OpenCloudOS-Kernel/drivers/media/dvb/frontends/dib3000mc.c

920 lines
27 KiB
C
Raw Normal View History

/*
* Frontend driver for mobile DVB-T demodulator DiBcom 3000P/M-C
* DiBcom (http://www.dibcom.fr/)
*
* Copyright (C) 2004-5 Patrick Boettcher (patrick.boettcher@desy.de)
*
* based on GPL code from DiBCom, which has
*
* Copyright (C) 2004 Amaury Demol for DiBcom (ademol@dibcom.fr)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, version 2.
*
* Acknowledgements
*
* Amaury Demol (ademol@dibcom.fr) from DiBcom for providing specs and driver
* sources, on which this driver (and the dvb-dibusb) are based.
*
* see Documentation/dvb/README.dibusb for more information
*
*/
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/slab.h>
#include "dib3000-common.h"
#include "dib3000mc_priv.h"
#include "dib3000.h"
/* Version information */
#define DRIVER_VERSION "0.1"
#define DRIVER_DESC "DiBcom 3000M-C DVB-T demodulator"
#define DRIVER_AUTHOR "Patrick Boettcher, patrick.boettcher@desy.de"
#ifdef CONFIG_DVB_DIBCOM_DEBUG
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "set debugging level (1=info,2=xfer,4=setfe,8=getfe,16=stat (|-able)).");
#endif
#define deb_info(args...) dprintk(0x01,args)
#define deb_xfer(args...) dprintk(0x02,args)
#define deb_setf(args...) dprintk(0x04,args)
#define deb_getf(args...) dprintk(0x08,args)
#define deb_stat(args...) dprintk(0x10,args)
static int dib3000mc_set_impulse_noise(struct dib3000_state * state, int mode,
fe_transmit_mode_t transmission_mode, fe_bandwidth_t bandwidth)
{
switch (transmission_mode) {
case TRANSMISSION_MODE_2K:
wr_foreach(dib3000mc_reg_fft,dib3000mc_fft_modes[0]);
break;
case TRANSMISSION_MODE_8K:
wr_foreach(dib3000mc_reg_fft,dib3000mc_fft_modes[1]);
break;
default:
break;
}
switch (bandwidth) {
/* case BANDWIDTH_5_MHZ:
wr_foreach(dib3000mc_reg_impulse_noise,dib3000mc_impluse_noise[0]);
break; */
case BANDWIDTH_6_MHZ:
wr_foreach(dib3000mc_reg_impulse_noise,dib3000mc_impluse_noise[1]);
break;
case BANDWIDTH_7_MHZ:
wr_foreach(dib3000mc_reg_impulse_noise,dib3000mc_impluse_noise[2]);
break;
case BANDWIDTH_8_MHZ:
wr_foreach(dib3000mc_reg_impulse_noise,dib3000mc_impluse_noise[3]);
break;
default:
break;
}
switch (mode) {
case 0: /* no impulse */ /* fall through */
wr_foreach(dib3000mc_reg_imp_noise_ctl,dib3000mc_imp_noise_ctl[0]);
break;
case 1: /* new algo */
wr_foreach(dib3000mc_reg_imp_noise_ctl,dib3000mc_imp_noise_ctl[1]);
set_or(DIB3000MC_REG_IMP_NOISE_55,DIB3000MC_IMP_NEW_ALGO(0)); /* gives 1<<10 */
break;
default: /* old algo */
wr_foreach(dib3000mc_reg_imp_noise_ctl,dib3000mc_imp_noise_ctl[3]);
break;
}
return 0;
}
static int dib3000mc_set_timing(struct dib3000_state *state, int upd_offset,
fe_transmit_mode_t fft, fe_bandwidth_t bw)
{
u16 timf_msb,timf_lsb;
s32 tim_offset,tim_sgn;
u64 comp1,comp2,comp=0;
switch (bw) {
case BANDWIDTH_8_MHZ: comp = DIB3000MC_CLOCK_REF*8; break;
case BANDWIDTH_7_MHZ: comp = DIB3000MC_CLOCK_REF*7; break;
case BANDWIDTH_6_MHZ: comp = DIB3000MC_CLOCK_REF*6; break;
default: err("unknown bandwidth (%d)",bw); break;
}
timf_msb = (comp >> 16) & 0xff;
timf_lsb = (comp & 0xffff);
// Update the timing offset ;
if (upd_offset > 0) {
if (!state->timing_offset_comp_done) {
msleep(200);
state->timing_offset_comp_done = 1;
}
tim_offset = rd(DIB3000MC_REG_TIMING_OFFS_MSB);
if ((tim_offset & 0x2000) == 0x2000)
tim_offset |= 0xC000;
if (fft == TRANSMISSION_MODE_2K)
tim_offset <<= 2;
state->timing_offset += tim_offset;
}
tim_offset = state->timing_offset;
if (tim_offset < 0) {
tim_sgn = 1;
tim_offset = -tim_offset;
} else
tim_sgn = 0;
comp1 = (u32)tim_offset * (u32)timf_lsb ;
comp2 = (u32)tim_offset * (u32)timf_msb ;
comp = ((comp1 >> 16) + comp2) >> 7;
if (tim_sgn == 0)
comp = (u32)(timf_msb << 16) + (u32) timf_lsb + comp;
else
comp = (u32)(timf_msb << 16) + (u32) timf_lsb - comp ;
timf_msb = (comp >> 16) & 0xff;
timf_lsb = comp & 0xffff;
wr(DIB3000MC_REG_TIMING_FREQ_MSB,timf_msb);
wr(DIB3000MC_REG_TIMING_FREQ_LSB,timf_lsb);
return 0;
}
static int dib3000mc_init_auto_scan(struct dib3000_state *state, fe_bandwidth_t bw, int boost)
{
if (boost) {
wr(DIB3000MC_REG_SCAN_BOOST,DIB3000MC_SCAN_BOOST_ON);
} else {
wr(DIB3000MC_REG_SCAN_BOOST,DIB3000MC_SCAN_BOOST_OFF);
}
switch (bw) {
case BANDWIDTH_8_MHZ:
wr_foreach(dib3000mc_reg_bandwidth,dib3000mc_bandwidth_8mhz);
break;
case BANDWIDTH_7_MHZ:
wr_foreach(dib3000mc_reg_bandwidth,dib3000mc_bandwidth_7mhz);
break;
case BANDWIDTH_6_MHZ:
wr_foreach(dib3000mc_reg_bandwidth,dib3000mc_bandwidth_6mhz);
break;
/* case BANDWIDTH_5_MHZ:
wr_foreach(dib3000mc_reg_bandwidth,dib3000mc_bandwidth_5mhz);
break;*/
case BANDWIDTH_AUTO:
return -EOPNOTSUPP;
default:
err("unknown bandwidth value (%d).",bw);
return -EINVAL;
}
if (boost) {
u32 timeout = (rd(DIB3000MC_REG_BW_TIMOUT_MSB) << 16) +
rd(DIB3000MC_REG_BW_TIMOUT_LSB);
timeout *= 85; timeout >>= 7;
wr(DIB3000MC_REG_BW_TIMOUT_MSB,(timeout >> 16) & 0xffff);
wr(DIB3000MC_REG_BW_TIMOUT_LSB,timeout & 0xffff);
}
return 0;
}
static int dib3000mc_set_adp_cfg(struct dib3000_state *state, fe_modulation_t con)
{
switch (con) {
case QAM_64:
wr_foreach(dib3000mc_reg_adp_cfg,dib3000mc_adp_cfg[2]);
break;
case QAM_16:
wr_foreach(dib3000mc_reg_adp_cfg,dib3000mc_adp_cfg[1]);
break;
case QPSK:
wr_foreach(dib3000mc_reg_adp_cfg,dib3000mc_adp_cfg[0]);
break;
case QAM_AUTO:
break;
default:
warn("unkown constellation.");
break;
}
return 0;
}
static int dib3000mc_set_general_cfg(struct dib3000_state *state, struct dvb_frontend_parameters *fep, int *auto_val)
{
struct dvb_ofdm_parameters *ofdm = &fep->u.ofdm;
fe_code_rate_t fe_cr = FEC_NONE;
u8 fft=0, guard=0, qam=0, alpha=0, sel_hp=0, cr=0, hrch=0;
int seq;
switch (ofdm->transmission_mode) {
case TRANSMISSION_MODE_2K: fft = DIB3000_TRANSMISSION_MODE_2K; break;
case TRANSMISSION_MODE_8K: fft = DIB3000_TRANSMISSION_MODE_8K; break;
case TRANSMISSION_MODE_AUTO: break;
default: return -EINVAL;
}
switch (ofdm->guard_interval) {
case GUARD_INTERVAL_1_32: guard = DIB3000_GUARD_TIME_1_32; break;
case GUARD_INTERVAL_1_16: guard = DIB3000_GUARD_TIME_1_16; break;
case GUARD_INTERVAL_1_8: guard = DIB3000_GUARD_TIME_1_8; break;
case GUARD_INTERVAL_1_4: guard = DIB3000_GUARD_TIME_1_4; break;
case GUARD_INTERVAL_AUTO: break;
default: return -EINVAL;
}
switch (ofdm->constellation) {
case QPSK: qam = DIB3000_CONSTELLATION_QPSK; break;
case QAM_16: qam = DIB3000_CONSTELLATION_16QAM; break;
case QAM_64: qam = DIB3000_CONSTELLATION_64QAM; break;
case QAM_AUTO: break;
default: return -EINVAL;
}
switch (ofdm->hierarchy_information) {
case HIERARCHY_NONE: /* fall through */
case HIERARCHY_1: alpha = DIB3000_ALPHA_1; break;
case HIERARCHY_2: alpha = DIB3000_ALPHA_2; break;
case HIERARCHY_4: alpha = DIB3000_ALPHA_4; break;
case HIERARCHY_AUTO: break;
default: return -EINVAL;
}
if (ofdm->hierarchy_information == HIERARCHY_NONE) {
hrch = DIB3000_HRCH_OFF;
sel_hp = DIB3000_SELECT_HP;
fe_cr = ofdm->code_rate_HP;
} else if (ofdm->hierarchy_information != HIERARCHY_AUTO) {
hrch = DIB3000_HRCH_ON;
sel_hp = DIB3000_SELECT_LP;
fe_cr = ofdm->code_rate_LP;
}
switch (fe_cr) {
case FEC_1_2: cr = DIB3000_FEC_1_2; break;
case FEC_2_3: cr = DIB3000_FEC_2_3; break;
case FEC_3_4: cr = DIB3000_FEC_3_4; break;
case FEC_5_6: cr = DIB3000_FEC_5_6; break;
case FEC_7_8: cr = DIB3000_FEC_7_8; break;
case FEC_NONE: break;
case FEC_AUTO: break;
default: return -EINVAL;
}
wr(DIB3000MC_REG_DEMOD_PARM,DIB3000MC_DEMOD_PARM(alpha,qam,guard,fft));
wr(DIB3000MC_REG_HRCH_PARM,DIB3000MC_HRCH_PARM(sel_hp,cr,hrch));
switch (fep->inversion) {
case INVERSION_OFF:
wr(DIB3000MC_REG_SET_DDS_FREQ_MSB,DIB3000MC_DDS_FREQ_MSB_INV_OFF);
break;
case INVERSION_AUTO: /* fall through */
case INVERSION_ON:
wr(DIB3000MC_REG_SET_DDS_FREQ_MSB,DIB3000MC_DDS_FREQ_MSB_INV_ON);
break;
default:
return -EINVAL;
}
seq = dib3000_seq
[ofdm->transmission_mode == TRANSMISSION_MODE_AUTO]
[ofdm->guard_interval == GUARD_INTERVAL_AUTO]
[fep->inversion == INVERSION_AUTO];
deb_setf("seq? %d\n", seq);
wr(DIB3000MC_REG_SEQ_TPS,DIB3000MC_SEQ_TPS(seq,1));
*auto_val = ofdm->constellation == QAM_AUTO ||
ofdm->hierarchy_information == HIERARCHY_AUTO ||
ofdm->guard_interval == GUARD_INTERVAL_AUTO ||
ofdm->transmission_mode == TRANSMISSION_MODE_AUTO ||
fe_cr == FEC_AUTO ||
fep->inversion == INVERSION_AUTO;
return 0;
}
static int dib3000mc_get_frontend(struct dvb_frontend* fe,
struct dvb_frontend_parameters *fep)
{
struct dib3000_state* state = fe->demodulator_priv;
struct dvb_ofdm_parameters *ofdm = &fep->u.ofdm;
fe_code_rate_t *cr;
u16 tps_val,cr_val;
int inv_test1,inv_test2;
u32 dds_val, threshold = 0x1000000;
if (!(rd(DIB3000MC_REG_LOCK_507) & DIB3000MC_LOCK_507))
return 0;
dds_val = (rd(DIB3000MC_REG_DDS_FREQ_MSB) << 16) + rd(DIB3000MC_REG_DDS_FREQ_LSB);
deb_getf("DDS_FREQ: %6x\n",dds_val);
if (dds_val < threshold)
inv_test1 = 0;
else if (dds_val == threshold)
inv_test1 = 1;
else
inv_test1 = 2;
dds_val = (rd(DIB3000MC_REG_SET_DDS_FREQ_MSB) << 16) + rd(DIB3000MC_REG_SET_DDS_FREQ_LSB);
deb_getf("DDS_SET_FREQ: %6x\n",dds_val);
if (dds_val < threshold)
inv_test2 = 0;
else if (dds_val == threshold)
inv_test2 = 1;
else
inv_test2 = 2;
fep->inversion =
((inv_test2 == 2) && (inv_test1==1 || inv_test1==0)) ||
((inv_test2 == 0) && (inv_test1==1 || inv_test1==2)) ?
INVERSION_ON : INVERSION_OFF;
deb_getf("inversion %d %d, %d\n", inv_test2, inv_test1, fep->inversion);
fep->frequency = state->last_tuned_freq;
fep->u.ofdm.bandwidth= state->last_tuned_bw;
tps_val = rd(DIB3000MC_REG_TUNING_PARM);
switch (DIB3000MC_TP_QAM(tps_val)) {
case DIB3000_CONSTELLATION_QPSK:
deb_getf("QPSK ");
ofdm->constellation = QPSK;
break;
case DIB3000_CONSTELLATION_16QAM:
deb_getf("QAM16 ");
ofdm->constellation = QAM_16;
break;
case DIB3000_CONSTELLATION_64QAM:
deb_getf("QAM64 ");
ofdm->constellation = QAM_64;
break;
default:
err("Unexpected constellation returned by TPS (%d)", tps_val);
break;
}
if (DIB3000MC_TP_HRCH(tps_val)) {
deb_getf("HRCH ON ");
cr = &ofdm->code_rate_LP;
ofdm->code_rate_HP = FEC_NONE;
switch (DIB3000MC_TP_ALPHA(tps_val)) {
case DIB3000_ALPHA_0:
deb_getf("HIERARCHY_NONE ");
ofdm->hierarchy_information = HIERARCHY_NONE;
break;
case DIB3000_ALPHA_1:
deb_getf("HIERARCHY_1 ");
ofdm->hierarchy_information = HIERARCHY_1;
break;
case DIB3000_ALPHA_2:
deb_getf("HIERARCHY_2 ");
ofdm->hierarchy_information = HIERARCHY_2;
break;
case DIB3000_ALPHA_4:
deb_getf("HIERARCHY_4 ");
ofdm->hierarchy_information = HIERARCHY_4;
break;
default:
err("Unexpected ALPHA value returned by TPS (%d)", tps_val);
break;
}
cr_val = DIB3000MC_TP_FEC_CR_LP(tps_val);
} else {
deb_getf("HRCH OFF ");
cr = &ofdm->code_rate_HP;
ofdm->code_rate_LP = FEC_NONE;
ofdm->hierarchy_information = HIERARCHY_NONE;
cr_val = DIB3000MC_TP_FEC_CR_HP(tps_val);
}
switch (cr_val) {
case DIB3000_FEC_1_2:
deb_getf("FEC_1_2 ");
*cr = FEC_1_2;
break;
case DIB3000_FEC_2_3:
deb_getf("FEC_2_3 ");
*cr = FEC_2_3;
break;
case DIB3000_FEC_3_4:
deb_getf("FEC_3_4 ");
*cr = FEC_3_4;
break;
case DIB3000_FEC_5_6:
deb_getf("FEC_5_6 ");
*cr = FEC_4_5;
break;
case DIB3000_FEC_7_8:
deb_getf("FEC_7_8 ");
*cr = FEC_7_8;
break;
default:
err("Unexpected FEC returned by TPS (%d)", tps_val);
break;
}
switch (DIB3000MC_TP_GUARD(tps_val)) {
case DIB3000_GUARD_TIME_1_32:
deb_getf("GUARD_INTERVAL_1_32 ");
ofdm->guard_interval = GUARD_INTERVAL_1_32;
break;
case DIB3000_GUARD_TIME_1_16:
deb_getf("GUARD_INTERVAL_1_16 ");
ofdm->guard_interval = GUARD_INTERVAL_1_16;
break;
case DIB3000_GUARD_TIME_1_8:
deb_getf("GUARD_INTERVAL_1_8 ");
ofdm->guard_interval = GUARD_INTERVAL_1_8;
break;
case DIB3000_GUARD_TIME_1_4:
deb_getf("GUARD_INTERVAL_1_4 ");
ofdm->guard_interval = GUARD_INTERVAL_1_4;
break;
default:
err("Unexpected Guard Time returned by TPS (%d)", tps_val);
break;
}
switch (DIB3000MC_TP_FFT(tps_val)) {
case DIB3000_TRANSMISSION_MODE_2K:
deb_getf("TRANSMISSION_MODE_2K ");
ofdm->transmission_mode = TRANSMISSION_MODE_2K;
break;
case DIB3000_TRANSMISSION_MODE_8K:
deb_getf("TRANSMISSION_MODE_8K ");
ofdm->transmission_mode = TRANSMISSION_MODE_8K;
break;
default:
err("unexpected transmission mode return by TPS (%d)", tps_val);
break;
}
deb_getf("\n");
return 0;
}
static int dib3000mc_set_frontend(struct dvb_frontend* fe,
struct dvb_frontend_parameters *fep, int tuner)
{
struct dib3000_state* state = fe->demodulator_priv;
struct dvb_ofdm_parameters *ofdm = &fep->u.ofdm;
int search_state,auto_val;
u16 val;
if (tuner && state->config.pll_set) { /* initial call from dvb */
state->config.pll_set(fe,fep);
state->last_tuned_freq = fep->frequency;
// if (!scanboost) {
dib3000mc_set_timing(state,0,ofdm->transmission_mode,ofdm->bandwidth);
dib3000mc_init_auto_scan(state, ofdm->bandwidth, 0);
state->last_tuned_bw = ofdm->bandwidth;
wr_foreach(dib3000mc_reg_agc_bandwidth,dib3000mc_agc_bandwidth);
wr(DIB3000MC_REG_RESTART,DIB3000MC_RESTART_AGC);
wr(DIB3000MC_REG_RESTART,DIB3000MC_RESTART_OFF);
/* Default cfg isi offset adp */
wr_foreach(dib3000mc_reg_offset,dib3000mc_offset[0]);
wr(DIB3000MC_REG_ISI,DIB3000MC_ISI_DEFAULT | DIB3000MC_ISI_INHIBIT);
dib3000mc_set_adp_cfg(state,ofdm->constellation);
wr(DIB3000MC_REG_UNK_133,DIB3000MC_UNK_133);
wr_foreach(dib3000mc_reg_bandwidth_general,dib3000mc_bandwidth_general);
/* power smoothing */
if (ofdm->bandwidth != BANDWIDTH_8_MHZ) {
wr_foreach(dib3000mc_reg_bw,dib3000mc_bw[0]);
} else {
wr_foreach(dib3000mc_reg_bw,dib3000mc_bw[3]);
}
auto_val = 0;
dib3000mc_set_general_cfg(state,fep,&auto_val);
dib3000mc_set_impulse_noise(state,0,ofdm->constellation,ofdm->bandwidth);
val = rd(DIB3000MC_REG_DEMOD_PARM);
wr(DIB3000MC_REG_DEMOD_PARM,val|DIB3000MC_DEMOD_RST_DEMOD_ON);
wr(DIB3000MC_REG_DEMOD_PARM,val);
// }
msleep(70);
/* something has to be auto searched */
if (auto_val) {
int as_count=0;
deb_setf("autosearch enabled.\n");
val = rd(DIB3000MC_REG_DEMOD_PARM);
wr(DIB3000MC_REG_DEMOD_PARM,val | DIB3000MC_DEMOD_RST_AUTO_SRCH_ON);
wr(DIB3000MC_REG_DEMOD_PARM,val);
while ((search_state = dib3000_search_status(
rd(DIB3000MC_REG_AS_IRQ),1)) < 0 && as_count++ < 100)
msleep(10);
deb_info("search_state after autosearch %d after %d checks\n",search_state,as_count);
if (search_state == 1) {
struct dvb_frontend_parameters feps;
if (dib3000mc_get_frontend(fe, &feps) == 0) {
deb_setf("reading tuning data from frontend succeeded.\n");
return dib3000mc_set_frontend(fe, &feps, 0);
}
}
} else {
dib3000mc_set_impulse_noise(state,0,ofdm->transmission_mode,ofdm->bandwidth);
wr(DIB3000MC_REG_ISI,DIB3000MC_ISI_DEFAULT|DIB3000MC_ISI_ACTIVATE);
dib3000mc_set_adp_cfg(state,ofdm->constellation);
/* set_offset_cfg */
wr_foreach(dib3000mc_reg_offset,
dib3000mc_offset[(ofdm->transmission_mode == TRANSMISSION_MODE_8K)+1]);
}
} else { /* second call, after autosearch (fka: set_WithKnownParams) */
// dib3000mc_set_timing(state,1,ofdm->transmission_mode,ofdm->bandwidth);
auto_val = 0;
dib3000mc_set_general_cfg(state,fep,&auto_val);
if (auto_val)
deb_info("auto_val is true, even though an auto search was already performed.\n");
dib3000mc_set_impulse_noise(state,0,ofdm->constellation,ofdm->bandwidth);
val = rd(DIB3000MC_REG_DEMOD_PARM);
wr(DIB3000MC_REG_DEMOD_PARM,val | DIB3000MC_DEMOD_RST_AUTO_SRCH_ON);
wr(DIB3000MC_REG_DEMOD_PARM,val);
msleep(30);
wr(DIB3000MC_REG_ISI,DIB3000MC_ISI_DEFAULT|DIB3000MC_ISI_ACTIVATE);
dib3000mc_set_adp_cfg(state,ofdm->constellation);
wr_foreach(dib3000mc_reg_offset,
dib3000mc_offset[(ofdm->transmission_mode == TRANSMISSION_MODE_8K)+1]);
}
return 0;
}
static int dib3000mc_fe_init(struct dvb_frontend* fe, int mobile_mode)
{
struct dib3000_state *state = fe->demodulator_priv;
deb_info("init start\n");
state->timing_offset = 0;
state->timing_offset_comp_done = 0;
wr(DIB3000MC_REG_RESTART,DIB3000MC_RESTART_CONFIG);
wr(DIB3000MC_REG_RESTART,DIB3000MC_RESTART_OFF);
wr(DIB3000MC_REG_CLK_CFG_1,DIB3000MC_CLK_CFG_1_POWER_UP);
wr(DIB3000MC_REG_CLK_CFG_2,DIB3000MC_CLK_CFG_2_PUP_MOBILE);
wr(DIB3000MC_REG_CLK_CFG_3,DIB3000MC_CLK_CFG_3_POWER_UP);
wr(DIB3000MC_REG_CLK_CFG_7,DIB3000MC_CLK_CFG_7_INIT);
wr(DIB3000MC_REG_RST_UNC,DIB3000MC_RST_UNC_OFF);
wr(DIB3000MC_REG_UNK_19,DIB3000MC_UNK_19);
wr(33,5);
wr(36,81);
wr(DIB3000MC_REG_UNK_88,DIB3000MC_UNK_88);
wr(DIB3000MC_REG_UNK_99,DIB3000MC_UNK_99);
wr(DIB3000MC_REG_UNK_111,DIB3000MC_UNK_111_PH_N_MODE_0); /* phase noise algo off */
/* mobile mode - portable reception */
wr_foreach(dib3000mc_reg_mobile_mode,dib3000mc_mobile_mode[1]);
/* TUNER_PANASONIC_ENV57H12D5: */
wr_foreach(dib3000mc_reg_agc_bandwidth,dib3000mc_agc_bandwidth);
wr_foreach(dib3000mc_reg_agc_bandwidth_general,dib3000mc_agc_bandwidth_general);
wr_foreach(dib3000mc_reg_agc,dib3000mc_agc_tuner[1]);
wr(DIB3000MC_REG_UNK_110,DIB3000MC_UNK_110);
wr(26,0x6680);
wr(DIB3000MC_REG_UNK_1,DIB3000MC_UNK_1);
wr(DIB3000MC_REG_UNK_2,DIB3000MC_UNK_2);
wr(DIB3000MC_REG_UNK_3,DIB3000MC_UNK_3);
wr(DIB3000MC_REG_SEQ_TPS,DIB3000MC_SEQ_TPS_DEFAULT);
wr_foreach(dib3000mc_reg_bandwidth,dib3000mc_bandwidth_8mhz);
wr_foreach(dib3000mc_reg_bandwidth_general,dib3000mc_bandwidth_general);
wr(DIB3000MC_REG_UNK_4,DIB3000MC_UNK_4);
wr(DIB3000MC_REG_SET_DDS_FREQ_MSB,DIB3000MC_DDS_FREQ_MSB_INV_OFF);
wr(DIB3000MC_REG_SET_DDS_FREQ_LSB,DIB3000MC_DDS_FREQ_LSB);
dib3000mc_set_timing(state,0,TRANSMISSION_MODE_8K,BANDWIDTH_8_MHZ);
// wr_foreach(dib3000mc_reg_timing_freq,dib3000mc_timing_freq[3]);
wr(DIB3000MC_REG_UNK_120,DIB3000MC_UNK_120);
wr(DIB3000MC_REG_UNK_134,DIB3000MC_UNK_134);
wr(DIB3000MC_REG_FEC_CFG,DIB3000MC_FEC_CFG);
wr(DIB3000MC_REG_DIVERSITY3,DIB3000MC_DIVERSITY3_IN_OFF);
dib3000mc_set_impulse_noise(state,0,TRANSMISSION_MODE_8K,BANDWIDTH_8_MHZ);
/* output mode control, just the MPEG2_SLAVE */
// set_or(DIB3000MC_REG_OUTMODE,DIB3000MC_OM_SLAVE);
wr(DIB3000MC_REG_OUTMODE,DIB3000MC_OM_SLAVE);
wr(DIB3000MC_REG_SMO_MODE,DIB3000MC_SMO_MODE_SLAVE);
wr(DIB3000MC_REG_FIFO_THRESHOLD,DIB3000MC_FIFO_THRESHOLD_SLAVE);
wr(DIB3000MC_REG_ELEC_OUT,DIB3000MC_ELEC_OUT_SLAVE);
/* MPEG2_PARALLEL_CONTINUOUS_CLOCK
wr(DIB3000MC_REG_OUTMODE,
DIB3000MC_SET_OUTMODE(DIB3000MC_OM_PAR_CONT_CLK,
rd(DIB3000MC_REG_OUTMODE)));
wr(DIB3000MC_REG_SMO_MODE,
DIB3000MC_SMO_MODE_DEFAULT |
DIB3000MC_SMO_MODE_188);
wr(DIB3000MC_REG_FIFO_THRESHOLD,DIB3000MC_FIFO_THRESHOLD_DEFAULT);
wr(DIB3000MC_REG_ELEC_OUT,DIB3000MC_ELEC_OUT_DIV_OUT_ON);
*/
/* diversity */
wr(DIB3000MC_REG_DIVERSITY1,DIB3000MC_DIVERSITY1_DEFAULT);
wr(DIB3000MC_REG_DIVERSITY2,DIB3000MC_DIVERSITY2_DEFAULT);
set_and(DIB3000MC_REG_DIVERSITY3,DIB3000MC_DIVERSITY3_IN_OFF);
set_or(DIB3000MC_REG_CLK_CFG_7,DIB3000MC_CLK_CFG_7_DIV_IN_OFF);
if (state->config.pll_init)
state->config.pll_init(fe);
deb_info("init end\n");
return 0;
}
static int dib3000mc_read_status(struct dvb_frontend* fe, fe_status_t *stat)
{
struct dib3000_state* state = fe->demodulator_priv;
u16 lock = rd(DIB3000MC_REG_LOCKING);
*stat = 0;
if (DIB3000MC_AGC_LOCK(lock))
*stat |= FE_HAS_SIGNAL;
if (DIB3000MC_CARRIER_LOCK(lock))
*stat |= FE_HAS_CARRIER;
if (DIB3000MC_TPS_LOCK(lock))
*stat |= FE_HAS_VITERBI;
if (DIB3000MC_MPEG_SYNC_LOCK(lock))
*stat |= (FE_HAS_SYNC | FE_HAS_LOCK);
deb_stat("actual status is %2x fifo_level: %x,244: %x, 206: %x, 207: %x, 1040: %x\n",*stat,rd(510),rd(244),rd(206),rd(207),rd(1040));
return 0;
}
static int dib3000mc_read_ber(struct dvb_frontend* fe, u32 *ber)
{
struct dib3000_state* state = fe->demodulator_priv;
*ber = ((rd(DIB3000MC_REG_BER_MSB) << 16) | rd(DIB3000MC_REG_BER_LSB));
return 0;
}
static int dib3000mc_read_unc_blocks(struct dvb_frontend* fe, u32 *unc)
{
struct dib3000_state* state = fe->demodulator_priv;
*unc = rd(DIB3000MC_REG_PACKET_ERRORS);
return 0;
}
/* see dib3000mb.c for calculation comments */
static int dib3000mc_read_signal_strength(struct dvb_frontend* fe, u16 *strength)
{
struct dib3000_state* state = fe->demodulator_priv;
u16 val = rd(DIB3000MC_REG_SIGNAL_NOISE_LSB);
*strength = (((val >> 6) & 0xff) << 8) + (val & 0x3f);
deb_stat("signal: mantisse = %d, exponent = %d\n",(*strength >> 8) & 0xff, *strength & 0xff);
return 0;
}
/* see dib3000mb.c for calculation comments */
static int dib3000mc_read_snr(struct dvb_frontend* fe, u16 *snr)
{
struct dib3000_state* state = fe->demodulator_priv;
u16 val = rd(DIB3000MC_REG_SIGNAL_NOISE_LSB),
val2 = rd(DIB3000MC_REG_SIGNAL_NOISE_MSB);
u16 sig,noise;
sig = (((val >> 6) & 0xff) << 8) + (val & 0x3f);
noise = (((val >> 4) & 0xff) << 8) + ((val & 0xf) << 2) + ((val2 >> 14) & 0x3);
if (noise == 0)
*snr = 0xffff;
else
*snr = (u16) sig/noise;
deb_stat("signal: mantisse = %d, exponent = %d\n",(sig >> 8) & 0xff, sig & 0xff);
deb_stat("noise: mantisse = %d, exponent = %d\n",(noise >> 8) & 0xff, noise & 0xff);
deb_stat("snr: %d\n",*snr);
return 0;
}
static int dib3000mc_sleep(struct dvb_frontend* fe)
{
struct dib3000_state* state = fe->demodulator_priv;
set_or(DIB3000MC_REG_CLK_CFG_7,DIB3000MC_CLK_CFG_7_PWR_DOWN);
wr(DIB3000MC_REG_CLK_CFG_1,DIB3000MC_CLK_CFG_1_POWER_DOWN);
wr(DIB3000MC_REG_CLK_CFG_2,DIB3000MC_CLK_CFG_2_POWER_DOWN);
wr(DIB3000MC_REG_CLK_CFG_3,DIB3000MC_CLK_CFG_3_POWER_DOWN);
return 0;
}
static int dib3000mc_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune)
{
tune->min_delay_ms = 1000;
return 0;
}
static int dib3000mc_fe_init_nonmobile(struct dvb_frontend* fe)
{
return dib3000mc_fe_init(fe, 0);
}
static int dib3000mc_set_frontend_and_tuner(struct dvb_frontend* fe, struct dvb_frontend_parameters *fep)
{
return dib3000mc_set_frontend(fe, fep, 1);
}
static void dib3000mc_release(struct dvb_frontend* fe)
{
struct dib3000_state *state = fe->demodulator_priv;
kfree(state);
}
/* pid filter and transfer stuff */
static int dib3000mc_pid_control(struct dvb_frontend *fe,int index, int pid,int onoff)
{
struct dib3000_state *state = fe->demodulator_priv;
pid = (onoff ? pid | DIB3000_ACTIVATE_PID_FILTERING : 0);
wr(index+DIB3000MC_REG_FIRST_PID,pid);
return 0;
}
static int dib3000mc_fifo_control(struct dvb_frontend *fe, int onoff)
{
struct dib3000_state *state = fe->demodulator_priv;
u16 tmp = rd(DIB3000MC_REG_SMO_MODE);
deb_xfer("%s fifo\n",onoff ? "enabling" : "disabling");
if (onoff) {
deb_xfer("%d %x\n",tmp & DIB3000MC_SMO_MODE_FIFO_UNFLUSH,tmp & DIB3000MC_SMO_MODE_FIFO_UNFLUSH);
wr(DIB3000MC_REG_SMO_MODE,tmp & DIB3000MC_SMO_MODE_FIFO_UNFLUSH);
} else {
deb_xfer("%d %x\n",tmp | DIB3000MC_SMO_MODE_FIFO_FLUSH,tmp | DIB3000MC_SMO_MODE_FIFO_FLUSH);
wr(DIB3000MC_REG_SMO_MODE,tmp | DIB3000MC_SMO_MODE_FIFO_FLUSH);
}
return 0;
}
static int dib3000mc_pid_parse(struct dvb_frontend *fe, int onoff)
{
struct dib3000_state *state = fe->demodulator_priv;
u16 tmp = rd(DIB3000MC_REG_SMO_MODE);
deb_xfer("%s pid parsing\n",onoff ? "enabling" : "disabling");
if (onoff) {
wr(DIB3000MC_REG_SMO_MODE,tmp | DIB3000MC_SMO_MODE_PID_PARSE);
} else {
wr(DIB3000MC_REG_SMO_MODE,tmp & DIB3000MC_SMO_MODE_NO_PID_PARSE);
}
return 0;
}
static int dib3000mc_tuner_pass_ctrl(struct dvb_frontend *fe, int onoff, u8 pll_addr)
{
struct dib3000_state *state = fe->demodulator_priv;
if (onoff) {
wr(DIB3000MC_REG_TUNER, DIB3000_TUNER_WRITE_ENABLE(pll_addr));
} else {
wr(DIB3000MC_REG_TUNER, DIB3000_TUNER_WRITE_DISABLE(pll_addr));
}
return 0;
}
static int dib3000mc_demod_init(struct dib3000_state *state)
{
u16 default_addr = 0x0a;
/* first init */
if (state->config.demod_address != default_addr) {
deb_info("initializing the demod the first time. Setting demod addr to 0x%x\n",default_addr);
wr(DIB3000MC_REG_ELEC_OUT,DIB3000MC_ELEC_OUT_DIV_OUT_ON);
wr(DIB3000MC_REG_OUTMODE,DIB3000MC_OM_PAR_CONT_CLK);
wr(DIB3000MC_REG_RST_I2C_ADDR,
DIB3000MC_DEMOD_ADDR(default_addr) |
DIB3000MC_DEMOD_ADDR_ON);
state->config.demod_address = default_addr;
wr(DIB3000MC_REG_RST_I2C_ADDR,
DIB3000MC_DEMOD_ADDR(default_addr));
} else
deb_info("demod is already initialized. Demod addr: 0x%x\n",state->config.demod_address);
return 0;
}
static struct dvb_frontend_ops dib3000mc_ops;
struct dvb_frontend* dib3000mc_attach(const struct dib3000_config* config,
struct i2c_adapter* i2c, struct dib_fe_xfer_ops *xfer_ops)
{
struct dib3000_state* state = NULL;
u16 devid;
/* allocate memory for the internal state */
state = kmalloc(sizeof(struct dib3000_state), GFP_KERNEL);
if (state == NULL)
goto error;
memset(state,0,sizeof(struct dib3000_state));
/* setup the state */
state->i2c = i2c;
memcpy(&state->config,config,sizeof(struct dib3000_config));
memcpy(&state->ops, &dib3000mc_ops, sizeof(struct dvb_frontend_ops));
/* check for the correct demod */
if (rd(DIB3000_REG_MANUFACTOR_ID) != DIB3000_I2C_ID_DIBCOM)
goto error;
devid = rd(DIB3000_REG_DEVICE_ID);
if (devid != DIB3000MC_DEVICE_ID && devid != DIB3000P_DEVICE_ID)
goto error;
switch (devid) {
case DIB3000MC_DEVICE_ID:
info("Found a DiBcom 3000M-C, interesting...");
break;
case DIB3000P_DEVICE_ID:
info("Found a DiBcom 3000P.");
break;
}
/* create dvb_frontend */
state->frontend.ops = &state->ops;
state->frontend.demodulator_priv = state;
/* set the xfer operations */
xfer_ops->pid_parse = dib3000mc_pid_parse;
xfer_ops->fifo_ctrl = dib3000mc_fifo_control;
xfer_ops->pid_ctrl = dib3000mc_pid_control;
xfer_ops->tuner_pass_ctrl = dib3000mc_tuner_pass_ctrl;
dib3000mc_demod_init(state);
return &state->frontend;
error:
kfree(state);
return NULL;
}
static struct dvb_frontend_ops dib3000mc_ops = {
.info = {
.name = "DiBcom 3000P/M-C DVB-T",
.type = FE_OFDM,
.frequency_min = 44250000,
.frequency_max = 867250000,
.frequency_stepsize = 62500,
.caps = FE_CAN_INVERSION_AUTO |
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO |
FE_CAN_GUARD_INTERVAL_AUTO |
FE_CAN_RECOVER |
FE_CAN_HIERARCHY_AUTO,
},
.release = dib3000mc_release,
.init = dib3000mc_fe_init_nonmobile,
.sleep = dib3000mc_sleep,
.set_frontend = dib3000mc_set_frontend_and_tuner,
.get_frontend = dib3000mc_get_frontend,
.get_tune_settings = dib3000mc_fe_get_tune_settings,
.read_status = dib3000mc_read_status,
.read_ber = dib3000mc_read_ber,
.read_signal_strength = dib3000mc_read_signal_strength,
.read_snr = dib3000mc_read_snr,
.read_ucblocks = dib3000mc_read_unc_blocks,
};
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");
EXPORT_SYMBOL(dib3000mc_attach);