OpenCloudOS-Kernel/drivers/media/platform/vsp1/vsp1_rpf.c

310 lines
9.0 KiB
C
Raw Normal View History

/*
* vsp1_rpf.c -- R-Car VSP1 Read Pixel Formatter
*
* Copyright (C) 2013-2014 Renesas Electronics Corporation
*
* Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/device.h>
#include <media/v4l2-subdev.h>
#include "vsp1.h"
#include "vsp1_dl.h"
#include "vsp1_pipe.h"
#include "vsp1_rwpf.h"
#include "vsp1_video.h"
#define RPF_MAX_WIDTH 8190
#define RPF_MAX_HEIGHT 8190
/* -----------------------------------------------------------------------------
* Device Access
*/
static inline void vsp1_rpf_write(struct vsp1_rwpf *rpf,
struct vsp1_dl_list *dl, u32 reg, u32 data)
{
vsp1_dl_list_write(dl, reg + rpf->entity.index * VI6_RPF_OFFSET, data);
}
/* -----------------------------------------------------------------------------
* V4L2 Subdevice Operations
*/
static const struct v4l2_subdev_ops rpf_ops = {
.pad = &vsp1_rwpf_pad_ops,
};
/* -----------------------------------------------------------------------------
* VSP1 Entity Operations
*/
static void rpf_configure(struct vsp1_entity *entity,
struct vsp1_pipeline *pipe,
struct vsp1_dl_list *dl,
enum vsp1_entity_params params)
{
struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
const struct vsp1_format_info *fmtinfo = rpf->fmtinfo;
const struct v4l2_pix_format_mplane *format = &rpf->format;
const struct v4l2_mbus_framefmt *source_format;
const struct v4l2_mbus_framefmt *sink_format;
unsigned int left = 0;
unsigned int top = 0;
u32 pstride;
u32 infmt;
if (params == VSP1_ENTITY_PARAMS_RUNTIME) {
vsp1_rpf_write(rpf, dl, VI6_RPF_VRTCOL_SET,
rpf->alpha << VI6_RPF_VRTCOL_SET_LAYA_SHIFT);
vsp1_rpf_write(rpf, dl, VI6_RPF_MULT_ALPHA, rpf->mult_alpha |
(rpf->alpha << VI6_RPF_MULT_ALPHA_RATIO_SHIFT));
vsp1_pipeline_propagate_alpha(pipe, dl, rpf->alpha);
[media] v4l: vsp1: Support runtime modification of controls Controls are applied to the hardware in the configure operation of the VSP entities, which is only called when starting the video stream. To enable runtime modification of controls we need to call the configure operations for every frame. Doing so is currently not safe, as most parameters shouldn't be modified during streaming. Furthermore the configure operation can sleep, preventing it from being called from the frame completion interrupt handler for the next frame. Fix this by adding an argument to the configure operation to tell entities whether to perform a full configuration (as done now) or a partial runtime configuration. In the latter case the operation will only configure the subset of parameters related to runtime-configurable controls, and won't be allowed to sleep when doing so. Because partial reconfiguration can depend on parameters computed when performing a full configuration, the core guarantees that the configure operation will always be called with full and partial modes in that order at stream start. Entities thus don't have to duplicate configuration steps in the full and partial code paths. This change affects the VSP driver core only, all entities return immediately from the configure operation when called for a partial runtime configuration. Entities will be modified one by one in further commits. Signed-off-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com> Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
2016-06-11 15:07:56 +08:00
return;
}
[media] v4l: vsp1: Support runtime modification of controls Controls are applied to the hardware in the configure operation of the VSP entities, which is only called when starting the video stream. To enable runtime modification of controls we need to call the configure operations for every frame. Doing so is currently not safe, as most parameters shouldn't be modified during streaming. Furthermore the configure operation can sleep, preventing it from being called from the frame completion interrupt handler for the next frame. Fix this by adding an argument to the configure operation to tell entities whether to perform a full configuration (as done now) or a partial runtime configuration. In the latter case the operation will only configure the subset of parameters related to runtime-configurable controls, and won't be allowed to sleep when doing so. Because partial reconfiguration can depend on parameters computed when performing a full configuration, the core guarantees that the configure operation will always be called with full and partial modes in that order at stream start. Entities thus don't have to duplicate configuration steps in the full and partial code paths. This change affects the VSP driver core only, all entities return immediately from the configure operation when called for a partial runtime configuration. Entities will be modified one by one in further commits. Signed-off-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com> Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
2016-06-11 15:07:56 +08:00
if (params == VSP1_ENTITY_PARAMS_PARTITION) {
struct vsp1_device *vsp1 = rpf->entity.vsp1;
struct vsp1_rwpf_memory mem = rpf->mem;
struct v4l2_rect crop;
/*
* Source size and crop offsets.
*
* The crop offsets correspond to the location of the crop
* rectangle top left corner in the plane buffer. Only two
* offsets are needed, as planes 2 and 3 always have identical
* strides.
*/
crop = *vsp1_rwpf_get_crop(rpf, rpf->entity.config);
/*
* Partition Algorithm Control
*
* The partition algorithm can split this frame into multiple
* slices. We must scale our partition window based on the pipe
* configuration to match the destination partition window.
* To achieve this, we adjust our crop to provide a 'sub-crop'
* matching the expected partition window. Only 'left' and
* 'width' need to be adjusted.
*/
if (pipe->partitions > 1) {
const struct v4l2_mbus_framefmt *output;
struct vsp1_entity *wpf = &pipe->output->entity;
unsigned int input_width = crop.width;
/*
* Scale the partition window based on the configuration
* of the pipeline.
*/
output = vsp1_entity_get_pad_format(wpf, wpf->config,
RWPF_PAD_SINK);
crop.width = pipe->partition->width * input_width
/ output->width;
crop.left += pipe->partition->left * input_width
/ output->width;
}
vsp1_rpf_write(rpf, dl, VI6_RPF_SRC_BSIZE,
(crop.width << VI6_RPF_SRC_BSIZE_BHSIZE_SHIFT) |
(crop.height << VI6_RPF_SRC_BSIZE_BVSIZE_SHIFT));
vsp1_rpf_write(rpf, dl, VI6_RPF_SRC_ESIZE,
(crop.width << VI6_RPF_SRC_ESIZE_EHSIZE_SHIFT) |
(crop.height << VI6_RPF_SRC_ESIZE_EVSIZE_SHIFT));
mem.addr[0] += crop.top * format->plane_fmt[0].bytesperline
+ crop.left * fmtinfo->bpp[0] / 8;
if (format->num_planes > 1) {
unsigned int offset;
offset = crop.top * format->plane_fmt[1].bytesperline
+ crop.left / fmtinfo->hsub
* fmtinfo->bpp[1] / 8;
mem.addr[1] += offset;
mem.addr[2] += offset;
}
/*
* On Gen3 hardware the SPUVS bit has no effect on 3-planar
* formats. Swap the U and V planes manually in that case.
*/
if (vsp1->info->gen == 3 && format->num_planes == 3 &&
fmtinfo->swap_uv)
swap(mem.addr[1], mem.addr[2]);
vsp1_rpf_write(rpf, dl, VI6_RPF_SRCM_ADDR_Y, mem.addr[0]);
vsp1_rpf_write(rpf, dl, VI6_RPF_SRCM_ADDR_C0, mem.addr[1]);
vsp1_rpf_write(rpf, dl, VI6_RPF_SRCM_ADDR_C1, mem.addr[2]);
return;
}
/* Stride */
pstride = format->plane_fmt[0].bytesperline
<< VI6_RPF_SRCM_PSTRIDE_Y_SHIFT;
if (format->num_planes > 1)
pstride |= format->plane_fmt[1].bytesperline
<< VI6_RPF_SRCM_PSTRIDE_C_SHIFT;
vsp1_rpf_write(rpf, dl, VI6_RPF_SRCM_PSTRIDE, pstride);
/* Format */
sink_format = vsp1_entity_get_pad_format(&rpf->entity,
rpf->entity.config,
RWPF_PAD_SINK);
source_format = vsp1_entity_get_pad_format(&rpf->entity,
rpf->entity.config,
RWPF_PAD_SOURCE);
infmt = VI6_RPF_INFMT_CIPM
| (fmtinfo->hwfmt << VI6_RPF_INFMT_RDFMT_SHIFT);
if (fmtinfo->swap_yc)
infmt |= VI6_RPF_INFMT_SPYCS;
if (fmtinfo->swap_uv)
infmt |= VI6_RPF_INFMT_SPUVS;
if (sink_format->code != source_format->code)
infmt |= VI6_RPF_INFMT_CSC;
vsp1_rpf_write(rpf, dl, VI6_RPF_INFMT, infmt);
vsp1_rpf_write(rpf, dl, VI6_RPF_DSWAP, fmtinfo->swap);
/* Output location */
if (pipe->bru) {
const struct v4l2_rect *compose;
compose = vsp1_entity_get_pad_selection(pipe->bru,
pipe->bru->config,
rpf->bru_input,
V4L2_SEL_TGT_COMPOSE);
left = compose->left;
top = compose->top;
}
vsp1_rpf_write(rpf, dl, VI6_RPF_LOC,
(left << VI6_RPF_LOC_HCOORD_SHIFT) |
(top << VI6_RPF_LOC_VCOORD_SHIFT));
/*
* On Gen2 use the alpha channel (extended to 8 bits) when available or
* a fixed alpha value set through the V4L2_CID_ALPHA_COMPONENT control
* otherwise.
*
* The Gen3 RPF has extended alpha capability and can both multiply the
* alpha channel by a fixed global alpha value, and multiply the pixel
* components to convert the input to premultiplied alpha.
*
* As alpha premultiplication is available in the BRU for both Gen2 and
* Gen3 we handle it there and use the Gen3 alpha multiplier for global
* alpha multiplication only. This however prevents conversion to
* premultiplied alpha if no BRU is present in the pipeline. If that use
* case turns out to be useful we will revisit the implementation (for
* Gen3 only).
*
* We enable alpha multiplication on Gen3 using the fixed alpha value
* set through the V4L2_CID_ALPHA_COMPONENT control when the input
* contains an alpha channel. On Gen2 the global alpha is ignored in
* that case.
*
* In all cases, disable color keying.
*/
vsp1_rpf_write(rpf, dl, VI6_RPF_ALPH_SEL, VI6_RPF_ALPH_SEL_AEXT_EXT |
(fmtinfo->alpha ? VI6_RPF_ALPH_SEL_ASEL_PACKED
: VI6_RPF_ALPH_SEL_ASEL_FIXED));
if (entity->vsp1->info->gen == 3) {
u32 mult;
if (fmtinfo->alpha) {
/*
* When the input contains an alpha channel enable the
* alpha multiplier. If the input is premultiplied we
* need to multiply both the alpha channel and the pixel
* components by the global alpha value to keep them
* premultiplied. Otherwise multiply the alpha channel
* only.
*/
bool premultiplied = format->flags
& V4L2_PIX_FMT_FLAG_PREMUL_ALPHA;
mult = VI6_RPF_MULT_ALPHA_A_MMD_RATIO
| (premultiplied ?
VI6_RPF_MULT_ALPHA_P_MMD_RATIO :
VI6_RPF_MULT_ALPHA_P_MMD_NONE);
} else {
/*
* When the input doesn't contain an alpha channel the
* global alpha value is applied in the unpacking unit,
* the alpha multiplier isn't needed and must be
* disabled.
*/
mult = VI6_RPF_MULT_ALPHA_A_MMD_NONE
| VI6_RPF_MULT_ALPHA_P_MMD_NONE;
}
rpf->mult_alpha = mult;
}
vsp1_rpf_write(rpf, dl, VI6_RPF_MSK_CTRL, 0);
vsp1_rpf_write(rpf, dl, VI6_RPF_CKEY_CTRL, 0);
}
static const struct vsp1_entity_operations rpf_entity_ops = {
.configure = rpf_configure,
};
/* -----------------------------------------------------------------------------
* Initialization and Cleanup
*/
struct vsp1_rwpf *vsp1_rpf_create(struct vsp1_device *vsp1, unsigned int index)
{
struct vsp1_rwpf *rpf;
char name[6];
int ret;
rpf = devm_kzalloc(vsp1->dev, sizeof(*rpf), GFP_KERNEL);
if (rpf == NULL)
return ERR_PTR(-ENOMEM);
rpf->max_width = RPF_MAX_WIDTH;
rpf->max_height = RPF_MAX_HEIGHT;
rpf->entity.ops = &rpf_entity_ops;
rpf->entity.type = VSP1_ENTITY_RPF;
rpf->entity.index = index;
sprintf(name, "rpf.%u", index);
ret = vsp1_entity_init(vsp1, &rpf->entity, name, 2, &rpf_ops,
MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER);
if (ret < 0)
return ERR_PTR(ret);
/* Initialize the control handler. */
ret = vsp1_rwpf_init_ctrls(rpf, 0);
if (ret < 0) {
dev_err(vsp1->dev, "rpf%u: failed to initialize controls\n",
index);
goto error;
}
v4l2_ctrl_handler_setup(&rpf->ctrls);
return rpf;
error:
vsp1_entity_destroy(&rpf->entity);
return ERR_PTR(ret);
}