/
static int calculate_count(struct radix_tree_root *root,
struct radix_tree_node *node, void __rcu **slot,
void *item, void *old)
{
if (is_idr(root)) {
unsigned offset = get_slot_offset(node, slot);
bool free = node_tag_get(root, node, IDR_FREE, offset);
if (!free)
return 0;
if (!old)
return 1;
}
return !!item - !!old;
}
/**
* __radix_tree_replace - replace item in a slot
* @root: radix tree root
* @node: pointer to tree node
* @slot: pointer to slot in @node
* @item: new item to store in the slot.
*
* For use with __radix_tree_lookup(). Caller must hold tree write locked
* across slot lookup and replacement.
*/
void __radix_tree_replace(struct radix_tree_root *root,
struct radix_tree_node *node,
void __rcu **slot, void *item)
{
void *old = rcu_dereference_raw(*slot);
int values = !!xa_is_value(item) - !!xa_is_value(old);
int count = calculate_count(root, node, slot, item, old);
/*
* This function supports replacing value entries and
* deleting entries, but that needs accounting against the
* node unless the slot is root->xa_head.
*/
WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->xa_head) &&
(count || values));
replace_slot(slot, item, node, count, values);
if (!node)
return;
delete_node(root, node);
}
/**
* radix_tree_replace_slot - replace item in a slot
* @root: radix tree root
* @slot: pointer to slot
* @item: new item to store in the slot.
*
* For use with radix_tree_lookup_slot() and
* radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked
* across slot lookup and replacement.
*
* NOTE: This cannot be used to switch between non-entries (empty slots),
* regular entries, and value entries, as that requires accounting
* inside the radix tree node. When switching from one type of entry or
* deleting, use __radix_tree_lookup() and __radix_tree_replace() or
* radix_tree_iter_replace().
*/
void radix_tree_replace_slot(struct radix_tree_root *root,
void __rcu **slot, void *item)
{
__radix_tree_replace(root, NULL, slot, item);
}
EXPORT_SYMBOL(radix_tree_replace_slot);
/**
* radix_tree_iter_replace - replace item in a slot
* @root: radix tree root
* @slot: pointer to slot
* @item: new item to store in the slot.
*
* For use with radix_tree_for_each_slot().
* Caller must hold tree write locked.
*/
void radix_tree_iter_replace(struct radix_tree_root *root,
const struct radix_tree_iter *iter,
void __rcu **slot, void *item)
{
__radix_tree_replace(root, iter->node, slot, item);
}
static void node_tag_set(struct radix_tree_root *root,
struct radix_tree_node *node,
unsigned int tag, unsigned int offset)
{
while (node) {
if (tag_get(node, tag, offset))
return;
tag_set(node, tag, offset);
offset = node->offset;
node = node->parent;
}
if (!root_tag_get(root, tag))
root_tag_set(root, tag);
}
/**
* radix_tree_tag_set - set a tag on a radix tree node
* @root: radix tree root
* @index: index key
* @tag: tag index
*
* Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
* corresponding to @index in the radix tree. From
* the root all the way down to the leaf node.
*
* Returns the address of the tagged item. Setting a tag on a not-present
* item is a bug.
*/
void *radix_tree_tag_set(struct radix_tree_root *root,
unsigned long index, unsigned int tag)
{
struct radix_tree_node *node, *parent;
unsigned long maxindex;
radix_tree_load_root(root, &node, &maxindex);
BUG_ON(index > maxindex);
while (radix_tree_is_internal_node(node)) {
unsigned offset;
parent = entry_to_node(node);
offset = radix_tree_descend(parent, &node, index);
BUG_ON(!node);
if (!tag_get(parent, tag, offset))
tag_set(parent, tag, offset);
}
/* set the root's tag bit */
if (!root_tag_get(root, tag))
root_tag_set(root, tag);
return node;
}
EXPORT_SYMBOL(radix_tree_tag_set);
static void node_tag_clear(struct radix_tree_root *root,
struct radix_tree_node *node,
unsigned int tag, unsigned int offset)
{
while (node) {
if (!tag_get(node, tag, offset))
return;
tag_clear(node, tag, offset);
if (any_tag_set(node, tag))
return;
offset = node->offset;
node = node->parent;
}
/* clear the root's tag bit */
if (root_tag_get(root, tag))
root_tag_clear(root, tag);
}
/**
* radix_tree_tag_clear - clear a tag on a radix tree node
* @root: radix tree root
* @index: index key
* @tag: tag index
*
* Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
* corresponding to @index in the radix tree. If this causes
* the leaf node to have no tags set then clear the tag in the
* next-to-leaf node, etc.
*
* Returns the address of the tagged item on success, else NULL. ie:
* has the same return value and semantics as radix_tree_lookup().
*/
void *radix_tree_tag_clear(struct radix_tree_root *root,
unsigned long index, unsigned int tag)
{
struct radix_tree_node *node, *parent;
unsigned long maxindex;
radix_tree: take radix_tree_path off stack Down, down in the deepest depths of GFP_NOIO page reclaim, we have shrink_page_list() calling __remove_mapping() calling __delete_from_ swap_cache() or __delete_from_page_cache(). You would not expect those to need much stack, but in fact they call radix_tree_delete(): which declares a 192-byte radix_tree_path array on its stack (to record the node,offsets it visits when descending, in case it needs to ascend to update them). And if any tag is still set [1], that calls radix_tree_tag_clear(), which declares a further such 192-byte radix_tree_path array on the stack. (At least we have interrupts disabled here, so won't then be pushing registers too.) That was probably a good choice when most users were 32-bit (array of half the size), and adding fields to radix_tree_node would have bloated it unnecessarily. But nowadays many are 64-bit, and each radix_tree_node contains a struct rcu_head, which is only used when freeing; whereas the radix_tree_path info is only used for updating the tree (deleting, clearing tags or setting tags if tagged) when a lock must be held, of no interest when accessing the tree locklessly. So add a parent pointer to the radix_tree_node, in union with the rcu_head, and remove all uses of the radix_tree_path. There would be space in that union to save the offset when descending as before (we can argue that a lock must already be held to exclude other users), but recalculating it when ascending is both easy (a constant shift and a constant mask) and uncommon, so it seems better just to do that. Two little optimizations: no need to decrement height when descending, adjusting shift is enough; and once radix_tree_tag_if_tagged() has set tag on a node and its ancestors, it need not ascend from that node again. perf on the radix tree test harness reports radix_tree_insert() as 2% slower (now having to set parent), but radix_tree_delete() 24% faster. Surely that's an exaggeration from rtth's artificially low map shift 3, but forcing it back to 6 still rates radix_tree_delete() 8% faster. [1] Can a pagecache tag (dirty, writeback or towrite) actually still be set at the time of radix_tree_delete()? Perhaps not if the filesystem is well-behaved. But although I've not tracked any stack overflow down to this cause, I have observed a curious case in which a dirty tag is set and left set on tmpfs: page migration's migrate_page_copy() happens to use __set_page_dirty_nobuffers() to set PageDirty on the newpage, and that sets PAGECACHE_TAG_DIRTY as a side-effect - harmless to a filesystem which doesn't use tags, except for this stack depth issue. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: Dave Chinner <david@fromorbit.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Nai Xia <nai.xia@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-13 09:20:41 +08:00
int uninitialized_var(offset);
radix_tree_load_root(root, &node, &maxindex);
if (index > maxindex)
return NULL;
parent = NULL;
while (radix_tree_is_internal_node(node)) {
parent = entry_to_node(node);
offset = radix_tree_descend(parent, &node, index);
}
if (node)
node_tag_clear(root, parent, tag, offset);
return node;
}
EXPORT_SYMBOL(radix_tree_tag_clear);
/**
* radix_tree_iter_tag_clear - clear a tag on the current iterator entry
* @root: radix tree root
* @iter: iterator state
* @tag: tag to clear
*/
void radix_tree_iter_tag_clear(struct radix_tree_root *root,
const struct radix_tree_iter *iter, unsigned int tag)
{
node_tag_clear(root, iter->node, tag, iter_offset(iter));
}
/**
* radix_tree_tag_get - get a tag on a radix tree node
* @root: radix tree root
* @index: index key
* @tag: tag index (< RADIX_TREE_MAX_TAGS)
*
* Return values:
*
* 0: tag not present or not set
* 1: tag set
radix_tree_tag_get() is not as safe as the docs make out [ver #2] radix_tree_tag_get() is not safe to use concurrently with radix_tree_tag_set() or radix_tree_tag_clear(). The problem is that the double tag_get() in radix_tree_tag_get(): if (!tag_get(node, tag, offset)) saw_unset_tag = 1; if (height == 1) { int ret = tag_get(node, tag, offset); may see the value change due to the action of set/clear. RCU is no protection against this as no pointers are being changed, no nodes are being replaced according to a COW protocol - set/clear alter the node directly. The documentation in linux/radix-tree.h, however, says that radix_tree_tag_get() is an exception to the rule that "any function modifying the tree or tags (...) must exclude other modifications, and exclude any functions reading the tree". The problem is that the next statement in radix_tree_tag_get() checks that the tag doesn't vary over time: BUG_ON(ret && saw_unset_tag); This has been seen happening in FS-Cache: https://www.redhat.com/archives/linux-cachefs/2010-April/msg00013.html To this end, remove the BUG_ON() from radix_tree_tag_get() and note in various comments that the value of the tag may change whilst the RCU read lock is held, and thus that the return value of radix_tree_tag_get() may not be relied upon unless radix_tree_tag_set/clear() and radix_tree_delete() are excluded from running concurrently with it. Reported-by: Romain DEGEZ <romain.degez@smartjog.com> Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-04-07 05:36:20 +08:00
*
* Note that the return value of this function may not be relied on, even if
* the RCU lock is held, unless tag modification and node deletion are excluded
* from concurrency.
*/
int radix_tree_tag_get(const struct radix_tree_root *root,
unsigned long index, unsigned int tag)
{
struct radix_tree_node *node, *parent;
unsigned long maxindex;
if (!root_tag_get(root, tag))
return 0;
radix_tree_load_root(root, &node, &maxindex);
if (index > maxindex)
return 0;
[PATCH] radix-tree: RCU lockless readside Make radix tree lookups safe to be performed without locks. Readers are protected against nodes being deleted by using RCU based freeing. Readers are protected against new node insertion by using memory barriers to ensure the node itself will be properly written before it is visible in the radix tree. Each radix tree node keeps a record of their height (above leaf nodes). This height does not change after insertion -- when the radix tree is extended, higher nodes are only inserted in the top. So a lookup can take the pointer to what is *now* the root node, and traverse down it even if the tree is concurrently extended and this node becomes a subtree of a new root. "Direct" pointers (tree height of 0, where root->rnode points directly to the data item) are handled by using the low bit of the pointer to signal whether rnode is a direct pointer or a pointer to a radix tree node. When a reader wants to traverse the next branch, they will take a copy of the pointer. This pointer will be either NULL (and the branch is empty) or non-NULL (and will point to a valid node). [akpm@osdl.org: cleanups] [Lee.Schermerhorn@hp.com: bugfixes, comments, simplifications] [clameter@sgi.com: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 12:33:44 +08:00
while (radix_tree_is_internal_node(node)) {
unsigned offset;
parent = entry_to_node(node);
offset = radix_tree_descend(parent, &node, index);
if (!tag_get(parent, tag, offset))
return 0;
if (node == RADIX_TREE_RETRY)
break;
}
return 1;
}
EXPORT_SYMBOL(radix_tree_tag_get);
radix-tree: improve multiorder iterators This fixes several interlinked problems with the iterators in the presence of multiorder entries. 1. radix_tree_iter_next() would only advance by one slot, which would result in the iterators returning the same entry more than once if there were sibling entries. 2. radix_tree_next_slot() could return an internal pointer instead of a user pointer if a tagged multiorder entry was immediately followed by an entry of lower order. 3. radix_tree_next_slot() expanded to a lot more code than it used to when multiorder support was compiled in. And I wasn't comfortable with entry_to_node() being in a header file. Fixing radix_tree_iter_next() for the presence of sibling entries necessarily involves examining the contents of the radix tree, so we now need to pass 'slot' to radix_tree_iter_next(), and we need to change the calling convention so it is called *before* dropping the lock which protects the tree. Also rename it to radix_tree_iter_resume(), as some people thought it was necessary to call radix_tree_iter_next() each time around the loop. radix_tree_next_slot() becomes closer to how it looked before multiorder support was introduced. It only checks to see if the next entry in the chunk is a sibling entry or a pointer to a node; this should be rare enough that handling this case out of line is not a performance impact (and such impact is amortised by the fact that the entry we just processed was a multiorder entry). Also, radix_tree_next_slot() used to force a new chunk lookup for untagged entries, which is more expensive than the out of line sibling entry skipping. Link: http://lkml.kernel.org/r/1480369871-5271-55-git-send-email-mawilcox@linuxonhyperv.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-15 07:08:49 +08:00
/* Construct iter->tags bit-mask from node->tags[tag] array */
static void set_iter_tags(struct radix_tree_iter *iter,
struct radix_tree_node *node, unsigned offset,
unsigned tag)
{
unsigned tag_long = offset / BITS_PER_LONG;
unsigned tag_bit = offset % BITS_PER_LONG;
if (!node) {
iter->tags = 1;
return;
}
radix-tree: improve multiorder iterators This fixes several interlinked problems with the iterators in the presence of multiorder entries. 1. radix_tree_iter_next() would only advance by one slot, which would result in the iterators returning the same entry more than once if there were sibling entries. 2. radix_tree_next_slot() could return an internal pointer instead of a user pointer if a tagged multiorder entry was immediately followed by an entry of lower order. 3. radix_tree_next_slot() expanded to a lot more code than it used to when multiorder support was compiled in. And I wasn't comfortable with entry_to_node() being in a header file. Fixing radix_tree_iter_next() for the presence of sibling entries necessarily involves examining the contents of the radix tree, so we now need to pass 'slot' to radix_tree_iter_next(), and we need to change the calling convention so it is called *before* dropping the lock which protects the tree. Also rename it to radix_tree_iter_resume(), as some people thought it was necessary to call radix_tree_iter_next() each time around the loop. radix_tree_next_slot() becomes closer to how it looked before multiorder support was introduced. It only checks to see if the next entry in the chunk is a sibling entry or a pointer to a node; this should be rare enough that handling this case out of line is not a performance impact (and such impact is amortised by the fact that the entry we just processed was a multiorder entry). Also, radix_tree_next_slot() used to force a new chunk lookup for untagged entries, which is more expensive than the out of line sibling entry skipping. Link: http://lkml.kernel.org/r/1480369871-5271-55-git-send-email-mawilcox@linuxonhyperv.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-15 07:08:49 +08:00
iter->tags = node->tags[tag][tag_long] >> tag_bit;
/* This never happens if RADIX_TREE_TAG_LONGS == 1 */
if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
/* Pick tags from next element */
if (tag_bit)
iter->tags |= node->tags[tag][tag_long + 1] <<
(BITS_PER_LONG - tag_bit);
/* Clip chunk size, here only BITS_PER_LONG tags */
iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
}
}
void __rcu **radix_tree_iter_resume(void __rcu **slot,
struct radix_tree_iter *iter)
radix-tree: improve multiorder iterators This fixes several interlinked problems with the iterators in the presence of multiorder entries. 1. radix_tree_iter_next() would only advance by one slot, which would result in the iterators returning the same entry more than once if there were sibling entries. 2. radix_tree_next_slot() could return an internal pointer instead of a user pointer if a tagged multiorder entry was immediately followed by an entry of lower order. 3. radix_tree_next_slot() expanded to a lot more code than it used to when multiorder support was compiled in. And I wasn't comfortable with entry_to_node() being in a header file. Fixing radix_tree_iter_next() for the presence of sibling entries necessarily involves examining the contents of the radix tree, so we now need to pass 'slot' to radix_tree_iter_next(), and we need to change the calling convention so it is called *before* dropping the lock which protects the tree. Also rename it to radix_tree_iter_resume(), as some people thought it was necessary to call radix_tree_iter_next() each time around the loop. radix_tree_next_slot() becomes closer to how it looked before multiorder support was introduced. It only checks to see if the next entry in the chunk is a sibling entry or a pointer to a node; this should be rare enough that handling this case out of line is not a performance impact (and such impact is amortised by the fact that the entry we just processed was a multiorder entry). Also, radix_tree_next_slot() used to force a new chunk lookup for untagged entries, which is more expensive than the out of line sibling entry skipping. Link: http://lkml.kernel.org/r/1480369871-5271-55-git-send-email-mawilcox@linuxonhyperv.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-15 07:08:49 +08:00
{
slot++;
iter->index = __radix_tree_iter_add(iter, 1);
iter->next_index = iter->index;
iter->tags = 0;
return NULL;
}
EXPORT_SYMBOL(radix_tree_iter_resume);
radix-tree: introduce bit-optimized iterator A series of radix tree cleanups, and usage of them in the core pagecache code. Micro-benchmark: lookup 14 slots (typical page-vector size) in radix-tree there earch <step> slot filled and tagged before/after - nsec per full scan through tree * Intel Sandy Bridge i7-2620M 4Mb L3 New code always faster * AMD Athlon 6000+ 2x1Mb L2, without L3 New code generally faster, Minor degradation (marked with "*") for huge sparse trees * i386 on Sandy Bridge New code faster for common cases: tagged and dense trees. Some degradations for non-tagged lookup on sparse trees. Ideally, there might help __ffs() analog for searching first non-zero long element in array, gcc sometimes cannot optimize this loop corretly. Numbers: CPU: Intel Sandy Bridge i7-2620M 4Mb L3 radix-tree with 1024 slots: tagged lookup step 1 before 7156 after 3613 step 2 before 5399 after 2696 step 3 before 4779 after 1928 step 4 before 4456 after 1429 step 5 before 4292 after 1213 step 6 before 4183 after 1052 step 7 before 4157 after 951 step 8 before 4016 after 812 step 9 before 3952 after 851 step 10 before 3937 after 732 step 11 before 4023 after 709 step 12 before 3872 after 657 step 13 before 3892 after 633 step 14 before 3720 after 591 step 15 before 3879 after 578 step 16 before 3561 after 513 normal lookup step 1 before 4266 after 3301 step 2 before 2695 after 2129 step 3 before 2083 after 1712 step 4 before 1801 after 1534 step 5 before 1628 after 1313 step 6 before 1551 after 1263 step 7 before 1475 after 1185 step 8 before 1432 after 1167 step 9 before 1373 after 1092 step 10 before 1339 after 1134 step 11 before 1292 after 1056 step 12 before 1319 after 1030 step 13 before 1276 after 1004 step 14 before 1256 after 987 step 15 before 1228 after 992 step 16 before 1247 after 999 radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1086102841 after 674196409 step 2 before 816839155 after 498138306 step 7 before 599728907 after 240676762 step 15 before 555729253 after 185219677 step 63 before 606637748 after 128585664 step 64 before 608384432 after 102945089 step 65 before 596987114 after 123996019 step 128 before 304459225 after 56783056 step 256 before 158846855 after 31232481 step 512 before 86085652 after 18950595 step 12345 before 6517189 after 1674057 normal lookup step 1 before 626064869 after 544418266 step 2 before 418809975 after 336321473 step 7 before 242303598 after 207755560 step 15 before 208380563 after 176496355 step 63 before 186854206 after 167283638 step 64 before 176188060 after 170143976 step 65 before 185139608 after 167487116 step 128 before 88181865 after 86913490 step 256 before 45733628 after 45143534 step 512 before 24506038 after 23859036 step 12345 before 2177425 after 2018662 * AMD Athlon 6000+ 2x1Mb L2, without L3 radix-tree with 1024 slots: tag-lookup step 1 before 8164 after 5379 step 2 before 5818 after 5581 step 3 before 4959 after 4213 step 4 before 4371 after 3386 step 5 before 4204 after 2997 step 6 before 4950 after 2744 step 7 before 4598 after 2480 step 8 before 4251 after 2288 step 9 before 4262 after 2243 step 10 before 4175 after 2131 step 11 before 3999 after 2024 step 12 before 3979 after 1994 step 13 before 3842 after 1929 step 14 before 3750 after 1810 step 15 before 3735 after 1810 step 16 before 3532 after 1660 normal-lookup step 1 before 7875 after 5847 step 2 before 4808 after 4071 step 3 before 4073 after 3462 step 4 before 3677 after 3074 step 5 before 4308 after 2978 step 6 before 3911 after 3807 step 7 before 3635 after 3522 step 8 before 3313 after 3202 step 9 before 3280 after 3257 step 10 before 3166 after 3083 step 11 before 3066 after 3026 step 12 before 2985 after 2982 step 13 before 2925 after 2924 step 14 before 2834 after 2808 step 15 before 2805 after 2803 step 16 before 2647 after 2622 radix-tree with 1024*1024*128 slots: tag-lookup step 1 before 1288059720 after 951736580 step 2 before 961292300 after 884212140 step 7 before 768905140 after 547267580 step 15 before 771319480 after 456550640 step 63 before 504847640 after 242704304 step 64 before 392484800 after 177920786 step 65 before 491162160 after 246895264 step 128 before 208084064 after 97348392 step 256 before 112401035 after 51408126 step 512 before 75825834 after 29145070 step 12345 before 5603166 after 2847330 normal-lookup step 1 before 1025677120 after 861375100 step 2 before 647220080 after 572258540 step 7 before 505518960 after 484041813 step 15 before 430483053 after 444815320 * step 63 before 388113453 after 404250546 * step 64 before 374154666 after 396027440 * step 65 before 381423973 after 396704853 * step 128 before 190078700 after 202619384 * step 256 before 100886756 after 102829108 * step 512 before 64074505 after 56158720 step 12345 before 4237289 after 4422299 * * i686 on Sandy bridge radix-tree with 1024 slots: tagged lookup step 1 before 7990 after 4019 step 2 before 5698 after 2897 step 3 before 5013 after 2475 step 4 before 4630 after 1721 step 5 before 4346 after 1759 step 6 before 4299 after 1556 step 7 before 4098 after 1513 step 8 before 4115 after 1222 step 9 before 3983 after 1390 step 10 before 4077 after 1207 step 11 before 3921 after 1231 step 12 before 3894 after 1116 step 13 before 3840 after 1147 step 14 before 3799 after 1090 step 15 before 3797 after 1059 step 16 before 3783 after 745 normal lookup step 1 before 5103 after 3499 step 2 before 3299 after 2550 step 3 before 2489 after 2370 step 4 before 2034 after 2302 * step 5 before 1846 after 2268 * step 6 before 1752 after 2249 * step 7 before 1679 after 2164 * step 8 before 1627 after 2153 * step 9 before 1542 after 2095 * step 10 before 1479 after 2109 * step 11 before 1469 after 2009 * step 12 before 1445 after 2039 * step 13 before 1411 after 2013 * step 14 before 1374 after 2046 * step 15 before 1340 after 1975 * step 16 before 1331 after 2000 * radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1225865377 after 667153553 step 2 before 842427423 after 471533007 step 7 before 609296153 after 276260116 step 15 before 544232060 after 226859105 step 63 before 519209199 after 141343043 step 64 before 588980279 after 141951339 step 65 before 521099710 after 138282060 step 128 before 298476778 after 83390628 step 256 before 149358342 after 43602609 step 512 before 76994713 after 22911077 step 12345 before 5328666 after 1472111 normal lookup step 1 before 819284564 after 533635310 step 2 before 512421605 after 364956155 step 7 before 271443305 after 305721345 * step 15 before 223591630 after 273960216 * step 63 before 190320247 after 217770207 * step 64 before 178538168 after 267411372 * step 65 before 186400423 after 215347937 * step 128 before 88106045 after 140540612 * step 256 before 44812420 after 70660377 * step 512 before 24435438 after 36328275 * step 12345 before 2123924 after 2148062 * bloat-o-meter delta for this patchset + patchset with related shmem cleanups bloat-o-meter: x86_64 add/remove: 4/3 grow/shrink: 5/6 up/down: 928/-939 (-11) function old new delta radix_tree_next_chunk - 499 +499 shmem_unuse 428 554 +126 shmem_radix_tree_replace 131 227 +96 find_get_pages_tag 354 419 +65 find_get_pages_contig 345 407 +62 find_get_pages 362 396 +34 __kstrtab_radix_tree_next_chunk - 22 +22 __ksymtab_radix_tree_next_chunk - 16 +16 __kcrctab_radix_tree_next_chunk - 8 +8 radix_tree_gang_lookup_slot 204 203 -1 static.shmem_xattr_set 384 381 -3 radix_tree_gang_lookup_tag_slot 208 191 -17 radix_tree_gang_lookup 231 187 -44 radix_tree_gang_lookup_tag 247 199 -48 shmem_unlock_mapping 278 190 -88 __lookup 217 - -217 __lookup_tag 242 - -242 radix_tree_locate_item 279 - -279 bloat-o-meter: i386 add/remove: 3/3 grow/shrink: 8/9 up/down: 1075/-1275 (-200) function old new delta radix_tree_next_chunk - 757 +757 shmem_unuse 352 449 +97 find_get_pages_contig 269 322 +53 shmem_radix_tree_replace 113 154 +41 find_get_pages_tag 277 318 +41 dcache_dir_lseek 426 458 +32 __kstrtab_radix_tree_next_chunk - 22 +22 vc_do_resize 968 977 +9 snd_pcm_lib_read1 725 733 +8 __ksymtab_radix_tree_next_chunk - 8 +8 netlbl_cipsov4_list 1120 1127 +7 find_get_pages 293 291 -2 new_slab 467 459 -8 bitfill_unaligned_rev 425 417 -8 radix_tree_gang_lookup_tag_slot 177 146 -31 blk_dump_cmd 267 229 -38 radix_tree_gang_lookup_slot 212 134 -78 shmem_unlock_mapping 221 128 -93 radix_tree_gang_lookup_tag 275 162 -113 radix_tree_gang_lookup 255 126 -129 __lookup 227 - -227 __lookup_tag 271 - -271 radix_tree_locate_item 277 - -277 This patch: Implement a clean, simple and effective radix-tree iteration routine. Iterating divided into two phases: * lookup next chunk in radix-tree leaf node * iterating through slots in this chunk Main iterator function radix_tree_next_chunk() returns pointer to first slot, and stores in the struct radix_tree_iter index of next-to-last slot. For tagged-iterating it also constuct bitmask of tags for retunted chunk. All additional logic implemented as static-inline functions and macroses. Also adds radix_tree_find_next_bit() static-inline variant of find_next_bit() optimized for small constant size arrays, because find_next_bit() too heavy for searching in an array with one/two long elements. [akpm@linux-foundation.org: rework comments a bit] Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Tested-by: Hugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-29 05:42:53 +08:00
/**
* radix_tree_next_chunk - find next chunk of slots for iteration
*
* @root: radix tree root
* @iter: iterator state
* @flags: RADIX_TREE_ITER_* flags and tag index
* Returns: pointer to chunk first slot, or NULL if iteration is over
*/
void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root,
radix-tree: introduce bit-optimized iterator A series of radix tree cleanups, and usage of them in the core pagecache code. Micro-benchmark: lookup 14 slots (typical page-vector size) in radix-tree there earch <step> slot filled and tagged before/after - nsec per full scan through tree * Intel Sandy Bridge i7-2620M 4Mb L3 New code always faster * AMD Athlon 6000+ 2x1Mb L2, without L3 New code generally faster, Minor degradation (marked with "*") for huge sparse trees * i386 on Sandy Bridge New code faster for common cases: tagged and dense trees. Some degradations for non-tagged lookup on sparse trees. Ideally, there might help __ffs() analog for searching first non-zero long element in array, gcc sometimes cannot optimize this loop corretly. Numbers: CPU: Intel Sandy Bridge i7-2620M 4Mb L3 radix-tree with 1024 slots: tagged lookup step 1 before 7156 after 3613 step 2 before 5399 after 2696 step 3 before 4779 after 1928 step 4 before 4456 after 1429 step 5 before 4292 after 1213 step 6 before 4183 after 1052 step 7 before 4157 after 951 step 8 before 4016 after 812 step 9 before 3952 after 851 step 10 before 3937 after 732 step 11 before 4023 after 709 step 12 before 3872 after 657 step 13 before 3892 after 633 step 14 before 3720 after 591 step 15 before 3879 after 578 step 16 before 3561 after 513 normal lookup step 1 before 4266 after 3301 step 2 before 2695 after 2129 step 3 before 2083 after 1712 step 4 before 1801 after 1534 step 5 before 1628 after 1313 step 6 before 1551 after 1263 step 7 before 1475 after 1185 step 8 before 1432 after 1167 step 9 before 1373 after 1092 step 10 before 1339 after 1134 step 11 before 1292 after 1056 step 12 before 1319 after 1030 step 13 before 1276 after 1004 step 14 before 1256 after 987 step 15 before 1228 after 992 step 16 before 1247 after 999 radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1086102841 after 674196409 step 2 before 816839155 after 498138306 step 7 before 599728907 after 240676762 step 15 before 555729253 after 185219677 step 63 before 606637748 after 128585664 step 64 before 608384432 after 102945089 step 65 before 596987114 after 123996019 step 128 before 304459225 after 56783056 step 256 before 158846855 after 31232481 step 512 before 86085652 after 18950595 step 12345 before 6517189 after 1674057 normal lookup step 1 before 626064869 after 544418266 step 2 before 418809975 after 336321473 step 7 before 242303598 after 207755560 step 15 before 208380563 after 176496355 step 63 before 186854206 after 167283638 step 64 before 176188060 after 170143976 step 65 before 185139608 after 167487116 step 128 before 88181865 after 86913490 step 256 before 45733628 after 45143534 step 512 before 24506038 after 23859036 step 12345 before 2177425 after 2018662 * AMD Athlon 6000+ 2x1Mb L2, without L3 radix-tree with 1024 slots: tag-lookup step 1 before 8164 after 5379 step 2 before 5818 after 5581 step 3 before 4959 after 4213 step 4 before 4371 after 3386 step 5 before 4204 after 2997 step 6 before 4950 after 2744 step 7 before 4598 after 2480 step 8 before 4251 after 2288 step 9 before 4262 after 2243 step 10 before 4175 after 2131 step 11 before 3999 after 2024 step 12 before 3979 after 1994 step 13 before 3842 after 1929 step 14 before 3750 after 1810 step 15 before 3735 after 1810 step 16 before 3532 after 1660 normal-lookup step 1 before 7875 after 5847 step 2 before 4808 after 4071 step 3 before 4073 after 3462 step 4 before 3677 after 3074 step 5 before 4308 after 2978 step 6 before 3911 after 3807 step 7 before 3635 after 3522 step 8 before 3313 after 3202 step 9 before 3280 after 3257 step 10 before 3166 after 3083 step 11 before 3066 after 3026 step 12 before 2985 after 2982 step 13 before 2925 after 2924 step 14 before 2834 after 2808 step 15 before 2805 after 2803 step 16 before 2647 after 2622 radix-tree with 1024*1024*128 slots: tag-lookup step 1 before 1288059720 after 951736580 step 2 before 961292300 after 884212140 step 7 before 768905140 after 547267580 step 15 before 771319480 after 456550640 step 63 before 504847640 after 242704304 step 64 before 392484800 after 177920786 step 65 before 491162160 after 246895264 step 128 before 208084064 after 97348392 step 256 before 112401035 after 51408126 step 512 before 75825834 after 29145070 step 12345 before 5603166 after 2847330 normal-lookup step 1 before 1025677120 after 861375100 step 2 before 647220080 after 572258540 step 7 before 505518960 after 484041813 step 15 before 430483053 after 444815320 * step 63 before 388113453 after 404250546 * step 64 before 374154666 after 396027440 * step 65 before 381423973 after 396704853 * step 128 before 190078700 after 202619384 * step 256 before 100886756 after 102829108 * step 512 before 64074505 after 56158720 step 12345 before 4237289 after 4422299 * * i686 on Sandy bridge radix-tree with 1024 slots: tagged lookup step 1 before 7990 after 4019 step 2 before 5698 after 2897 step 3 before 5013 after 2475 step 4 before 4630 after 1721 step 5 before 4346 after 1759 step 6 before 4299 after 1556 step 7 before 4098 after 1513 step 8 before 4115 after 1222 step 9 before 3983 after 1390 step 10 before 4077 after 1207 step 11 before 3921 after 1231 step 12 before 3894 after 1116 step 13 before 3840 after 1147 step 14 before 3799 after 1090 step 15 before 3797 after 1059 step 16 before 3783 after 745 normal lookup step 1 before 5103 after 3499 step 2 before 3299 after 2550 step 3 before 2489 after 2370 step 4 before 2034 after 2302 * step 5 before 1846 after 2268 * step 6 before 1752 after 2249 * step 7 before 1679 after 2164 * step 8 before 1627 after 2153 * step 9 before 1542 after 2095 * step 10 before 1479 after 2109 * step 11 before 1469 after 2009 * step 12 before 1445 after 2039 * step 13 before 1411 after 2013 * step 14 before 1374 after 2046 * step 15 before 1340 after 1975 * step 16 before 1331 after 2000 * radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1225865377 after 667153553 step 2 before 842427423 after 471533007 step 7 before 609296153 after 276260116 step 15 before 544232060 after 226859105 step 63 before 519209199 after 141343043 step 64 before 588980279 after 141951339 step 65 before 521099710 after 138282060 step 128 before 298476778 after 83390628 step 256 before 149358342 after 43602609 step 512 before 76994713 after 22911077 step 12345 before 5328666 after 1472111 normal lookup step 1 before 819284564 after 533635310 step 2 before 512421605 after 364956155 step 7 before 271443305 after 305721345 * step 15 before 223591630 after 273960216 * step 63 before 190320247 after 217770207 * step 64 before 178538168 after 267411372 * step 65 before 186400423 after 215347937 * step 128 before 88106045 after 140540612 * step 256 before 44812420 after 70660377 * step 512 before 24435438 after 36328275 * step 12345 before 2123924 after 2148062 * bloat-o-meter delta for this patchset + patchset with related shmem cleanups bloat-o-meter: x86_64 add/remove: 4/3 grow/shrink: 5/6 up/down: 928/-939 (-11) function old new delta radix_tree_next_chunk - 499 +499 shmem_unuse 428 554 +126 shmem_radix_tree_replace 131 227 +96 find_get_pages_tag 354 419 +65 find_get_pages_contig 345 407 +62 find_get_pages 362 396 +34 __kstrtab_radix_tree_next_chunk - 22 +22 __ksymtab_radix_tree_next_chunk - 16 +16 __kcrctab_radix_tree_next_chunk - 8 +8 radix_tree_gang_lookup_slot 204 203 -1 static.shmem_xattr_set 384 381 -3 radix_tree_gang_lookup_tag_slot 208 191 -17 radix_tree_gang_lookup 231 187 -44 radix_tree_gang_lookup_tag 247 199 -48 shmem_unlock_mapping 278 190 -88 __lookup 217 - -217 __lookup_tag 242 - -242 radix_tree_locate_item 279 - -279 bloat-o-meter: i386 add/remove: 3/3 grow/shrink: 8/9 up/down: 1075/-1275 (-200) function old new delta radix_tree_next_chunk - 757 +757 shmem_unuse 352 449 +97 find_get_pages_contig 269 322 +53 shmem_radix_tree_replace 113 154 +41 find_get_pages_tag 277 318 +41 dcache_dir_lseek 426 458 +32 __kstrtab_radix_tree_next_chunk - 22 +22 vc_do_resize 968 977 +9 snd_pcm_lib_read1 725 733 +8 __ksymtab_radix_tree_next_chunk - 8 +8 netlbl_cipsov4_list 1120 1127 +7 find_get_pages 293 291 -2 new_slab 467 459 -8 bitfill_unaligned_rev 425 417 -8 radix_tree_gang_lookup_tag_slot 177 146 -31 blk_dump_cmd 267 229 -38 radix_tree_gang_lookup_slot 212 134 -78 shmem_unlock_mapping 221 128 -93 radix_tree_gang_lookup_tag 275 162 -113 radix_tree_gang_lookup 255 126 -129 __lookup 227 - -227 __lookup_tag 271 - -271 radix_tree_locate_item 277 - -277 This patch: Implement a clean, simple and effective radix-tree iteration routine. Iterating divided into two phases: * lookup next chunk in radix-tree leaf node * iterating through slots in this chunk Main iterator function radix_tree_next_chunk() returns pointer to first slot, and stores in the struct radix_tree_iter index of next-to-last slot. For tagged-iterating it also constuct bitmask of tags for retunted chunk. All additional logic implemented as static-inline functions and macroses. Also adds radix_tree_find_next_bit() static-inline variant of find_next_bit() optimized for small constant size arrays, because find_next_bit() too heavy for searching in an array with one/two long elements. [akpm@linux-foundation.org: rework comments a bit] Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Tested-by: Hugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-29 05:42:53 +08:00
struct radix_tree_iter *iter, unsigned flags)
{
unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
struct radix_tree_node *node, *child;
unsigned long index, offset, maxindex;
radix-tree: introduce bit-optimized iterator A series of radix tree cleanups, and usage of them in the core pagecache code. Micro-benchmark: lookup 14 slots (typical page-vector size) in radix-tree there earch <step> slot filled and tagged before/after - nsec per full scan through tree * Intel Sandy Bridge i7-2620M 4Mb L3 New code always faster * AMD Athlon 6000+ 2x1Mb L2, without L3 New code generally faster, Minor degradation (marked with "*") for huge sparse trees * i386 on Sandy Bridge New code faster for common cases: tagged and dense trees. Some degradations for non-tagged lookup on sparse trees. Ideally, there might help __ffs() analog for searching first non-zero long element in array, gcc sometimes cannot optimize this loop corretly. Numbers: CPU: Intel Sandy Bridge i7-2620M 4Mb L3 radix-tree with 1024 slots: tagged lookup step 1 before 7156 after 3613 step 2 before 5399 after 2696 step 3 before 4779 after 1928 step 4 before 4456 after 1429 step 5 before 4292 after 1213 step 6 before 4183 after 1052 step 7 before 4157 after 951 step 8 before 4016 after 812 step 9 before 3952 after 851 step 10 before 3937 after 732 step 11 before 4023 after 709 step 12 before 3872 after 657 step 13 before 3892 after 633 step 14 before 3720 after 591 step 15 before 3879 after 578 step 16 before 3561 after 513 normal lookup step 1 before 4266 after 3301 step 2 before 2695 after 2129 step 3 before 2083 after 1712 step 4 before 1801 after 1534 step 5 before 1628 after 1313 step 6 before 1551 after 1263 step 7 before 1475 after 1185 step 8 before 1432 after 1167 step 9 before 1373 after 1092 step 10 before 1339 after 1134 step 11 before 1292 after 1056 step 12 before 1319 after 1030 step 13 before 1276 after 1004 step 14 before 1256 after 987 step 15 before 1228 after 992 step 16 before 1247 after 999 radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1086102841 after 674196409 step 2 before 816839155 after 498138306 step 7 before 599728907 after 240676762 step 15 before 555729253 after 185219677 step 63 before 606637748 after 128585664 step 64 before 608384432 after 102945089 step 65 before 596987114 after 123996019 step 128 before 304459225 after 56783056 step 256 before 158846855 after 31232481 step 512 before 86085652 after 18950595 step 12345 before 6517189 after 1674057 normal lookup step 1 before 626064869 after 544418266 step 2 before 418809975 after 336321473 step 7 before 242303598 after 207755560 step 15 before 208380563 after 176496355 step 63 before 186854206 after 167283638 step 64 before 176188060 after 170143976 step 65 before 185139608 after 167487116 step 128 before 88181865 after 86913490 step 256 before 45733628 after 45143534 step 512 before 24506038 after 23859036 step 12345 before 2177425 after 2018662 * AMD Athlon 6000+ 2x1Mb L2, without L3 radix-tree with 1024 slots: tag-lookup step 1 before 8164 after 5379 step 2 before 5818 after 5581 step 3 before 4959 after 4213 step 4 before 4371 after 3386 step 5 before 4204 after 2997 step 6 before 4950 after 2744 step 7 before 4598 after 2480 step 8 before 4251 after 2288 step 9 before 4262 after 2243 step 10 before 4175 after 2131 step 11 before 3999 after 2024 step 12 before 3979 after 1994 step 13 before 3842 after 1929 step 14 before 3750 after 1810 step 15 before 3735 after 1810 step 16 before 3532 after 1660 normal-lookup step 1 before 7875 after 5847 step 2 before 4808 after 4071 step 3 before 4073 after 3462 step 4 before 3677 after 3074 step 5 before 4308 after 2978 step 6 before 3911 after 3807 step 7 before 3635 after 3522 step 8 before 3313 after 3202 step 9 before 3280 after 3257 step 10 before 3166 after 3083 step 11 before 3066 after 3026 step 12 before 2985 after 2982 step 13 before 2925 after 2924 step 14 before 2834 after 2808 step 15 before 2805 after 2803 step 16 before 2647 after 2622 radix-tree with 1024*1024*128 slots: tag-lookup step 1 before 1288059720 after 951736580 step 2 before 961292300 after 884212140 step 7 before 768905140 after 547267580 step 15 before 771319480 after 456550640 step 63 before 504847640 after 242704304 step 64 before 392484800 after 177920786 step 65 before 491162160 after 246895264 step 128 before 208084064 after 97348392 step 256 before 112401035 after 51408126 step 512 before 75825834 after 29145070 step 12345 before 5603166 after 2847330 normal-lookup step 1 before 1025677120 after 861375100 step 2 before 647220080 after 572258540 step 7 before 505518960 after 484041813 step 15 before 430483053 after 444815320 * step 63 before 388113453 after 404250546 * step 64 before 374154666 after 396027440 * step 65 before 381423973 after 396704853 * step 128 before 190078700 after 202619384 * step 256 before 100886756 after 102829108 * step 512 before 64074505 after 56158720 step 12345 before 4237289 after 4422299 * * i686 on Sandy bridge radix-tree with 1024 slots: tagged lookup step 1 before 7990 after 4019 step 2 before 5698 after 2897 step 3 before 5013 after 2475 step 4 before 4630 after 1721 step 5 before 4346 after 1759 step 6 before 4299 after 1556 step 7 before 4098 after 1513 step 8 before 4115 after 1222 step 9 before 3983 after 1390 step 10 before 4077 after 1207 step 11 before 3921 after 1231 step 12 before 3894 after 1116 step 13 before 3840 after 1147 step 14 before 3799 after 1090 step 15 before 3797 after 1059 step 16 before 3783 after 745 normal lookup step 1 before 5103 after 3499 step 2 before 3299 after 2550 step 3 before 2489 after 2370 step 4 before 2034 after 2302 * step 5 before 1846 after 2268 * step 6 before 1752 after 2249 * step 7 before 1679 after 2164 * step 8 before 1627 after 2153 * step 9 before 1542 after 2095 * step 10 before 1479 after 2109 * step 11 before 1469 after 2009 * step 12 before 1445 after 2039 * step 13 before 1411 after 2013 * step 14 before 1374 after 2046 * step 15 before 1340 after 1975 * step 16 before 1331 after 2000 * radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1225865377 after 667153553 step 2 before 842427423 after 471533007 step 7 before 609296153 after 276260116 step 15 before 544232060 after 226859105 step 63 before 519209199 after 141343043 step 64 before 588980279 after 141951339 step 65 before 521099710 after 138282060 step 128 before 298476778 after 83390628 step 256 before 149358342 after 43602609 step 512 before 76994713 after 22911077 step 12345 before 5328666 after 1472111 normal lookup step 1 before 819284564 after 533635310 step 2 before 512421605 after 364956155 step 7 before 271443305 after 305721345 * step 15 before 223591630 after 273960216 * step 63 before 190320247 after 217770207 * step 64 before 178538168 after 267411372 * step 65 before 186400423 after 215347937 * step 128 before 88106045 after 140540612 * step 256 before 44812420 after 70660377 * step 512 before 24435438 after 36328275 * step 12345 before 2123924 after 2148062 * bloat-o-meter delta for this patchset + patchset with related shmem cleanups bloat-o-meter: x86_64 add/remove: 4/3 grow/shrink: 5/6 up/down: 928/-939 (-11) function old new delta radix_tree_next_chunk - 499 +499 shmem_unuse 428 554 +126 shmem_radix_tree_replace 131 227 +96 find_get_pages_tag 354 419 +65 find_get_pages_contig 345 407 +62 find_get_pages 362 396 +34 __kstrtab_radix_tree_next_chunk - 22 +22 __ksymtab_radix_tree_next_chunk - 16 +16 __kcrctab_radix_tree_next_chunk - 8 +8 radix_tree_gang_lookup_slot 204 203 -1 static.shmem_xattr_set 384 381 -3 radix_tree_gang_lookup_tag_slot 208 191 -17 radix_tree_gang_lookup 231 187 -44 radix_tree_gang_lookup_tag 247 199 -48 shmem_unlock_mapping 278 190 -88 __lookup 217 - -217 __lookup_tag 242 - -242 radix_tree_locate_item 279 - -279 bloat-o-meter: i386 add/remove: 3/3 grow/shrink: 8/9 up/down: 1075/-1275 (-200) function old new delta radix_tree_next_chunk - 757 +757 shmem_unuse 352 449 +97 find_get_pages_contig 269 322 +53 shmem_radix_tree_replace 113 154 +41 find_get_pages_tag 277 318 +41 dcache_dir_lseek 426 458 +32 __kstrtab_radix_tree_next_chunk - 22 +22 vc_do_resize 968 977 +9 snd_pcm_lib_read1 725 733 +8 __ksymtab_radix_tree_next_chunk - 8 +8 netlbl_cipsov4_list 1120 1127 +7 find_get_pages 293 291 -2 new_slab 467 459 -8 bitfill_unaligned_rev 425 417 -8 radix_tree_gang_lookup_tag_slot 177 146 -31 blk_dump_cmd 267 229 -38 radix_tree_gang_lookup_slot 212 134 -78 shmem_unlock_mapping 221 128 -93 radix_tree_gang_lookup_tag 275 162 -113 radix_tree_gang_lookup 255 126 -129 __lookup 227 - -227 __lookup_tag 271 - -271 radix_tree_locate_item 277 - -277 This patch: Implement a clean, simple and effective radix-tree iteration routine. Iterating divided into two phases: * lookup next chunk in radix-tree leaf node * iterating through slots in this chunk Main iterator function radix_tree_next_chunk() returns pointer to first slot, and stores in the struct radix_tree_iter index of next-to-last slot. For tagged-iterating it also constuct bitmask of tags for retunted chunk. All additional logic implemented as static-inline functions and macroses. Also adds radix_tree_find_next_bit() static-inline variant of find_next_bit() optimized for small constant size arrays, because find_next_bit() too heavy for searching in an array with one/two long elements. [akpm@linux-foundation.org: rework comments a bit] Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Tested-by: Hugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-29 05:42:53 +08:00
if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
return NULL;
/*
* Catch next_index overflow after ~0UL. iter->index never overflows
* during iterating; it can be zero only at the beginning.
* And we cannot overflow iter->next_index in a single step,
* because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
*
* This condition also used by radix_tree_next_slot() to stop
* contiguous iterating, and forbid switching to the next chunk.
radix-tree: introduce bit-optimized iterator A series of radix tree cleanups, and usage of them in the core pagecache code. Micro-benchmark: lookup 14 slots (typical page-vector size) in radix-tree there earch <step> slot filled and tagged before/after - nsec per full scan through tree * Intel Sandy Bridge i7-2620M 4Mb L3 New code always faster * AMD Athlon 6000+ 2x1Mb L2, without L3 New code generally faster, Minor degradation (marked with "*") for huge sparse trees * i386 on Sandy Bridge New code faster for common cases: tagged and dense trees. Some degradations for non-tagged lookup on sparse trees. Ideally, there might help __ffs() analog for searching first non-zero long element in array, gcc sometimes cannot optimize this loop corretly. Numbers: CPU: Intel Sandy Bridge i7-2620M 4Mb L3 radix-tree with 1024 slots: tagged lookup step 1 before 7156 after 3613 step 2 before 5399 after 2696 step 3 before 4779 after 1928 step 4 before 4456 after 1429 step 5 before 4292 after 1213 step 6 before 4183 after 1052 step 7 before 4157 after 951 step 8 before 4016 after 812 step 9 before 3952 after 851 step 10 before 3937 after 732 step 11 before 4023 after 709 step 12 before 3872 after 657 step 13 before 3892 after 633 step 14 before 3720 after 591 step 15 before 3879 after 578 step 16 before 3561 after 513 normal lookup step 1 before 4266 after 3301 step 2 before 2695 after 2129 step 3 before 2083 after 1712 step 4 before 1801 after 1534 step 5 before 1628 after 1313 step 6 before 1551 after 1263 step 7 before 1475 after 1185 step 8 before 1432 after 1167 step 9 before 1373 after 1092 step 10 before 1339 after 1134 step 11 before 1292 after 1056 step 12 before 1319 after 1030 step 13 before 1276 after 1004 step 14 before 1256 after 987 step 15 before 1228 after 992 step 16 before 1247 after 999 radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1086102841 after 674196409 step 2 before 816839155 after 498138306 step 7 before 599728907 after 240676762 step 15 before 555729253 after 185219677 step 63 before 606637748 after 128585664 step 64 before 608384432 after 102945089 step 65 before 596987114 after 123996019 step 128 before 304459225 after 56783056 step 256 before 158846855 after 31232481 step 512 before 86085652 after 18950595 step 12345 before 6517189 after 1674057 normal lookup step 1 before 626064869 after 544418266 step 2 before 418809975 after 336321473 step 7 before 242303598 after 207755560 step 15 before 208380563 after 176496355 step 63 before 186854206 after 167283638 step 64 before 176188060 after 170143976 step 65 before 185139608 after 167487116 step 128 before 88181865 after 86913490 step 256 before 45733628 after 45143534 step 512 before 24506038 after 23859036 step 12345 before 2177425 after 2018662 * AMD Athlon 6000+ 2x1Mb L2, without L3 radix-tree with 1024 slots: tag-lookup step 1 before 8164 after 5379 step 2 before 5818 after 5581 step 3 before 4959 after 4213 step 4 before 4371 after 3386 step 5 before 4204 after 2997 step 6 before 4950 after 2744 step 7 before 4598 after 2480 step 8 before 4251 after 2288 step 9 before 4262 after 2243 step 10 before 4175 after 2131 step 11 before 3999 after 2024 step 12 before 3979 after 1994 step 13 before 3842 after 1929 step 14 before 3750 after 1810 step 15 before 3735 after 1810 step 16 before 3532 after 1660 normal-lookup step 1 before 7875 after 5847 step 2 before 4808 after 4071 step 3 before 4073 after 3462 step 4 before 3677 after 3074 step 5 before 4308 after 2978 step 6 before 3911 after 3807 step 7 before 3635 after 3522 step 8 before 3313 after 3202 step 9 before 3280 after 3257 step 10 before 3166 after 3083 step 11 before 3066 after 3026 step 12 before 2985 after 2982 step 13 before 2925 after 2924 step 14 before 2834 after 2808 step 15 before 2805 after 2803 step 16 before 2647 after 2622 radix-tree with 1024*1024*128 slots: tag-lookup step 1 before 1288059720 after 951736580 step 2 before 961292300 after 884212140 step 7 before 768905140 after 547267580 step 15 before 771319480 after 456550640 step 63 before 504847640 after 242704304 step 64 before 392484800 after 177920786 step 65 before 491162160 after 246895264 step 128 before 208084064 after 97348392 step 256 before 112401035 after 51408126 step 512 before 75825834 after 29145070 step 12345 before 5603166 after 2847330 normal-lookup step 1 before 1025677120 after 861375100 step 2 before 647220080 after 572258540 step 7 before 505518960 after 484041813 step 15 before 430483053 after 444815320 * step 63 before 388113453 after 404250546 * step 64 before 374154666 after 396027440 * step 65 before 381423973 after 396704853 * step 128 before 190078700 after 202619384 * step 256 before 100886756 after 102829108 * step 512 before 64074505 after 56158720 step 12345 before 4237289 after 4422299 * * i686 on Sandy bridge radix-tree with 1024 slots: tagged lookup step 1 before 7990 after 4019 step 2 before 5698 after 2897 step 3 before 5013 after 2475 step 4 before 4630 after 1721 step 5 before 4346 after 1759 step 6 before 4299 after 1556 step 7 before 4098 after 1513 step 8 before 4115 after 1222 step 9 before 3983 after 1390 step 10 before 4077 after 1207 step 11 before 3921 after 1231 step 12 before 3894 after 1116 step 13 before 3840 after 1147 step 14 before 3799 after 1090 step 15 before 3797 after 1059 step 16 before 3783 after 745 normal lookup step 1 before 5103 after 3499 step 2 before 3299 after 2550 step 3 before 2489 after 2370 step 4 before 2034 after 2302 * step 5 before 1846 after 2268 * step 6 before 1752 after 2249 * step 7 before 1679 after 2164 * step 8 before 1627 after 2153 * step 9 before 1542 after 2095 * step 10 before 1479 after 2109 * step 11 before 1469 after 2009 * step 12 before 1445 after 2039 * step 13 before 1411 after 2013 * step 14 before 1374 after 2046 * step 15 before 1340 after 1975 * step 16 before 1331 after 2000 * radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1225865377 after 667153553 step 2 before 842427423 after 471533007 step 7 before 609296153 after 276260116 step 15 before 544232060 after 226859105 step 63 before 519209199 after 141343043 step 64 before 588980279 after 141951339 step 65 before 521099710 after 138282060 step 128 before 298476778 after 83390628 step 256 before 149358342 after 43602609 step 512 before 76994713 after 22911077 step 12345 before 5328666 after 1472111 normal lookup step 1 before 819284564 after 533635310 step 2 before 512421605 after 364956155 step 7 before 271443305 after 305721345 * step 15 before 223591630 after 273960216 * step 63 before 190320247 after 217770207 * step 64 before 178538168 after 267411372 * step 65 before 186400423 after 215347937 * step 128 before 88106045 after 140540612 * step 256 before 44812420 after 70660377 * step 512 before 24435438 after 36328275 * step 12345 before 2123924 after 2148062 * bloat-o-meter delta for this patchset + patchset with related shmem cleanups bloat-o-meter: x86_64 add/remove: 4/3 grow/shrink: 5/6 up/down: 928/-939 (-11) function old new delta radix_tree_next_chunk - 499 +499 shmem_unuse 428 554 +126 shmem_radix_tree_replace 131 227 +96 find_get_pages_tag 354 419 +65 find_get_pages_contig 345 407 +62 find_get_pages 362 396 +34 __kstrtab_radix_tree_next_chunk - 22 +22 __ksymtab_radix_tree_next_chunk - 16 +16 __kcrctab_radix_tree_next_chunk - 8 +8 radix_tree_gang_lookup_slot 204 203 -1 static.shmem_xattr_set 384 381 -3 radix_tree_gang_lookup_tag_slot 208 191 -17 radix_tree_gang_lookup 231 187 -44 radix_tree_gang_lookup_tag 247 199 -48 shmem_unlock_mapping 278 190 -88 __lookup 217 - -217 __lookup_tag 242 - -242 radix_tree_locate_item 279 - -279 bloat-o-meter: i386 add/remove: 3/3 grow/shrink: 8/9 up/down: 1075/-1275 (-200) function old new delta radix_tree_next_chunk - 757 +757 shmem_unuse 352 449 +97 find_get_pages_contig 269 322 +53 shmem_radix_tree_replace 113 154 +41 find_get_pages_tag 277 318 +41 dcache_dir_lseek 426 458 +32 __kstrtab_radix_tree_next_chunk - 22 +22 vc_do_resize 968 977 +9 snd_pcm_lib_read1 725 733 +8 __ksymtab_radix_tree_next_chunk - 8 +8 netlbl_cipsov4_list 1120 1127 +7 find_get_pages 293 291 -2 new_slab 467 459 -8 bitfill_unaligned_rev 425 417 -8 radix_tree_gang_lookup_tag_slot 177 146 -31 blk_dump_cmd 267 229 -38 radix_tree_gang_lookup_slot 212 134 -78 shmem_unlock_mapping 221 128 -93 radix_tree_gang_lookup_tag 275 162 -113 radix_tree_gang_lookup 255 126 -129 __lookup 227 - -227 __lookup_tag 271 - -271 radix_tree_locate_item 277 - -277 This patch: Implement a clean, simple and effective radix-tree iteration routine. Iterating divided into two phases: * lookup next chunk in radix-tree leaf node * iterating through slots in this chunk Main iterator function radix_tree_next_chunk() returns pointer to first slot, and stores in the struct radix_tree_iter index of next-to-last slot. For tagged-iterating it also constuct bitmask of tags for retunted chunk. All additional logic implemented as static-inline functions and macroses. Also adds radix_tree_find_next_bit() static-inline variant of find_next_bit() optimized for small constant size arrays, because find_next_bit() too heavy for searching in an array with one/two long elements. [akpm@linux-foundation.org: rework comments a bit] Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Tested-by: Hugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-29 05:42:53 +08:00
*/
index = iter->next_index;
if (!index && iter->index)
return NULL;
restart:
radix_tree_load_root(root, &child, &maxindex);
if (index > maxindex)
return NULL;
if (!child)
return NULL;
if (!radix_tree_is_internal_node(child)) {
radix-tree: introduce bit-optimized iterator A series of radix tree cleanups, and usage of them in the core pagecache code. Micro-benchmark: lookup 14 slots (typical page-vector size) in radix-tree there earch <step> slot filled and tagged before/after - nsec per full scan through tree * Intel Sandy Bridge i7-2620M 4Mb L3 New code always faster * AMD Athlon 6000+ 2x1Mb L2, without L3 New code generally faster, Minor degradation (marked with "*") for huge sparse trees * i386 on Sandy Bridge New code faster for common cases: tagged and dense trees. Some degradations for non-tagged lookup on sparse trees. Ideally, there might help __ffs() analog for searching first non-zero long element in array, gcc sometimes cannot optimize this loop corretly. Numbers: CPU: Intel Sandy Bridge i7-2620M 4Mb L3 radix-tree with 1024 slots: tagged lookup step 1 before 7156 after 3613 step 2 before 5399 after 2696 step 3 before 4779 after 1928 step 4 before 4456 after 1429 step 5 before 4292 after 1213 step 6 before 4183 after 1052 step 7 before 4157 after 951 step 8 before 4016 after 812 step 9 before 3952 after 851 step 10 before 3937 after 732 step 11 before 4023 after 709 step 12 before 3872 after 657 step 13 before 3892 after 633 step 14 before 3720 after 591 step 15 before 3879 after 578 step 16 before 3561 after 513 normal lookup step 1 before 4266 after 3301 step 2 before 2695 after 2129 step 3 before 2083 after 1712 step 4 before 1801 after 1534 step 5 before 1628 after 1313 step 6 before 1551 after 1263 step 7 before 1475 after 1185 step 8 before 1432 after 1167 step 9 before 1373 after 1092 step 10 before 1339 after 1134 step 11 before 1292 after 1056 step 12 before 1319 after 1030 step 13 before 1276 after 1004 step 14 before 1256 after 987 step 15 before 1228 after 992 step 16 before 1247 after 999 radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1086102841 after 674196409 step 2 before 816839155 after 498138306 step 7 before 599728907 after 240676762 step 15 before 555729253 after 185219677 step 63 before 606637748 after 128585664 step 64 before 608384432 after 102945089 step 65 before 596987114 after 123996019 step 128 before 304459225 after 56783056 step 256 before 158846855 after 31232481 step 512 before 86085652 after 18950595 step 12345 before 6517189 after 1674057 normal lookup step 1 before 626064869 after 544418266 step 2 before 418809975 after 336321473 step 7 before 242303598 after 207755560 step 15 before 208380563 after 176496355 step 63 before 186854206 after 167283638 step 64 before 176188060 after 170143976 step 65 before 185139608 after 167487116 step 128 before 88181865 after 86913490 step 256 before 45733628 after 45143534 step 512 before 24506038 after 23859036 step 12345 before 2177425 after 2018662 * AMD Athlon 6000+ 2x1Mb L2, without L3 radix-tree with 1024 slots: tag-lookup step 1 before 8164 after 5379 step 2 before 5818 after 5581 step 3 before 4959 after 4213 step 4 before 4371 after 3386 step 5 before 4204 after 2997 step 6 before 4950 after 2744 step 7 before 4598 after 2480 step 8 before 4251 after 2288 step 9 before 4262 after 2243 step 10 before 4175 after 2131 step 11 before 3999 after 2024 step 12 before 3979 after 1994 step 13 before 3842 after 1929 step 14 before 3750 after 1810 step 15 before 3735 after 1810 step 16 before 3532 after 1660 normal-lookup step 1 before 7875 after 5847 step 2 before 4808 after 4071 step 3 before 4073 after 3462 step 4 before 3677 after 3074 step 5 before 4308 after 2978 step 6 before 3911 after 3807 step 7 before 3635 after 3522 step 8 before 3313 after 3202 step 9 before 3280 after 3257 step 10 before 3166 after 3083 step 11 before 3066 after 3026 step 12 before 2985 after 2982 step 13 before 2925 after 2924 step 14 before 2834 after 2808 step 15 before 2805 after 2803 step 16 before 2647 after 2622 radix-tree with 1024*1024*128 slots: tag-lookup step 1 before 1288059720 after 951736580 step 2 before 961292300 after 884212140 step 7 before 768905140 after 547267580 step 15 before 771319480 after 456550640 step 63 before 504847640 after 242704304 step 64 before 392484800 after 177920786 step 65 before 491162160 after 246895264 step 128 before 208084064 after 97348392 step 256 before 112401035 after 51408126 step 512 before 75825834 after 29145070 step 12345 before 5603166 after 2847330 normal-lookup step 1 before 1025677120 after 861375100 step 2 before 647220080 after 572258540 step 7 before 505518960 after 484041813 step 15 before 430483053 after 444815320 * step 63 before 388113453 after 404250546 * step 64 before 374154666 after 396027440 * step 65 before 381423973 after 396704853 * step 128 before 190078700 after 202619384 * step 256 before 100886756 after 102829108 * step 512 before 64074505 after 56158720 step 12345 before 4237289 after 4422299 * * i686 on Sandy bridge radix-tree with 1024 slots: tagged lookup step 1 before 7990 after 4019 step 2 before 5698 after 2897 step 3 before 5013 after 2475 step 4 before 4630 after 1721 step 5 before 4346 after 1759 step 6 before 4299 after 1556 step 7 before 4098 after 1513 step 8 before 4115 after 1222 step 9 before 3983 after 1390 step 10 before 4077 after 1207 step 11 before 3921 after 1231 step 12 before 3894 after 1116 step 13 before 3840 after 1147 step 14 before 3799 after 1090 step 15 before 3797 after 1059 step 16 before 3783 after 745 normal lookup step 1 before 5103 after 3499 step 2 before 3299 after 2550 step 3 before 2489 after 2370 step 4 before 2034 after 2302 * step 5 before 1846 after 2268 * step 6 before 1752 after 2249 * step 7 before 1679 after 2164 * step 8 before 1627 after 2153 * step 9 before 1542 after 2095 * step 10 before 1479 after 2109 * step 11 before 1469 after 2009 * step 12 before 1445 after 2039 * step 13 before 1411 after 2013 * step 14 before 1374 after 2046 * step 15 before 1340 after 1975 * step 16 before 1331 after 2000 * radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1225865377 after 667153553 step 2 before 842427423 after 471533007 step 7 before 609296153 after 276260116 step 15 before 544232060 after 226859105 step 63 before 519209199 after 141343043 step 64 before 588980279 after 141951339 step 65 before 521099710 after 138282060 step 128 before 298476778 after 83390628 step 256 before 149358342 after 43602609 step 512 before 76994713 after 22911077 step 12345 before 5328666 after 1472111 normal lookup step 1 before 819284564 after 533635310 step 2 before 512421605 after 364956155 step 7 before 271443305 after 305721345 * step 15 before 223591630 after 273960216 * step 63 before 190320247 after 217770207 * step 64 before 178538168 after 267411372 * step 65 before 186400423 after 215347937 * step 128 before 88106045 after 140540612 * step 256 before 44812420 after 70660377 * step 512 before 24435438 after 36328275 * step 12345 before 2123924 after 2148062 * bloat-o-meter delta for this patchset + patchset with related shmem cleanups bloat-o-meter: x86_64 add/remove: 4/3 grow/shrink: 5/6 up/down: 928/-939 (-11) function old new delta radix_tree_next_chunk - 499 +499 shmem_unuse 428 554 +126 shmem_radix_tree_replace 131 227 +96 find_get_pages_tag 354 419 +65 find_get_pages_contig 345 407 +62 find_get_pages 362 396 +34 __kstrtab_radix_tree_next_chunk - 22 +22 __ksymtab_radix_tree_next_chunk - 16 +16 __kcrctab_radix_tree_next_chunk - 8 +8 radix_tree_gang_lookup_slot 204 203 -1 static.shmem_xattr_set 384 381 -3 radix_tree_gang_lookup_tag_slot 208 191 -17 radix_tree_gang_lookup 231 187 -44 radix_tree_gang_lookup_tag 247 199 -48 shmem_unlock_mapping 278 190 -88 __lookup 217 - -217 __lookup_tag 242 - -242 radix_tree_locate_item 279 - -279 bloat-o-meter: i386 add/remove: 3/3 grow/shrink: 8/9 up/down: 1075/-1275 (-200) function old new delta radix_tree_next_chunk - 757 +757 shmem_unuse 352 449 +97 find_get_pages_contig 269 322 +53 shmem_radix_tree_replace 113 154 +41 find_get_pages_tag 277 318 +41 dcache_dir_lseek 426 458 +32 __kstrtab_radix_tree_next_chunk - 22 +22 vc_do_resize 968 977 +9 snd_pcm_lib_read1 725 733 +8 __ksymtab_radix_tree_next_chunk - 8 +8 netlbl_cipsov4_list 1120 1127 +7 find_get_pages 293 291 -2 new_slab 467 459 -8 bitfill_unaligned_rev 425 417 -8 radix_tree_gang_lookup_tag_slot 177 146 -31 blk_dump_cmd 267 229 -38 radix_tree_gang_lookup_slot 212 134 -78 shmem_unlock_mapping 221 128 -93 radix_tree_gang_lookup_tag 275 162 -113 radix_tree_gang_lookup 255 126 -129 __lookup 227 - -227 __lookup_tag 271 - -271 radix_tree_locate_item 277 - -277 This patch: Implement a clean, simple and effective radix-tree iteration routine. Iterating divided into two phases: * lookup next chunk in radix-tree leaf node * iterating through slots in this chunk Main iterator function radix_tree_next_chunk() returns pointer to first slot, and stores in the struct radix_tree_iter index of next-to-last slot. For tagged-iterating it also constuct bitmask of tags for retunted chunk. All additional logic implemented as static-inline functions and macroses. Also adds radix_tree_find_next_bit() static-inline variant of find_next_bit() optimized for small constant size arrays, because find_next_bit() too heavy for searching in an array with one/two long elements. [akpm@linux-foundation.org: rework comments a bit] Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Tested-by: Hugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-29 05:42:53 +08:00
/* Single-slot tree */
iter->index = index;
iter->next_index = maxindex + 1;
radix-tree: introduce bit-optimized iterator A series of radix tree cleanups, and usage of them in the core pagecache code. Micro-benchmark: lookup 14 slots (typical page-vector size) in radix-tree there earch <step> slot filled and tagged before/after - nsec per full scan through tree * Intel Sandy Bridge i7-2620M 4Mb L3 New code always faster * AMD Athlon 6000+ 2x1Mb L2, without L3 New code generally faster, Minor degradation (marked with "*") for huge sparse trees * i386 on Sandy Bridge New code faster for common cases: tagged and dense trees. Some degradations for non-tagged lookup on sparse trees. Ideally, there might help __ffs() analog for searching first non-zero long element in array, gcc sometimes cannot optimize this loop corretly. Numbers: CPU: Intel Sandy Bridge i7-2620M 4Mb L3 radix-tree with 1024 slots: tagged lookup step 1 before 7156 after 3613 step 2 before 5399 after 2696 step 3 before 4779 after 1928 step 4 before 4456 after 1429 step 5 before 4292 after 1213 step 6 before 4183 after 1052 step 7 before 4157 after 951 step 8 before 4016 after 812 step 9 before 3952 after 851 step 10 before 3937 after 732 step 11 before 4023 after 709 step 12 before 3872 after 657 step 13 before 3892 after 633 step 14 before 3720 after 591 step 15 before 3879 after 578 step 16 before 3561 after 513 normal lookup step 1 before 4266 after 3301 step 2 before 2695 after 2129 step 3 before 2083 after 1712 step 4 before 1801 after 1534 step 5 before 1628 after 1313 step 6 before 1551 after 1263 step 7 before 1475 after 1185 step 8 before 1432 after 1167 step 9 before 1373 after 1092 step 10 before 1339 after 1134 step 11 before 1292 after 1056 step 12 before 1319 after 1030 step 13 before 1276 after 1004 step 14 before 1256 after 987 step 15 before 1228 after 992 step 16 before 1247 after 999 radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1086102841 after 674196409 step 2 before 816839155 after 498138306 step 7 before 599728907 after 240676762 step 15 before 555729253 after 185219677 step 63 before 606637748 after 128585664 step 64 before 608384432 after 102945089 step 65 before 596987114 after 123996019 step 128 before 304459225 after 56783056 step 256 before 158846855 after 31232481 step 512 before 86085652 after 18950595 step 12345 before 6517189 after 1674057 normal lookup step 1 before 626064869 after 544418266 step 2 before 418809975 after 336321473 step 7 before 242303598 after 207755560 step 15 before 208380563 after 176496355 step 63 before 186854206 after 167283638 step 64 before 176188060 after 170143976 step 65 before 185139608 after 167487116 step 128 before 88181865 after 86913490 step 256 before 45733628 after 45143534 step 512 before 24506038 after 23859036 step 12345 before 2177425 after 2018662 * AMD Athlon 6000+ 2x1Mb L2, without L3 radix-tree with 1024 slots: tag-lookup step 1 before 8164 after 5379 step 2 before 5818 after 5581 step 3 before 4959 after 4213 step 4 before 4371 after 3386 step 5 before 4204 after 2997 step 6 before 4950 after 2744 step 7 before 4598 after 2480 step 8 before 4251 after 2288 step 9 before 4262 after 2243 step 10 before 4175 after 2131 step 11 before 3999 after 2024 step 12 before 3979 after 1994 step 13 before 3842 after 1929 step 14 before 3750 after 1810 step 15 before 3735 after 1810 step 16 before 3532 after 1660 normal-lookup step 1 before 7875 after 5847 step 2 before 4808 after 4071 step 3 before 4073 after 3462 step 4 before 3677 after 3074 step 5 before 4308 after 2978 step 6 before 3911 after 3807 step 7 before 3635 after 3522 step 8 before 3313 after 3202 step 9 before 3280 after 3257 step 10 before 3166 after 3083 step 11 before 3066 after 3026 step 12 before 2985 after 2982 step 13 before 2925 after 2924 step 14 before 2834 after 2808 step 15 before 2805 after 2803 step 16 before 2647 after 2622 radix-tree with 1024*1024*128 slots: tag-lookup step 1 before 1288059720 after 951736580 step 2 before 961292300 after 884212140 step 7 before 768905140 after 547267580 step 15 before 771319480 after 456550640 step 63 before 504847640 after 242704304 step 64 before 392484800 after 177920786 step 65 before 491162160 after 246895264 step 128 before 208084064 after 97348392 step 256 before 112401035 after 51408126 step 512 before 75825834 after 29145070 step 12345 before 5603166 after 2847330 normal-lookup step 1 before 1025677120 after 861375100 step 2 before 647220080 after 572258540 step 7 before 505518960 after 484041813 step 15 before 430483053 after 444815320 * step 63 before 388113453 after 404250546 * step 64 before 374154666 after 396027440 * step 65 before 381423973 after 396704853 * step 128 before 190078700 after 202619384 * step 256 before 100886756 after 102829108 * step 512 before 64074505 after 56158720 step 12345 before 4237289 after 4422299 * * i686 on Sandy bridge radix-tree with 1024 slots: tagged lookup step 1 before 7990 after 4019 step 2 before 5698 after 2897 step 3 before 5013 after 2475 step 4 before 4630 after 1721 step 5 before 4346 after 1759 step 6 before 4299 after 1556 step 7 before 4098 after 1513 step 8 before 4115 after 1222 step 9 before 3983 after 1390 step 10 before 4077 after 1207 step 11 before 3921 after 1231 step 12 before 3894 after 1116 step 13 before 3840 after 1147 step 14 before 3799 after 1090 step 15 before 3797 after 1059 step 16 before 3783 after 745 normal lookup step 1 before 5103 after 3499 step 2 before 3299 after 2550 step 3 before 2489 after 2370 step 4 before 2034 after 2302 * step 5 before 1846 after 2268 * step 6 before 1752 after 2249 * step 7 before 1679 after 2164 * step 8 before 1627 after 2153 * step 9 before 1542 after 2095 * step 10 before 1479 after 2109 * step 11 before 1469 after 2009 * step 12 before 1445 after 2039 * step 13 before 1411 after 2013 * step 14 before 1374 after 2046 * step 15 before 1340 after 1975 * step 16 before 1331 after 2000 * radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1225865377 after 667153553 step 2 before 842427423 after 471533007 step 7 before 609296153 after 276260116 step 15 before 544232060 after 226859105 step 63 before 519209199 after 141343043 step 64 before 588980279 after 141951339 step 65 before 521099710 after 138282060 step 128 before 298476778 after 83390628 step 256 before 149358342 after 43602609 step 512 before 76994713 after 22911077 step 12345 before 5328666 after 1472111 normal lookup step 1 before 819284564 after 533635310 step 2 before 512421605 after 364956155 step 7 before 271443305 after 305721345 * step 15 before 223591630 after 273960216 * step 63 before 190320247 after 217770207 * step 64 before 178538168 after 267411372 * step 65 before 186400423 after 215347937 * step 128 before 88106045 after 140540612 * step 256 before 44812420 after 70660377 * step 512 before 24435438 after 36328275 * step 12345 before 2123924 after 2148062 * bloat-o-meter delta for this patchset + patchset with related shmem cleanups bloat-o-meter: x86_64 add/remove: 4/3 grow/shrink: 5/6 up/down: 928/-939 (-11) function old new delta radix_tree_next_chunk - 499 +499 shmem_unuse 428 554 +126 shmem_radix_tree_replace 131 227 +96 find_get_pages_tag 354 419 +65 find_get_pages_contig 345 407 +62 find_get_pages 362 396 +34 __kstrtab_radix_tree_next_chunk - 22 +22 __ksymtab_radix_tree_next_chunk - 16 +16 __kcrctab_radix_tree_next_chunk - 8 +8 radix_tree_gang_lookup_slot 204 203 -1 static.shmem_xattr_set 384 381 -3 radix_tree_gang_lookup_tag_slot 208 191 -17 radix_tree_gang_lookup 231 187 -44 radix_tree_gang_lookup_tag 247 199 -48 shmem_unlock_mapping 278 190 -88 __lookup 217 - -217 __lookup_tag 242 - -242 radix_tree_locate_item 279 - -279 bloat-o-meter: i386 add/remove: 3/3 grow/shrink: 8/9 up/down: 1075/-1275 (-200) function old new delta radix_tree_next_chunk - 757 +757 shmem_unuse 352 449 +97 find_get_pages_contig 269 322 +53 shmem_radix_tree_replace 113 154 +41 find_get_pages_tag 277 318 +41 dcache_dir_lseek 426 458 +32 __kstrtab_radix_tree_next_chunk - 22 +22 vc_do_resize 968 977 +9 snd_pcm_lib_read1 725 733 +8 __ksymtab_radix_tree_next_chunk - 8 +8 netlbl_cipsov4_list 1120 1127 +7 find_get_pages 293 291 -2 new_slab 467 459 -8 bitfill_unaligned_rev 425 417 -8 radix_tree_gang_lookup_tag_slot 177 146 -31 blk_dump_cmd 267 229 -38 radix_tree_gang_lookup_slot 212 134 -78 shmem_unlock_mapping 221 128 -93 radix_tree_gang_lookup_tag 275 162 -113 radix_tree_gang_lookup 255 126 -129 __lookup 227 - -227 __lookup_tag 271 - -271 radix_tree_locate_item 277 - -277 This patch: Implement a clean, simple and effective radix-tree iteration routine. Iterating divided into two phases: * lookup next chunk in radix-tree leaf node * iterating through slots in this chunk Main iterator function radix_tree_next_chunk() returns pointer to first slot, and stores in the struct radix_tree_iter index of next-to-last slot. For tagged-iterating it also constuct bitmask of tags for retunted chunk. All additional logic implemented as static-inline functions and macroses. Also adds radix_tree_find_next_bit() static-inline variant of find_next_bit() optimized for small constant size arrays, because find_next_bit() too heavy for searching in an array with one/two long elements. [akpm@linux-foundation.org: rework comments a bit] Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Tested-by: Hugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-29 05:42:53 +08:00
iter->tags = 1;
iter->node = NULL;
return (void __rcu **)&root->xa_head;
}
do {
node = entry_to_node(child);
offset = radix_tree_descend(node, &child, index);
radix-tree: introduce bit-optimized iterator A series of radix tree cleanups, and usage of them in the core pagecache code. Micro-benchmark: lookup 14 slots (typical page-vector size) in radix-tree there earch <step> slot filled and tagged before/after - nsec per full scan through tree * Intel Sandy Bridge i7-2620M 4Mb L3 New code always faster * AMD Athlon 6000+ 2x1Mb L2, without L3 New code generally faster, Minor degradation (marked with "*") for huge sparse trees * i386 on Sandy Bridge New code faster for common cases: tagged and dense trees. Some degradations for non-tagged lookup on sparse trees. Ideally, there might help __ffs() analog for searching first non-zero long element in array, gcc sometimes cannot optimize this loop corretly. Numbers: CPU: Intel Sandy Bridge i7-2620M 4Mb L3 radix-tree with 1024 slots: tagged lookup step 1 before 7156 after 3613 step 2 before 5399 after 2696 step 3 before 4779 after 1928 step 4 before 4456 after 1429 step 5 before 4292 after 1213 step 6 before 4183 after 1052 step 7 before 4157 after 951 step 8 before 4016 after 812 step 9 before 3952 after 851 step 10 before 3937 after 732 step 11 before 4023 after 709 step 12 before 3872 after 657 step 13 before 3892 after 633 step 14 before 3720 after 591 step 15 before 3879 after 578 step 16 before 3561 after 513 normal lookup step 1 before 4266 after 3301 step 2 before 2695 after 2129 step 3 before 2083 after 1712 step 4 before 1801 after 1534 step 5 before 1628 after 1313 step 6 before 1551 after 1263 step 7 before 1475 after 1185 step 8 before 1432 after 1167 step 9 before 1373 after 1092 step 10 before 1339 after 1134 step 11 before 1292 after 1056 step 12 before 1319 after 1030 step 13 before 1276 after 1004 step 14 before 1256 after 987 step 15 before 1228 after 992 step 16 before 1247 after 999 radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1086102841 after 674196409 step 2 before 816839155 after 498138306 step 7 before 599728907 after 240676762 step 15 before 555729253 after 185219677 step 63 before 606637748 after 128585664 step 64 before 608384432 after 102945089 step 65 before 596987114 after 123996019 step 128 before 304459225 after 56783056 step 256 before 158846855 after 31232481 step 512 before 86085652 after 18950595 step 12345 before 6517189 after 1674057 normal lookup step 1 before 626064869 after 544418266 step 2 before 418809975 after 336321473 step 7 before 242303598 after 207755560 step 15 before 208380563 after 176496355 step 63 before 186854206 after 167283638 step 64 before 176188060 after 170143976 step 65 before 185139608 after 167487116 step 128 before 88181865 after 86913490 step 256 before 45733628 after 45143534 step 512 before 24506038 after 23859036 step 12345 before 2177425 after 2018662 * AMD Athlon 6000+ 2x1Mb L2, without L3 radix-tree with 1024 slots: tag-lookup step 1 before 8164 after 5379 step 2 before 5818 after 5581 step 3 before 4959 after 4213 step 4 before 4371 after 3386 step 5 before 4204 after 2997 step 6 before 4950 after 2744 step 7 before 4598 after 2480 step 8 before 4251 after 2288 step 9 before 4262 after 2243 step 10 before 4175 after 2131 step 11 before 3999 after 2024 step 12 before 3979 after 1994 step 13 before 3842 after 1929 step 14 before 3750 after 1810 step 15 before 3735 after 1810 step 16 before 3532 after 1660 normal-lookup step 1 before 7875 after 5847 step 2 before 4808 after 4071 step 3 before 4073 after 3462 step 4 before 3677 after 3074 step 5 before 4308 after 2978 step 6 before 3911 after 3807 step 7 before 3635 after 3522 step 8 before 3313 after 3202 step 9 before 3280 after 3257 step 10 before 3166 after 3083 step 11 before 3066 after 3026 step 12 before 2985 after 2982 step 13 before 2925 after 2924 step 14 before 2834 after 2808 step 15 before 2805 after 2803 step 16 before 2647 after 2622 radix-tree with 1024*1024*128 slots: tag-lookup step 1 before 1288059720 after 951736580 step 2 before 961292300 after 884212140 step 7 before 768905140 after 547267580 step 15 before 771319480 after 456550640 step 63 before 504847640 after 242704304 step 64 before 392484800 after 177920786 step 65 before 491162160 after 246895264 step 128 before 208084064 after 97348392 step 256 before 112401035 after 51408126 step 512 before 75825834 after 29145070 step 12345 before 5603166 after 2847330 normal-lookup step 1 before 1025677120 after 861375100 step 2 before 647220080 after 572258540 step 7 before 505518960 after 484041813 step 15 before 430483053 after 444815320 * step 63 before 388113453 after 404250546 * step 64 before 374154666 after 396027440 * step 65 before 381423973 after 396704853 * step 128 before 190078700 after 202619384 * step 256 before 100886756 after 102829108 * step 512 before 64074505 after 56158720 step 12345 before 4237289 after 4422299 * * i686 on Sandy bridge radix-tree with 1024 slots: tagged lookup step 1 before 7990 after 4019 step 2 before 5698 after 2897 step 3 before 5013 after 2475 step 4 before 4630 after 1721 step 5 before 4346 after 1759 step 6 before 4299 after 1556 step 7 before 4098 after 1513 step 8 before 4115 after 1222 step 9 before 3983 after 1390 step 10 before 4077 after 1207 step 11 before 3921 after 1231 step 12 before 3894 after 1116 step 13 before 3840 after 1147 step 14 before 3799 after 1090 step 15 before 3797 after 1059 step 16 before 3783 after 745 normal lookup step 1 before 5103 after 3499 step 2 before 3299 after 2550 step 3 before 2489 after 2370 step 4 before 2034 after 2302 * step 5 before 1846 after 2268 * step 6 before 1752 after 2249 * step 7 before 1679 after 2164 * step 8 before 1627 after 2153 * step 9 before 1542 after 2095 * step 10 before 1479 after 2109 * step 11 before 1469 after 2009 * step 12 before 1445 after 2039 * step 13 before 1411 after 2013 * step 14 before 1374 after 2046 * step 15 before 1340 after 1975 * step 16 before 1331 after 2000 * radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1225865377 after 667153553 step 2 before 842427423 after 471533007 step 7 before 609296153 after 276260116 step 15 before 544232060 after 226859105 step 63 before 519209199 after 141343043 step 64 before 588980279 after 141951339 step 65 before 521099710 after 138282060 step 128 before 298476778 after 83390628 step 256 before 149358342 after 43602609 step 512 before 76994713 after 22911077 step 12345 before 5328666 after 1472111 normal lookup step 1 before 819284564 after 533635310 step 2 before 512421605 after 364956155 step 7 before 271443305 after 305721345 * step 15 before 223591630 after 273960216 * step 63 before 190320247 after 217770207 * step 64 before 178538168 after 267411372 * step 65 before 186400423 after 215347937 * step 128 before 88106045 after 140540612 * step 256 before 44812420 after 70660377 * step 512 before 24435438 after 36328275 * step 12345 before 2123924 after 2148062 * bloat-o-meter delta for this patchset + patchset with related shmem cleanups bloat-o-meter: x86_64 add/remove: 4/3 grow/shrink: 5/6 up/down: 928/-939 (-11) function old new delta radix_tree_next_chunk - 499 +499 shmem_unuse 428 554 +126 shmem_radix_tree_replace 131 227 +96 find_get_pages_tag 354 419 +65 find_get_pages_contig 345 407 +62 find_get_pages 362 396 +34 __kstrtab_radix_tree_next_chunk - 22 +22 __ksymtab_radix_tree_next_chunk - 16 +16 __kcrctab_radix_tree_next_chunk - 8 +8 radix_tree_gang_lookup_slot 204 203 -1 static.shmem_xattr_set 384 381 -3 radix_tree_gang_lookup_tag_slot 208 191 -17 radix_tree_gang_lookup 231 187 -44 radix_tree_gang_lookup_tag 247 199 -48 shmem_unlock_mapping 278 190 -88 __lookup 217 - -217 __lookup_tag 242 - -242 radix_tree_locate_item 279 - -279 bloat-o-meter: i386 add/remove: 3/3 grow/shrink: 8/9 up/down: 1075/-1275 (-200) function old new delta radix_tree_next_chunk - 757 +757 shmem_unuse 352 449 +97 find_get_pages_contig 269 322 +53 shmem_radix_tree_replace 113 154 +41 find_get_pages_tag 277 318 +41 dcache_dir_lseek 426 458 +32 __kstrtab_radix_tree_next_chunk - 22 +22 vc_do_resize 968 977 +9 snd_pcm_lib_read1 725 733 +8 __ksymtab_radix_tree_next_chunk - 8 +8 netlbl_cipsov4_list 1120 1127 +7 find_get_pages 293 291 -2 new_slab 467 459 -8 bitfill_unaligned_rev 425 417 -8 radix_tree_gang_lookup_tag_slot 177 146 -31 blk_dump_cmd 267 229 -38 radix_tree_gang_lookup_slot 212 134 -78 shmem_unlock_mapping 221 128 -93 radix_tree_gang_lookup_tag 275 162 -113 radix_tree_gang_lookup 255 126 -129 __lookup 227 - -227 __lookup_tag 271 - -271 radix_tree_locate_item 277 - -277 This patch: Implement a clean, simple and effective radix-tree iteration routine. Iterating divided into two phases: * lookup next chunk in radix-tree leaf node * iterating through slots in this chunk Main iterator function radix_tree_next_chunk() returns pointer to first slot, and stores in the struct radix_tree_iter index of next-to-last slot. For tagged-iterating it also constuct bitmask of tags for retunted chunk. All additional logic implemented as static-inline functions and macroses. Also adds radix_tree_find_next_bit() static-inline variant of find_next_bit() optimized for small constant size arrays, because find_next_bit() too heavy for searching in an array with one/two long elements. [akpm@linux-foundation.org: rework comments a bit] Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Tested-by: Hugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-29 05:42:53 +08:00
if ((flags & RADIX_TREE_ITER_TAGGED) ?
!tag_get(node, tag, offset) : !child) {
radix-tree: introduce bit-optimized iterator A series of radix tree cleanups, and usage of them in the core pagecache code. Micro-benchmark: lookup 14 slots (typical page-vector size) in radix-tree there earch <step> slot filled and tagged before/after - nsec per full scan through tree * Intel Sandy Bridge i7-2620M 4Mb L3 New code always faster * AMD Athlon 6000+ 2x1Mb L2, without L3 New code generally faster, Minor degradation (marked with "*") for huge sparse trees * i386 on Sandy Bridge New code faster for common cases: tagged and dense trees. Some degradations for non-tagged lookup on sparse trees. Ideally, there might help __ffs() analog for searching first non-zero long element in array, gcc sometimes cannot optimize this loop corretly. Numbers: CPU: Intel Sandy Bridge i7-2620M 4Mb L3 radix-tree with 1024 slots: tagged lookup step 1 before 7156 after 3613 step 2 before 5399 after 2696 step 3 before 4779 after 1928 step 4 before 4456 after 1429 step 5 before 4292 after 1213 step 6 before 4183 after 1052 step 7 before 4157 after 951 step 8 before 4016 after 812 step 9 before 3952 after 851 step 10 before 3937 after 732 step 11 before 4023 after 709 step 12 before 3872 after 657 step 13 before 3892 after 633 step 14 before 3720 after 591 step 15 before 3879 after 578 step 16 before 3561 after 513 normal lookup step 1 before 4266 after 3301 step 2 before 2695 after 2129 step 3 before 2083 after 1712 step 4 before 1801 after 1534 step 5 before 1628 after 1313 step 6 before 1551 after 1263 step 7 before 1475 after 1185 step 8 before 1432 after 1167 step 9 before 1373 after 1092 step 10 before 1339 after 1134 step 11 before 1292 after 1056 step 12 before 1319 after 1030 step 13 before 1276 after 1004 step 14 before 1256 after 987 step 15 before 1228 after 992 step 16 before 1247 after 999 radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1086102841 after 674196409 step 2 before 816839155 after 498138306 step 7 before 599728907 after 240676762 step 15 before 555729253 after 185219677 step 63 before 606637748 after 128585664 step 64 before 608384432 after 102945089 step 65 before 596987114 after 123996019 step 128 before 304459225 after 56783056 step 256 before 158846855 after 31232481 step 512 before 86085652 after 18950595 step 12345 before 6517189 after 1674057 normal lookup step 1 before 626064869 after 544418266 step 2 before 418809975 after 336321473 step 7 before 242303598 after 207755560 step 15 before 208380563 after 176496355 step 63 before 186854206 after 167283638 step 64 before 176188060 after 170143976 step 65 before 185139608 after 167487116 step 128 before 88181865 after 86913490 step 256 before 45733628 after 45143534 step 512 before 24506038 after 23859036 step 12345 before 2177425 after 2018662 * AMD Athlon 6000+ 2x1Mb L2, without L3 radix-tree with 1024 slots: tag-lookup step 1 before 8164 after 5379 step 2 before 5818 after 5581 step 3 before 4959 after 4213 step 4 before 4371 after 3386 step 5 before 4204 after 2997 step 6 before 4950 after 2744 step 7 before 4598 after 2480 step 8 before 4251 after 2288 step 9 before 4262 after 2243 step 10 before 4175 after 2131 step 11 before 3999 after 2024 step 12 before 3979 after 1994 step 13 before 3842 after 1929 step 14 before 3750 after 1810 step 15 before 3735 after 1810 step 16 before 3532 after 1660 normal-lookup step 1 before 7875 after 5847 step 2 before 4808 after 4071 step 3 before 4073 after 3462 step 4 before 3677 after 3074 step 5 before 4308 after 2978 step 6 before 3911 after 3807 step 7 before 3635 after 3522 step 8 before 3313 after 3202 step 9 before 3280 after 3257 step 10 before 3166 after 3083 step 11 before 3066 after 3026 step 12 before 2985 after 2982 step 13 before 2925 after 2924 step 14 before 2834 after 2808 step 15 before 2805 after 2803 step 16 before 2647 after 2622 radix-tree with 1024*1024*128 slots: tag-lookup step 1 before 1288059720 after 951736580 step 2 before 961292300 after 884212140 step 7 before 768905140 after 547267580 step 15 before 771319480 after 456550640 step 63 before 504847640 after 242704304 step 64 before 392484800 after 177920786 step 65 before 491162160 after 246895264 step 128 before 208084064 after 97348392 step 256 before 112401035 after 51408126 step 512 before 75825834 after 29145070 step 12345 before 5603166 after 2847330 normal-lookup step 1 before 1025677120 after 861375100 step 2 before 647220080 after 572258540 step 7 before 505518960 after 484041813 step 15 before 430483053 after 444815320 * step 63 before 388113453 after 404250546 * step 64 before 374154666 after 396027440 * step 65 before 381423973 after 396704853 * step 128 before 190078700 after 202619384 * step 256 before 100886756 after 102829108 * step 512 before 64074505 after 56158720 step 12345 before 4237289 after 4422299 * * i686 on Sandy bridge radix-tree with 1024 slots: tagged lookup step 1 before 7990 after 4019 step 2 before 5698 after 2897 step 3 before 5013 after 2475 step 4 before 4630 after 1721 step 5 before 4346 after 1759 step 6 before 4299 after 1556 step 7 before 4098 after 1513 step 8 before 4115 after 1222 step 9 before 3983 after 1390 step 10 before 4077 after 1207 step 11 before 3921 after 1231 step 12 before 3894 after 1116 step 13 before 3840 after 1147 step 14 before 3799 after 1090 step 15 before 3797 after 1059 step 16 before 3783 after 745 normal lookup step 1 before 5103 after 3499 step 2 before 3299 after 2550 step 3 before 2489 after 2370 step 4 before 2034 after 2302 * step 5 before 1846 after 2268 * step 6 before 1752 after 2249 * step 7 before 1679 after 2164 * step 8 before 1627 after 2153 * step 9 before 1542 after 2095 * step 10 before 1479 after 2109 * step 11 before 1469 after 2009 * step 12 before 1445 after 2039 * step 13 before 1411 after 2013 * step 14 before 1374 after 2046 * step 15 before 1340 after 1975 * step 16 before 1331 after 2000 * radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1225865377 after 667153553 step 2 before 842427423 after 471533007 step 7 before 609296153 after 276260116 step 15 before 544232060 after 226859105 step 63 before 519209199 after 141343043 step 64 before 588980279 after 141951339 step 65 before 521099710 after 138282060 step 128 before 298476778 after 83390628 step 256 before 149358342 after 43602609 step 512 before 76994713 after 22911077 step 12345 before 5328666 after 1472111 normal lookup step 1 before 819284564 after 533635310 step 2 before 512421605 after 364956155 step 7 before 271443305 after 305721345 * step 15 before 223591630 after 273960216 * step 63 before 190320247 after 217770207 * step 64 before 178538168 after 267411372 * step 65 before 186400423 after 215347937 * step 128 before 88106045 after 140540612 * step 256 before 44812420 after 70660377 * step 512 before 24435438 after 36328275 * step 12345 before 2123924 after 2148062 * bloat-o-meter delta for this patchset + patchset with related shmem cleanups bloat-o-meter: x86_64 add/remove: 4/3 grow/shrink: 5/6 up/down: 928/-939 (-11) function old new delta radix_tree_next_chunk - 499 +499 shmem_unuse 428 554 +126 shmem_radix_tree_replace 131 227 +96 find_get_pages_tag 354 419 +65 find_get_pages_contig 345 407 +62 find_get_pages 362 396 +34 __kstrtab_radix_tree_next_chunk - 22 +22 __ksymtab_radix_tree_next_chunk - 16 +16 __kcrctab_radix_tree_next_chunk - 8 +8 radix_tree_gang_lookup_slot 204 203 -1 static.shmem_xattr_set 384 381 -3 radix_tree_gang_lookup_tag_slot 208 191 -17 radix_tree_gang_lookup 231 187 -44 radix_tree_gang_lookup_tag 247 199 -48 shmem_unlock_mapping 278 190 -88 __lookup 217 - -217 __lookup_tag 242 - -242 radix_tree_locate_item 279 - -279 bloat-o-meter: i386 add/remove: 3/3 grow/shrink: 8/9 up/down: 1075/-1275 (-200) function old new delta radix_tree_next_chunk - 757 +757 shmem_unuse 352 449 +97 find_get_pages_contig 269 322 +53 shmem_radix_tree_replace 113 154 +41 find_get_pages_tag 277 318 +41 dcache_dir_lseek 426 458 +32 __kstrtab_radix_tree_next_chunk - 22 +22 vc_do_resize 968 977 +9 snd_pcm_lib_read1 725 733 +8 __ksymtab_radix_tree_next_chunk - 8 +8 netlbl_cipsov4_list 1120 1127 +7 find_get_pages 293 291 -2 new_slab 467 459 -8 bitfill_unaligned_rev 425 417 -8 radix_tree_gang_lookup_tag_slot 177 146 -31 blk_dump_cmd 267 229 -38 radix_tree_gang_lookup_slot 212 134 -78 shmem_unlock_mapping 221 128 -93 radix_tree_gang_lookup_tag 275 162 -113 radix_tree_gang_lookup 255 126 -129 __lookup 227 - -227 __lookup_tag 271 - -271 radix_tree_locate_item 277 - -277 This patch: Implement a clean, simple and effective radix-tree iteration routine. Iterating divided into two phases: * lookup next chunk in radix-tree leaf node * iterating through slots in this chunk Main iterator function radix_tree_next_chunk() returns pointer to first slot, and stores in the struct radix_tree_iter index of next-to-last slot. For tagged-iterating it also constuct bitmask of tags for retunted chunk. All additional logic implemented as static-inline functions and macroses. Also adds radix_tree_find_next_bit() static-inline variant of find_next_bit() optimized for small constant size arrays, because find_next_bit() too heavy for searching in an array with one/two long elements. [akpm@linux-foundation.org: rework comments a bit] Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Tested-by: Hugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-29 05:42:53 +08:00
/* Hole detected */
if (flags & RADIX_TREE_ITER_CONTIG)
return NULL;
if (flags & RADIX_TREE_ITER_TAGGED)
offset = radix_tree_find_next_bit(node, tag,
radix-tree: introduce bit-optimized iterator A series of radix tree cleanups, and usage of them in the core pagecache code. Micro-benchmark: lookup 14 slots (typical page-vector size) in radix-tree there earch <step> slot filled and tagged before/after - nsec per full scan through tree * Intel Sandy Bridge i7-2620M 4Mb L3 New code always faster * AMD Athlon 6000+ 2x1Mb L2, without L3 New code generally faster, Minor degradation (marked with "*") for huge sparse trees * i386 on Sandy Bridge New code faster for common cases: tagged and dense trees. Some degradations for non-tagged lookup on sparse trees. Ideally, there might help __ffs() analog for searching first non-zero long element in array, gcc sometimes cannot optimize this loop corretly. Numbers: CPU: Intel Sandy Bridge i7-2620M 4Mb L3 radix-tree with 1024 slots: tagged lookup step 1 before 7156 after 3613 step 2 before 5399 after 2696 step 3 before 4779 after 1928 step 4 before 4456 after 1429 step 5 before 4292 after 1213 step 6 before 4183 after 1052 step 7 before 4157 after 951 step 8 before 4016 after 812 step 9 before 3952 after 851 step 10 before 3937 after 732 step 11 before 4023 after 709 step 12 before 3872 after 657 step 13 before 3892 after 633 step 14 before 3720 after 591 step 15 before 3879 after 578 step 16 before 3561 after 513 normal lookup step 1 before 4266 after 3301 step 2 before 2695 after 2129 step 3 before 2083 after 1712 step 4 before 1801 after 1534 step 5 before 1628 after 1313 step 6 before 1551 after 1263 step 7 before 1475 after 1185 step 8 before 1432 after 1167 step 9 before 1373 after 1092 step 10 before 1339 after 1134 step 11 before 1292 after 1056 step 12 before 1319 after 1030 step 13 before 1276 after 1004 step 14 before 1256 after 987 step 15 before 1228 after 992 step 16 before 1247 after 999 radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1086102841 after 674196409 step 2 before 816839155 after 498138306 step 7 before 599728907 after 240676762 step 15 before 555729253 after 185219677 step 63 before 606637748 after 128585664 step 64 before 608384432 after 102945089 step 65 before 596987114 after 123996019 step 128 before 304459225 after 56783056 step 256 before 158846855 after 31232481 step 512 before 86085652 after 18950595 step 12345 before 6517189 after 1674057 normal lookup step 1 before 626064869 after 544418266 step 2 before 418809975 after 336321473 step 7 before 242303598 after 207755560 step 15 before 208380563 after 176496355 step 63 before 186854206 after 167283638 step 64 before 176188060 after 170143976 step 65 before 185139608 after 167487116 step 128 before 88181865 after 86913490 step 256 before 45733628 after 45143534 step 512 before 24506038 after 23859036 step 12345 before 2177425 after 2018662 * AMD Athlon 6000+ 2x1Mb L2, without L3 radix-tree with 1024 slots: tag-lookup step 1 before 8164 after 5379 step 2 before 5818 after 5581 step 3 before 4959 after 4213 step 4 before 4371 after 3386 step 5 before 4204 after 2997 step 6 before 4950 after 2744 step 7 before 4598 after 2480 step 8 before 4251 after 2288 step 9 before 4262 after 2243 step 10 before 4175 after 2131 step 11 before 3999 after 2024 step 12 before 3979 after 1994 step 13 before 3842 after 1929 step 14 before 3750 after 1810 step 15 before 3735 after 1810 step 16 before 3532 after 1660 normal-lookup step 1 before 7875 after 5847 step 2 before 4808 after 4071 step 3 before 4073 after 3462 step 4 before 3677 after 3074 step 5 before 4308 after 2978 step 6 before 3911 after 3807 step 7 before 3635 after 3522 step 8 before 3313 after 3202 step 9 before 3280 after 3257 step 10 before 3166 after 3083 step 11 before 3066 after 3026 step 12 before 2985 after 2982 step 13 before 2925 after 2924 step 14 before 2834 after 2808 step 15 before 2805 after 2803 step 16 before 2647 after 2622 radix-tree with 1024*1024*128 slots: tag-lookup step 1 before 1288059720 after 951736580 step 2 before 961292300 after 884212140 step 7 before 768905140 after 547267580 step 15 before 771319480 after 456550640 step 63 before 504847640 after 242704304 step 64 before 392484800 after 177920786 step 65 before 491162160 after 246895264 step 128 before 208084064 after 97348392 step 256 before 112401035 after 51408126 step 512 before 75825834 after 29145070 step 12345 before 5603166 after 2847330 normal-lookup step 1 before 1025677120 after 861375100 step 2 before 647220080 after 572258540 step 7 before 505518960 after 484041813 step 15 before 430483053 after 444815320 * step 63 before 388113453 after 404250546 * step 64 before 374154666 after 396027440 * step 65 before 381423973 after 396704853 * step 128 before 190078700 after 202619384 * step 256 before 100886756 after 102829108 * step 512 before 64074505 after 56158720 step 12345 before 4237289 after 4422299 * * i686 on Sandy bridge radix-tree with 1024 slots: tagged lookup step 1 before 7990 after 4019 step 2 before 5698 after 2897 step 3 before 5013 after 2475 step 4 before 4630 after 1721 step 5 before 4346 after 1759 step 6 before 4299 after 1556 step 7 before 4098 after 1513 step 8 before 4115 after 1222 step 9 before 3983 after 1390 step 10 before 4077 after 1207 step 11 before 3921 after 1231 step 12 before 3894 after 1116 step 13 before 3840 after 1147 step 14 before 3799 after 1090 step 15 before 3797 after 1059 step 16 before 3783 after 745 normal lookup step 1 before 5103 after 3499 step 2 before 3299 after 2550 step 3 before 2489 after 2370 step 4 before 2034 after 2302 * step 5 before 1846 after 2268 * step 6 before 1752 after 2249 * step 7 before 1679 after 2164 * step 8 before 1627 after 2153 * step 9 before 1542 after 2095 * step 10 before 1479 after 2109 * step 11 before 1469 after 2009 * step 12 before 1445 after 2039 * step 13 before 1411 after 2013 * step 14 before 1374 after 2046 * step 15 before 1340 after 1975 * step 16 before 1331 after 2000 * radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1225865377 after 667153553 step 2 before 842427423 after 471533007 step 7 before 609296153 after 276260116 step 15 before 544232060 after 226859105 step 63 before 519209199 after 141343043 step 64 before 588980279 after 141951339 step 65 before 521099710 after 138282060 step 128 before 298476778 after 83390628 step 256 before 149358342 after 43602609 step 512 before 76994713 after 22911077 step 12345 before 5328666 after 1472111 normal lookup step 1 before 819284564 after 533635310 step 2 before 512421605 after 364956155 step 7 before 271443305 after 305721345 * step 15 before 223591630 after 273960216 * step 63 before 190320247 after 217770207 * step 64 before 178538168 after 267411372 * step 65 before 186400423 after 215347937 * step 128 before 88106045 after 140540612 * step 256 before 44812420 after 70660377 * step 512 before 24435438 after 36328275 * step 12345 before 2123924 after 2148062 * bloat-o-meter delta for this patchset + patchset with related shmem cleanups bloat-o-meter: x86_64 add/remove: 4/3 grow/shrink: 5/6 up/down: 928/-939 (-11) function old new delta radix_tree_next_chunk - 499 +499 shmem_unuse 428 554 +126 shmem_radix_tree_replace 131 227 +96 find_get_pages_tag 354 419 +65 find_get_pages_contig 345 407 +62 find_get_pages 362 396 +34 __kstrtab_radix_tree_next_chunk - 22 +22 __ksymtab_radix_tree_next_chunk - 16 +16 __kcrctab_radix_tree_next_chunk - 8 +8 radix_tree_gang_lookup_slot 204 203 -1 static.shmem_xattr_set 384 381 -3 radix_tree_gang_lookup_tag_slot 208 191 -17 radix_tree_gang_lookup 231 187 -44 radix_tree_gang_lookup_tag 247 199 -48 shmem_unlock_mapping 278 190 -88 __lookup 217 - -217 __lookup_tag 242 - -242 radix_tree_locate_item 279 - -279 bloat-o-meter: i386 add/remove: 3/3 grow/shrink: 8/9 up/down: 1075/-1275 (-200) function old new delta radix_tree_next_chunk - 757 +757 shmem_unuse 352 449 +97 find_get_pages_contig 269 322 +53 shmem_radix_tree_replace 113 154 +41 find_get_pages_tag 277 318 +41 dcache_dir_lseek 426 458 +32 __kstrtab_radix_tree_next_chunk - 22 +22 vc_do_resize 968 977 +9 snd_pcm_lib_read1 725 733 +8 __ksymtab_radix_tree_next_chunk - 8 +8 netlbl_cipsov4_list 1120 1127 +7 find_get_pages 293 291 -2 new_slab 467 459 -8 bitfill_unaligned_rev 425 417 -8 radix_tree_gang_lookup_tag_slot 177 146 -31 blk_dump_cmd 267 229 -38 radix_tree_gang_lookup_slot 212 134 -78 shmem_unlock_mapping 221 128 -93 radix_tree_gang_lookup_tag 275 162 -113 radix_tree_gang_lookup 255 126 -129 __lookup 227 - -227 __lookup_tag 271 - -271 radix_tree_locate_item 277 - -277 This patch: Implement a clean, simple and effective radix-tree iteration routine. Iterating divided into two phases: * lookup next chunk in radix-tree leaf node * iterating through slots in this chunk Main iterator function radix_tree_next_chunk() returns pointer to first slot, and stores in the struct radix_tree_iter index of next-to-last slot. For tagged-iterating it also constuct bitmask of tags for retunted chunk. All additional logic implemented as static-inline functions and macroses. Also adds radix_tree_find_next_bit() static-inline variant of find_next_bit() optimized for small constant size arrays, because find_next_bit() too heavy for searching in an array with one/two long elements. [akpm@linux-foundation.org: rework comments a bit] Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Tested-by: Hugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-29 05:42:53 +08:00
offset + 1);
else
while (++offset < RADIX_TREE_MAP_SIZE) {
void *slot = rcu_dereference_raw(
node->slots[offset]);
if (slot)
radix-tree: introduce bit-optimized iterator A series of radix tree cleanups, and usage of them in the core pagecache code. Micro-benchmark: lookup 14 slots (typical page-vector size) in radix-tree there earch <step> slot filled and tagged before/after - nsec per full scan through tree * Intel Sandy Bridge i7-2620M 4Mb L3 New code always faster * AMD Athlon 6000+ 2x1Mb L2, without L3 New code generally faster, Minor degradation (marked with "*") for huge sparse trees * i386 on Sandy Bridge New code faster for common cases: tagged and dense trees. Some degradations for non-tagged lookup on sparse trees. Ideally, there might help __ffs() analog for searching first non-zero long element in array, gcc sometimes cannot optimize this loop corretly. Numbers: CPU: Intel Sandy Bridge i7-2620M 4Mb L3 radix-tree with 1024 slots: tagged lookup step 1 before 7156 after 3613 step 2 before 5399 after 2696 step 3 before 4779 after 1928 step 4 before 4456 after 1429 step 5 before 4292 after 1213 step 6 before 4183 after 1052 step 7 before 4157 after 951 step 8 before 4016 after 812 step 9 before 3952 after 851 step 10 before 3937 after 732 step 11 before 4023 after 709 step 12 before 3872 after 657 step 13 before 3892 after 633 step 14 before 3720 after 591 step 15 before 3879 after 578 step 16 before 3561 after 513 normal lookup step 1 before 4266 after 3301 step 2 before 2695 after 2129 step 3 before 2083 after 1712 step 4 before 1801 after 1534 step 5 before 1628 after 1313 step 6 before 1551 after 1263 step 7 before 1475 after 1185 step 8 before 1432 after 1167 step 9 before 1373 after 1092 step 10 before 1339 after 1134 step 11 before 1292 after 1056 step 12 before 1319 after 1030 step 13 before 1276 after 1004 step 14 before 1256 after 987 step 15 before 1228 after 992 step 16 before 1247 after 999 radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1086102841 after 674196409 step 2 before 816839155 after 498138306 step 7 before 599728907 after 240676762 step 15 before 555729253 after 185219677 step 63 before 606637748 after 128585664 step 64 before 608384432 after 102945089 step 65 before 596987114 after 123996019 step 128 before 304459225 after 56783056 step 256 before 158846855 after 31232481 step 512 before 86085652 after 18950595 step 12345 before 6517189 after 1674057 normal lookup step 1 before 626064869 after 544418266 step 2 before 418809975 after 336321473 step 7 before 242303598 after 207755560 step 15 before 208380563 after 176496355 step 63 before 186854206 after 167283638 step 64 before 176188060 after 170143976 step 65 before 185139608 after 167487116 step 128 before 88181865 after 86913490 step 256 before 45733628 after 45143534 step 512 before 24506038 after 23859036 step 12345 before 2177425 after 2018662 * AMD Athlon 6000+ 2x1Mb L2, without L3 radix-tree with 1024 slots: tag-lookup step 1 before 8164 after 5379 step 2 before 5818 after 5581 step 3 before 4959 after 4213 step 4 before 4371 after 3386 step 5 before 4204 after 2997 step 6 before 4950 after 2744 step 7 before 4598 after 2480 step 8 before 4251 after 2288 step 9 before 4262 after 2243 step 10 before 4175 after 2131 step 11 before 3999 after 2024 step 12 before 3979 after 1994 step 13 before 3842 after 1929 step 14 before 3750 after 1810 step 15 before 3735 after 1810 step 16 before 3532 after 1660 normal-lookup step 1 before 7875 after 5847 step 2 before 4808 after 4071 step 3 before 4073 after 3462 step 4 before 3677 after 3074 step 5 before 4308 after 2978 step 6 before 3911 after 3807 step 7 before 3635 after 3522 step 8 before 3313 after 3202 step 9 before 3280 after 3257 step 10 before 3166 after 3083 step 11 before 3066 after 3026 step 12 before 2985 after 2982 step 13 before 2925 after 2924 step 14 before 2834 after 2808 step 15 before 2805 after 2803 step 16 before 2647 after 2622 radix-tree with 1024*1024*128 slots: tag-lookup step 1 before 1288059720 after 951736580 step 2 before 961292300 after 884212140 step 7 before 768905140 after 547267580 step 15 before 771319480 after 456550640 step 63 before 504847640 after 242704304 step 64 before 392484800 after 177920786 step 65 before 491162160 after 246895264 step 128 before 208084064 after 97348392 step 256 before 112401035 after 51408126 step 512 before 75825834 after 29145070 step 12345 before 5603166 after 2847330 normal-lookup step 1 before 1025677120 after 861375100 step 2 before 647220080 after 572258540 step 7 before 505518960 after 484041813 step 15 before 430483053 after 444815320 * step 63 before 388113453 after 404250546 * step 64 before 374154666 after 396027440 * step 65 before 381423973 after 396704853 * step 128 before 190078700 after 202619384 * step 256 before 100886756 after 102829108 * step 512 before 64074505 after 56158720 step 12345 before 4237289 after 4422299 * * i686 on Sandy bridge radix-tree with 1024 slots: tagged lookup step 1 before 7990 after 4019 step 2 before 5698 after 2897 step 3 before 5013 after 2475 step 4 before 4630 after 1721 step 5 before 4346 after 1759 step 6 before 4299 after 1556 step 7 before 4098 after 1513 step 8 before 4115 after 1222 step 9 before 3983 after 1390 step 10 before 4077 after 1207 step 11 before 3921 after 1231 step 12 before 3894 after 1116 step 13 before 3840 after 1147 step 14 before 3799 after 1090 step 15 before 3797 after 1059 step 16 before 3783 after 745 normal lookup step 1 before 5103 after 3499 step 2 before 3299 after 2550 step 3 before 2489 after 2370 step 4 before 2034 after 2302 * step 5 before 1846 after 2268 * step 6 before 1752 after 2249 * step 7 before 1679 after 2164 * step 8 before 1627 after 2153 * step 9 before 1542 after 2095 * step 10 before 1479 after 2109 * step 11 before 1469 after 2009 * step 12 before 1445 after 2039 * step 13 before 1411 after 2013 * step 14 before 1374 after 2046 * step 15 before 1340 after 1975 * step 16 before 1331 after 2000 * radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1225865377 after 667153553 step 2 before 842427423 after 471533007 step 7 before 609296153 after 276260116 step 15 before 544232060 after 226859105 step 63 before 519209199 after 141343043 step 64 before 588980279 after 141951339 step 65 before 521099710 after 138282060 step 128 before 298476778 after 83390628 step 256 before 149358342 after 43602609 step 512 before 76994713 after 22911077 step 12345 before 5328666 after 1472111 normal lookup step 1 before 819284564 after 533635310 step 2 before 512421605 after 364956155 step 7 before 271443305 after 305721345 * step 15 before 223591630 after 273960216 * step 63 before 190320247 after 217770207 * step 64 before 178538168 after 267411372 * step 65 before 186400423 after 215347937 * step 128 before 88106045 after 140540612 * step 256 before 44812420 after 70660377 * step 512 before 24435438 after 36328275 * step 12345 before 2123924 after 2148062 * bloat-o-meter delta for this patchset + patchset with related shmem cleanups bloat-o-meter: x86_64 add/remove: 4/3 grow/shrink: 5/6 up/down: 928/-939 (-11) function old new delta radix_tree_next_chunk - 499 +499 shmem_unuse 428 554 +126 shmem_radix_tree_replace 131 227 +96 find_get_pages_tag 354 419 +65 find_get_pages_contig 345 407 +62 find_get_pages 362 396 +34 __kstrtab_radix_tree_next_chunk - 22 +22 __ksymtab_radix_tree_next_chunk - 16 +16 __kcrctab_radix_tree_next_chunk - 8 +8 radix_tree_gang_lookup_slot 204 203 -1 static.shmem_xattr_set 384 381 -3 radix_tree_gang_lookup_tag_slot 208 191 -17 radix_tree_gang_lookup 231 187 -44 radix_tree_gang_lookup_tag 247 199 -48 shmem_unlock_mapping 278 190 -88 __lookup 217 - -217 __lookup_tag 242 - -242 radix_tree_locate_item 279 - -279 bloat-o-meter: i386 add/remove: 3/3 grow/shrink: 8/9 up/down: 1075/-1275 (-200) function old new delta radix_tree_next_chunk - 757 +757 shmem_unuse 352 449 +97 find_get_pages_contig 269 322 +53 shmem_radix_tree_replace 113 154 +41 find_get_pages_tag 277 318 +41 dcache_dir_lseek 426 458 +32 __kstrtab_radix_tree_next_chunk - 22 +22 vc_do_resize 968 977 +9 snd_pcm_lib_read1 725 733 +8 __ksymtab_radix_tree_next_chunk - 8 +8 netlbl_cipsov4_list 1120 1127 +7 find_get_pages 293 291 -2 new_slab 467 459 -8 bitfill_unaligned_rev 425 417 -8 radix_tree_gang_lookup_tag_slot 177 146 -31 blk_dump_cmd 267 229 -38 radix_tree_gang_lookup_slot 212 134 -78 shmem_unlock_mapping 221 128 -93 radix_tree_gang_lookup_tag 275 162 -113 radix_tree_gang_lookup 255 126 -129 __lookup 227 - -227 __lookup_tag 271 - -271 radix_tree_locate_item 277 - -277 This patch: Implement a clean, simple and effective radix-tree iteration routine. Iterating divided into two phases: * lookup next chunk in radix-tree leaf node * iterating through slots in this chunk Main iterator function radix_tree_next_chunk() returns pointer to first slot, and stores in the struct radix_tree_iter index of next-to-last slot. For tagged-iterating it also constuct bitmask of tags for retunted chunk. All additional logic implemented as static-inline functions and macroses. Also adds radix_tree_find_next_bit() static-inline variant of find_next_bit() optimized for small constant size arrays, because find_next_bit() too heavy for searching in an array with one/two long elements. [akpm@linux-foundation.org: rework comments a bit] Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Tested-by: Hugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-29 05:42:53 +08:00
break;
}
index &= ~node_maxindex(node);
index += offset << node->shift;
radix-tree: introduce bit-optimized iterator A series of radix tree cleanups, and usage of them in the core pagecache code. Micro-benchmark: lookup 14 slots (typical page-vector size) in radix-tree there earch <step> slot filled and tagged before/after - nsec per full scan through tree * Intel Sandy Bridge i7-2620M 4Mb L3 New code always faster * AMD Athlon 6000+ 2x1Mb L2, without L3 New code generally faster, Minor degradation (marked with "*") for huge sparse trees * i386 on Sandy Bridge New code faster for common cases: tagged and dense trees. Some degradations for non-tagged lookup on sparse trees. Ideally, there might help __ffs() analog for searching first non-zero long element in array, gcc sometimes cannot optimize this loop corretly. Numbers: CPU: Intel Sandy Bridge i7-2620M 4Mb L3 radix-tree with 1024 slots: tagged lookup step 1 before 7156 after 3613 step 2 before 5399 after 2696 step 3 before 4779 after 1928 step 4 before 4456 after 1429 step 5 before 4292 after 1213 step 6 before 4183 after 1052 step 7 before 4157 after 951 step 8 before 4016 after 812 step 9 before 3952 after 851 step 10 before 3937 after 732 step 11 before 4023 after 709 step 12 before 3872 after 657 step 13 before 3892 after 633 step 14 before 3720 after 591 step 15 before 3879 after 578 step 16 before 3561 after 513 normal lookup step 1 before 4266 after 3301 step 2 before 2695 after 2129 step 3 before 2083 after 1712 step 4 before 1801 after 1534 step 5 before 1628 after 1313 step 6 before 1551 after 1263 step 7 before 1475 after 1185 step 8 before 1432 after 1167 step 9 before 1373 after 1092 step 10 before 1339 after 1134 step 11 before 1292 after 1056 step 12 before 1319 after 1030 step 13 before 1276 after 1004 step 14 before 1256 after 987 step 15 before 1228 after 992 step 16 before 1247 after 999 radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1086102841 after 674196409 step 2 before 816839155 after 498138306 step 7 before 599728907 after 240676762 step 15 before 555729253 after 185219677 step 63 before 606637748 after 128585664 step 64 before 608384432 after 102945089 step 65 before 596987114 after 123996019 step 128 before 304459225 after 56783056 step 256 before 158846855 after 31232481 step 512 before 86085652 after 18950595 step 12345 before 6517189 after 1674057 normal lookup step 1 before 626064869 after 544418266 step 2 before 418809975 after 336321473 step 7 before 242303598 after 207755560 step 15 before 208380563 after 176496355 step 63 before 186854206 after 167283638 step 64 before 176188060 after 170143976 step 65 before 185139608 after 167487116 step 128 before 88181865 after 86913490 step 256 before 45733628 after 45143534 step 512 before 24506038 after 23859036 step 12345 before 2177425 after 2018662 * AMD Athlon 6000+ 2x1Mb L2, without L3 radix-tree with 1024 slots: tag-lookup step 1 before 8164 after 5379 step 2 before 5818 after 5581 step 3 before 4959 after 4213 step 4 before 4371 after 3386 step 5 before 4204 after 2997 step 6 before 4950 after 2744 step 7 before 4598 after 2480 step 8 before 4251 after 2288 step 9 before 4262 after 2243 step 10 before 4175 after 2131 step 11 before 3999 after 2024 step 12 before 3979 after 1994 step 13 before 3842 after 1929 step 14 before 3750 after 1810 step 15 before 3735 after 1810 step 16 before 3532 after 1660 normal-lookup step 1 before 7875 after 5847 step 2 before 4808 after 4071 step 3 before 4073 after 3462 step 4 before 3677 after 3074 step 5 before 4308 after 2978 step 6 before 3911 after 3807 step 7 before 3635 after 3522 step 8 before 3313 after 3202 step 9 before 3280 after 3257 step 10 before 3166 after 3083 step 11 before 3066 after 3026 step 12 before 2985 after 2982 step 13 before 2925 after 2924 step 14 before 2834 after 2808 step 15 before 2805 after 2803 step 16 before 2647 after 2622 radix-tree with 1024*1024*128 slots: tag-lookup step 1 before 1288059720 after 951736580 step 2 before 961292300 after 884212140 step 7 before 768905140 after 547267580 step 15 before 771319480 after 456550640 step 63 before 504847640 after 242704304 step 64 before 392484800 after 177920786 step 65 before 491162160 after 246895264 step 128 before 208084064 after 97348392 step 256 before 112401035 after 51408126 step 512 before 75825834 after 29145070 step 12345 before 5603166 after 2847330 normal-lookup step 1 before 1025677120 after 861375100 step 2 before 647220080 after 572258540 step 7 before 505518960 after 484041813 step 15 before 430483053 after 444815320 * step 63 before 388113453 after 404250546 * step 64 before 374154666 after 396027440 * step 65 before 381423973 after 396704853 * step 128 before 190078700 after 202619384 * step 256 before 100886756 after 102829108 * step 512 before 64074505 after 56158720 step 12345 before 4237289 after 4422299 * * i686 on Sandy bridge radix-tree with 1024 slots: tagged lookup step 1 before 7990 after 4019 step 2 before 5698 after 2897 step 3 before 5013 after 2475 step 4 before 4630 after 1721 step 5 before 4346 after 1759 step 6 before 4299 after 1556 step 7 before 4098 after 1513 step 8 before 4115 after 1222 step 9 before 3983 after 1390 step 10 before 4077 after 1207 step 11 before 3921 after 1231 step 12 before 3894 after 1116 step 13 before 3840 after 1147 step 14 before 3799 after 1090 step 15 before 3797 after 1059 step 16 before 3783 after 745 normal lookup step 1 before 5103 after 3499 step 2 before 3299 after 2550 step 3 before 2489 after 2370 step 4 before 2034 after 2302 * step 5 before 1846 after 2268 * step 6 before 1752 after 2249 * step 7 before 1679 after 2164 * step 8 before 1627 after 2153 * step 9 before 1542 after 2095 * step 10 before 1479 after 2109 * step 11 before 1469 after 2009 * step 12 before 1445 after 2039 * step 13 before 1411 after 2013 * step 14 before 1374 after 2046 * step 15 before 1340 after 1975 * step 16 before 1331 after 2000 * radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1225865377 after 667153553 step 2 before 842427423 after 471533007 step 7 before 609296153 after 276260116 step 15 before 544232060 after 226859105 step 63 before 519209199 after 141343043 step 64 before 588980279 after 141951339 step 65 before 521099710 after 138282060 step 128 before 298476778 after 83390628 step 256 before 149358342 after 43602609 step 512 before 76994713 after 22911077 step 12345 before 5328666 after 1472111 normal lookup step 1 before 819284564 after 533635310 step 2 before 512421605 after 364956155 step 7 before 271443305 after 305721345 * step 15 before 223591630 after 273960216 * step 63 before 190320247 after 217770207 * step 64 before 178538168 after 267411372 * step 65 before 186400423 after 215347937 * step 128 before 88106045 after 140540612 * step 256 before 44812420 after 70660377 * step 512 before 24435438 after 36328275 * step 12345 before 2123924 after 2148062 * bloat-o-meter delta for this patchset + patchset with related shmem cleanups bloat-o-meter: x86_64 add/remove: 4/3 grow/shrink: 5/6 up/down: 928/-939 (-11) function old new delta radix_tree_next_chunk - 499 +499 shmem_unuse 428 554 +126 shmem_radix_tree_replace 131 227 +96 find_get_pages_tag 354 419 +65 find_get_pages_contig 345 407 +62 find_get_pages 362 396 +34 __kstrtab_radix_tree_next_chunk - 22 +22 __ksymtab_radix_tree_next_chunk - 16 +16 __kcrctab_radix_tree_next_chunk - 8 +8 radix_tree_gang_lookup_slot 204 203 -1 static.shmem_xattr_set 384 381 -3 radix_tree_gang_lookup_tag_slot 208 191 -17 radix_tree_gang_lookup 231 187 -44 radix_tree_gang_lookup_tag 247 199 -48 shmem_unlock_mapping 278 190 -88 __lookup 217 - -217 __lookup_tag 242 - -242 radix_tree_locate_item 279 - -279 bloat-o-meter: i386 add/remove: 3/3 grow/shrink: 8/9 up/down: 1075/-1275 (-200) function old new delta radix_tree_next_chunk - 757 +757 shmem_unuse 352 449 +97 find_get_pages_contig 269 322 +53 shmem_radix_tree_replace 113 154 +41 find_get_pages_tag 277 318 +41 dcache_dir_lseek 426 458 +32 __kstrtab_radix_tree_next_chunk - 22 +22 vc_do_resize 968 977 +9 snd_pcm_lib_read1 725 733 +8 __ksymtab_radix_tree_next_chunk - 8 +8 netlbl_cipsov4_list 1120 1127 +7 find_get_pages 293 291 -2 new_slab 467 459 -8 bitfill_unaligned_rev 425 417 -8 radix_tree_gang_lookup_tag_slot 177 146 -31 blk_dump_cmd 267 229 -38 radix_tree_gang_lookup_slot 212 134 -78 shmem_unlock_mapping 221 128 -93 radix_tree_gang_lookup_tag 275 162 -113 radix_tree_gang_lookup 255 126 -129 __lookup 227 - -227 __lookup_tag 271 - -271 radix_tree_locate_item 277 - -277 This patch: Implement a clean, simple and effective radix-tree iteration routine. Iterating divided into two phases: * lookup next chunk in radix-tree leaf node * iterating through slots in this chunk Main iterator function radix_tree_next_chunk() returns pointer to first slot, and stores in the struct radix_tree_iter index of next-to-last slot. For tagged-iterating it also constuct bitmask of tags for retunted chunk. All additional logic implemented as static-inline functions and macroses. Also adds radix_tree_find_next_bit() static-inline variant of find_next_bit() optimized for small constant size arrays, because find_next_bit() too heavy for searching in an array with one/two long elements. [akpm@linux-foundation.org: rework comments a bit] Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Tested-by: Hugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-29 05:42:53 +08:00
/* Overflow after ~0UL */
if (!index)
return NULL;
if (offset == RADIX_TREE_MAP_SIZE)
goto restart;
child = rcu_dereference_raw(node->slots[offset]);
radix-tree: introduce bit-optimized iterator A series of radix tree cleanups, and usage of them in the core pagecache code. Micro-benchmark: lookup 14 slots (typical page-vector size) in radix-tree there earch <step> slot filled and tagged before/after - nsec per full scan through tree * Intel Sandy Bridge i7-2620M 4Mb L3 New code always faster * AMD Athlon 6000+ 2x1Mb L2, without L3 New code generally faster, Minor degradation (marked with "*") for huge sparse trees * i386 on Sandy Bridge New code faster for common cases: tagged and dense trees. Some degradations for non-tagged lookup on sparse trees. Ideally, there might help __ffs() analog for searching first non-zero long element in array, gcc sometimes cannot optimize this loop corretly. Numbers: CPU: Intel Sandy Bridge i7-2620M 4Mb L3 radix-tree with 1024 slots: tagged lookup step 1 before 7156 after 3613 step 2 before 5399 after 2696 step 3 before 4779 after 1928 step 4 before 4456 after 1429 step 5 before 4292 after 1213 step 6 before 4183 after 1052 step 7 before 4157 after 951 step 8 before 4016 after 812 step 9 before 3952 after 851 step 10 before 3937 after 732 step 11 before 4023 after 709 step 12 before 3872 after 657 step 13 before 3892 after 633 step 14 before 3720 after 591 step 15 before 3879 after 578 step 16 before 3561 after 513 normal lookup step 1 before 4266 after 3301 step 2 before 2695 after 2129 step 3 before 2083 after 1712 step 4 before 1801 after 1534 step 5 before 1628 after 1313 step 6 before 1551 after 1263 step 7 before 1475 after 1185 step 8 before 1432 after 1167 step 9 before 1373 after 1092 step 10 before 1339 after 1134 step 11 before 1292 after 1056 step 12 before 1319 after 1030 step 13 before 1276 after 1004 step 14 before 1256 after 987 step 15 before 1228 after 992 step 16 before 1247 after 999 radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1086102841 after 674196409 step 2 before 816839155 after 498138306 step 7 before 599728907 after 240676762 step 15 before 555729253 after 185219677 step 63 before 606637748 after 128585664 step 64 before 608384432 after 102945089 step 65 before 596987114 after 123996019 step 128 before 304459225 after 56783056 step 256 before 158846855 after 31232481 step 512 before 86085652 after 18950595 step 12345 before 6517189 after 1674057 normal lookup step 1 before 626064869 after 544418266 step 2 before 418809975 after 336321473 step 7 before 242303598 after 207755560 step 15 before 208380563 after 176496355 step 63 before 186854206 after 167283638 step 64 before 176188060 after 170143976 step 65 before 185139608 after 167487116 step 128 before 88181865 after 86913490 step 256 before 45733628 after 45143534 step 512 before 24506038 after 23859036 step 12345 before 2177425 after 2018662 * AMD Athlon 6000+ 2x1Mb L2, without L3 radix-tree with 1024 slots: tag-lookup step 1 before 8164 after 5379 step 2 before 5818 after 5581 step 3 before 4959 after 4213 step 4 before 4371 after 3386 step 5 before 4204 after 2997 step 6 before 4950 after 2744 step 7 before 4598 after 2480 step 8 before 4251 after 2288 step 9 before 4262 after 2243 step 10 before 4175 after 2131 step 11 before 3999 after 2024 step 12 before 3979 after 1994 step 13 before 3842 after 1929 step 14 before 3750 after 1810 step 15 before 3735 after 1810 step 16 before 3532 after 1660 normal-lookup step 1 before 7875 after 5847 step 2 before 4808 after 4071 step 3 before 4073 after 3462 step 4 before 3677 after 3074 step 5 before 4308 after 2978 step 6 before 3911 after 3807 step 7 before 3635 after 3522 step 8 before 3313 after 3202 step 9 before 3280 after 3257 step 10 before 3166 after 3083 step 11 before 3066 after 3026 step 12 before 2985 after 2982 step 13 before 2925 after 2924 step 14 before 2834 after 2808 step 15 before 2805 after 2803 step 16 before 2647 after 2622 radix-tree with 1024*1024*128 slots: tag-lookup step 1 before 1288059720 after 951736580 step 2 before 961292300 after 884212140 step 7 before 768905140 after 547267580 step 15 before 771319480 after 456550640 step 63 before 504847640 after 242704304 step 64 before 392484800 after 177920786 step 65 before 491162160 after 246895264 step 128 before 208084064 after 97348392 step 256 before 112401035 after 51408126 step 512 before 75825834 after 29145070 step 12345 before 5603166 after 2847330 normal-lookup step 1 before 1025677120 after 861375100 step 2 before 647220080 after 572258540 step 7 before 505518960 after 484041813 step 15 before 430483053 after 444815320 * step 63 before 388113453 after 404250546 * step 64 before 374154666 after 396027440 * step 65 before 381423973 after 396704853 * step 128 before 190078700 after 202619384 * step 256 before 100886756 after 102829108 * step 512 before 64074505 after 56158720 step 12345 before 4237289 after 4422299 * * i686 on Sandy bridge radix-tree with 1024 slots: tagged lookup step 1 before 7990 after 4019 step 2 before 5698 after 2897 step 3 before 5013 after 2475 step 4 before 4630 after 1721 step 5 before 4346 after 1759 step 6 before 4299 after 1556 step 7 before 4098 after 1513 step 8 before 4115 after 1222 step 9 before 3983 after 1390 step 10 before 4077 after 1207 step 11 before 3921 after 1231 step 12 before 3894 after 1116 step 13 before 3840 after 1147 step 14 before 3799 after 1090 step 15 before 3797 after 1059 step 16 before 3783 after 745 normal lookup step 1 before 5103 after 3499 step 2 before 3299 after 2550 step 3 before 2489 after 2370 step 4 before 2034 after 2302 * step 5 before 1846 after 2268 * step 6 before 1752 after 2249 * step 7 before 1679 after 2164 * step 8 before 1627 after 2153 * step 9 before 1542 after 2095 * step 10 before 1479 after 2109 * step 11 before 1469 after 2009 * step 12 before 1445 after 2039 * step 13 before 1411 after 2013 * step 14 before 1374 after 2046 * step 15 before 1340 after 1975 * step 16 before 1331 after 2000 * radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1225865377 after 667153553 step 2 before 842427423 after 471533007 step 7 before 609296153 after 276260116 step 15 before 544232060 after 226859105 step 63 before 519209199 after 141343043 step 64 before 588980279 after 141951339 step 65 before 521099710 after 138282060 step 128 before 298476778 after 83390628 step 256 before 149358342 after 43602609 step 512 before 76994713 after 22911077 step 12345 before 5328666 after 1472111 normal lookup step 1 before 819284564 after 533635310 step 2 before 512421605 after 364956155 step 7 before 271443305 after 305721345 * step 15 before 223591630 after 273960216 * step 63 before 190320247 after 217770207 * step 64 before 178538168 after 267411372 * step 65 before 186400423 after 215347937 * step 128 before 88106045 after 140540612 * step 256 before 44812420 after 70660377 * step 512 before 24435438 after 36328275 * step 12345 before 2123924 after 2148062 * bloat-o-meter delta for this patchset + patchset with related shmem cleanups bloat-o-meter: x86_64 add/remove: 4/3 grow/shrink: 5/6 up/down: 928/-939 (-11) function old new delta radix_tree_next_chunk - 499 +499 shmem_unuse 428 554 +126 shmem_radix_tree_replace 131 227 +96 find_get_pages_tag 354 419 +65 find_get_pages_contig 345 407 +62 find_get_pages 362 396 +34 __kstrtab_radix_tree_next_chunk - 22 +22 __ksymtab_radix_tree_next_chunk - 16 +16 __kcrctab_radix_tree_next_chunk - 8 +8 radix_tree_gang_lookup_slot 204 203 -1 static.shmem_xattr_set 384 381 -3 radix_tree_gang_lookup_tag_slot 208 191 -17 radix_tree_gang_lookup 231 187 -44 radix_tree_gang_lookup_tag 247 199 -48 shmem_unlock_mapping 278 190 -88 __lookup 217 - -217 __lookup_tag 242 - -242 radix_tree_locate_item 279 - -279 bloat-o-meter: i386 add/remove: 3/3 grow/shrink: 8/9 up/down: 1075/-1275 (-200) function old new delta radix_tree_next_chunk - 757 +757 shmem_unuse 352 449 +97 find_get_pages_contig 269 322 +53 shmem_radix_tree_replace 113 154 +41 find_get_pages_tag 277 318 +41 dcache_dir_lseek 426 458 +32 __kstrtab_radix_tree_next_chunk - 22 +22 vc_do_resize 968 977 +9 snd_pcm_lib_read1 725 733 +8 __ksymtab_radix_tree_next_chunk - 8 +8 netlbl_cipsov4_list 1120 1127 +7 find_get_pages 293 291 -2 new_slab 467 459 -8 bitfill_unaligned_rev 425 417 -8 radix_tree_gang_lookup_tag_slot 177 146 -31 blk_dump_cmd 267 229 -38 radix_tree_gang_lookup_slot 212 134 -78 shmem_unlock_mapping 221 128 -93 radix_tree_gang_lookup_tag 275 162 -113 radix_tree_gang_lookup 255 126 -129 __lookup 227 - -227 __lookup_tag 271 - -271 radix_tree_locate_item 277 - -277 This patch: Implement a clean, simple and effective radix-tree iteration routine. Iterating divided into two phases: * lookup next chunk in radix-tree leaf node * iterating through slots in this chunk Main iterator function radix_tree_next_chunk() returns pointer to first slot, and stores in the struct radix_tree_iter index of next-to-last slot. For tagged-iterating it also constuct bitmask of tags for retunted chunk. All additional logic implemented as static-inline functions and macroses. Also adds radix_tree_find_next_bit() static-inline variant of find_next_bit() optimized for small constant size arrays, because find_next_bit() too heavy for searching in an array with one/two long elements. [akpm@linux-foundation.org: rework comments a bit] Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Tested-by: Hugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-29 05:42:53 +08:00
}
if (!child)
radix-tree: introduce bit-optimized iterator A series of radix tree cleanups, and usage of them in the core pagecache code. Micro-benchmark: lookup 14 slots (typical page-vector size) in radix-tree there earch <step> slot filled and tagged before/after - nsec per full scan through tree * Intel Sandy Bridge i7-2620M 4Mb L3 New code always faster * AMD Athlon 6000+ 2x1Mb L2, without L3 New code generally faster, Minor degradation (marked with "*") for huge sparse trees * i386 on Sandy Bridge New code faster for common cases: tagged and dense trees. Some degradations for non-tagged lookup on sparse trees. Ideally, there might help __ffs() analog for searching first non-zero long element in array, gcc sometimes cannot optimize this loop corretly. Numbers: CPU: Intel Sandy Bridge i7-2620M 4Mb L3 radix-tree with 1024 slots: tagged lookup step 1 before 7156 after 3613 step 2 before 5399 after 2696 step 3 before 4779 after 1928 step 4 before 4456 after 1429 step 5 before 4292 after 1213 step 6 before 4183 after 1052 step 7 before 4157 after 951 step 8 before 4016 after 812 step 9 before 3952 after 851 step 10 before 3937 after 732 step 11 before 4023 after 709 step 12 before 3872 after 657 step 13 before 3892 after 633 step 14 before 3720 after 591 step 15 before 3879 after 578 step 16 before 3561 after 513 normal lookup step 1 before 4266 after 3301 step 2 before 2695 after 2129 step 3 before 2083 after 1712 step 4 before 1801 after 1534 step 5 before 1628 after 1313 step 6 before 1551 after 1263 step 7 before 1475 after 1185 step 8 before 1432 after 1167 step 9 before 1373 after 1092 step 10 before 1339 after 1134 step 11 before 1292 after 1056 step 12 before 1319 after 1030 step 13 before 1276 after 1004 step 14 before 1256 after 987 step 15 before 1228 after 992 step 16 before 1247 after 999 radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1086102841 after 674196409 step 2 before 816839155 after 498138306 step 7 before 599728907 after 240676762 step 15 before 555729253 after 185219677 step 63 before 606637748 after 128585664 step 64 before 608384432 after 102945089 step 65 before 596987114 after 123996019 step 128 before 304459225 after 56783056 step 256 before 158846855 after 31232481 step 512 before 86085652 after 18950595 step 12345 before 6517189 after 1674057 normal lookup step 1 before 626064869 after 544418266 step 2 before 418809975 after 336321473 step 7 before 242303598 after 207755560 step 15 before 208380563 after 176496355 step 63 before 186854206 after 167283638 step 64 before 176188060 after 170143976 step 65 before 185139608 after 167487116 step 128 before 88181865 after 86913490 step 256 before 45733628 after 45143534 step 512 before 24506038 after 23859036 step 12345 before 2177425 after 2018662 * AMD Athlon 6000+ 2x1Mb L2, without L3 radix-tree with 1024 slots: tag-lookup step 1 before 8164 after 5379 step 2 before 5818 after 5581 step 3 before 4959 after 4213 step 4 before 4371 after 3386 step 5 before 4204 after 2997 step 6 before 4950 after 2744 step 7 before 4598 after 2480 step 8 before 4251 after 2288 step 9 before 4262 after 2243 step 10 before 4175 after 2131 step 11 before 3999 after 2024 step 12 before 3979 after 1994 step 13 before 3842 after 1929 step 14 before 3750 after 1810 step 15 before 3735 after 1810 step 16 before 3532 after 1660 normal-lookup step 1 before 7875 after 5847 step 2 before 4808 after 4071 step 3 before 4073 after 3462 step 4 before 3677 after 3074 step 5 before 4308 after 2978 step 6 before 3911 after 3807 step 7 before 3635 after 3522 step 8 before 3313 after 3202 step 9 before 3280 after 3257 step 10 before 3166 after 3083 step 11 before 3066 after 3026 step 12 before 2985 after 2982 step 13 before 2925 after 2924 step 14 before 2834 after 2808 step 15 before 2805 after 2803 step 16 before 2647 after 2622 radix-tree with 1024*1024*128 slots: tag-lookup step 1 before 1288059720 after 951736580 step 2 before 961292300 after 884212140 step 7 before 768905140 after 547267580 step 15 before 771319480 after 456550640 step 63 before 504847640 after 242704304 step 64 before 392484800 after 177920786 step 65 before 491162160 after 246895264 step 128 before 208084064 after 97348392 step 256 before 112401035 after 51408126 step 512 before 75825834 after 29145070 step 12345 before 5603166 after 2847330 normal-lookup step 1 before 1025677120 after 861375100 step 2 before 647220080 after 572258540 step 7 before 505518960 after 484041813 step 15 before 430483053 after 444815320 * step 63 before 388113453 after 404250546 * step 64 before 374154666 after 396027440 * step 65 before 381423973 after 396704853 * step 128 before 190078700 after 202619384 * step 256 before 100886756 after 102829108 * step 512 before 64074505 after 56158720 step 12345 before 4237289 after 4422299 * * i686 on Sandy bridge radix-tree with 1024 slots: tagged lookup step 1 before 7990 after 4019 step 2 before 5698 after 2897 step 3 before 5013 after 2475 step 4 before 4630 after 1721 step 5 before 4346 after 1759 step 6 before 4299 after 1556 step 7 before 4098 after 1513 step 8 before 4115 after 1222 step 9 before 3983 after 1390 step 10 before 4077 after 1207 step 11 before 3921 after 1231 step 12 before 3894 after 1116 step 13 before 3840 after 1147 step 14 before 3799 after 1090 step 15 before 3797 after 1059 step 16 before 3783 after 745 normal lookup step 1 before 5103 after 3499 step 2 before 3299 after 2550 step 3 before 2489 after 2370 step 4 before 2034 after 2302 * step 5 before 1846 after 2268 * step 6 before 1752 after 2249 * step 7 before 1679 after 2164 * step 8 before 1627 after 2153 * step 9 before 1542 after 2095 * step 10 before 1479 after 2109 * step 11 before 1469 after 2009 * step 12 before 1445 after 2039 * step 13 before 1411 after 2013 * step 14 before 1374 after 2046 * step 15 before 1340 after 1975 * step 16 before 1331 after 2000 * radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1225865377 after 667153553 step 2 before 842427423 after 471533007 step 7 before 609296153 after 276260116 step 15 before 544232060 after 226859105 step 63 before 519209199 after 141343043 step 64 before 588980279 after 141951339 step 65 before 521099710 after 138282060 step 128 before 298476778 after 83390628 step 256 before 149358342 after 43602609 step 512 before 76994713 after 22911077 step 12345 before 5328666 after 1472111 normal lookup step 1 before 819284564 after 533635310 step 2 before 512421605 after 364956155 step 7 before 271443305 after 305721345 * step 15 before 223591630 after 273960216 * step 63 before 190320247 after 217770207 * step 64 before 178538168 after 267411372 * step 65 before 186400423 after 215347937 * step 128 before 88106045 after 140540612 * step 256 before 44812420 after 70660377 * step 512 before 24435438 after 36328275 * step 12345 before 2123924 after 2148062 * bloat-o-meter delta for this patchset + patchset with related shmem cleanups bloat-o-meter: x86_64 add/remove: 4/3 grow/shrink: 5/6 up/down: 928/-939 (-11) function old new delta radix_tree_next_chunk - 499 +499 shmem_unuse 428 554 +126 shmem_radix_tree_replace 131 227 +96 find_get_pages_tag 354 419 +65 find_get_pages_contig 345 407 +62 find_get_pages 362 396 +34 __kstrtab_radix_tree_next_chunk - 22 +22 __ksymtab_radix_tree_next_chunk - 16 +16 __kcrctab_radix_tree_next_chunk - 8 +8 radix_tree_gang_lookup_slot 204 203 -1 static.shmem_xattr_set 384 381 -3 radix_tree_gang_lookup_tag_slot 208 191 -17 radix_tree_gang_lookup 231 187 -44 radix_tree_gang_lookup_tag 247 199 -48 shmem_unlock_mapping 278 190 -88 __lookup 217 - -217 __lookup_tag 242 - -242 radix_tree_locate_item 279 - -279 bloat-o-meter: i386 add/remove: 3/3 grow/shrink: 8/9 up/down: 1075/-1275 (-200) function old new delta radix_tree_next_chunk - 757 +757 shmem_unuse 352 449 +97 find_get_pages_contig 269 322 +53 shmem_radix_tree_replace 113 154 +41 find_get_pages_tag 277 318 +41 dcache_dir_lseek 426 458 +32 __kstrtab_radix_tree_next_chunk - 22 +22 vc_do_resize 968 977 +9 snd_pcm_lib_read1 725 733 +8 __ksymtab_radix_tree_next_chunk - 8 +8 netlbl_cipsov4_list 1120 1127 +7 find_get_pages 293 291 -2 new_slab 467 459 -8 bitfill_unaligned_rev 425 417 -8 radix_tree_gang_lookup_tag_slot 177 146 -31 blk_dump_cmd 267 229 -38 radix_tree_gang_lookup_slot 212 134 -78 shmem_unlock_mapping 221 128 -93 radix_tree_gang_lookup_tag 275 162 -113 radix_tree_gang_lookup 255 126 -129 __lookup 227 - -227 __lookup_tag 271 - -271 radix_tree_locate_item 277 - -277 This patch: Implement a clean, simple and effective radix-tree iteration routine. Iterating divided into two phases: * lookup next chunk in radix-tree leaf node * iterating through slots in this chunk Main iterator function radix_tree_next_chunk() returns pointer to first slot, and stores in the struct radix_tree_iter index of next-to-last slot. For tagged-iterating it also constuct bitmask of tags for retunted chunk. All additional logic implemented as static-inline functions and macroses. Also adds radix_tree_find_next_bit() static-inline variant of find_next_bit() optimized for small constant size arrays, because find_next_bit() too heavy for searching in an array with one/two long elements. [akpm@linux-foundation.org: rework comments a bit] Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Tested-by: Hugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-29 05:42:53 +08:00
goto restart;
if (child == RADIX_TREE_RETRY)
break;
idr: Permit any valid kernel pointer to be stored An upcoming change to the encoding of internal entries will set the bottom two bits to 0b10. Unfortunately, m68k only aligns some data structures to 2 bytes, so the IDR will interpret them as internal entries and things will go badly wrong. Change the radix tree so that it stops either when the node indicates that it's the bottom of the tree (shift == 0) or when the entry is not an internal entry. This means we cannot insert an arbitrary kernel pointer as a multiorder entry, but the IDR does not permit multiorder entries. Annoyingly, this means the IDR can no longer take advantage of the radix tree's ability to store a single entry at offset 0 without allocating memory. A pointer which is 2-byte aligned cannot be stored directly in the root as it would be indistinguishable from a node, so we must allocate a node in order to store a 2-byte pointer at index 0. The idr_replace() function does not take a GFP flags argument, so cannot allocate memory. If a user inserts a 4-byte aligned pointer at index 0 and then replaces it with a 2-byte aligned pointer, we must be able to store it. Arbitrary pointer values are still not permitted; pointers of the form 2 + (i * 4) for values of i between 0 and 1023 are reserved for the implementation. These are not valid kernel pointers as they would point into the zero page. This change does cause a runtime memory consumption regression for the IDA. I will recover that later. Signed-off-by: Matthew Wilcox <willy@infradead.org> Tested-by: Guenter Roeck <linux@roeck-us.net>
2018-06-25 18:56:50 +08:00
} while (node->shift && radix_tree_is_internal_node(child));
radix-tree: introduce bit-optimized iterator A series of radix tree cleanups, and usage of them in the core pagecache code. Micro-benchmark: lookup 14 slots (typical page-vector size) in radix-tree there earch <step> slot filled and tagged before/after - nsec per full scan through tree * Intel Sandy Bridge i7-2620M 4Mb L3 New code always faster * AMD Athlon 6000+ 2x1Mb L2, without L3 New code generally faster, Minor degradation (marked with "*") for huge sparse trees * i386 on Sandy Bridge New code faster for common cases: tagged and dense trees. Some degradations for non-tagged lookup on sparse trees. Ideally, there might help __ffs() analog for searching first non-zero long element in array, gcc sometimes cannot optimize this loop corretly. Numbers: CPU: Intel Sandy Bridge i7-2620M 4Mb L3 radix-tree with 1024 slots: tagged lookup step 1 before 7156 after 3613 step 2 before 5399 after 2696 step 3 before 4779 after 1928 step 4 before 4456 after 1429 step 5 before 4292 after 1213 step 6 before 4183 after 1052 step 7 before 4157 after 951 step 8 before 4016 after 812 step 9 before 3952 after 851 step 10 before 3937 after 732 step 11 before 4023 after 709 step 12 before 3872 after 657 step 13 before 3892 after 633 step 14 before 3720 after 591 step 15 before 3879 after 578 step 16 before 3561 after 513 normal lookup step 1 before 4266 after 3301 step 2 before 2695 after 2129 step 3 before 2083 after 1712 step 4 before 1801 after 1534 step 5 before 1628 after 1313 step 6 before 1551 after 1263 step 7 before 1475 after 1185 step 8 before 1432 after 1167 step 9 before 1373 after 1092 step 10 before 1339 after 1134 step 11 before 1292 after 1056 step 12 before 1319 after 1030 step 13 before 1276 after 1004 step 14 before 1256 after 987 step 15 before 1228 after 992 step 16 before 1247 after 999 radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1086102841 after 674196409 step 2 before 816839155 after 498138306 step 7 before 599728907 after 240676762 step 15 before 555729253 after 185219677 step 63 before 606637748 after 128585664 step 64 before 608384432 after 102945089 step 65 before 596987114 after 123996019 step 128 before 304459225 after 56783056 step 256 before 158846855 after 31232481 step 512 before 86085652 after 18950595 step 12345 before 6517189 after 1674057 normal lookup step 1 before 626064869 after 544418266 step 2 before 418809975 after 336321473 step 7 before 242303598 after 207755560 step 15 before 208380563 after 176496355 step 63 before 186854206 after 167283638 step 64 before 176188060 after 170143976 step 65 before 185139608 after 167487116 step 128 before 88181865 after 86913490 step 256 before 45733628 after 45143534 step 512 before 24506038 after 23859036 step 12345 before 2177425 after 2018662 * AMD Athlon 6000+ 2x1Mb L2, without L3 radix-tree with 1024 slots: tag-lookup step 1 before 8164 after 5379 step 2 before 5818 after 5581 step 3 before 4959 after 4213 step 4 before 4371 after 3386 step 5 before 4204 after 2997 step 6 before 4950 after 2744 step 7 before 4598 after 2480 step 8 before 4251 after 2288 step 9 before 4262 after 2243 step 10 before 4175 after 2131 step 11 before 3999 after 2024 step 12 before 3979 after 1994 step 13 before 3842 after 1929 step 14 before 3750 after 1810 step 15 before 3735 after 1810 step 16 before 3532 after 1660 normal-lookup step 1 before 7875 after 5847 step 2 before 4808 after 4071 step 3 before 4073 after 3462 step 4 before 3677 after 3074 step 5 before 4308 after 2978 step 6 before 3911 after 3807 step 7 before 3635 after 3522 step 8 before 3313 after 3202 step 9 before 3280 after 3257 step 10 before 3166 after 3083 step 11 before 3066 after 3026 step 12 before 2985 after 2982 step 13 before 2925 after 2924 step 14 before 2834 after 2808 step 15 before 2805 after 2803 step 16 before 2647 after 2622 radix-tree with 1024*1024*128 slots: tag-lookup step 1 before 1288059720 after 951736580 step 2 before 961292300 after 884212140 step 7 before 768905140 after 547267580 step 15 before 771319480 after 456550640 step 63 before 504847640 after 242704304 step 64 before 392484800 after 177920786 step 65 before 491162160 after 246895264 step 128 before 208084064 after 97348392 step 256 before 112401035 after 51408126 step 512 before 75825834 after 29145070 step 12345 before 5603166 after 2847330 normal-lookup step 1 before 1025677120 after 861375100 step 2 before 647220080 after 572258540 step 7 before 505518960 after 484041813 step 15 before 430483053 after 444815320 * step 63 before 388113453 after 404250546 * step 64 before 374154666 after 396027440 * step 65 before 381423973 after 396704853 * step 128 before 190078700 after 202619384 * step 256 before 100886756 after 102829108 * step 512 before 64074505 after 56158720 step 12345 before 4237289 after 4422299 * * i686 on Sandy bridge radix-tree with 1024 slots: tagged lookup step 1 before 7990 after 4019 step 2 before 5698 after 2897 step 3 before 5013 after 2475 step 4 before 4630 after 1721 step 5 before 4346 after 1759 step 6 before 4299 after 1556 step 7 before 4098 after 1513 step 8 before 4115 after 1222 step 9 before 3983 after 1390 step 10 before 4077 after 1207 step 11 before 3921 after 1231 step 12 before 3894 after 1116 step 13 before 3840 after 1147 step 14 before 3799 after 1090 step 15 before 3797 after 1059 step 16 before 3783 after 745 normal lookup step 1 before 5103 after 3499 step 2 before 3299 after 2550 step 3 before 2489 after 2370 step 4 before 2034 after 2302 * step 5 before 1846 after 2268 * step 6 before 1752 after 2249 * step 7 before 1679 after 2164 * step 8 before 1627 after 2153 * step 9 before 1542 after 2095 * step 10 before 1479 after 2109 * step 11 before 1469 after 2009 * step 12 before 1445 after 2039 * step 13 before 1411 after 2013 * step 14 before 1374 after 2046 * step 15 before 1340 after 1975 * step 16 before 1331 after 2000 * radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1225865377 after 667153553 step 2 before 842427423 after 471533007 step 7 before 609296153 after 276260116 step 15 before 544232060 after 226859105 step 63 before 519209199 after 141343043 step 64 before 588980279 after 141951339 step 65 before 521099710 after 138282060 step 128 before 298476778 after 83390628 step 256 before 149358342 after 43602609 step 512 before 76994713 after 22911077 step 12345 before 5328666 after 1472111 normal lookup step 1 before 819284564 after 533635310 step 2 before 512421605 after 364956155 step 7 before 271443305 after 305721345 * step 15 before 223591630 after 273960216 * step 63 before 190320247 after 217770207 * step 64 before 178538168 after 267411372 * step 65 before 186400423 after 215347937 * step 128 before 88106045 after 140540612 * step 256 before 44812420 after 70660377 * step 512 before 24435438 after 36328275 * step 12345 before 2123924 after 2148062 * bloat-o-meter delta for this patchset + patchset with related shmem cleanups bloat-o-meter: x86_64 add/remove: 4/3 grow/shrink: 5/6 up/down: 928/-939 (-11) function old new delta radix_tree_next_chunk - 499 +499 shmem_unuse 428 554 +126 shmem_radix_tree_replace 131 227 +96 find_get_pages_tag 354 419 +65 find_get_pages_contig 345 407 +62 find_get_pages 362 396 +34 __kstrtab_radix_tree_next_chunk - 22 +22 __ksymtab_radix_tree_next_chunk - 16 +16 __kcrctab_radix_tree_next_chunk - 8 +8 radix_tree_gang_lookup_slot 204 203 -1 static.shmem_xattr_set 384 381 -3 radix_tree_gang_lookup_tag_slot 208 191 -17 radix_tree_gang_lookup 231 187 -44 radix_tree_gang_lookup_tag 247 199 -48 shmem_unlock_mapping 278 190 -88 __lookup 217 - -217 __lookup_tag 242 - -242 radix_tree_locate_item 279 - -279 bloat-o-meter: i386 add/remove: 3/3 grow/shrink: 8/9 up/down: 1075/-1275 (-200) function old new delta radix_tree_next_chunk - 757 +757 shmem_unuse 352 449 +97 find_get_pages_contig 269 322 +53 shmem_radix_tree_replace 113 154 +41 find_get_pages_tag 277 318 +41 dcache_dir_lseek 426 458 +32 __kstrtab_radix_tree_next_chunk - 22 +22 vc_do_resize 968 977 +9 snd_pcm_lib_read1 725 733 +8 __ksymtab_radix_tree_next_chunk - 8 +8 netlbl_cipsov4_list 1120 1127 +7 find_get_pages 293 291 -2 new_slab 467 459 -8 bitfill_unaligned_rev 425 417 -8 radix_tree_gang_lookup_tag_slot 177 146 -31 blk_dump_cmd 267 229 -38 radix_tree_gang_lookup_slot 212 134 -78 shmem_unlock_mapping 221 128 -93 radix_tree_gang_lookup_tag 275 162 -113 radix_tree_gang_lookup 255 126 -129 __lookup 227 - -227 __lookup_tag 271 - -271 radix_tree_locate_item 277 - -277 This patch: Implement a clean, simple and effective radix-tree iteration routine. Iterating divided into two phases: * lookup next chunk in radix-tree leaf node * iterating through slots in this chunk Main iterator function radix_tree_next_chunk() returns pointer to first slot, and stores in the struct radix_tree_iter index of next-to-last slot. For tagged-iterating it also constuct bitmask of tags for retunted chunk. All additional logic implemented as static-inline functions and macroses. Also adds radix_tree_find_next_bit() static-inline variant of find_next_bit() optimized for small constant size arrays, because find_next_bit() too heavy for searching in an array with one/two long elements. [akpm@linux-foundation.org: rework comments a bit] Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Tested-by: Hugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-29 05:42:53 +08:00
/* Update the iterator state */
iter->index = (index &~ node_maxindex(node)) | offset;
iter->next_index = (index | node_maxindex(node)) + 1;
iter->node = node;
radix-tree: introduce bit-optimized iterator A series of radix tree cleanups, and usage of them in the core pagecache code. Micro-benchmark: lookup 14 slots (typical page-vector size) in radix-tree there earch <step> slot filled and tagged before/after - nsec per full scan through tree * Intel Sandy Bridge i7-2620M 4Mb L3 New code always faster * AMD Athlon 6000+ 2x1Mb L2, without L3 New code generally faster, Minor degradation (marked with "*") for huge sparse trees * i386 on Sandy Bridge New code faster for common cases: tagged and dense trees. Some degradations for non-tagged lookup on sparse trees. Ideally, there might help __ffs() analog for searching first non-zero long element in array, gcc sometimes cannot optimize this loop corretly. Numbers: CPU: Intel Sandy Bridge i7-2620M 4Mb L3 radix-tree with 1024 slots: tagged lookup step 1 before 7156 after 3613 step 2 before 5399 after 2696 step 3 before 4779 after 1928 step 4 before 4456 after 1429 step 5 before 4292 after 1213 step 6 before 4183 after 1052 step 7 before 4157 after 951 step 8 before 4016 after 812 step 9 before 3952 after 851 step 10 before 3937 after 732 step 11 before 4023 after 709 step 12 before 3872 after 657 step 13 before 3892 after 633 step 14 before 3720 after 591 step 15 before 3879 after 578 step 16 before 3561 after 513 normal lookup step 1 before 4266 after 3301 step 2 before 2695 after 2129 step 3 before 2083 after 1712 step 4 before 1801 after 1534 step 5 before 1628 after 1313 step 6 before 1551 after 1263 step 7 before 1475 after 1185 step 8 before 1432 after 1167 step 9 before 1373 after 1092 step 10 before 1339 after 1134 step 11 before 1292 after 1056 step 12 before 1319 after 1030 step 13 before 1276 after 1004 step 14 before 1256 after 987 step 15 before 1228 after 992 step 16 before 1247 after 999 radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1086102841 after 674196409 step 2 before 816839155 after 498138306 step 7 before 599728907 after 240676762 step 15 before 555729253 after 185219677 step 63 before 606637748 after 128585664 step 64 before 608384432 after 102945089 step 65 before 596987114 after 123996019 step 128 before 304459225 after 56783056 step 256 before 158846855 after 31232481 step 512 before 86085652 after 18950595 step 12345 before 6517189 after 1674057 normal lookup step 1 before 626064869 after 544418266 step 2 before 418809975 after 336321473 step 7 before 242303598 after 207755560 step 15 before 208380563 after 176496355 step 63 before 186854206 after 167283638 step 64 before 176188060 after 170143976 step 65 before 185139608 after 167487116 step 128 before 88181865 after 86913490 step 256 before 45733628 after 45143534 step 512 before 24506038 after 23859036 step 12345 before 2177425 after 2018662 * AMD Athlon 6000+ 2x1Mb L2, without L3 radix-tree with 1024 slots: tag-lookup step 1 before 8164 after 5379 step 2 before 5818 after 5581 step 3 before 4959 after 4213 step 4 before 4371 after 3386 step 5 before 4204 after 2997 step 6 before 4950 after 2744 step 7 before 4598 after 2480 step 8 before 4251 after 2288 step 9 before 4262 after 2243 step 10 before 4175 after 2131 step 11 before 3999 after 2024 step 12 before 3979 after 1994 step 13 before 3842 after 1929 step 14 before 3750 after 1810 step 15 before 3735 after 1810 step 16 before 3532 after 1660 normal-lookup step 1 before 7875 after 5847 step 2 before 4808 after 4071 step 3 before 4073 after 3462 step 4 before 3677 after 3074 step 5 before 4308 after 2978 step 6 before 3911 after 3807 step 7 before 3635 after 3522 step 8 before 3313 after 3202 step 9 before 3280 after 3257 step 10 before 3166 after 3083 step 11 before 3066 after 3026 step 12 before 2985 after 2982 step 13 before 2925 after 2924 step 14 before 2834 after 2808 step 15 before 2805 after 2803 step 16 before 2647 after 2622 radix-tree with 1024*1024*128 slots: tag-lookup step 1 before 1288059720 after 951736580 step 2 before 961292300 after 884212140 step 7 before 768905140 after 547267580 step 15 before 771319480 after 456550640 step 63 before 504847640 after 242704304 step 64 before 392484800 after 177920786 step 65 before 491162160 after 246895264 step 128 before 208084064 after 97348392 step 256 before 112401035 after 51408126 step 512 before 75825834 after 29145070 step 12345 before 5603166 after 2847330 normal-lookup step 1 before 1025677120 after 861375100 step 2 before 647220080 after 572258540 step 7 before 505518960 after 484041813 step 15 before 430483053 after 444815320 * step 63 before 388113453 after 404250546 * step 64 before 374154666 after 396027440 * step 65 before 381423973 after 396704853 * step 128 before 190078700 after 202619384 * step 256 before 100886756 after 102829108 * step 512 before 64074505 after 56158720 step 12345 before 4237289 after 4422299 * * i686 on Sandy bridge radix-tree with 1024 slots: tagged lookup step 1 before 7990 after 4019 step 2 before 5698 after 2897 step 3 before 5013 after 2475 step 4 before 4630 after 1721 step 5 before 4346 after 1759 step 6 before 4299 after 1556 step 7 before 4098 after 1513 step 8 before 4115 after 1222 step 9 before 3983 after 1390 step 10 before 4077 after 1207 step 11 before 3921 after 1231 step 12 before 3894 after 1116 step 13 before 3840 after 1147 step 14 before 3799 after 1090 step 15 before 3797 after 1059 step 16 before 3783 after 745 normal lookup step 1 before 5103 after 3499 step 2 before 3299 after 2550 step 3 before 2489 after 2370 step 4 before 2034 after 2302 * step 5 before 1846 after 2268 * step 6 before 1752 after 2249 * step 7 before 1679 after 2164 * step 8 before 1627 after 2153 * step 9 before 1542 after 2095 * step 10 before 1479 after 2109 * step 11 before 1469 after 2009 * step 12 before 1445 after 2039 * step 13 before 1411 after 2013 * step 14 before 1374 after 2046 * step 15 before 1340 after 1975 * step 16 before 1331 after 2000 * radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1225865377 after 667153553 step 2 before 842427423 after 471533007 step 7 before 609296153 after 276260116 step 15 before 544232060 after 226859105 step 63 before 519209199 after 141343043 step 64 before 588980279 after 141951339 step 65 before 521099710 after 138282060 step 128 before 298476778 after 83390628 step 256 before 149358342 after 43602609 step 512 before 76994713 after 22911077 step 12345 before 5328666 after 1472111 normal lookup step 1 before 819284564 after 533635310 step 2 before 512421605 after 364956155 step 7 before 271443305 after 305721345 * step 15 before 223591630 after 273960216 * step 63 before 190320247 after 217770207 * step 64 before 178538168 after 267411372 * step 65 before 186400423 after 215347937 * step 128 before 88106045 after 140540612 * step 256 before 44812420 after 70660377 * step 512 before 24435438 after 36328275 * step 12345 before 2123924 after 2148062 * bloat-o-meter delta for this patchset + patchset with related shmem cleanups bloat-o-meter: x86_64 add/remove: 4/3 grow/shrink: 5/6 up/down: 928/-939 (-11) function old new delta radix_tree_next_chunk - 499 +499 shmem_unuse 428 554 +126 shmem_radix_tree_replace 131 227 +96 find_get_pages_tag 354 419 +65 find_get_pages_contig 345 407 +62 find_get_pages 362 396 +34 __kstrtab_radix_tree_next_chunk - 22 +22 __ksymtab_radix_tree_next_chunk - 16 +16 __kcrctab_radix_tree_next_chunk - 8 +8 radix_tree_gang_lookup_slot 204 203 -1 static.shmem_xattr_set 384 381 -3 radix_tree_gang_lookup_tag_slot 208 191 -17 radix_tree_gang_lookup 231 187 -44 radix_tree_gang_lookup_tag 247 199 -48 shmem_unlock_mapping 278 190 -88 __lookup 217 - -217 __lookup_tag 242 - -242 radix_tree_locate_item 279 - -279 bloat-o-meter: i386 add/remove: 3/3 grow/shrink: 8/9 up/down: 1075/-1275 (-200) function old new delta radix_tree_next_chunk - 757 +757 shmem_unuse 352 449 +97 find_get_pages_contig 269 322 +53 shmem_radix_tree_replace 113 154 +41 find_get_pages_tag 277 318 +41 dcache_dir_lseek 426 458 +32 __kstrtab_radix_tree_next_chunk - 22 +22 vc_do_resize 968 977 +9 snd_pcm_lib_read1 725 733 +8 __ksymtab_radix_tree_next_chunk - 8 +8 netlbl_cipsov4_list 1120 1127 +7 find_get_pages 293 291 -2 new_slab 467 459 -8 bitfill_unaligned_rev 425 417 -8 radix_tree_gang_lookup_tag_slot 177 146 -31 blk_dump_cmd 267 229 -38 radix_tree_gang_lookup_slot 212 134 -78 shmem_unlock_mapping 221 128 -93 radix_tree_gang_lookup_tag 275 162 -113 radix_tree_gang_lookup 255 126 -129 __lookup 227 - -227 __lookup_tag 271 - -271 radix_tree_locate_item 277 - -277 This patch: Implement a clean, simple and effective radix-tree iteration routine. Iterating divided into two phases: * lookup next chunk in radix-tree leaf node * iterating through slots in this chunk Main iterator function radix_tree_next_chunk() returns pointer to first slot, and stores in the struct radix_tree_iter index of next-to-last slot. For tagged-iterating it also constuct bitmask of tags for retunted chunk. All additional logic implemented as static-inline functions and macroses. Also adds radix_tree_find_next_bit() static-inline variant of find_next_bit() optimized for small constant size arrays, because find_next_bit() too heavy for searching in an array with one/two long elements. [akpm@linux-foundation.org: rework comments a bit] Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Tested-by: Hugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-29 05:42:53 +08:00
radix-tree: improve multiorder iterators This fixes several interlinked problems with the iterators in the presence of multiorder entries. 1. radix_tree_iter_next() would only advance by one slot, which would result in the iterators returning the same entry more than once if there were sibling entries. 2. radix_tree_next_slot() could return an internal pointer instead of a user pointer if a tagged multiorder entry was immediately followed by an entry of lower order. 3. radix_tree_next_slot() expanded to a lot more code than it used to when multiorder support was compiled in. And I wasn't comfortable with entry_to_node() being in a header file. Fixing radix_tree_iter_next() for the presence of sibling entries necessarily involves examining the contents of the radix tree, so we now need to pass 'slot' to radix_tree_iter_next(), and we need to change the calling convention so it is called *before* dropping the lock which protects the tree. Also rename it to radix_tree_iter_resume(), as some people thought it was necessary to call radix_tree_iter_next() each time around the loop. radix_tree_next_slot() becomes closer to how it looked before multiorder support was introduced. It only checks to see if the next entry in the chunk is a sibling entry or a pointer to a node; this should be rare enough that handling this case out of line is not a performance impact (and such impact is amortised by the fact that the entry we just processed was a multiorder entry). Also, radix_tree_next_slot() used to force a new chunk lookup for untagged entries, which is more expensive than the out of line sibling entry skipping. Link: http://lkml.kernel.org/r/1480369871-5271-55-git-send-email-mawilcox@linuxonhyperv.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-15 07:08:49 +08:00
if (flags & RADIX_TREE_ITER_TAGGED)
set_iter_tags(iter, node, offset, tag);
radix-tree: introduce bit-optimized iterator A series of radix tree cleanups, and usage of them in the core pagecache code. Micro-benchmark: lookup 14 slots (typical page-vector size) in radix-tree there earch <step> slot filled and tagged before/after - nsec per full scan through tree * Intel Sandy Bridge i7-2620M 4Mb L3 New code always faster * AMD Athlon 6000+ 2x1Mb L2, without L3 New code generally faster, Minor degradation (marked with "*") for huge sparse trees * i386 on Sandy Bridge New code faster for common cases: tagged and dense trees. Some degradations for non-tagged lookup on sparse trees. Ideally, there might help __ffs() analog for searching first non-zero long element in array, gcc sometimes cannot optimize this loop corretly. Numbers: CPU: Intel Sandy Bridge i7-2620M 4Mb L3 radix-tree with 1024 slots: tagged lookup step 1 before 7156 after 3613 step 2 before 5399 after 2696 step 3 before 4779 after 1928 step 4 before 4456 after 1429 step 5 before 4292 after 1213 step 6 before 4183 after 1052 step 7 before 4157 after 951 step 8 before 4016 after 812 step 9 before 3952 after 851 step 10 before 3937 after 732 step 11 before 4023 after 709 step 12 before 3872 after 657 step 13 before 3892 after 633 step 14 before 3720 after 591 step 15 before 3879 after 578 step 16 before 3561 after 513 normal lookup step 1 before 4266 after 3301 step 2 before 2695 after 2129 step 3 before 2083 after 1712 step 4 before 1801 after 1534 step 5 before 1628 after 1313 step 6 before 1551 after 1263 step 7 before 1475 after 1185 step 8 before 1432 after 1167 step 9 before 1373 after 1092 step 10 before 1339 after 1134 step 11 before 1292 after 1056 step 12 before 1319 after 1030 step 13 before 1276 after 1004 step 14 before 1256 after 987 step 15 before 1228 after 992 step 16 before 1247 after 999 radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1086102841 after 674196409 step 2 before 816839155 after 498138306 step 7 before 599728907 after 240676762 step 15 before 555729253 after 185219677 step 63 before 606637748 after 128585664 step 64 before 608384432 after 102945089 step 65 before 596987114 after 123996019 step 128 before 304459225 after 56783056 step 256 before 158846855 after 31232481 step 512 before 86085652 after 18950595 step 12345 before 6517189 after 1674057 normal lookup step 1 before 626064869 after 544418266 step 2 before 418809975 after 336321473 step 7 before 242303598 after 207755560 step 15 before 208380563 after 176496355 step 63 before 186854206 after 167283638 step 64 before 176188060 after 170143976 step 65 before 185139608 after 167487116 step 128 before 88181865 after 86913490 step 256 before 45733628 after 45143534 step 512 before 24506038 after 23859036 step 12345 before 2177425 after 2018662 * AMD Athlon 6000+ 2x1Mb L2, without L3 radix-tree with 1024 slots: tag-lookup step 1 before 8164 after 5379 step 2 before 5818 after 5581 step 3 before 4959 after 4213 step 4 before 4371 after 3386 step 5 before 4204 after 2997 step 6 before 4950 after 2744 step 7 before 4598 after 2480 step 8 before 4251 after 2288 step 9 before 4262 after 2243 step 10 before 4175 after 2131 step 11 before 3999 after 2024 step 12 before 3979 after 1994 step 13 before 3842 after 1929 step 14 before 3750 after 1810 step 15 before 3735 after 1810 step 16 before 3532 after 1660 normal-lookup step 1 before 7875 after 5847 step 2 before 4808 after 4071 step 3 before 4073 after 3462 step 4 before 3677 after 3074 step 5 before 4308 after 2978 step 6 before 3911 after 3807 step 7 before 3635 after 3522 step 8 before 3313 after 3202 step 9 before 3280 after 3257 step 10 before 3166 after 3083 step 11 before 3066 after 3026 step 12 before 2985 after 2982 step 13 before 2925 after 2924 step 14 before 2834 after 2808 step 15 before 2805 after 2803 step 16 before 2647 after 2622 radix-tree with 1024*1024*128 slots: tag-lookup step 1 before 1288059720 after 951736580 step 2 before 961292300 after 884212140 step 7 before 768905140 after 547267580 step 15 before 771319480 after 456550640 step 63 before 504847640 after 242704304 step 64 before 392484800 after 177920786 step 65 before 491162160 after 246895264 step 128 before 208084064 after 97348392 step 256 before 112401035 after 51408126 step 512 before 75825834 after 29145070 step 12345 before 5603166 after 2847330 normal-lookup step 1 before 1025677120 after 861375100 step 2 before 647220080 after 572258540 step 7 before 505518960 after 484041813 step 15 before 430483053 after 444815320 * step 63 before 388113453 after 404250546 * step 64 before 374154666 after 396027440 * step 65 before 381423973 after 396704853 * step 128 before 190078700 after 202619384 * step 256 before 100886756 after 102829108 * step 512 before 64074505 after 56158720 step 12345 before 4237289 after 4422299 * * i686 on Sandy bridge radix-tree with 1024 slots: tagged lookup step 1 before 7990 after 4019 step 2 before 5698 after 2897 step 3 before 5013 after 2475 step 4 before 4630 after 1721 step 5 before 4346 after 1759 step 6 before 4299 after 1556 step 7 before 4098 after 1513 step 8 before 4115 after 1222 step 9 before 3983 after 1390 step 10 before 4077 after 1207 step 11 before 3921 after 1231 step 12 before 3894 after 1116 step 13 before 3840 after 1147 step 14 before 3799 after 1090 step 15 before 3797 after 1059 step 16 before 3783 after 745 normal lookup step 1 before 5103 after 3499 step 2 before 3299 after 2550 step 3 before 2489 after 2370 step 4 before 2034 after 2302 * step 5 before 1846 after 2268 * step 6 before 1752 after 2249 * step 7 before 1679 after 2164 * step 8 before 1627 after 2153 * step 9 before 1542 after 2095 * step 10 before 1479 after 2109 * step 11 before 1469 after 2009 * step 12 before 1445 after 2039 * step 13 before 1411 after 2013 * step 14 before 1374 after 2046 * step 15 before 1340 after 1975 * step 16 before 1331 after 2000 * radix-tree with 1024*1024*128 slots: tagged lookup step 1 before 1225865377 after 667153553 step 2 before 842427423 after 471533007 step 7 before 609296153 after 276260116 step 15 before 544232060 after 226859105 step 63 before 519209199 after 141343043 step 64 before 588980279 after 141951339 step 65 before 521099710 after 138282060 step 128 before 298476778 after 83390628 step 256 before 149358342 after 43602609 step 512 before 76994713 after 22911077 step 12345 before 5328666 after 1472111 normal lookup step 1 before 819284564 after 533635310 step 2 before 512421605 after 364956155 step 7 before 271443305 after 305721345 * step 15 before 223591630 after 273960216 * step 63 before 190320247 after 217770207 * step 64 before 178538168 after 267411372 * step 65 before 186400423 after 215347937 * step 128 before 88106045 after 140540612 * step 256 before 44812420 after 70660377 * step 512 before 24435438 after 36328275 * step 12345 before 2123924 after 2148062 * bloat-o-meter delta for this patchset + patchset with related shmem cleanups bloat-o-meter: x86_64 add/remove: 4/3 grow/shrink: 5/6 up/down: 928/-939 (-11) function old new delta radix_tree_next_chunk - 499 +499 shmem_unuse 428 554 +126 shmem_radix_tree_replace 131 227 +96 find_get_pages_tag 354 419 +65 find_get_pages_contig 345 407 +62 find_get_pages 362 396 +34 __kstrtab_radix_tree_next_chunk - 22 +22 __ksymtab_radix_tree_next_chunk - 16 +16 __kcrctab_radix_tree_next_chunk - 8 +8 radix_tree_gang_lookup_slot 204 203 -1 static.shmem_xattr_set 384 381 -3 radix_tree_gang_lookup_tag_slot 208 191 -17 radix_tree_gang_lookup 231 187 -44 radix_tree_gang_lookup_tag 247 199 -48 shmem_unlock_mapping 278 190 -88 __lookup 217 - -217 __lookup_tag 242 - -242 radix_tree_locate_item 279 - -279 bloat-o-meter: i386 add/remove: 3/3 grow/shrink: 8/9 up/down: 1075/-1275 (-200) function old new delta radix_tree_next_chunk - 757 +757 shmem_unuse 352 449 +97 find_get_pages_contig 269 322 +53 shmem_radix_tree_replace 113 154 +41 find_get_pages_tag 277 318 +41 dcache_dir_lseek 426 458 +32 __kstrtab_radix_tree_next_chunk - 22 +22 vc_do_resize 968 977 +9 snd_pcm_lib_read1 725 733 +8 __ksymtab_radix_tree_next_chunk - 8 +8 netlbl_cipsov4_list 1120 1127 +7 find_get_pages 293 291 -2 new_slab 467 459 -8 bitfill_unaligned_rev 425 417 -8 radix_tree_gang_lookup_tag_slot 177 146 -31 blk_dump_cmd 267 229 -38 radix_tree_gang_lookup_slot 212 134 -78 shmem_unlock_mapping 221 128 -93 radix_tree_gang_lookup_tag 275 162 -113 radix_tree_gang_lookup 255 126 -129 __lookup 227 - -227 __lookup_tag 271 - -271 radix_tree_locate_item 277 - -277 This patch: Implement a clean, simple and effective radix-tree iteration routine. Iterating divided into two phases: * lookup next chunk in radix-tree leaf node * iterating through slots in this chunk Main iterator function radix_tree_next_chunk() returns pointer to first slot, and stores in the struct radix_tree_iter index of next-to-last slot. For tagged-iterating it also constuct bitmask of tags for retunted chunk. All additional logic implemented as static-inline functions and macroses. Also adds radix_tree_find_next_bit() static-inline variant of find_next_bit() optimized for small constant size arrays, because find_next_bit() too heavy for searching in an array with one/two long elements. [akpm@linux-foundation.org: rework comments a bit] Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Tested-by: Hugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-29 05:42:53 +08:00
return node->slots + offset;
}
EXPORT_SYMBOL(radix_tree_next_chunk);
/**
* radix_tree_gang_lookup - perform multiple lookup on a radix tree
* @root: radix tree root
* @results: where the results of the lookup are placed
* @first_index: start the lookup from this key
* @max_items: place up to this many items at *results
*
* Performs an index-ascending scan of the tree for present items. Places
* them at *@results and returns the number of items which were placed at
* *@results.
*
* The implementation is naive.
[PATCH] radix-tree: RCU lockless readside Make radix tree lookups safe to be performed without locks. Readers are protected against nodes being deleted by using RCU based freeing. Readers are protected against new node insertion by using memory barriers to ensure the node itself will be properly written before it is visible in the radix tree. Each radix tree node keeps a record of their height (above leaf nodes). This height does not change after insertion -- when the radix tree is extended, higher nodes are only inserted in the top. So a lookup can take the pointer to what is *now* the root node, and traverse down it even if the tree is concurrently extended and this node becomes a subtree of a new root. "Direct" pointers (tree height of 0, where root->rnode points directly to the data item) are handled by using the low bit of the pointer to signal whether rnode is a direct pointer or a pointer to a radix tree node. When a reader wants to traverse the next branch, they will take a copy of the pointer. This pointer will be either NULL (and the branch is empty) or non-NULL (and will point to a valid node). [akpm@osdl.org: cleanups] [Lee.Schermerhorn@hp.com: bugfixes, comments, simplifications] [clameter@sgi.com: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 12:33:44 +08:00
*
* Like radix_tree_lookup, radix_tree_gang_lookup may be called under
* rcu_read_lock. In this case, rather than the returned results being
* an atomic snapshot of the tree at a single point in time, the
* semantics of an RCU protected gang lookup are as though multiple
* radix_tree_lookups have been issued in individual locks, and results
* stored in 'results'.
*/
unsigned int
radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
unsigned long first_index, unsigned int max_items)
{
struct radix_tree_iter iter;
void __rcu **slot;
unsigned int ret = 0;
[PATCH] radix-tree: RCU lockless readside Make radix tree lookups safe to be performed without locks. Readers are protected against nodes being deleted by using RCU based freeing. Readers are protected against new node insertion by using memory barriers to ensure the node itself will be properly written before it is visible in the radix tree. Each radix tree node keeps a record of their height (above leaf nodes). This height does not change after insertion -- when the radix tree is extended, higher nodes are only inserted in the top. So a lookup can take the pointer to what is *now* the root node, and traverse down it even if the tree is concurrently extended and this node becomes a subtree of a new root. "Direct" pointers (tree height of 0, where root->rnode points directly to the data item) are handled by using the low bit of the pointer to signal whether rnode is a direct pointer or a pointer to a radix tree node. When a reader wants to traverse the next branch, they will take a copy of the pointer. This pointer will be either NULL (and the branch is empty) or non-NULL (and will point to a valid node). [akpm@osdl.org: cleanups] [Lee.Schermerhorn@hp.com: bugfixes, comments, simplifications] [clameter@sgi.com: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 12:33:44 +08:00
if (unlikely(!max_items))
[PATCH] radix-tree: RCU lockless readside Make radix tree lookups safe to be performed without locks. Readers are protected against nodes being deleted by using RCU based freeing. Readers are protected against new node insertion by using memory barriers to ensure the node itself will be properly written before it is visible in the radix tree. Each radix tree node keeps a record of their height (above leaf nodes). This height does not change after insertion -- when the radix tree is extended, higher nodes are only inserted in the top. So a lookup can take the pointer to what is *now* the root node, and traverse down it even if the tree is concurrently extended and this node becomes a subtree of a new root. "Direct" pointers (tree height of 0, where root->rnode points directly to the data item) are handled by using the low bit of the pointer to signal whether rnode is a direct pointer or a pointer to a radix tree node. When a reader wants to traverse the next branch, they will take a copy of the pointer. This pointer will be either NULL (and the branch is empty) or non-NULL (and will point to a valid node). [akpm@osdl.org: cleanups] [Lee.Schermerhorn@hp.com: bugfixes, comments, simplifications] [clameter@sgi.com: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 12:33:44 +08:00
return 0;
radix_tree_for_each_slot(slot, root, &iter, first_index) {
results[ret] = rcu_dereference_raw(*slot);
if (!results[ret])
continue;
if (radix_tree_is_internal_node(results[ret])) {
slot = radix_tree_iter_retry(&iter);
continue;
}
if (++ret == max_items)
break;
}
[PATCH] radix-tree: RCU lockless readside Make radix tree lookups safe to be performed without locks. Readers are protected against nodes being deleted by using RCU based freeing. Readers are protected against new node insertion by using memory barriers to ensure the node itself will be properly written before it is visible in the radix tree. Each radix tree node keeps a record of their height (above leaf nodes). This height does not change after insertion -- when the radix tree is extended, higher nodes are only inserted in the top. So a lookup can take the pointer to what is *now* the root node, and traverse down it even if the tree is concurrently extended and this node becomes a subtree of a new root. "Direct" pointers (tree height of 0, where root->rnode points directly to the data item) are handled by using the low bit of the pointer to signal whether rnode is a direct pointer or a pointer to a radix tree node. When a reader wants to traverse the next branch, they will take a copy of the pointer. This pointer will be either NULL (and the branch is empty) or non-NULL (and will point to a valid node). [akpm@osdl.org: cleanups] [Lee.Schermerhorn@hp.com: bugfixes, comments, simplifications] [clameter@sgi.com: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 12:33:44 +08:00
return ret;
}
EXPORT_SYMBOL(radix_tree_gang_lookup);
/**
* radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
* based on a tag
* @root: radix tree root
* @results: where the results of the lookup are placed
* @first_index: start the lookup from this key
* @max_items: place up to this many items at *results
* @tag: the tag index (< RADIX_TREE_MAX_TAGS)
*
* Performs an index-ascending scan of the tree for present items which
* have the tag indexed by @tag set. Places the items at *@results and
* returns the number of items which were placed at *@results.
*/
unsigned int
radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
unsigned long first_index, unsigned int max_items,
unsigned int tag)
{
struct radix_tree_iter iter;
void __rcu **slot;
unsigned int ret = 0;
if (unlikely(!max_items))
[PATCH] radix-tree: RCU lockless readside Make radix tree lookups safe to be performed without locks. Readers are protected against nodes being deleted by using RCU based freeing. Readers are protected against new node insertion by using memory barriers to ensure the node itself will be properly written before it is visible in the radix tree. Each radix tree node keeps a record of their height (above leaf nodes). This height does not change after insertion -- when the radix tree is extended, higher nodes are only inserted in the top. So a lookup can take the pointer to what is *now* the root node, and traverse down it even if the tree is concurrently extended and this node becomes a subtree of a new root. "Direct" pointers (tree height of 0, where root->rnode points directly to the data item) are handled by using the low bit of the pointer to signal whether rnode is a direct pointer or a pointer to a radix tree node. When a reader wants to traverse the next branch, they will take a copy of the pointer. This pointer will be either NULL (and the branch is empty) or non-NULL (and will point to a valid node). [akpm@osdl.org: cleanups] [Lee.Schermerhorn@hp.com: bugfixes, comments, simplifications] [clameter@sgi.com: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 12:33:44 +08:00
return 0;
radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
results[ret] = rcu_dereference_raw(*slot);
if (!results[ret])
continue;
if (radix_tree_is_internal_node(results[ret])) {
slot = radix_tree_iter_retry(&iter);
continue;
}
if (++ret == max_items)
break;
}
[PATCH] radix-tree: RCU lockless readside Make radix tree lookups safe to be performed without locks. Readers are protected against nodes being deleted by using RCU based freeing. Readers are protected against new node insertion by using memory barriers to ensure the node itself will be properly written before it is visible in the radix tree. Each radix tree node keeps a record of their height (above leaf nodes). This height does not change after insertion -- when the radix tree is extended, higher nodes are only inserted in the top. So a lookup can take the pointer to what is *now* the root node, and traverse down it even if the tree is concurrently extended and this node becomes a subtree of a new root. "Direct" pointers (tree height of 0, where root->rnode points directly to the data item) are handled by using the low bit of the pointer to signal whether rnode is a direct pointer or a pointer to a radix tree node. When a reader wants to traverse the next branch, they will take a copy of the pointer. This pointer will be either NULL (and the branch is empty) or non-NULL (and will point to a valid node). [akpm@osdl.org: cleanups] [Lee.Schermerhorn@hp.com: bugfixes, comments, simplifications] [clameter@sgi.com: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 12:33:44 +08:00
return ret;
}
EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
/**
* radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
* radix tree based on a tag
* @root: radix tree root
* @results: where the results of the lookup are placed
* @first_index: start the lookup from this key
* @max_items: place up to this many items at *results
* @tag: the tag index (< RADIX_TREE_MAX_TAGS)
*
* Performs an index-ascending scan of the tree for present items which
* have the tag indexed by @tag set. Places the slots at *@results and
* returns the number of slots which were placed at *@results.
*/
unsigned int
radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
void __rcu ***results, unsigned long first_index,
unsigned int max_items, unsigned int tag)
{
struct radix_tree_iter iter;
void __rcu **slot;
unsigned int ret = 0;
if (unlikely(!max_items))
return 0;
radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
results[ret] = slot;
if (++ret == max_items)
break;
}
return ret;
}
EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
static bool __radix_tree_delete(struct radix_tree_root *root,
struct radix_tree_node *node, void __rcu **slot)
{
void *old = rcu_dereference_raw(*slot);
int values = xa_is_value(old) ? -1 : 0;
unsigned offset = get_slot_offset(node, slot);
int tag;
if (is_idr(root))
node_tag_set(root, node, IDR_FREE, offset);
else
for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
node_tag_clear(root, node, tag, offset);
replace_slot(slot, NULL, node, -1, values);
return node && delete_node(root, node);
}
/**
* radix_tree_iter_delete - delete the entry at this iterator position
* @root: radix tree root
* @iter: iterator state
* @slot: pointer to slot
*
* Delete the entry at the position currently pointed to by the iterator.
* This may result in the current node being freed; if it is, the iterator
* is advanced so that it will not reference the freed memory. This
* function may be called without any locking if there are no other threads
* which can access this tree.
*/
void radix_tree_iter_delete(struct radix_tree_root *root,
struct radix_tree_iter *iter, void __rcu **slot)
{
if (__radix_tree_delete(root, iter->node, slot))
iter->index = iter->next_index;
}
EXPORT_SYMBOL(radix_tree_iter_delete);
/**
* radix_tree_delete_item - delete an item from a radix tree
* @root: radix tree root
* @index: index key
* @item: expected item
*
* Remove @item at @index from the radix tree rooted at @root.
*
* Return: the deleted entry, or %NULL if it was not present
* or the entry at the given @index was not @item.
*/
void *radix_tree_delete_item(struct radix_tree_root *root,
unsigned long index, void *item)
{
struct radix_tree_node *node = NULL;
idr: fix invalid ptr dereference on item delete If the radix tree underlying the IDR happens to be full and we attempt to remove an id which is larger than any id in the IDR, we will call __radix_tree_delete() with an uninitialised 'slot' pointer, at which point anything could happen. This was easiest to hit with a single entry at id 0 and attempting to remove a non-0 id, but it could have happened with 64 entries and attempting to remove an id >= 64. Roman said: The syzcaller test boils down to opening /dev/kvm, creating an eventfd, and calling a couple of KVM ioctls. None of this requires superuser. And the result is dereferencing an uninitialized pointer which is likely a crash. The specific path caught by syzbot is via KVM_HYPERV_EVENTD ioctl which is new in 4.17. But I guess there are other user-triggerable paths, so cc:stable is probably justified. Matthew added: We have around 250 calls to idr_remove() in the kernel today. Many of them pass an ID which is embedded in the object they're removing, so they're safe. Picking a few likely candidates: drivers/firewire/core-cdev.c looks unsafe; the ID comes from an ioctl. drivers/gpu/drm/amd/amdgpu/amdgpu_ctx.c is similar drivers/atm/nicstar.c could be taken down by a handcrafted packet Link: http://lkml.kernel.org/r/20180518175025.GD6361@bombadil.infradead.org Fixes: 0a835c4f090a ("Reimplement IDR and IDA using the radix tree") Reported-by: <syzbot+35666cba7f0a337e2e79@syzkaller.appspotmail.com> Debugged-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-05-26 05:47:24 +08:00
void __rcu **slot = NULL;
void *entry;
entry = __radix_tree_lookup(root, index, &node, &slot);
idr: fix invalid ptr dereference on item delete If the radix tree underlying the IDR happens to be full and we attempt to remove an id which is larger than any id in the IDR, we will call __radix_tree_delete() with an uninitialised 'slot' pointer, at which point anything could happen. This was easiest to hit with a single entry at id 0 and attempting to remove a non-0 id, but it could have happened with 64 entries and attempting to remove an id >= 64. Roman said: The syzcaller test boils down to opening /dev/kvm, creating an eventfd, and calling a couple of KVM ioctls. None of this requires superuser. And the result is dereferencing an uninitialized pointer which is likely a crash. The specific path caught by syzbot is via KVM_HYPERV_EVENTD ioctl which is new in 4.17. But I guess there are other user-triggerable paths, so cc:stable is probably justified. Matthew added: We have around 250 calls to idr_remove() in the kernel today. Many of them pass an ID which is embedded in the object they're removing, so they're safe. Picking a few likely candidates: drivers/firewire/core-cdev.c looks unsafe; the ID comes from an ioctl. drivers/gpu/drm/amd/amdgpu/amdgpu_ctx.c is similar drivers/atm/nicstar.c could be taken down by a handcrafted packet Link: http://lkml.kernel.org/r/20180518175025.GD6361@bombadil.infradead.org Fixes: 0a835c4f090a ("Reimplement IDR and IDA using the radix tree") Reported-by: <syzbot+35666cba7f0a337e2e79@syzkaller.appspotmail.com> Debugged-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-05-26 05:47:24 +08:00
if (!slot)
return NULL;
if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE,
get_slot_offset(node, slot))))
return NULL;
if (item && entry != item)
return NULL;
__radix_tree_delete(root, node, slot);
return entry;
}
EXPORT_SYMBOL(radix_tree_delete_item);
/**
* radix_tree_delete - delete an entry from a radix tree
* @root: radix tree root
* @index: index key
*
* Remove the entry at @index from the radix tree rooted at @root.
*
* Return: The deleted entry, or %NULL if it was not present.
*/
void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
{
return radix_tree_delete_item(root, index, NULL);
}
EXPORT_SYMBOL(radix_tree_delete);
/**
* radix_tree_tagged - test whether any items in the tree are tagged
* @root: radix tree root
* @tag: tag to test
*/
int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
{
return root_tag_get(root, tag);
}
EXPORT_SYMBOL(radix_tree_tagged);
/**
* idr_preload - preload for idr_alloc()
* @gfp_mask: allocation mask to use for preloading
*
* Preallocate memory to use for the next call to idr_alloc(). This function
* returns with preemption disabled. It will be enabled by idr_preload_end().
*/
void idr_preload(gfp_t gfp_mask)
{
if (__radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE))
preempt_disable();
}
EXPORT_SYMBOL(idr_preload);
void __rcu **idr_get_free(struct radix_tree_root *root,
struct radix_tree_iter *iter, gfp_t gfp,
unsigned long max)
{
struct radix_tree_node *node = NULL, *child;
void __rcu **slot = (void __rcu **)&root->xa_head;
unsigned long maxindex, start = iter->next_index;
unsigned int shift, offset = 0;
grow:
shift = radix_tree_load_root(root, &child, &maxindex);
if (!radix_tree_tagged(root, IDR_FREE))
start = max(start, maxindex + 1);
if (start > max)
return ERR_PTR(-ENOSPC);
if (start > maxindex) {
int error = radix_tree_extend(root, gfp, start, shift);
if (error < 0)
return ERR_PTR(error);
shift = error;
child = rcu_dereference_raw(root->xa_head);
}
idr: Permit any valid kernel pointer to be stored An upcoming change to the encoding of internal entries will set the bottom two bits to 0b10. Unfortunately, m68k only aligns some data structures to 2 bytes, so the IDR will interpret them as internal entries and things will go badly wrong. Change the radix tree so that it stops either when the node indicates that it's the bottom of the tree (shift == 0) or when the entry is not an internal entry. This means we cannot insert an arbitrary kernel pointer as a multiorder entry, but the IDR does not permit multiorder entries. Annoyingly, this means the IDR can no longer take advantage of the radix tree's ability to store a single entry at offset 0 without allocating memory. A pointer which is 2-byte aligned cannot be stored directly in the root as it would be indistinguishable from a node, so we must allocate a node in order to store a 2-byte pointer at index 0. The idr_replace() function does not take a GFP flags argument, so cannot allocate memory. If a user inserts a 4-byte aligned pointer at index 0 and then replaces it with a 2-byte aligned pointer, we must be able to store it. Arbitrary pointer values are still not permitted; pointers of the form 2 + (i * 4) for values of i between 0 and 1023 are reserved for the implementation. These are not valid kernel pointers as they would point into the zero page. This change does cause a runtime memory consumption regression for the IDA. I will recover that later. Signed-off-by: Matthew Wilcox <willy@infradead.org> Tested-by: Guenter Roeck <linux@roeck-us.net>
2018-06-25 18:56:50 +08:00
if (start == 0 && shift == 0)
shift = RADIX_TREE_MAP_SHIFT;
while (shift) {
shift -= RADIX_TREE_MAP_SHIFT;
if (child == NULL) {
/* Have to add a child node. */
child = radix_tree_node_alloc(gfp, node, root, shift,
offset, 0, 0);
if (!child)
return ERR_PTR(-ENOMEM);
all_tag_set(child, IDR_FREE);
rcu_assign_pointer(*slot, node_to_entry(child));
if (node)
node->count++;
} else if (!radix_tree_is_internal_node(child))
break;
node = entry_to_node(child);
offset = radix_tree_descend(node, &child, start);
if (!tag_get(node, IDR_FREE, offset)) {
offset = radix_tree_find_next_bit(node, IDR_FREE,
offset + 1);
start = next_index(start, node, offset);
if (start > max)
return ERR_PTR(-ENOSPC);
while (offset == RADIX_TREE_MAP_SIZE) {
offset = node->offset + 1;
node = node->parent;
if (!node)
goto grow;
shift = node->shift;
}
child = rcu_dereference_raw(node->slots[offset]);
}
slot = &node->slots[offset];
}
iter->index = start;
if (node)
iter->next_index = 1 + min(max, (start | node_maxindex(node)));
else
iter->next_index = 1;
iter->node = node;
set_iter_tags(iter, node, offset, IDR_FREE);
return slot;
}
/**
* idr_destroy - release all internal memory from an IDR
* @idr: idr handle
*
* After this function is called, the IDR is empty, and may be reused or
* the data structure containing it may be freed.
*
* A typical clean-up sequence for objects stored in an idr tree will use
* idr_for_each() to free all objects, if necessary, then idr_destroy() to
* free the memory used to keep track of those objects.
*/
void idr_destroy(struct idr *idr)
{
struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.xa_head);
if (radix_tree_is_internal_node(node))
radix_tree_free_nodes(node);
idr->idr_rt.xa_head = NULL;
root_tag_set(&idr->idr_rt, IDR_FREE);
}
EXPORT_SYMBOL(idr_destroy);
static void
mm: keep page cache radix tree nodes in check Previously, page cache radix tree nodes were freed after reclaim emptied out their page pointers. But now reclaim stores shadow entries in their place, which are only reclaimed when the inodes themselves are reclaimed. This is problematic for bigger files that are still in use after they have a significant amount of their cache reclaimed, without any of those pages actually refaulting. The shadow entries will just sit there and waste memory. In the worst case, the shadow entries will accumulate until the machine runs out of memory. To get this under control, the VM will track radix tree nodes exclusively containing shadow entries on a per-NUMA node list. Per-NUMA rather than global because we expect the radix tree nodes themselves to be allocated node-locally and we want to reduce cross-node references of otherwise independent cache workloads. A simple shrinker will then reclaim these nodes on memory pressure. A few things need to be stored in the radix tree node to implement the shadow node LRU and allow tree deletions coming from the list: 1. There is no index available that would describe the reverse path from the node up to the tree root, which is needed to perform a deletion. To solve this, encode in each node its offset inside the parent. This can be stored in the unused upper bits of the same member that stores the node's height at no extra space cost. 2. The number of shadow entries needs to be counted in addition to the regular entries, to quickly detect when the node is ready to go to the shadow node LRU list. The current entry count is an unsigned int but the maximum number of entries is 64, so a shadow counter can easily be stored in the unused upper bits. 3. Tree modification needs tree lock and tree root, which are located in the address space, so store an address_space backpointer in the node. The parent pointer of the node is in a union with the 2-word rcu_head, so the backpointer comes at no extra cost as well. 4. The node needs to be linked to an LRU list, which requires a list head inside the node. This does increase the size of the node, but it does not change the number of objects that fit into a slab page. [akpm@linux-foundation.org: export the right function] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 05:47:56 +08:00
radix_tree_node_ctor(void *arg)
{
mm: keep page cache radix tree nodes in check Previously, page cache radix tree nodes were freed after reclaim emptied out their page pointers. But now reclaim stores shadow entries in their place, which are only reclaimed when the inodes themselves are reclaimed. This is problematic for bigger files that are still in use after they have a significant amount of their cache reclaimed, without any of those pages actually refaulting. The shadow entries will just sit there and waste memory. In the worst case, the shadow entries will accumulate until the machine runs out of memory. To get this under control, the VM will track radix tree nodes exclusively containing shadow entries on a per-NUMA node list. Per-NUMA rather than global because we expect the radix tree nodes themselves to be allocated node-locally and we want to reduce cross-node references of otherwise independent cache workloads. A simple shrinker will then reclaim these nodes on memory pressure. A few things need to be stored in the radix tree node to implement the shadow node LRU and allow tree deletions coming from the list: 1. There is no index available that would describe the reverse path from the node up to the tree root, which is needed to perform a deletion. To solve this, encode in each node its offset inside the parent. This can be stored in the unused upper bits of the same member that stores the node's height at no extra space cost. 2. The number of shadow entries needs to be counted in addition to the regular entries, to quickly detect when the node is ready to go to the shadow node LRU list. The current entry count is an unsigned int but the maximum number of entries is 64, so a shadow counter can easily be stored in the unused upper bits. 3. Tree modification needs tree lock and tree root, which are located in the address space, so store an address_space backpointer in the node. The parent pointer of the node is in a union with the 2-word rcu_head, so the backpointer comes at no extra cost as well. 4. The node needs to be linked to an LRU list, which requires a list head inside the node. This does increase the size of the node, but it does not change the number of objects that fit into a slab page. [akpm@linux-foundation.org: export the right function] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 05:47:56 +08:00
struct radix_tree_node *node = arg;
memset(node, 0, sizeof(*node));
INIT_LIST_HEAD(&node->private_list);
}
static int radix_tree_cpu_dead(unsigned int cpu)
{
struct radix_tree_preload *rtp;
struct radix_tree_node *node;
/* Free per-cpu pool of preloaded nodes */
rtp = &per_cpu(radix_tree_preloads, cpu);
while (rtp->nr) {
node = rtp->nodes;
rtp->nodes = node->parent;
kmem_cache_free(radix_tree_node_cachep, node);
rtp->nr--;
}
return 0;
}
void __init radix_tree_init(void)
{
int ret;
lockdep: allow to disable reclaim lockup detection The current implementation of the reclaim lockup detection can lead to false positives and those even happen and usually lead to tweak the code to silence the lockdep by using GFP_NOFS even though the context can use __GFP_FS just fine. See http://lkml.kernel.org/r/20160512080321.GA18496@dastard as an example. ================================= [ INFO: inconsistent lock state ] 4.5.0-rc2+ #4 Tainted: G O --------------------------------- inconsistent {RECLAIM_FS-ON-R} -> {IN-RECLAIM_FS-W} usage. kswapd0/543 [HC0[0]:SC0[0]:HE1:SE1] takes: (&xfs_nondir_ilock_class){++++-+}, at: xfs_ilock+0x177/0x200 [xfs] {RECLAIM_FS-ON-R} state was registered at: mark_held_locks+0x79/0xa0 lockdep_trace_alloc+0xb3/0x100 kmem_cache_alloc+0x33/0x230 kmem_zone_alloc+0x81/0x120 [xfs] xfs_refcountbt_init_cursor+0x3e/0xa0 [xfs] __xfs_refcount_find_shared+0x75/0x580 [xfs] xfs_refcount_find_shared+0x84/0xb0 [xfs] xfs_getbmap+0x608/0x8c0 [xfs] xfs_vn_fiemap+0xab/0xc0 [xfs] do_vfs_ioctl+0x498/0x670 SyS_ioctl+0x79/0x90 entry_SYSCALL_64_fastpath+0x12/0x6f CPU0 ---- lock(&xfs_nondir_ilock_class); <Interrupt> lock(&xfs_nondir_ilock_class); *** DEADLOCK *** 3 locks held by kswapd0/543: stack backtrace: CPU: 0 PID: 543 Comm: kswapd0 Tainted: G O 4.5.0-rc2+ #4 Call Trace: lock_acquire+0xd8/0x1e0 down_write_nested+0x5e/0xc0 xfs_ilock+0x177/0x200 [xfs] xfs_reflink_cancel_cow_range+0x150/0x300 [xfs] xfs_fs_evict_inode+0xdc/0x1e0 [xfs] evict+0xc5/0x190 dispose_list+0x39/0x60 prune_icache_sb+0x4b/0x60 super_cache_scan+0x14f/0x1a0 shrink_slab.part.63.constprop.79+0x1e9/0x4e0 shrink_zone+0x15e/0x170 kswapd+0x4f1/0xa80 kthread+0xf2/0x110 ret_from_fork+0x3f/0x70 To quote Dave: "Ignoring whether reflink should be doing anything or not, that's a "xfs_refcountbt_init_cursor() gets called both outside and inside transactions" lockdep false positive case. The problem here is lockdep has seen this allocation from within a transaction, hence a GFP_NOFS allocation, and now it's seeing it in a GFP_KERNEL context. Also note that we have an active reference to this inode. So, because the reclaim annotations overload the interrupt level detections and it's seen the inode ilock been taken in reclaim ("interrupt") context, this triggers a reclaim context warning where it thinks it is unsafe to do this allocation in GFP_KERNEL context holding the inode ilock..." This sounds like a fundamental problem of the reclaim lock detection. It is really impossible to annotate such a special usecase IMHO unless the reclaim lockup detection is reworked completely. Until then it is much better to provide a way to add "I know what I am doing flag" and mark problematic places. This would prevent from abusing GFP_NOFS flag which has a runtime effect even on configurations which have lockdep disabled. Introduce __GFP_NOLOCKDEP flag which tells the lockdep gfp tracking to skip the current allocation request. While we are at it also make sure that the radix tree doesn't accidentaly override tags stored in the upper part of the gfp_mask. Link: http://lkml.kernel.org/r/20170306131408.9828-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Suggested-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Dave Chinner <david@fromorbit.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Chris Mason <clm@fb.com> Cc: David Sterba <dsterba@suse.cz> Cc: Jan Kara <jack@suse.cz> Cc: Brian Foster <bfoster@redhat.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-04 05:53:09 +08:00
BUILD_BUG_ON(RADIX_TREE_MAX_TAGS + __GFP_BITS_SHIFT > 32);
radix tree: use GFP_ZONEMASK bits of gfp_t for flags Patch series "XArray", v9. (First part thereof). This patchset is, I believe, appropriate for merging for 4.17. It contains the XArray implementation, to eventually replace the radix tree, and converts the page cache to use it. This conversion keeps the radix tree and XArray data structures in sync at all times. That allows us to convert the page cache one function at a time and should allow for easier bisection. Other than renaming some elements of the structures, the data structures are fundamentally unchanged; a radix tree walk and an XArray walk will touch the same number of cachelines. I have changes planned to the XArray data structure, but those will happen in future patches. Improvements the XArray has over the radix tree: - The radix tree provides operations like other trees do; 'insert' and 'delete'. But what most users really want is an automatically resizing array, and so it makes more sense to give users an API that is like an array -- 'load' and 'store'. We still have an 'insert' operation for users that really want that semantic. - The XArray considers locking as part of its API. This simplifies a lot of users who formerly had to manage their own locking just for the radix tree. It also improves code generation as we can now tell RCU that we're holding a lock and it doesn't need to generate as much fencing code. The other advantage is that tree nodes can be moved (not yet implemented). - GFP flags are now parameters to calls which may need to allocate memory. The radix tree forced users to decide what the allocation flags would be at creation time. It's much clearer to specify them at allocation time. - Memory is not preloaded; we don't tie up dozens of pages on the off chance that the slab allocator fails. Instead, we drop the lock, allocate a new node and retry the operation. We have to convert all the radix tree, IDA and IDR preload users before we can realise this benefit, but I have not yet found a user which cannot be converted. - The XArray provides a cmpxchg operation. The radix tree forces users to roll their own (and at least four have). - Iterators take a 'max' parameter. That simplifies many users and will reduce the amount of iteration done. - Iteration can proceed backwards. We only have one user for this, but since it's called as part of the pagefault readahead algorithm, that seemed worth mentioning. - RCU-protected pointers are not exposed as part of the API. There are some fun bugs where the page cache forgets to use rcu_dereference() in the current codebase. - Value entries gain an extra bit compared to radix tree exceptional entries. That gives us the extra bit we need to put huge page swap entries in the page cache. - Some iterators now take a 'filter' argument instead of having separate iterators for tagged/untagged iterations. The page cache is improved by this: - Shorter, easier to read code - More efficient iterations - Reduction in size of struct address_space - Fewer walks from the top of the data structure; the XArray API encourages staying at the leaf node and conducting operations there. This patch (of 8): None of these bits may be used for slab allocations, so we can use them as radix tree flags as long as we mask them off before passing them to the slab allocator. Move the IDR flag from the high bits to the GFP_ZONEMASK bits. Link: http://lkml.kernel.org/r/20180313132639.17387-3-willy@infradead.org Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Acked-by: Jeff Layton <jlayton@kernel.org> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 07:36:28 +08:00
BUILD_BUG_ON(ROOT_IS_IDR & ~GFP_ZONEMASK);
BUILD_BUG_ON(XA_CHUNK_SIZE > 255);
radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
sizeof(struct radix_tree_node), 0,
SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
radix_tree_node_ctor);
ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
NULL, radix_tree_cpu_dead);
WARN_ON(ret < 0);
}