OpenCloudOS-Kernel/net/smc/smc_clc.c

1178 lines
32 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
// SPDX-License-Identifier: GPL-2.0
/*
* Shared Memory Communications over RDMA (SMC-R) and RoCE
*
* CLC (connection layer control) handshake over initial TCP socket to
* prepare for RDMA traffic
*
* Copyright IBM Corp. 2016, 2018
*
* Author(s): Ursula Braun <ubraun@linux.vnet.ibm.com>
*/
#include <linux/in.h>
#include <linux/inetdevice.h>
#include <linux/if_ether.h>
sched/headers: Move task_struct::signal and task_struct::sighand types and accessors into <linux/sched/signal.h> task_struct::signal and task_struct::sighand are pointers, which would normally make it straightforward to not define those types in sched.h. That is not so, because the types are accompanied by a myriad of APIs (macros and inline functions) that dereference them. Split the types and the APIs out of sched.h and move them into a new header, <linux/sched/signal.h>. With this change sched.h does not know about 'struct signal' and 'struct sighand' anymore, trying to put accessors into sched.h as a test fails the following way: ./include/linux/sched.h: In function ‘test_signal_types’: ./include/linux/sched.h:2461:18: error: dereferencing pointer to incomplete type ‘struct signal_struct’ ^ This reduces the size and complexity of sched.h significantly. Update all headers and .c code that relied on getting the signal handling functionality from <linux/sched.h> to include <linux/sched/signal.h>. The list of affected files in the preparatory patch was partly generated by grepping for the APIs, and partly by doing coverage build testing, both all[yes|mod|def|no]config builds on 64-bit and 32-bit x86, and an array of cross-architecture builds. Nevertheless some (trivial) build breakage is still expected related to rare Kconfig combinations and in-flight patches to various kernel code, but most of it should be handled by this patch. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-02-02 15:35:14 +08:00
#include <linux/sched/signal.h>
#include <linux/utsname.h>
#include <linux/ctype.h>
sched/headers: Move task_struct::signal and task_struct::sighand types and accessors into <linux/sched/signal.h> task_struct::signal and task_struct::sighand are pointers, which would normally make it straightforward to not define those types in sched.h. That is not so, because the types are accompanied by a myriad of APIs (macros and inline functions) that dereference them. Split the types and the APIs out of sched.h and move them into a new header, <linux/sched/signal.h>. With this change sched.h does not know about 'struct signal' and 'struct sighand' anymore, trying to put accessors into sched.h as a test fails the following way: ./include/linux/sched.h: In function ‘test_signal_types’: ./include/linux/sched.h:2461:18: error: dereferencing pointer to incomplete type ‘struct signal_struct’ ^ This reduces the size and complexity of sched.h significantly. Update all headers and .c code that relied on getting the signal handling functionality from <linux/sched.h> to include <linux/sched/signal.h>. The list of affected files in the preparatory patch was partly generated by grepping for the APIs, and partly by doing coverage build testing, both all[yes|mod|def|no]config builds on 64-bit and 32-bit x86, and an array of cross-architecture builds. Nevertheless some (trivial) build breakage is still expected related to rare Kconfig combinations and in-flight patches to various kernel code, but most of it should be handled by this patch. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-02-02 15:35:14 +08:00
#include <net/addrconf.h>
#include <net/sock.h>
#include <net/tcp.h>
#include "smc.h"
#include "smc_core.h"
#include "smc_clc.h"
#include "smc_ib.h"
#include "smc_ism.h"
#include "smc_netlink.h"
#define SMCR_CLC_ACCEPT_CONFIRM_LEN 68
#define SMCD_CLC_ACCEPT_CONFIRM_LEN 48
#define SMCD_CLC_ACCEPT_CONFIRM_LEN_V2 78
#define SMCR_CLC_ACCEPT_CONFIRM_LEN_V2 108
#define SMC_CLC_RECV_BUF_LEN 100
/* eye catcher "SMCR" EBCDIC for CLC messages */
static const char SMC_EYECATCHER[4] = {'\xe2', '\xd4', '\xc3', '\xd9'};
/* eye catcher "SMCD" EBCDIC for CLC messages */
static const char SMCD_EYECATCHER[4] = {'\xe2', '\xd4', '\xc3', '\xc4'};
static u8 smc_hostname[SMC_MAX_HOSTNAME_LEN];
struct smc_clc_eid_table {
rwlock_t lock;
struct list_head list;
u8 ueid_cnt;
u8 seid_enabled;
};
static struct smc_clc_eid_table smc_clc_eid_table;
struct smc_clc_eid_entry {
struct list_head list;
u8 eid[SMC_MAX_EID_LEN];
};
/* The size of a user EID is 32 characters.
* Valid characters should be (single-byte character set) A-Z, 0-9, '.' and '-'.
* Blanks should only be used to pad to the expected size.
* First character must be alphanumeric.
*/
static bool smc_clc_ueid_valid(char *ueid)
{
char *end = ueid + SMC_MAX_EID_LEN;
while (--end >= ueid && isspace(*end))
;
if (end < ueid)
return false;
if (!isalnum(*ueid) || islower(*ueid))
return false;
while (ueid <= end) {
if ((!isalnum(*ueid) || islower(*ueid)) && *ueid != '.' &&
*ueid != '-')
return false;
ueid++;
}
return true;
}
static int smc_clc_ueid_add(char *ueid)
{
struct smc_clc_eid_entry *new_ueid, *tmp_ueid;
int rc;
if (!smc_clc_ueid_valid(ueid))
return -EINVAL;
/* add a new ueid entry to the ueid table if there isn't one */
new_ueid = kzalloc(sizeof(*new_ueid), GFP_KERNEL);
if (!new_ueid)
return -ENOMEM;
memcpy(new_ueid->eid, ueid, SMC_MAX_EID_LEN);
write_lock(&smc_clc_eid_table.lock);
if (smc_clc_eid_table.ueid_cnt >= SMC_MAX_UEID) {
rc = -ERANGE;
goto err_out;
}
list_for_each_entry(tmp_ueid, &smc_clc_eid_table.list, list) {
if (!memcmp(tmp_ueid->eid, ueid, SMC_MAX_EID_LEN)) {
rc = -EEXIST;
goto err_out;
}
}
list_add_tail(&new_ueid->list, &smc_clc_eid_table.list);
smc_clc_eid_table.ueid_cnt++;
write_unlock(&smc_clc_eid_table.lock);
return 0;
err_out:
write_unlock(&smc_clc_eid_table.lock);
kfree(new_ueid);
return rc;
}
int smc_clc_ueid_count(void)
{
int count;
read_lock(&smc_clc_eid_table.lock);
count = smc_clc_eid_table.ueid_cnt;
read_unlock(&smc_clc_eid_table.lock);
return count;
}
int smc_nl_add_ueid(struct sk_buff *skb, struct genl_info *info)
{
struct nlattr *nla_ueid = info->attrs[SMC_NLA_EID_TABLE_ENTRY];
char *ueid;
if (!nla_ueid || nla_len(nla_ueid) != SMC_MAX_EID_LEN + 1)
return -EINVAL;
ueid = (char *)nla_data(nla_ueid);
return smc_clc_ueid_add(ueid);
}
/* remove one or all ueid entries from the table */
static int smc_clc_ueid_remove(char *ueid)
{
struct smc_clc_eid_entry *lst_ueid, *tmp_ueid;
int rc = -ENOENT;
/* remove table entry */
write_lock(&smc_clc_eid_table.lock);
list_for_each_entry_safe(lst_ueid, tmp_ueid, &smc_clc_eid_table.list,
list) {
if (!ueid || !memcmp(lst_ueid->eid, ueid, SMC_MAX_EID_LEN)) {
list_del(&lst_ueid->list);
smc_clc_eid_table.ueid_cnt--;
kfree(lst_ueid);
rc = 0;
}
}
if (!rc && !smc_clc_eid_table.ueid_cnt) {
smc_clc_eid_table.seid_enabled = 1;
rc = -EAGAIN; /* indicate success and enabling of seid */
}
write_unlock(&smc_clc_eid_table.lock);
return rc;
}
int smc_nl_remove_ueid(struct sk_buff *skb, struct genl_info *info)
{
struct nlattr *nla_ueid = info->attrs[SMC_NLA_EID_TABLE_ENTRY];
char *ueid;
if (!nla_ueid || nla_len(nla_ueid) != SMC_MAX_EID_LEN + 1)
return -EINVAL;
ueid = (char *)nla_data(nla_ueid);
return smc_clc_ueid_remove(ueid);
}
int smc_nl_flush_ueid(struct sk_buff *skb, struct genl_info *info)
{
smc_clc_ueid_remove(NULL);
return 0;
}
static int smc_nl_ueid_dumpinfo(struct sk_buff *skb, u32 portid, u32 seq,
u32 flags, char *ueid)
{
char ueid_str[SMC_MAX_EID_LEN + 1];
void *hdr;
hdr = genlmsg_put(skb, portid, seq, &smc_gen_nl_family,
flags, SMC_NETLINK_DUMP_UEID);
if (!hdr)
return -ENOMEM;
memcpy(ueid_str, ueid, SMC_MAX_EID_LEN);
ueid_str[SMC_MAX_EID_LEN] = 0;
if (nla_put_string(skb, SMC_NLA_EID_TABLE_ENTRY, ueid_str)) {
genlmsg_cancel(skb, hdr);
return -EMSGSIZE;
}
genlmsg_end(skb, hdr);
return 0;
}
static int _smc_nl_ueid_dump(struct sk_buff *skb, u32 portid, u32 seq,
int start_idx)
{
struct smc_clc_eid_entry *lst_ueid;
int idx = 0;
read_lock(&smc_clc_eid_table.lock);
list_for_each_entry(lst_ueid, &smc_clc_eid_table.list, list) {
if (idx++ < start_idx)
continue;
if (smc_nl_ueid_dumpinfo(skb, portid, seq, NLM_F_MULTI,
lst_ueid->eid)) {
--idx;
break;
}
}
read_unlock(&smc_clc_eid_table.lock);
return idx;
}
int smc_nl_dump_ueid(struct sk_buff *skb, struct netlink_callback *cb)
{
struct smc_nl_dmp_ctx *cb_ctx = smc_nl_dmp_ctx(cb);
int idx;
idx = _smc_nl_ueid_dump(skb, NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq, cb_ctx->pos[0]);
cb_ctx->pos[0] = idx;
return skb->len;
}
int smc_nl_dump_seid(struct sk_buff *skb, struct netlink_callback *cb)
{
struct smc_nl_dmp_ctx *cb_ctx = smc_nl_dmp_ctx(cb);
char seid_str[SMC_MAX_EID_LEN + 1];
u8 seid_enabled;
void *hdr;
u8 *seid;
if (cb_ctx->pos[0])
return skb->len;
hdr = genlmsg_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq,
&smc_gen_nl_family, NLM_F_MULTI,
SMC_NETLINK_DUMP_SEID);
if (!hdr)
return -ENOMEM;
if (!smc_ism_is_v2_capable())
goto end;
smc_ism_get_system_eid(&seid);
memcpy(seid_str, seid, SMC_MAX_EID_LEN);
seid_str[SMC_MAX_EID_LEN] = 0;
if (nla_put_string(skb, SMC_NLA_SEID_ENTRY, seid_str))
goto err;
read_lock(&smc_clc_eid_table.lock);
seid_enabled = smc_clc_eid_table.seid_enabled;
read_unlock(&smc_clc_eid_table.lock);
if (nla_put_u8(skb, SMC_NLA_SEID_ENABLED, seid_enabled))
goto err;
end:
genlmsg_end(skb, hdr);
cb_ctx->pos[0]++;
return skb->len;
err:
genlmsg_cancel(skb, hdr);
return -EMSGSIZE;
}
int smc_nl_enable_seid(struct sk_buff *skb, struct genl_info *info)
{
write_lock(&smc_clc_eid_table.lock);
smc_clc_eid_table.seid_enabled = 1;
write_unlock(&smc_clc_eid_table.lock);
return 0;
}
int smc_nl_disable_seid(struct sk_buff *skb, struct genl_info *info)
{
int rc = 0;
write_lock(&smc_clc_eid_table.lock);
if (!smc_clc_eid_table.ueid_cnt)
rc = -ENOENT;
else
smc_clc_eid_table.seid_enabled = 0;
write_unlock(&smc_clc_eid_table.lock);
return rc;
}
static bool _smc_clc_match_ueid(u8 *peer_ueid)
{
struct smc_clc_eid_entry *tmp_ueid;
list_for_each_entry(tmp_ueid, &smc_clc_eid_table.list, list) {
if (!memcmp(tmp_ueid->eid, peer_ueid, SMC_MAX_EID_LEN))
return true;
}
return false;
}
bool smc_clc_match_eid(u8 *negotiated_eid,
struct smc_clc_v2_extension *smc_v2_ext,
u8 *peer_eid, u8 *local_eid)
{
bool match = false;
int i;
negotiated_eid[0] = 0;
read_lock(&smc_clc_eid_table.lock);
if (peer_eid && local_eid &&
smc_clc_eid_table.seid_enabled &&
smc_v2_ext->hdr.flag.seid &&
!memcmp(peer_eid, local_eid, SMC_MAX_EID_LEN)) {
memcpy(negotiated_eid, peer_eid, SMC_MAX_EID_LEN);
match = true;
goto out;
}
for (i = 0; i < smc_v2_ext->hdr.eid_cnt; i++) {
if (_smc_clc_match_ueid(smc_v2_ext->user_eids[i])) {
memcpy(negotiated_eid, smc_v2_ext->user_eids[i],
SMC_MAX_EID_LEN);
match = true;
goto out;
}
}
out:
read_unlock(&smc_clc_eid_table.lock);
return match;
}
/* check arriving CLC proposal */
static bool smc_clc_msg_prop_valid(struct smc_clc_msg_proposal *pclc)
{
struct smc_clc_msg_proposal_prefix *pclc_prfx;
struct smc_clc_smcd_v2_extension *smcd_v2_ext;
struct smc_clc_msg_hdr *hdr = &pclc->hdr;
struct smc_clc_v2_extension *v2_ext;
v2_ext = smc_get_clc_v2_ext(pclc);
pclc_prfx = smc_clc_proposal_get_prefix(pclc);
if (hdr->version == SMC_V1) {
if (hdr->typev1 == SMC_TYPE_N)
return false;
if (ntohs(hdr->length) !=
sizeof(*pclc) + ntohs(pclc->iparea_offset) +
sizeof(*pclc_prfx) +
pclc_prfx->ipv6_prefixes_cnt *
sizeof(struct smc_clc_ipv6_prefix) +
sizeof(struct smc_clc_msg_trail))
return false;
} else {
if (ntohs(hdr->length) !=
sizeof(*pclc) +
sizeof(struct smc_clc_msg_smcd) +
(hdr->typev1 != SMC_TYPE_N ?
sizeof(*pclc_prfx) +
pclc_prfx->ipv6_prefixes_cnt *
sizeof(struct smc_clc_ipv6_prefix) : 0) +
(hdr->typev2 != SMC_TYPE_N ?
sizeof(*v2_ext) +
v2_ext->hdr.eid_cnt * SMC_MAX_EID_LEN : 0) +
(smcd_indicated(hdr->typev2) ?
sizeof(*smcd_v2_ext) + v2_ext->hdr.ism_gid_cnt *
sizeof(struct smc_clc_smcd_gid_chid) :
0) +
sizeof(struct smc_clc_msg_trail))
return false;
}
return true;
}
/* check arriving CLC accept or confirm */
static bool
smc_clc_msg_acc_conf_valid(struct smc_clc_msg_accept_confirm_v2 *clc_v2)
{
struct smc_clc_msg_hdr *hdr = &clc_v2->hdr;
if (hdr->typev1 != SMC_TYPE_R && hdr->typev1 != SMC_TYPE_D)
return false;
if (hdr->version == SMC_V1) {
if ((hdr->typev1 == SMC_TYPE_R &&
ntohs(hdr->length) != SMCR_CLC_ACCEPT_CONFIRM_LEN) ||
(hdr->typev1 == SMC_TYPE_D &&
ntohs(hdr->length) != SMCD_CLC_ACCEPT_CONFIRM_LEN))
return false;
} else {
if (hdr->typev1 == SMC_TYPE_D &&
ntohs(hdr->length) != SMCD_CLC_ACCEPT_CONFIRM_LEN_V2 &&
(ntohs(hdr->length) != SMCD_CLC_ACCEPT_CONFIRM_LEN_V2 +
sizeof(struct smc_clc_first_contact_ext)))
return false;
if (hdr->typev1 == SMC_TYPE_R &&
ntohs(hdr->length) < SMCR_CLC_ACCEPT_CONFIRM_LEN_V2)
return false;
}
return true;
}
/* check arriving CLC decline */
static bool
smc_clc_msg_decl_valid(struct smc_clc_msg_decline *dclc)
{
struct smc_clc_msg_hdr *hdr = &dclc->hdr;
if (hdr->typev1 != SMC_TYPE_R && hdr->typev1 != SMC_TYPE_D)
return false;
if (hdr->version == SMC_V1) {
if (ntohs(hdr->length) != sizeof(struct smc_clc_msg_decline))
return false;
} else {
if (ntohs(hdr->length) != sizeof(struct smc_clc_msg_decline_v2))
return false;
}
return true;
}
static void smc_clc_fill_fce(struct smc_clc_first_contact_ext *fce, int *len)
{
memset(fce, 0, sizeof(*fce));
fce->os_type = SMC_CLC_OS_LINUX;
fce->release = SMC_RELEASE;
memcpy(fce->hostname, smc_hostname, sizeof(smc_hostname));
(*len) += sizeof(*fce);
}
/* check if received message has a correct header length and contains valid
* heading and trailing eyecatchers
*/
static bool smc_clc_msg_hdr_valid(struct smc_clc_msg_hdr *clcm, bool check_trl)
{
struct smc_clc_msg_accept_confirm_v2 *clc_v2;
struct smc_clc_msg_proposal *pclc;
struct smc_clc_msg_decline *dclc;
struct smc_clc_msg_trail *trl;
if (memcmp(clcm->eyecatcher, SMC_EYECATCHER, sizeof(SMC_EYECATCHER)) &&
memcmp(clcm->eyecatcher, SMCD_EYECATCHER, sizeof(SMCD_EYECATCHER)))
return false;
switch (clcm->type) {
case SMC_CLC_PROPOSAL:
pclc = (struct smc_clc_msg_proposal *)clcm;
if (!smc_clc_msg_prop_valid(pclc))
return false;
trl = (struct smc_clc_msg_trail *)
((u8 *)pclc + ntohs(pclc->hdr.length) - sizeof(*trl));
break;
case SMC_CLC_ACCEPT:
case SMC_CLC_CONFIRM:
clc_v2 = (struct smc_clc_msg_accept_confirm_v2 *)clcm;
if (!smc_clc_msg_acc_conf_valid(clc_v2))
return false;
trl = (struct smc_clc_msg_trail *)
((u8 *)clc_v2 + ntohs(clc_v2->hdr.length) -
sizeof(*trl));
break;
case SMC_CLC_DECLINE:
dclc = (struct smc_clc_msg_decline *)clcm;
if (!smc_clc_msg_decl_valid(dclc))
return false;
check_trl = false;
break;
default:
return false;
}
if (check_trl &&
memcmp(trl->eyecatcher, SMC_EYECATCHER, sizeof(SMC_EYECATCHER)) &&
memcmp(trl->eyecatcher, SMCD_EYECATCHER, sizeof(SMCD_EYECATCHER)))
return false;
return true;
}
/* find ipv4 addr on device and get the prefix len, fill CLC proposal msg */
static int smc_clc_prfx_set4_rcu(struct dst_entry *dst, __be32 ipv4,
struct smc_clc_msg_proposal_prefix *prop)
{
struct in_device *in_dev = __in_dev_get_rcu(dst->dev);
const struct in_ifaddr *ifa;
if (!in_dev)
return -ENODEV;
in_dev_for_each_ifa_rcu(ifa, in_dev) {
if (!inet_ifa_match(ipv4, ifa))
continue;
prop->prefix_len = inet_mask_len(ifa->ifa_mask);
prop->outgoing_subnet = ifa->ifa_address & ifa->ifa_mask;
/* prop->ipv6_prefixes_cnt = 0; already done by memset before */
return 0;
}
return -ENOENT;
}
/* fill CLC proposal msg with ipv6 prefixes from device */
static int smc_clc_prfx_set6_rcu(struct dst_entry *dst,
struct smc_clc_msg_proposal_prefix *prop,
struct smc_clc_ipv6_prefix *ipv6_prfx)
{
#if IS_ENABLED(CONFIG_IPV6)
struct inet6_dev *in6_dev = __in6_dev_get(dst->dev);
struct inet6_ifaddr *ifa;
int cnt = 0;
if (!in6_dev)
return -ENODEV;
/* use a maximum of 8 IPv6 prefixes from device */
list_for_each_entry(ifa, &in6_dev->addr_list, if_list) {
if (ipv6_addr_type(&ifa->addr) & IPV6_ADDR_LINKLOCAL)
continue;
ipv6_addr_prefix(&ipv6_prfx[cnt].prefix,
&ifa->addr, ifa->prefix_len);
ipv6_prfx[cnt].prefix_len = ifa->prefix_len;
cnt++;
if (cnt == SMC_CLC_MAX_V6_PREFIX)
break;
}
prop->ipv6_prefixes_cnt = cnt;
if (cnt)
return 0;
#endif
return -ENOENT;
}
/* retrieve and set prefixes in CLC proposal msg */
static int smc_clc_prfx_set(struct socket *clcsock,
struct smc_clc_msg_proposal_prefix *prop,
struct smc_clc_ipv6_prefix *ipv6_prfx)
{
struct dst_entry *dst = sk_dst_get(clcsock->sk);
struct sockaddr_storage addrs;
struct sockaddr_in6 *addr6;
struct sockaddr_in *addr;
int rc = -ENOENT;
if (!dst) {
rc = -ENOTCONN;
goto out;
}
if (!dst->dev) {
rc = -ENODEV;
goto out_rel;
}
/* get address to which the internal TCP socket is bound */
if (kernel_getsockname(clcsock, (struct sockaddr *)&addrs) < 0)
goto out_rel;
/* analyze IP specific data of net_device belonging to TCP socket */
addr6 = (struct sockaddr_in6 *)&addrs;
rcu_read_lock();
if (addrs.ss_family == PF_INET) {
/* IPv4 */
addr = (struct sockaddr_in *)&addrs;
rc = smc_clc_prfx_set4_rcu(dst, addr->sin_addr.s_addr, prop);
} else if (ipv6_addr_v4mapped(&addr6->sin6_addr)) {
/* mapped IPv4 address - peer is IPv4 only */
rc = smc_clc_prfx_set4_rcu(dst, addr6->sin6_addr.s6_addr32[3],
prop);
} else {
/* IPv6 */
rc = smc_clc_prfx_set6_rcu(dst, prop, ipv6_prfx);
}
rcu_read_unlock();
out_rel:
dst_release(dst);
out:
return rc;
}
/* match ipv4 addrs of dev against addr in CLC proposal */
static int smc_clc_prfx_match4_rcu(struct net_device *dev,
struct smc_clc_msg_proposal_prefix *prop)
{
struct in_device *in_dev = __in_dev_get_rcu(dev);
const struct in_ifaddr *ifa;
if (!in_dev)
return -ENODEV;
in_dev_for_each_ifa_rcu(ifa, in_dev) {
if (prop->prefix_len == inet_mask_len(ifa->ifa_mask) &&
inet_ifa_match(prop->outgoing_subnet, ifa))
return 0;
}
return -ENOENT;
}
/* match ipv6 addrs of dev against addrs in CLC proposal */
static int smc_clc_prfx_match6_rcu(struct net_device *dev,
struct smc_clc_msg_proposal_prefix *prop)
{
#if IS_ENABLED(CONFIG_IPV6)
struct inet6_dev *in6_dev = __in6_dev_get(dev);
struct smc_clc_ipv6_prefix *ipv6_prfx;
struct inet6_ifaddr *ifa;
int i, max;
if (!in6_dev)
return -ENODEV;
/* ipv6 prefix list starts behind smc_clc_msg_proposal_prefix */
ipv6_prfx = (struct smc_clc_ipv6_prefix *)((u8 *)prop + sizeof(*prop));
max = min_t(u8, prop->ipv6_prefixes_cnt, SMC_CLC_MAX_V6_PREFIX);
list_for_each_entry(ifa, &in6_dev->addr_list, if_list) {
if (ipv6_addr_type(&ifa->addr) & IPV6_ADDR_LINKLOCAL)
continue;
for (i = 0; i < max; i++) {
if (ifa->prefix_len == ipv6_prfx[i].prefix_len &&
ipv6_prefix_equal(&ifa->addr, &ipv6_prfx[i].prefix,
ifa->prefix_len))
return 0;
}
}
#endif
return -ENOENT;
}
/* check if proposed prefixes match one of our device prefixes */
int smc_clc_prfx_match(struct socket *clcsock,
struct smc_clc_msg_proposal_prefix *prop)
{
struct dst_entry *dst = sk_dst_get(clcsock->sk);
int rc;
if (!dst) {
rc = -ENOTCONN;
goto out;
}
if (!dst->dev) {
rc = -ENODEV;
goto out_rel;
}
rcu_read_lock();
if (!prop->ipv6_prefixes_cnt)
rc = smc_clc_prfx_match4_rcu(dst->dev, prop);
else
rc = smc_clc_prfx_match6_rcu(dst->dev, prop);
rcu_read_unlock();
out_rel:
dst_release(dst);
out:
return rc;
}
/* Wait for data on the tcp-socket, analyze received data
* Returns:
* 0 if success and it was not a decline that we received.
* SMC_CLC_DECL_REPLY if decline received for fallback w/o another decl send.
* clcsock error, -EINTR, -ECONNRESET, -EPROTO otherwise.
*/
int smc_clc_wait_msg(struct smc_sock *smc, void *buf, int buflen,
u8 expected_type, unsigned long timeout)
{
long rcvtimeo = smc->clcsock->sk->sk_rcvtimeo;
struct sock *clc_sk = smc->clcsock->sk;
struct smc_clc_msg_hdr *clcm = buf;
struct msghdr msg = {NULL, 0};
int reason_code = 0;
struct kvec vec = {buf, buflen};
int len, datlen, recvlen;
bool check_trl = true;
int krflags;
/* peek the first few bytes to determine length of data to receive
* so we don't consume any subsequent CLC message or payload data
* in the TCP byte stream
*/
/*
* Caller must make sure that buflen is no less than
* sizeof(struct smc_clc_msg_hdr)
*/
krflags = MSG_PEEK | MSG_WAITALL;
clc_sk->sk_rcvtimeo = timeout;
iov_iter_kvec(&msg.msg_iter, READ, &vec, 1,
sizeof(struct smc_clc_msg_hdr));
len = sock_recvmsg(smc->clcsock, &msg, krflags);
if (signal_pending(current)) {
reason_code = -EINTR;
clc_sk->sk_err = EINTR;
smc->sk.sk_err = EINTR;
goto out;
}
if (clc_sk->sk_err) {
reason_code = -clc_sk->sk_err;
if (clc_sk->sk_err == EAGAIN &&
expected_type == SMC_CLC_DECLINE)
clc_sk->sk_err = 0; /* reset for fallback usage */
else
smc->sk.sk_err = clc_sk->sk_err;
goto out;
}
if (!len) { /* peer has performed orderly shutdown */
smc->sk.sk_err = ECONNRESET;
reason_code = -ECONNRESET;
goto out;
}
if (len < 0) {
if (len != -EAGAIN || expected_type != SMC_CLC_DECLINE)
smc->sk.sk_err = -len;
reason_code = len;
goto out;
}
datlen = ntohs(clcm->length);
if ((len < sizeof(struct smc_clc_msg_hdr)) ||
(clcm->version < SMC_V1) ||
((clcm->type != SMC_CLC_DECLINE) &&
(clcm->type != expected_type))) {
smc->sk.sk_err = EPROTO;
reason_code = -EPROTO;
goto out;
}
/* receive the complete CLC message */
memset(&msg, 0, sizeof(struct msghdr));
if (datlen > buflen) {
check_trl = false;
recvlen = buflen;
} else {
recvlen = datlen;
}
iov_iter_kvec(&msg.msg_iter, READ, &vec, 1, recvlen);
krflags = MSG_WAITALL;
len = sock_recvmsg(smc->clcsock, &msg, krflags);
if (len < recvlen || !smc_clc_msg_hdr_valid(clcm, check_trl)) {
smc->sk.sk_err = EPROTO;
reason_code = -EPROTO;
goto out;
}
datlen -= len;
while (datlen) {
u8 tmp[SMC_CLC_RECV_BUF_LEN];
vec.iov_base = &tmp;
vec.iov_len = SMC_CLC_RECV_BUF_LEN;
/* receive remaining proposal message */
recvlen = datlen > SMC_CLC_RECV_BUF_LEN ?
SMC_CLC_RECV_BUF_LEN : datlen;
iov_iter_kvec(&msg.msg_iter, READ, &vec, 1, recvlen);
len = sock_recvmsg(smc->clcsock, &msg, krflags);
datlen -= len;
}
if (clcm->type == SMC_CLC_DECLINE) {
struct smc_clc_msg_decline *dclc;
dclc = (struct smc_clc_msg_decline *)clcm;
reason_code = SMC_CLC_DECL_PEERDECL;
smc->peer_diagnosis = ntohl(dclc->peer_diagnosis);
if (((struct smc_clc_msg_decline *)buf)->hdr.typev2 &
SMC_FIRST_CONTACT_MASK) {
smc->conn.lgr->sync_err = 1;
smc_lgr_terminate_sched(smc->conn.lgr);
}
}
out:
clc_sk->sk_rcvtimeo = rcvtimeo;
return reason_code;
}
/* send CLC DECLINE message across internal TCP socket */
int smc_clc_send_decline(struct smc_sock *smc, u32 peer_diag_info, u8 version)
{
struct smc_clc_msg_decline *dclc_v1;
struct smc_clc_msg_decline_v2 dclc;
struct msghdr msg;
int len, send_len;
struct kvec vec;
dclc_v1 = (struct smc_clc_msg_decline *)&dclc;
memset(&dclc, 0, sizeof(dclc));
memcpy(dclc.hdr.eyecatcher, SMC_EYECATCHER, sizeof(SMC_EYECATCHER));
dclc.hdr.type = SMC_CLC_DECLINE;
dclc.hdr.version = version;
dclc.os_type = version == SMC_V1 ? 0 : SMC_CLC_OS_LINUX;
dclc.hdr.typev2 = (peer_diag_info == SMC_CLC_DECL_SYNCERR) ?
SMC_FIRST_CONTACT_MASK : 0;
if ((!smc_conn_lgr_valid(&smc->conn) || !smc->conn.lgr->is_smcd) &&
smc_ib_is_valid_local_systemid())
memcpy(dclc.id_for_peer, local_systemid,
sizeof(local_systemid));
dclc.peer_diagnosis = htonl(peer_diag_info);
if (version == SMC_V1) {
memcpy(dclc_v1->trl.eyecatcher, SMC_EYECATCHER,
sizeof(SMC_EYECATCHER));
send_len = sizeof(*dclc_v1);
} else {
memcpy(dclc.trl.eyecatcher, SMC_EYECATCHER,
sizeof(SMC_EYECATCHER));
send_len = sizeof(dclc);
}
dclc.hdr.length = htons(send_len);
memset(&msg, 0, sizeof(msg));
vec.iov_base = &dclc;
vec.iov_len = send_len;
len = kernel_sendmsg(smc->clcsock, &msg, &vec, 1, send_len);
if (len < 0 || len < send_len)
len = -EPROTO;
return len > 0 ? 0 : len;
}
/* send CLC PROPOSAL message across internal TCP socket */
int smc_clc_send_proposal(struct smc_sock *smc, struct smc_init_info *ini)
{
struct smc_clc_smcd_v2_extension *smcd_v2_ext;
struct smc_clc_msg_proposal_prefix *pclc_prfx;
struct smc_clc_msg_proposal *pclc_base;
struct smc_clc_smcd_gid_chid *gidchids;
struct smc_clc_msg_proposal_area *pclc;
struct smc_clc_ipv6_prefix *ipv6_prfx;
struct smc_clc_v2_extension *v2_ext;
struct smc_clc_msg_smcd *pclc_smcd;
struct smc_clc_msg_trail *trl;
int len, i, plen, rc;
int reason_code = 0;
struct kvec vec[8];
struct msghdr msg;
pclc = kzalloc(sizeof(*pclc), GFP_KERNEL);
if (!pclc)
return -ENOMEM;
pclc_base = &pclc->pclc_base;
pclc_smcd = &pclc->pclc_smcd;
pclc_prfx = &pclc->pclc_prfx;
ipv6_prfx = pclc->pclc_prfx_ipv6;
v2_ext = &pclc->pclc_v2_ext;
smcd_v2_ext = &pclc->pclc_smcd_v2_ext;
gidchids = pclc->pclc_gidchids;
trl = &pclc->pclc_trl;
pclc_base->hdr.version = SMC_V2;
pclc_base->hdr.typev1 = ini->smc_type_v1;
pclc_base->hdr.typev2 = ini->smc_type_v2;
plen = sizeof(*pclc_base) + sizeof(*pclc_smcd) + sizeof(*trl);
/* retrieve ip prefixes for CLC proposal msg */
if (ini->smc_type_v1 != SMC_TYPE_N) {
rc = smc_clc_prfx_set(smc->clcsock, pclc_prfx, ipv6_prfx);
if (rc) {
if (ini->smc_type_v2 == SMC_TYPE_N) {
kfree(pclc);
return SMC_CLC_DECL_CNFERR;
}
pclc_base->hdr.typev1 = SMC_TYPE_N;
} else {
pclc_base->iparea_offset = htons(sizeof(*pclc_smcd));
plen += sizeof(*pclc_prfx) +
pclc_prfx->ipv6_prefixes_cnt *
sizeof(ipv6_prfx[0]);
}
}
/* build SMC Proposal CLC message */
memcpy(pclc_base->hdr.eyecatcher, SMC_EYECATCHER,
sizeof(SMC_EYECATCHER));
pclc_base->hdr.type = SMC_CLC_PROPOSAL;
if (smcr_indicated(ini->smc_type_v1)) {
/* add SMC-R specifics */
memcpy(pclc_base->lcl.id_for_peer, local_systemid,
sizeof(local_systemid));
memcpy(pclc_base->lcl.gid, ini->ib_gid, SMC_GID_SIZE);
memcpy(pclc_base->lcl.mac, &ini->ib_dev->mac[ini->ib_port - 1],
ETH_ALEN);
}
if (smcd_indicated(ini->smc_type_v1)) {
/* add SMC-D specifics */
if (ini->ism_dev[0]) {
pclc_smcd->ism.gid = htonll(ini->ism_dev[0]->local_gid);
pclc_smcd->ism.chid =
htons(smc_ism_get_chid(ini->ism_dev[0]));
}
}
if (ini->smc_type_v2 == SMC_TYPE_N) {
pclc_smcd->v2_ext_offset = 0;
} else {
struct smc_clc_eid_entry *ueident;
u16 v2_ext_offset;
v2_ext->hdr.flag.release = SMC_RELEASE;
v2_ext_offset = sizeof(*pclc_smcd) -
offsetofend(struct smc_clc_msg_smcd, v2_ext_offset);
if (ini->smc_type_v1 != SMC_TYPE_N)
v2_ext_offset += sizeof(*pclc_prfx) +
pclc_prfx->ipv6_prefixes_cnt *
sizeof(ipv6_prfx[0]);
pclc_smcd->v2_ext_offset = htons(v2_ext_offset);
plen += sizeof(*v2_ext);
read_lock(&smc_clc_eid_table.lock);
v2_ext->hdr.eid_cnt = smc_clc_eid_table.ueid_cnt;
plen += smc_clc_eid_table.ueid_cnt * SMC_MAX_EID_LEN;
i = 0;
list_for_each_entry(ueident, &smc_clc_eid_table.list, list) {
memcpy(v2_ext->user_eids[i++], ueident->eid,
sizeof(ueident->eid));
}
read_unlock(&smc_clc_eid_table.lock);
}
if (smcd_indicated(ini->smc_type_v2)) {
u8 *eid = NULL;
v2_ext->hdr.flag.seid = smc_clc_eid_table.seid_enabled;
v2_ext->hdr.ism_gid_cnt = ini->ism_offered_cnt;
v2_ext->hdr.smcd_v2_ext_offset = htons(sizeof(*v2_ext) -
offsetofend(struct smc_clnt_opts_area_hdr,
smcd_v2_ext_offset) +
v2_ext->hdr.eid_cnt * SMC_MAX_EID_LEN);
smc_ism_get_system_eid(&eid);
if (eid && v2_ext->hdr.flag.seid)
memcpy(smcd_v2_ext->system_eid, eid, SMC_MAX_EID_LEN);
plen += sizeof(*smcd_v2_ext);
if (ini->ism_offered_cnt) {
for (i = 1; i <= ini->ism_offered_cnt; i++) {
gidchids[i - 1].gid =
htonll(ini->ism_dev[i]->local_gid);
gidchids[i - 1].chid =
htons(smc_ism_get_chid(ini->ism_dev[i]));
}
plen += ini->ism_offered_cnt *
sizeof(struct smc_clc_smcd_gid_chid);
}
}
if (smcr_indicated(ini->smc_type_v2))
memcpy(v2_ext->roce, ini->smcrv2.ib_gid_v2, SMC_GID_SIZE);
pclc_base->hdr.length = htons(plen);
memcpy(trl->eyecatcher, SMC_EYECATCHER, sizeof(SMC_EYECATCHER));
/* send SMC Proposal CLC message */
memset(&msg, 0, sizeof(msg));
i = 0;
vec[i].iov_base = pclc_base;
vec[i++].iov_len = sizeof(*pclc_base);
vec[i].iov_base = pclc_smcd;
vec[i++].iov_len = sizeof(*pclc_smcd);
if (ini->smc_type_v1 != SMC_TYPE_N) {
vec[i].iov_base = pclc_prfx;
vec[i++].iov_len = sizeof(*pclc_prfx);
if (pclc_prfx->ipv6_prefixes_cnt > 0) {
vec[i].iov_base = ipv6_prfx;
vec[i++].iov_len = pclc_prfx->ipv6_prefixes_cnt *
sizeof(ipv6_prfx[0]);
}
}
if (ini->smc_type_v2 != SMC_TYPE_N) {
vec[i].iov_base = v2_ext;
vec[i++].iov_len = sizeof(*v2_ext) +
(v2_ext->hdr.eid_cnt * SMC_MAX_EID_LEN);
if (smcd_indicated(ini->smc_type_v2)) {
vec[i].iov_base = smcd_v2_ext;
vec[i++].iov_len = sizeof(*smcd_v2_ext);
if (ini->ism_offered_cnt) {
vec[i].iov_base = gidchids;
vec[i++].iov_len = ini->ism_offered_cnt *
sizeof(struct smc_clc_smcd_gid_chid);
}
}
}
vec[i].iov_base = trl;
vec[i++].iov_len = sizeof(*trl);
/* due to the few bytes needed for clc-handshake this cannot block */
len = kernel_sendmsg(smc->clcsock, &msg, vec, i, plen);
if (len < 0) {
smc->sk.sk_err = smc->clcsock->sk->sk_err;
reason_code = -smc->sk.sk_err;
} else if (len < ntohs(pclc_base->hdr.length)) {
reason_code = -ENETUNREACH;
smc->sk.sk_err = -reason_code;
}
kfree(pclc);
return reason_code;
}
/* build and send CLC CONFIRM / ACCEPT message */
static int smc_clc_send_confirm_accept(struct smc_sock *smc,
struct smc_clc_msg_accept_confirm_v2 *clc_v2,
int first_contact, u8 version,
u8 *eid, struct smc_init_info *ini)
{
struct smc_connection *conn = &smc->conn;
struct smc_clc_msg_accept_confirm *clc;
struct smc_clc_first_contact_ext fce;
struct smc_clc_fce_gid_ext gle;
struct smc_clc_msg_trail trl;
struct kvec vec[5];
struct msghdr msg;
int i, len;
/* send SMC Confirm CLC msg */
clc = (struct smc_clc_msg_accept_confirm *)clc_v2;
clc->hdr.version = version; /* SMC version */
if (first_contact)
clc->hdr.typev2 |= SMC_FIRST_CONTACT_MASK;
if (conn->lgr->is_smcd) {
/* SMC-D specific settings */
memcpy(clc->hdr.eyecatcher, SMCD_EYECATCHER,
sizeof(SMCD_EYECATCHER));
clc->hdr.typev1 = SMC_TYPE_D;
clc->d0.gid = conn->lgr->smcd->local_gid;
clc->d0.token = conn->rmb_desc->token;
clc->d0.dmbe_size = conn->rmbe_size_short;
clc->d0.dmbe_idx = 0;
memcpy(&clc->d0.linkid, conn->lgr->id, SMC_LGR_ID_SIZE);
if (version == SMC_V1) {
clc->hdr.length = htons(SMCD_CLC_ACCEPT_CONFIRM_LEN);
} else {
clc_v2->d1.chid =
htons(smc_ism_get_chid(conn->lgr->smcd));
if (eid && eid[0])
memcpy(clc_v2->d1.eid, eid, SMC_MAX_EID_LEN);
len = SMCD_CLC_ACCEPT_CONFIRM_LEN_V2;
if (first_contact)
smc_clc_fill_fce(&fce, &len);
clc_v2->hdr.length = htons(len);
}
memcpy(trl.eyecatcher, SMCD_EYECATCHER,
sizeof(SMCD_EYECATCHER));
} else {
struct smc_link *link = conn->lnk;
/* SMC-R specific settings */
memcpy(clc->hdr.eyecatcher, SMC_EYECATCHER,
sizeof(SMC_EYECATCHER));
clc->hdr.typev1 = SMC_TYPE_R;
clc->hdr.length = htons(SMCR_CLC_ACCEPT_CONFIRM_LEN);
memcpy(clc->r0.lcl.id_for_peer, local_systemid,
sizeof(local_systemid));
memcpy(&clc->r0.lcl.gid, link->gid, SMC_GID_SIZE);
memcpy(&clc->r0.lcl.mac, &link->smcibdev->mac[link->ibport - 1],
ETH_ALEN);
hton24(clc->r0.qpn, link->roce_qp->qp_num);
clc->r0.rmb_rkey =
net/smc: Allow virtually contiguous sndbufs or RMBs for SMC-R On long-running enterprise production servers, high-order contiguous memory pages are usually very rare and in most cases we can only get fragmented pages. When replacing TCP with SMC-R in such production scenarios, attempting to allocate high-order physically contiguous sndbufs and RMBs may result in frequent memory compaction, which will cause unexpected hung issue and further stability risks. So this patch is aimed to allow SMC-R link group to use virtually contiguous sndbufs and RMBs to avoid potential issues mentioned above. Whether to use physically or virtually contiguous buffers can be set by sysctl smcr_buf_type. Note that using virtually contiguous buffers will bring an acceptable performance regression, which can be mainly divided into two parts: 1) regression in data path, which is brought by additional address translation of sndbuf by RNIC in Tx. But in general, translating address through MTT is fast. Taking 256KB sndbuf and RMB as an example, the comparisons in qperf latency and bandwidth test with physically and virtually contiguous buffers are as follows: - client: smc_run taskset -c <cpu> qperf <server> -oo msg_size:1:64K:*2\ -t 5 -vu tcp_{bw|lat} - server: smc_run taskset -c <cpu> qperf [latency] msgsize tcp smcr smcr-use-virt-buf 1 11.17 us 7.56 us 7.51 us (-0.67%) 2 10.65 us 7.74 us 7.56 us (-2.31%) 4 11.11 us 7.52 us 7.59 us ( 0.84%) 8 10.83 us 7.55 us 7.51 us (-0.48%) 16 11.21 us 7.46 us 7.51 us ( 0.71%) 32 10.65 us 7.53 us 7.58 us ( 0.61%) 64 10.95 us 7.74 us 7.80 us ( 0.76%) 128 11.14 us 7.83 us 7.87 us ( 0.47%) 256 10.97 us 7.94 us 7.92 us (-0.28%) 512 11.23 us 7.94 us 8.20 us ( 3.25%) 1024 11.60 us 8.12 us 8.20 us ( 0.96%) 2048 14.04 us 8.30 us 8.51 us ( 2.49%) 4096 16.88 us 9.13 us 9.07 us (-0.64%) 8192 22.50 us 10.56 us 11.22 us ( 6.26%) 16384 28.99 us 12.88 us 13.83 us ( 7.37%) 32768 40.13 us 16.76 us 16.95 us ( 1.16%) 65536 68.70 us 24.68 us 24.85 us ( 0.68%) [bandwidth] msgsize tcp smcr smcr-use-virt-buf 1 1.65 MB/s 1.59 MB/s 1.53 MB/s (-3.88%) 2 3.32 MB/s 3.17 MB/s 3.08 MB/s (-2.67%) 4 6.66 MB/s 6.33 MB/s 6.09 MB/s (-3.85%) 8 13.67 MB/s 13.45 MB/s 11.97 MB/s (-10.99%) 16 25.36 MB/s 27.15 MB/s 24.16 MB/s (-11.01%) 32 48.22 MB/s 54.24 MB/s 49.41 MB/s (-8.89%) 64 106.79 MB/s 107.32 MB/s 99.05 MB/s (-7.71%) 128 210.21 MB/s 202.46 MB/s 201.02 MB/s (-0.71%) 256 400.81 MB/s 416.81 MB/s 393.52 MB/s (-5.59%) 512 746.49 MB/s 834.12 MB/s 809.99 MB/s (-2.89%) 1024 1292.33 MB/s 1641.96 MB/s 1571.82 MB/s (-4.27%) 2048 2007.64 MB/s 2760.44 MB/s 2717.68 MB/s (-1.55%) 4096 2665.17 MB/s 4157.44 MB/s 4070.76 MB/s (-2.09%) 8192 3159.72 MB/s 4361.57 MB/s 4270.65 MB/s (-2.08%) 16384 4186.70 MB/s 4574.13 MB/s 4501.17 MB/s (-1.60%) 32768 4093.21 MB/s 4487.42 MB/s 4322.43 MB/s (-3.68%) 65536 4057.14 MB/s 4735.61 MB/s 4555.17 MB/s (-3.81%) 2) regression in buffer initialization and destruction path, which is brought by additional MR operations of sndbufs. But thanks to link group buffer reuse mechanism, the impact of this kind of regression decreases as times of buffer reuse increases. Taking 256KB sndbuf and RMB as an example, latency of some key SMC-R buffer-related function obtained by bpftrace are as follows: Function Phys-bufs Virt-bufs smcr_new_buf_create() 67154 ns 79164 ns smc_ib_buf_map_sg() 525 ns 928 ns smc_ib_get_memory_region() 162294 ns 161191 ns smc_wr_reg_send() 9957 ns 9635 ns smc_ib_put_memory_region() 203548 ns 198374 ns smc_ib_buf_unmap_sg() 508 ns 1158 ns ------------ Test environment notes: 1. Above tests run on 2 VMs within the same Host. 2. The NIC is ConnectX-4Lx, using SRIOV and passing through 2 VFs to the each VM respectively. 3. VMs' vCPUs are binded to different physical CPUs, and the binded physical CPUs are isolated by `isolcpus=xxx` cmdline. 4. NICs' queue number are set to 1. Signed-off-by: Wen Gu <guwen@linux.alibaba.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-07-14 17:44:04 +08:00
htonl(conn->rmb_desc->mr[link->link_idx]->rkey);
clc->r0.rmbe_idx = 1; /* for now: 1 RMB = 1 RMBE */
clc->r0.rmbe_alert_token = htonl(conn->alert_token_local);
switch (clc->hdr.type) {
case SMC_CLC_ACCEPT:
clc->r0.qp_mtu = link->path_mtu;
break;
case SMC_CLC_CONFIRM:
clc->r0.qp_mtu = min(link->path_mtu, link->peer_mtu);
break;
}
clc->r0.rmbe_size = conn->rmbe_size_short;
net/smc: Allow virtually contiguous sndbufs or RMBs for SMC-R On long-running enterprise production servers, high-order contiguous memory pages are usually very rare and in most cases we can only get fragmented pages. When replacing TCP with SMC-R in such production scenarios, attempting to allocate high-order physically contiguous sndbufs and RMBs may result in frequent memory compaction, which will cause unexpected hung issue and further stability risks. So this patch is aimed to allow SMC-R link group to use virtually contiguous sndbufs and RMBs to avoid potential issues mentioned above. Whether to use physically or virtually contiguous buffers can be set by sysctl smcr_buf_type. Note that using virtually contiguous buffers will bring an acceptable performance regression, which can be mainly divided into two parts: 1) regression in data path, which is brought by additional address translation of sndbuf by RNIC in Tx. But in general, translating address through MTT is fast. Taking 256KB sndbuf and RMB as an example, the comparisons in qperf latency and bandwidth test with physically and virtually contiguous buffers are as follows: - client: smc_run taskset -c <cpu> qperf <server> -oo msg_size:1:64K:*2\ -t 5 -vu tcp_{bw|lat} - server: smc_run taskset -c <cpu> qperf [latency] msgsize tcp smcr smcr-use-virt-buf 1 11.17 us 7.56 us 7.51 us (-0.67%) 2 10.65 us 7.74 us 7.56 us (-2.31%) 4 11.11 us 7.52 us 7.59 us ( 0.84%) 8 10.83 us 7.55 us 7.51 us (-0.48%) 16 11.21 us 7.46 us 7.51 us ( 0.71%) 32 10.65 us 7.53 us 7.58 us ( 0.61%) 64 10.95 us 7.74 us 7.80 us ( 0.76%) 128 11.14 us 7.83 us 7.87 us ( 0.47%) 256 10.97 us 7.94 us 7.92 us (-0.28%) 512 11.23 us 7.94 us 8.20 us ( 3.25%) 1024 11.60 us 8.12 us 8.20 us ( 0.96%) 2048 14.04 us 8.30 us 8.51 us ( 2.49%) 4096 16.88 us 9.13 us 9.07 us (-0.64%) 8192 22.50 us 10.56 us 11.22 us ( 6.26%) 16384 28.99 us 12.88 us 13.83 us ( 7.37%) 32768 40.13 us 16.76 us 16.95 us ( 1.16%) 65536 68.70 us 24.68 us 24.85 us ( 0.68%) [bandwidth] msgsize tcp smcr smcr-use-virt-buf 1 1.65 MB/s 1.59 MB/s 1.53 MB/s (-3.88%) 2 3.32 MB/s 3.17 MB/s 3.08 MB/s (-2.67%) 4 6.66 MB/s 6.33 MB/s 6.09 MB/s (-3.85%) 8 13.67 MB/s 13.45 MB/s 11.97 MB/s (-10.99%) 16 25.36 MB/s 27.15 MB/s 24.16 MB/s (-11.01%) 32 48.22 MB/s 54.24 MB/s 49.41 MB/s (-8.89%) 64 106.79 MB/s 107.32 MB/s 99.05 MB/s (-7.71%) 128 210.21 MB/s 202.46 MB/s 201.02 MB/s (-0.71%) 256 400.81 MB/s 416.81 MB/s 393.52 MB/s (-5.59%) 512 746.49 MB/s 834.12 MB/s 809.99 MB/s (-2.89%) 1024 1292.33 MB/s 1641.96 MB/s 1571.82 MB/s (-4.27%) 2048 2007.64 MB/s 2760.44 MB/s 2717.68 MB/s (-1.55%) 4096 2665.17 MB/s 4157.44 MB/s 4070.76 MB/s (-2.09%) 8192 3159.72 MB/s 4361.57 MB/s 4270.65 MB/s (-2.08%) 16384 4186.70 MB/s 4574.13 MB/s 4501.17 MB/s (-1.60%) 32768 4093.21 MB/s 4487.42 MB/s 4322.43 MB/s (-3.68%) 65536 4057.14 MB/s 4735.61 MB/s 4555.17 MB/s (-3.81%) 2) regression in buffer initialization and destruction path, which is brought by additional MR operations of sndbufs. But thanks to link group buffer reuse mechanism, the impact of this kind of regression decreases as times of buffer reuse increases. Taking 256KB sndbuf and RMB as an example, latency of some key SMC-R buffer-related function obtained by bpftrace are as follows: Function Phys-bufs Virt-bufs smcr_new_buf_create() 67154 ns 79164 ns smc_ib_buf_map_sg() 525 ns 928 ns smc_ib_get_memory_region() 162294 ns 161191 ns smc_wr_reg_send() 9957 ns 9635 ns smc_ib_put_memory_region() 203548 ns 198374 ns smc_ib_buf_unmap_sg() 508 ns 1158 ns ------------ Test environment notes: 1. Above tests run on 2 VMs within the same Host. 2. The NIC is ConnectX-4Lx, using SRIOV and passing through 2 VFs to the each VM respectively. 3. VMs' vCPUs are binded to different physical CPUs, and the binded physical CPUs are isolated by `isolcpus=xxx` cmdline. 4. NICs' queue number are set to 1. Signed-off-by: Wen Gu <guwen@linux.alibaba.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-07-14 17:44:04 +08:00
clc->r0.rmb_dma_addr = conn->rmb_desc->is_vm ?
cpu_to_be64((uintptr_t)conn->rmb_desc->cpu_addr) :
cpu_to_be64((u64)sg_dma_address
(conn->rmb_desc->sgt[link->link_idx].sgl));
hton24(clc->r0.psn, link->psn_initial);
if (version == SMC_V1) {
clc->hdr.length = htons(SMCR_CLC_ACCEPT_CONFIRM_LEN);
} else {
if (eid && eid[0])
memcpy(clc_v2->r1.eid, eid, SMC_MAX_EID_LEN);
len = SMCR_CLC_ACCEPT_CONFIRM_LEN_V2;
if (first_contact) {
smc_clc_fill_fce(&fce, &len);
fce.v2_direct = !link->lgr->uses_gateway;
memset(&gle, 0, sizeof(gle));
if (ini && clc->hdr.type == SMC_CLC_CONFIRM) {
gle.gid_cnt = ini->smcrv2.gidlist.len;
len += sizeof(gle);
len += gle.gid_cnt * sizeof(gle.gid[0]);
} else {
len += sizeof(gle.reserved);
}
}
clc_v2->hdr.length = htons(len);
}
memcpy(trl.eyecatcher, SMC_EYECATCHER, sizeof(SMC_EYECATCHER));
}
memset(&msg, 0, sizeof(msg));
i = 0;
vec[i].iov_base = clc_v2;
if (version > SMC_V1)
vec[i++].iov_len = (clc->hdr.typev1 == SMC_TYPE_D ?
SMCD_CLC_ACCEPT_CONFIRM_LEN_V2 :
SMCR_CLC_ACCEPT_CONFIRM_LEN_V2) -
sizeof(trl);
else
vec[i++].iov_len = (clc->hdr.typev1 == SMC_TYPE_D ?
SMCD_CLC_ACCEPT_CONFIRM_LEN :
SMCR_CLC_ACCEPT_CONFIRM_LEN) -
sizeof(trl);
if (version > SMC_V1 && first_contact) {
vec[i].iov_base = &fce;
vec[i++].iov_len = sizeof(fce);
if (!conn->lgr->is_smcd) {
if (clc->hdr.type == SMC_CLC_CONFIRM) {
vec[i].iov_base = &gle;
vec[i++].iov_len = sizeof(gle);
vec[i].iov_base = &ini->smcrv2.gidlist.list;
vec[i++].iov_len = gle.gid_cnt *
sizeof(gle.gid[0]);
} else {
vec[i].iov_base = &gle.reserved;
vec[i++].iov_len = sizeof(gle.reserved);
}
}
}
vec[i].iov_base = &trl;
vec[i++].iov_len = sizeof(trl);
return kernel_sendmsg(smc->clcsock, &msg, vec, 1,
ntohs(clc->hdr.length));
}
/* send CLC CONFIRM message across internal TCP socket */
int smc_clc_send_confirm(struct smc_sock *smc, bool clnt_first_contact,
u8 version, u8 *eid, struct smc_init_info *ini)
{
struct smc_clc_msg_accept_confirm_v2 cclc_v2;
int reason_code = 0;
int len;
/* send SMC Confirm CLC msg */
memset(&cclc_v2, 0, sizeof(cclc_v2));
cclc_v2.hdr.type = SMC_CLC_CONFIRM;
len = smc_clc_send_confirm_accept(smc, &cclc_v2, clnt_first_contact,
version, eid, ini);
if (len < ntohs(cclc_v2.hdr.length)) {
if (len >= 0) {
reason_code = -ENETUNREACH;
smc->sk.sk_err = -reason_code;
} else {
smc->sk.sk_err = smc->clcsock->sk->sk_err;
reason_code = -smc->sk.sk_err;
}
}
return reason_code;
}
/* send CLC ACCEPT message across internal TCP socket */
int smc_clc_send_accept(struct smc_sock *new_smc, bool srv_first_contact,
u8 version, u8 *negotiated_eid)
{
struct smc_clc_msg_accept_confirm_v2 aclc_v2;
int len;
memset(&aclc_v2, 0, sizeof(aclc_v2));
aclc_v2.hdr.type = SMC_CLC_ACCEPT;
len = smc_clc_send_confirm_accept(new_smc, &aclc_v2, srv_first_contact,
version, negotiated_eid, NULL);
if (len < ntohs(aclc_v2.hdr.length))
len = len >= 0 ? -EPROTO : -new_smc->clcsock->sk->sk_err;
return len > 0 ? 0 : len;
}
void smc_clc_get_hostname(u8 **host)
{
*host = &smc_hostname[0];
}
void __init smc_clc_init(void)
{
struct new_utsname *u;
memset(smc_hostname, _S, sizeof(smc_hostname)); /* ASCII blanks */
u = utsname();
memcpy(smc_hostname, u->nodename,
min_t(size_t, strlen(u->nodename), sizeof(smc_hostname)));
INIT_LIST_HEAD(&smc_clc_eid_table.list);
rwlock_init(&smc_clc_eid_table.lock);
smc_clc_eid_table.ueid_cnt = 0;
smc_clc_eid_table.seid_enabled = 1;
}
void smc_clc_exit(void)
{
smc_clc_ueid_remove(NULL);
}