OpenCloudOS-Kernel/drivers/s390/cio/css.h

158 lines
4.6 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _CSS_H
#define _CSS_H
#include <linux/mutex.h>
#include <linux/wait.h>
#include <linux/workqueue.h>
#include <linux/device.h>
#include <linux/types.h>
#include <asm/cio.h>
#include <asm/chpid.h>
#include <asm/schid.h>
#include "cio.h"
/*
* path grouping stuff
*/
#define SPID_FUNC_SINGLE_PATH 0x00
#define SPID_FUNC_MULTI_PATH 0x80
#define SPID_FUNC_ESTABLISH 0x00
#define SPID_FUNC_RESIGN 0x40
#define SPID_FUNC_DISBAND 0x20
#define SNID_STATE1_RESET 0
#define SNID_STATE1_UNGROUPED 2
#define SNID_STATE1_GROUPED 3
#define SNID_STATE2_NOT_RESVD 0
#define SNID_STATE2_RESVD_ELSE 2
#define SNID_STATE2_RESVD_SELF 3
#define SNID_STATE3_MULTI_PATH 1
#define SNID_STATE3_SINGLE_PATH 0
/*
* Conditions used to specify which subchannels need evaluation
*/
enum css_eval_cond {
CSS_EVAL_UNREG, /* unregistered subchannels */
CSS_EVAL_NOT_ONLINE /* sch without an online-device */
};
struct path_state {
__u8 state1 : 2; /* path state value 1 */
__u8 state2 : 2; /* path state value 2 */
__u8 state3 : 1; /* path state value 3 */
__u8 resvd : 3; /* reserved */
} __attribute__ ((packed));
struct extended_cssid {
u8 version;
u8 cssid;
} __attribute__ ((packed));
struct pgid {
union {
__u8 fc; /* SPID function code */
struct path_state ps; /* SNID path state */
} __attribute__ ((packed)) inf;
union {
__u32 cpu_addr : 16; /* CPU address */
struct extended_cssid ext_cssid;
} __attribute__ ((packed)) pgid_high;
__u32 cpu_id : 24; /* CPU identification */
__u32 cpu_model : 16; /* CPU model */
__u32 tod_high; /* high word TOD clock */
} __attribute__ ((packed));
struct subchannel;
struct chp_link;
/**
* struct css_driver - device driver for subchannels
* @subchannel_type: subchannel type supported by this driver
* @drv: embedded device driver structure
* @irq: called on interrupts
* @chp_event: called for events affecting a channel path
* @sch_event: called for events affecting the subchannel
* @probe: function called on probe
* @remove: function called on remove
* @shutdown: called at device shutdown
* @settle: wait for asynchronous work to finish
*/
struct css_driver {
struct css_device_id *subchannel_type;
struct device_driver drv;
void (*irq)(struct subchannel *);
int (*chp_event)(struct subchannel *, struct chp_link *, int);
int (*sch_event)(struct subchannel *, int);
int (*probe)(struct subchannel *);
void (*remove)(struct subchannel *);
void (*shutdown)(struct subchannel *);
int (*settle)(void);
};
#define to_cssdriver(n) container_of(n, struct css_driver, drv)
extern int css_driver_register(struct css_driver *);
extern void css_driver_unregister(struct css_driver *);
extern void css_sch_device_unregister(struct subchannel *);
extern int css_register_subchannel(struct subchannel *);
extern struct subchannel *css_alloc_subchannel(struct subchannel_id,
struct schib *schib);
extern struct subchannel *get_subchannel_by_schid(struct subchannel_id);
extern int css_init_done;
extern int max_ssid;
int for_each_subchannel_staged(int (*fn_known)(struct subchannel *, void *),
int (*fn_unknown)(struct subchannel_id,
void *), void *data);
extern int for_each_subchannel(int(*fn)(struct subchannel_id, void *), void *);
void css_update_ssd_info(struct subchannel *sch);
struct channel_subsystem {
u8 cssid;
u8 iid;
bool id_valid; /* cssid,iid */
struct channel_path *chps[__MAX_CHPID + 1];
struct device device;
struct pgid global_pgid;
struct mutex mutex;
/* channel measurement related */
int cm_enabled;
void *cub_addr1;
void *cub_addr2;
/* for orphaned ccw devices */
struct subchannel *pseudo_subchannel;
};
#define to_css(dev) container_of(dev, struct channel_subsystem, device)
extern struct channel_subsystem *channel_subsystems[];
/* Dummy helper which needs to change once we support more than one css. */
static inline struct channel_subsystem *css_by_id(u8 cssid)
{
return channel_subsystems[0];
}
/* Dummy iterator which needs to change once we support more than one css. */
#define for_each_css(css) \
for ((css) = channel_subsystems[0]; (css); (css) = NULL)
/* Helper functions to build lists for the slow path. */
void css_schedule_eval(struct subchannel_id schid);
void css_schedule_eval_all(void);
void css_schedule_eval_cond(enum css_eval_cond, unsigned long delay);
int css_complete_work(void);
int sch_is_pseudo_sch(struct subchannel *);
struct schib;
int css_sch_is_valid(struct schib *);
extern struct workqueue_struct *cio_work_q;
void css_wait_for_slow_path(void);
void css_sched_sch_todo(struct subchannel *sch, enum sch_todo todo);
#endif