OpenCloudOS-Kernel/sound/soc/stm/stm32_sai_sub.c

958 lines
25 KiB
C
Raw Normal View History

/*
* STM32 ALSA SoC Digital Audio Interface (SAI) driver.
*
* Copyright (C) 2016, STMicroelectronics - All Rights Reserved
* Author(s): Olivier Moysan <olivier.moysan@st.com> for STMicroelectronics.
*
* License terms: GPL V2.0.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*/
#include <linux/clk.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/regmap.h>
#include <sound/core.h>
#include <sound/dmaengine_pcm.h>
#include <sound/pcm_params.h>
#include "stm32_sai.h"
#define SAI_FREE_PROTOCOL 0x0
#define SAI_SLOT_SIZE_AUTO 0x0
#define SAI_SLOT_SIZE_16 0x1
#define SAI_SLOT_SIZE_32 0x2
#define SAI_DATASIZE_8 0x2
#define SAI_DATASIZE_10 0x3
#define SAI_DATASIZE_16 0x4
#define SAI_DATASIZE_20 0x5
#define SAI_DATASIZE_24 0x6
#define SAI_DATASIZE_32 0x7
#define STM_SAI_FIFO_SIZE 8
#define STM_SAI_DAI_NAME_SIZE 15
#define STM_SAI_IS_PLAYBACK(ip) ((ip)->dir == SNDRV_PCM_STREAM_PLAYBACK)
#define STM_SAI_IS_CAPTURE(ip) ((ip)->dir == SNDRV_PCM_STREAM_CAPTURE)
#define STM_SAI_A_ID 0x0
#define STM_SAI_B_ID 0x1
#define STM_SAI_IS_SUB_A(x) ((x)->id == STM_SAI_A_ID)
#define STM_SAI_IS_SUB_B(x) ((x)->id == STM_SAI_B_ID)
#define STM_SAI_BLOCK_NAME(x) (((x)->id == STM_SAI_A_ID) ? "A" : "B")
/**
* struct stm32_sai_sub_data - private data of SAI sub block (block A or B)
* @pdev: device data pointer
* @regmap: SAI register map pointer
* @regmap_config: SAI sub block register map configuration pointer
* @dma_params: dma configuration data for rx or tx channel
* @cpu_dai_drv: DAI driver data pointer
* @cpu_dai: DAI runtime data pointer
* @substream: PCM substream data pointer
* @pdata: SAI block parent data pointer
* @sai_ck: kernel clock feeding the SAI clock generator
* @phys_addr: SAI registers physical base address
* @mclk_rate: SAI block master clock frequency (Hz). set at init
* @id: SAI sub block id corresponding to sub-block A or B
* @dir: SAI block direction (playback or capture). set at init
* @master: SAI block mode flag. (true=master, false=slave) set at init
* @fmt: SAI block format. relevant only for custom protocols. set at init
* @sync: SAI block synchronization mode. (none, internal or external)
* @fs_length: frame synchronization length. depends on protocol settings
* @slots: rx or tx slot number
* @slot_width: rx or tx slot width in bits
* @slot_mask: rx or tx active slots mask. set at init or at runtime
* @data_size: PCM data width. corresponds to PCM substream width.
*/
struct stm32_sai_sub_data {
struct platform_device *pdev;
struct regmap *regmap;
const struct regmap_config *regmap_config;
struct snd_dmaengine_dai_dma_data dma_params;
struct snd_soc_dai_driver *cpu_dai_drv;
struct snd_soc_dai *cpu_dai;
struct snd_pcm_substream *substream;
struct stm32_sai_data *pdata;
struct clk *sai_ck;
dma_addr_t phys_addr;
unsigned int mclk_rate;
unsigned int id;
int dir;
bool master;
int fmt;
int sync;
int fs_length;
int slots;
int slot_width;
int slot_mask;
int data_size;
};
enum stm32_sai_fifo_th {
STM_SAI_FIFO_TH_EMPTY,
STM_SAI_FIFO_TH_QUARTER,
STM_SAI_FIFO_TH_HALF,
STM_SAI_FIFO_TH_3_QUARTER,
STM_SAI_FIFO_TH_FULL,
};
static bool stm32_sai_sub_readable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case STM_SAI_CR1_REGX:
case STM_SAI_CR2_REGX:
case STM_SAI_FRCR_REGX:
case STM_SAI_SLOTR_REGX:
case STM_SAI_IMR_REGX:
case STM_SAI_SR_REGX:
case STM_SAI_CLRFR_REGX:
case STM_SAI_DR_REGX:
case STM_SAI_PDMCR_REGX:
case STM_SAI_PDMLY_REGX:
return true;
default:
return false;
}
}
static bool stm32_sai_sub_volatile_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case STM_SAI_DR_REGX:
return true;
default:
return false;
}
}
static bool stm32_sai_sub_writeable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case STM_SAI_CR1_REGX:
case STM_SAI_CR2_REGX:
case STM_SAI_FRCR_REGX:
case STM_SAI_SLOTR_REGX:
case STM_SAI_IMR_REGX:
case STM_SAI_SR_REGX:
case STM_SAI_CLRFR_REGX:
case STM_SAI_DR_REGX:
case STM_SAI_PDMCR_REGX:
case STM_SAI_PDMLY_REGX:
return true;
default:
return false;
}
}
static const struct regmap_config stm32_sai_sub_regmap_config_f4 = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.max_register = STM_SAI_DR_REGX,
.readable_reg = stm32_sai_sub_readable_reg,
.volatile_reg = stm32_sai_sub_volatile_reg,
.writeable_reg = stm32_sai_sub_writeable_reg,
.fast_io = true,
};
static const struct regmap_config stm32_sai_sub_regmap_config_h7 = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.max_register = STM_SAI_PDMLY_REGX,
.readable_reg = stm32_sai_sub_readable_reg,
.volatile_reg = stm32_sai_sub_volatile_reg,
.writeable_reg = stm32_sai_sub_writeable_reg,
.fast_io = true,
};
static irqreturn_t stm32_sai_isr(int irq, void *devid)
{
struct stm32_sai_sub_data *sai = (struct stm32_sai_sub_data *)devid;
struct snd_pcm_substream *substream = sai->substream;
struct platform_device *pdev = sai->pdev;
unsigned int sr, imr, flags;
snd_pcm_state_t status = SNDRV_PCM_STATE_RUNNING;
regmap_read(sai->regmap, STM_SAI_IMR_REGX, &imr);
regmap_read(sai->regmap, STM_SAI_SR_REGX, &sr);
flags = sr & imr;
if (!flags)
return IRQ_NONE;
regmap_update_bits(sai->regmap, STM_SAI_CLRFR_REGX, SAI_XCLRFR_MASK,
SAI_XCLRFR_MASK);
if (flags & SAI_XIMR_OVRUDRIE) {
dev_err(&pdev->dev, "IRQ %s\n",
STM_SAI_IS_PLAYBACK(sai) ? "underrun" : "overrun");
status = SNDRV_PCM_STATE_XRUN;
}
if (flags & SAI_XIMR_MUTEDETIE)
dev_dbg(&pdev->dev, "IRQ mute detected\n");
if (flags & SAI_XIMR_WCKCFGIE) {
dev_err(&pdev->dev, "IRQ wrong clock configuration\n");
status = SNDRV_PCM_STATE_DISCONNECTED;
}
if (flags & SAI_XIMR_CNRDYIE)
dev_err(&pdev->dev, "IRQ Codec not ready\n");
if (flags & SAI_XIMR_AFSDETIE) {
dev_err(&pdev->dev, "IRQ Anticipated frame synchro\n");
status = SNDRV_PCM_STATE_XRUN;
}
if (flags & SAI_XIMR_LFSDETIE) {
dev_err(&pdev->dev, "IRQ Late frame synchro\n");
status = SNDRV_PCM_STATE_XRUN;
}
if (status != SNDRV_PCM_STATE_RUNNING) {
snd_pcm_stream_lock(substream);
snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
snd_pcm_stream_unlock(substream);
}
return IRQ_HANDLED;
}
static int stm32_sai_set_sysclk(struct snd_soc_dai *cpu_dai,
int clk_id, unsigned int freq, int dir)
{
struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
int ret;
if ((dir == SND_SOC_CLOCK_OUT) && sai->master) {
ret = regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX,
SAI_XCR1_NODIV,
(unsigned int)~SAI_XCR1_NODIV);
if (ret < 0)
return ret;
sai->mclk_rate = freq;
dev_dbg(cpu_dai->dev, "SAI MCLK frequency is %uHz\n", freq);
}
return 0;
}
static int stm32_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
u32 rx_mask, int slots, int slot_width)
{
struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
int slotr, slotr_mask, slot_size;
dev_dbg(cpu_dai->dev, "Masks tx/rx:%#x/%#x, slots:%d, width:%d\n",
tx_mask, rx_mask, slots, slot_width);
switch (slot_width) {
case 16:
slot_size = SAI_SLOT_SIZE_16;
break;
case 32:
slot_size = SAI_SLOT_SIZE_32;
break;
default:
slot_size = SAI_SLOT_SIZE_AUTO;
break;
}
slotr = SAI_XSLOTR_SLOTSZ_SET(slot_size) |
SAI_XSLOTR_NBSLOT_SET(slots - 1);
slotr_mask = SAI_XSLOTR_SLOTSZ_MASK | SAI_XSLOTR_NBSLOT_MASK;
/* tx/rx mask set in machine init, if slot number defined in DT */
if (STM_SAI_IS_PLAYBACK(sai)) {
sai->slot_mask = tx_mask;
slotr |= SAI_XSLOTR_SLOTEN_SET(tx_mask);
}
if (STM_SAI_IS_CAPTURE(sai)) {
sai->slot_mask = rx_mask;
slotr |= SAI_XSLOTR_SLOTEN_SET(rx_mask);
}
slotr_mask |= SAI_XSLOTR_SLOTEN_MASK;
regmap_update_bits(sai->regmap, STM_SAI_SLOTR_REGX, slotr_mask, slotr);
sai->slot_width = slot_width;
sai->slots = slots;
return 0;
}
static int stm32_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
{
struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
int cr1 = 0, frcr = 0;
int cr1_mask = 0, frcr_mask = 0;
int ret;
dev_dbg(cpu_dai->dev, "fmt %x\n", fmt);
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
/* SCK active high for all protocols */
case SND_SOC_DAIFMT_I2S:
cr1 |= SAI_XCR1_CKSTR;
frcr |= SAI_XFRCR_FSOFF | SAI_XFRCR_FSDEF;
break;
/* Left justified */
case SND_SOC_DAIFMT_MSB:
frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF;
break;
/* Right justified */
case SND_SOC_DAIFMT_LSB:
frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF;
break;
case SND_SOC_DAIFMT_DSP_A:
frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF;
break;
case SND_SOC_DAIFMT_DSP_B:
frcr |= SAI_XFRCR_FSPOL;
break;
default:
dev_err(cpu_dai->dev, "Unsupported protocol %#x\n",
fmt & SND_SOC_DAIFMT_FORMAT_MASK);
return -EINVAL;
}
cr1_mask |= SAI_XCR1_PRTCFG_MASK | SAI_XCR1_CKSTR;
frcr_mask |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF |
SAI_XFRCR_FSDEF;
/* DAI clock strobing. Invert setting previously set */
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
break;
case SND_SOC_DAIFMT_IB_NF:
cr1 ^= SAI_XCR1_CKSTR;
break;
case SND_SOC_DAIFMT_NB_IF:
frcr ^= SAI_XFRCR_FSPOL;
break;
case SND_SOC_DAIFMT_IB_IF:
/* Invert fs & sck */
cr1 ^= SAI_XCR1_CKSTR;
frcr ^= SAI_XFRCR_FSPOL;
break;
default:
dev_err(cpu_dai->dev, "Unsupported strobing %#x\n",
fmt & SND_SOC_DAIFMT_INV_MASK);
return -EINVAL;
}
cr1_mask |= SAI_XCR1_CKSTR;
frcr_mask |= SAI_XFRCR_FSPOL;
regmap_update_bits(sai->regmap, STM_SAI_FRCR_REGX, frcr_mask, frcr);
/* DAI clock master masks */
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBM_CFM:
/* codec is master */
cr1 |= SAI_XCR1_SLAVE;
sai->master = false;
break;
case SND_SOC_DAIFMT_CBS_CFS:
sai->master = true;
break;
default:
dev_err(cpu_dai->dev, "Unsupported mode %#x\n",
fmt & SND_SOC_DAIFMT_MASTER_MASK);
return -EINVAL;
}
cr1_mask |= SAI_XCR1_SLAVE;
/* do not generate master by default */
cr1 |= SAI_XCR1_NODIV;
cr1_mask |= SAI_XCR1_NODIV;
ret = regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX, cr1_mask, cr1);
if (ret < 0) {
dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
return ret;
}
sai->fmt = fmt;
return 0;
}
static int stm32_sai_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *cpu_dai)
{
struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
int imr, cr2, ret;
sai->substream = substream;
ret = clk_prepare_enable(sai->sai_ck);
if (ret < 0) {
dev_err(cpu_dai->dev, "Failed to enable clock: %d\n", ret);
return ret;
}
/* Enable ITs */
regmap_update_bits(sai->regmap, STM_SAI_SR_REGX,
SAI_XSR_MASK, (unsigned int)~SAI_XSR_MASK);
regmap_update_bits(sai->regmap, STM_SAI_CLRFR_REGX,
SAI_XCLRFR_MASK, SAI_XCLRFR_MASK);
imr = SAI_XIMR_OVRUDRIE;
if (STM_SAI_IS_CAPTURE(sai)) {
regmap_read(sai->regmap, STM_SAI_CR2_REGX, &cr2);
if (cr2 & SAI_XCR2_MUTECNT_MASK)
imr |= SAI_XIMR_MUTEDETIE;
}
if (sai->master)
imr |= SAI_XIMR_WCKCFGIE;
else
imr |= SAI_XIMR_AFSDETIE | SAI_XIMR_LFSDETIE;
regmap_update_bits(sai->regmap, STM_SAI_IMR_REGX,
SAI_XIMR_MASK, imr);
return 0;
}
static int stm32_sai_set_config(struct snd_soc_dai *cpu_dai,
struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params)
{
struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
int cr1, cr1_mask, ret;
int fth = STM_SAI_FIFO_TH_HALF;
/* FIFO config */
regmap_update_bits(sai->regmap, STM_SAI_CR2_REGX,
SAI_XCR2_FFLUSH | SAI_XCR2_FTH_MASK,
SAI_XCR2_FFLUSH | SAI_XCR2_FTH_SET(fth));
/* Mode, data format and channel config */
cr1 = SAI_XCR1_PRTCFG_SET(SAI_FREE_PROTOCOL);
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S8:
cr1 |= SAI_XCR1_DS_SET(SAI_DATASIZE_8);
break;
case SNDRV_PCM_FORMAT_S16_LE:
cr1 |= SAI_XCR1_DS_SET(SAI_DATASIZE_16);
break;
case SNDRV_PCM_FORMAT_S32_LE:
cr1 |= SAI_XCR1_DS_SET(SAI_DATASIZE_32);
break;
default:
dev_err(cpu_dai->dev, "Data format not supported");
return -EINVAL;
}
cr1_mask = SAI_XCR1_DS_MASK | SAI_XCR1_PRTCFG_MASK;
cr1_mask |= SAI_XCR1_RX_TX;
if (STM_SAI_IS_CAPTURE(sai))
cr1 |= SAI_XCR1_RX_TX;
cr1_mask |= SAI_XCR1_MONO;
if ((sai->slots == 2) && (params_channels(params) == 1))
cr1 |= SAI_XCR1_MONO;
ret = regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX, cr1_mask, cr1);
if (ret < 0) {
dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
return ret;
}
/* DMA config */
sai->dma_params.maxburst = STM_SAI_FIFO_SIZE * fth / sizeof(u32);
snd_soc_dai_set_dma_data(cpu_dai, substream, (void *)&sai->dma_params);
return 0;
}
static int stm32_sai_set_slots(struct snd_soc_dai *cpu_dai)
{
struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
int slotr, slot_sz;
regmap_read(sai->regmap, STM_SAI_SLOTR_REGX, &slotr);
/*
* If SLOTSZ is set to auto in SLOTR, align slot width on data size
* By default slot width = data size, if not forced from DT
*/
slot_sz = slotr & SAI_XSLOTR_SLOTSZ_MASK;
if (slot_sz == SAI_XSLOTR_SLOTSZ_SET(SAI_SLOT_SIZE_AUTO))
sai->slot_width = sai->data_size;
if (sai->slot_width < sai->data_size) {
dev_err(cpu_dai->dev,
"Data size %d larger than slot width\n",
sai->data_size);
return -EINVAL;
}
/* Slot number is set to 2, if not specified in DT */
if (!sai->slots)
sai->slots = 2;
/* The number of slots in the audio frame is equal to NBSLOT[3:0] + 1*/
regmap_update_bits(sai->regmap, STM_SAI_SLOTR_REGX,
SAI_XSLOTR_NBSLOT_MASK,
SAI_XSLOTR_NBSLOT_SET((sai->slots - 1)));
/* Set default slots mask if not already set from DT */
if (!(slotr & SAI_XSLOTR_SLOTEN_MASK)) {
sai->slot_mask = (1 << sai->slots) - 1;
regmap_update_bits(sai->regmap,
STM_SAI_SLOTR_REGX, SAI_XSLOTR_SLOTEN_MASK,
SAI_XSLOTR_SLOTEN_SET(sai->slot_mask));
}
dev_dbg(cpu_dai->dev, "Slots %d, slot width %d\n",
sai->slots, sai->slot_width);
return 0;
}
static void stm32_sai_set_frame(struct snd_soc_dai *cpu_dai)
{
struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
int fs_active, offset, format;
int frcr, frcr_mask;
format = sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
sai->fs_length = sai->slot_width * sai->slots;
fs_active = sai->fs_length / 2;
if ((format == SND_SOC_DAIFMT_DSP_A) ||
(format == SND_SOC_DAIFMT_DSP_B))
fs_active = 1;
frcr = SAI_XFRCR_FRL_SET((sai->fs_length - 1));
frcr |= SAI_XFRCR_FSALL_SET((fs_active - 1));
frcr_mask = SAI_XFRCR_FRL_MASK | SAI_XFRCR_FSALL_MASK;
dev_dbg(cpu_dai->dev, "Frame length %d, frame active %d\n",
sai->fs_length, fs_active);
regmap_update_bits(sai->regmap, STM_SAI_FRCR_REGX, frcr_mask, frcr);
if ((sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_LSB) {
offset = sai->slot_width - sai->data_size;
regmap_update_bits(sai->regmap, STM_SAI_SLOTR_REGX,
SAI_XSLOTR_FBOFF_MASK,
SAI_XSLOTR_FBOFF_SET(offset));
}
}
static int stm32_sai_configure_clock(struct snd_soc_dai *cpu_dai,
struct snd_pcm_hw_params *params)
{
struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
int cr1, mask, div = 0;
int sai_clk_rate, mclk_ratio, den, ret;
int version = sai->pdata->conf->version;
if (!sai->mclk_rate) {
dev_err(cpu_dai->dev, "Mclk rate is null\n");
return -EINVAL;
}
if (!(params_rate(params) % 11025))
clk_set_parent(sai->sai_ck, sai->pdata->clk_x11k);
else
clk_set_parent(sai->sai_ck, sai->pdata->clk_x8k);
sai_clk_rate = clk_get_rate(sai->sai_ck);
if (STM_SAI_IS_F4(sai->pdata)) {
/*
* mclk_rate = 256 * fs
* MCKDIV = 0 if sai_ck < 3/2 * mclk_rate
* MCKDIV = sai_ck / (2 * mclk_rate) otherwise
*/
if (2 * sai_clk_rate >= 3 * sai->mclk_rate)
div = DIV_ROUND_CLOSEST(sai_clk_rate,
2 * sai->mclk_rate);
} else {
/*
* TDM mode :
* mclk on
* MCKDIV = sai_ck / (ws x 256) (NOMCK=0. OSR=0)
* MCKDIV = sai_ck / (ws x 512) (NOMCK=0. OSR=1)
* mclk off
* MCKDIV = sai_ck / (frl x ws) (NOMCK=1)
* Note: NOMCK/NODIV correspond to same bit.
*/
if (sai->mclk_rate) {
mclk_ratio = sai->mclk_rate / params_rate(params);
if (mclk_ratio != 256) {
if (mclk_ratio == 512) {
mask = SAI_XCR1_OSR;
cr1 = SAI_XCR1_OSR;
} else {
dev_err(cpu_dai->dev,
"Wrong mclk ratio %d\n",
mclk_ratio);
return -EINVAL;
}
}
div = DIV_ROUND_CLOSEST(sai_clk_rate, sai->mclk_rate);
} else {
/* mclk-fs not set, master clock not active. NOMCK=1 */
den = sai->fs_length * params_rate(params);
div = DIV_ROUND_CLOSEST(sai_clk_rate, den);
}
}
if (div > SAI_XCR1_MCKDIV_MAX(version)) {
dev_err(cpu_dai->dev, "Divider %d out of range\n", div);
return -EINVAL;
}
dev_dbg(cpu_dai->dev, "SAI clock %d, divider %d\n", sai_clk_rate, div);
mask = SAI_XCR1_MCKDIV_MASK(SAI_XCR1_MCKDIV_WIDTH(version));
cr1 = SAI_XCR1_MCKDIV_SET(div);
ret = regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX, mask, cr1);
if (ret < 0) {
dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
return ret;
}
return 0;
}
static int stm32_sai_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *cpu_dai)
{
struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
int ret;
sai->data_size = params_width(params);
ret = stm32_sai_set_slots(cpu_dai);
if (ret < 0)
return ret;
stm32_sai_set_frame(cpu_dai);
ret = stm32_sai_set_config(cpu_dai, substream, params);
if (ret)
return ret;
if (sai->master)
ret = stm32_sai_configure_clock(cpu_dai, params);
return ret;
}
static int stm32_sai_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *cpu_dai)
{
struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
int ret;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
dev_dbg(cpu_dai->dev, "Enable DMA and SAI\n");
regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX,
SAI_XCR1_DMAEN, SAI_XCR1_DMAEN);
/* Enable SAI */
ret = regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX,
SAI_XCR1_SAIEN, SAI_XCR1_SAIEN);
if (ret < 0)
dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
break;
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
case SNDRV_PCM_TRIGGER_STOP:
dev_dbg(cpu_dai->dev, "Disable DMA and SAI\n");
regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX,
SAI_XCR1_SAIEN,
(unsigned int)~SAI_XCR1_SAIEN);
ret = regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX,
SAI_XCR1_DMAEN,
(unsigned int)~SAI_XCR1_DMAEN);
if (ret < 0)
dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
break;
default:
return -EINVAL;
}
return ret;
}
static void stm32_sai_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *cpu_dai)
{
struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
regmap_update_bits(sai->regmap, STM_SAI_IMR_REGX, SAI_XIMR_MASK, 0);
regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX, SAI_XCR1_NODIV,
SAI_XCR1_NODIV);
clk_disable_unprepare(sai->sai_ck);
sai->substream = NULL;
}
static int stm32_sai_dai_probe(struct snd_soc_dai *cpu_dai)
{
struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
sai->dma_params.addr = (dma_addr_t)(sai->phys_addr + STM_SAI_DR_REGX);
sai->dma_params.maxburst = 1;
/* Buswidth will be set by framework at runtime */
sai->dma_params.addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
if (STM_SAI_IS_PLAYBACK(sai))
snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params, NULL);
else
snd_soc_dai_init_dma_data(cpu_dai, NULL, &sai->dma_params);
return 0;
}
static const struct snd_soc_dai_ops stm32_sai_pcm_dai_ops = {
.set_sysclk = stm32_sai_set_sysclk,
.set_fmt = stm32_sai_set_dai_fmt,
.set_tdm_slot = stm32_sai_set_dai_tdm_slot,
.startup = stm32_sai_startup,
.hw_params = stm32_sai_hw_params,
.trigger = stm32_sai_trigger,
.shutdown = stm32_sai_shutdown,
};
static const struct snd_pcm_hardware stm32_sai_pcm_hw = {
.info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP,
.buffer_bytes_max = 8 * PAGE_SIZE,
.period_bytes_min = 1024, /* 5ms at 48kHz */
.period_bytes_max = PAGE_SIZE,
.periods_min = 2,
.periods_max = 8,
};
static struct snd_soc_dai_driver stm32_sai_playback_dai[] = {
{
.probe = stm32_sai_dai_probe,
.id = 1, /* avoid call to fmt_single_name() */
.playback = {
.channels_min = 1,
.channels_max = 2,
.rate_min = 8000,
.rate_max = 192000,
.rates = SNDRV_PCM_RATE_CONTINUOUS,
/* DMA does not support 24 bits transfers */
.formats =
SNDRV_PCM_FMTBIT_S8 |
SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_S32_LE,
},
.ops = &stm32_sai_pcm_dai_ops,
}
};
static struct snd_soc_dai_driver stm32_sai_capture_dai[] = {
{
.probe = stm32_sai_dai_probe,
.id = 1, /* avoid call to fmt_single_name() */
.capture = {
.channels_min = 1,
.channels_max = 2,
.rate_min = 8000,
.rate_max = 192000,
.rates = SNDRV_PCM_RATE_CONTINUOUS,
/* DMA does not support 24 bits transfers */
.formats =
SNDRV_PCM_FMTBIT_S8 |
SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_S32_LE,
},
.ops = &stm32_sai_pcm_dai_ops,
}
};
static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config = {
.pcm_hardware = &stm32_sai_pcm_hw,
.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
};
static const struct snd_soc_component_driver stm32_component = {
.name = "stm32-sai",
};
static const struct of_device_id stm32_sai_sub_ids[] = {
{ .compatible = "st,stm32-sai-sub-a",
.data = (void *)STM_SAI_A_ID},
{ .compatible = "st,stm32-sai-sub-b",
.data = (void *)STM_SAI_B_ID},
{}
};
MODULE_DEVICE_TABLE(of, stm32_sai_sub_ids);
static int stm32_sai_sub_parse_of(struct platform_device *pdev,
struct stm32_sai_sub_data *sai)
{
struct device_node *np = pdev->dev.of_node;
struct resource *res;
void __iomem *base;
if (!np)
return -ENODEV;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(base))
return PTR_ERR(base);
sai->phys_addr = res->start;
sai->regmap_config = &stm32_sai_sub_regmap_config_f4;
/* Note: PDM registers not available for H7 sub-block B */
if (STM_SAI_IS_H7(sai->pdata) && STM_SAI_IS_SUB_A(sai))
sai->regmap_config = &stm32_sai_sub_regmap_config_h7;
sai->regmap = devm_regmap_init_mmio_clk(&pdev->dev, "sai_ck",
base, sai->regmap_config);
if (IS_ERR(sai->regmap)) {
dev_err(&pdev->dev, "Failed to initialize MMIO\n");
return PTR_ERR(sai->regmap);
}
/* Get direction property */
if (of_property_match_string(np, "dma-names", "tx") >= 0) {
sai->dir = SNDRV_PCM_STREAM_PLAYBACK;
} else if (of_property_match_string(np, "dma-names", "rx") >= 0) {
sai->dir = SNDRV_PCM_STREAM_CAPTURE;
} else {
dev_err(&pdev->dev, "Unsupported direction\n");
return -EINVAL;
}
sai->sai_ck = devm_clk_get(&pdev->dev, "sai_ck");
if (IS_ERR(sai->sai_ck)) {
dev_err(&pdev->dev, "Missing kernel clock sai_ck\n");
return PTR_ERR(sai->sai_ck);
}
return 0;
}
static int stm32_sai_sub_dais_init(struct platform_device *pdev,
struct stm32_sai_sub_data *sai)
{
sai->cpu_dai_drv = devm_kzalloc(&pdev->dev,
sizeof(struct snd_soc_dai_driver),
GFP_KERNEL);
if (!sai->cpu_dai_drv)
return -ENOMEM;
sai->cpu_dai_drv->name = dev_name(&pdev->dev);
if (STM_SAI_IS_PLAYBACK(sai)) {
memcpy(sai->cpu_dai_drv, &stm32_sai_playback_dai,
sizeof(stm32_sai_playback_dai));
sai->cpu_dai_drv->playback.stream_name = sai->cpu_dai_drv->name;
} else {
memcpy(sai->cpu_dai_drv, &stm32_sai_capture_dai,
sizeof(stm32_sai_capture_dai));
sai->cpu_dai_drv->capture.stream_name = sai->cpu_dai_drv->name;
}
return 0;
}
static int stm32_sai_sub_probe(struct platform_device *pdev)
{
struct stm32_sai_sub_data *sai;
const struct of_device_id *of_id;
int ret;
sai = devm_kzalloc(&pdev->dev, sizeof(*sai), GFP_KERNEL);
if (!sai)
return -ENOMEM;
of_id = of_match_device(stm32_sai_sub_ids, &pdev->dev);
if (!of_id)
return -EINVAL;
sai->id = (uintptr_t)of_id->data;
sai->pdev = pdev;
platform_set_drvdata(pdev, sai);
sai->pdata = dev_get_drvdata(pdev->dev.parent);
if (!sai->pdata) {
dev_err(&pdev->dev, "Parent device data not available\n");
return -EINVAL;
}
ret = stm32_sai_sub_parse_of(pdev, sai);
if (ret)
return ret;
ret = stm32_sai_sub_dais_init(pdev, sai);
if (ret)
return ret;
ret = devm_request_irq(&pdev->dev, sai->pdata->irq, stm32_sai_isr,
IRQF_SHARED, dev_name(&pdev->dev), sai);
if (ret) {
dev_err(&pdev->dev, "IRQ request returned %d\n", ret);
return ret;
}
ret = devm_snd_soc_register_component(&pdev->dev, &stm32_component,
sai->cpu_dai_drv, 1);
if (ret)
return ret;
ret = devm_snd_dmaengine_pcm_register(&pdev->dev,
&stm32_sai_pcm_config, 0);
if (ret) {
dev_err(&pdev->dev, "Could not register pcm dma\n");
return ret;
}
return 0;
}
static struct platform_driver stm32_sai_sub_driver = {
.driver = {
.name = "st,stm32-sai-sub",
.of_match_table = stm32_sai_sub_ids,
},
.probe = stm32_sai_sub_probe,
};
module_platform_driver(stm32_sai_sub_driver);
MODULE_DESCRIPTION("STM32 Soc SAI sub-block Interface");
MODULE_AUTHOR("Olivier Moysan <olivier.moysan@st.com>");
MODULE_ALIAS("platform:st,stm32-sai-sub");
MODULE_LICENSE("GPL v2");