OpenCloudOS-Kernel/drivers/clk/qcom/clk-rpm.c

640 lines
17 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2016, Linaro Limited
* Copyright (c) 2014, The Linux Foundation. All rights reserved.
*/
#include <linux/clk-provider.h>
#include <linux/err.h>
#include <linux/export.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/mfd/qcom_rpm.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <dt-bindings/mfd/qcom-rpm.h>
#include <dt-bindings/clock/qcom,rpmcc.h>
#define QCOM_RPM_MISC_CLK_TYPE 0x306b6c63
#define QCOM_RPM_SCALING_ENABLE_ID 0x2
#define QCOM_RPM_XO_MODE_ON 0x2
static const struct clk_parent_data gcc_pxo[] = {
{ .fw_name = "pxo", .name = "pxo_board" },
};
static const struct clk_parent_data gcc_cxo[] = {
{ .fw_name = "cxo", .name = "cxo_board" },
};
#define DEFINE_CLK_RPM(_platform, _name, r_id) \
static struct clk_rpm _platform##_##_name##_a_clk; \
static struct clk_rpm _platform##_##_name##_clk = { \
.rpm_clk_id = (r_id), \
.peer = &_platform##_##_name##_a_clk, \
.rate = INT_MAX, \
.hw.init = &(struct clk_init_data){ \
.ops = &clk_rpm_ops, \
.name = #_name "_clk", \
.parent_data = gcc_pxo, \
.num_parents = ARRAY_SIZE(gcc_pxo), \
}, \
}; \
static struct clk_rpm _platform##_##_name##_a_clk = { \
.rpm_clk_id = (r_id), \
.peer = &_platform##_##_name##_clk, \
.active_only = true, \
.rate = INT_MAX, \
.hw.init = &(struct clk_init_data){ \
.ops = &clk_rpm_ops, \
.name = #_name "_a_clk", \
.parent_data = gcc_pxo, \
.num_parents = ARRAY_SIZE(gcc_pxo), \
}, \
}
#define DEFINE_CLK_RPM_XO_BUFFER(_platform, _name, offset) \
static struct clk_rpm _platform##_##_name = { \
.rpm_clk_id = QCOM_RPM_CXO_BUFFERS, \
.xo_offset = (offset), \
.hw.init = &(struct clk_init_data){ \
.ops = &clk_rpm_xo_ops, \
.name = #_name, \
.parent_data = gcc_cxo, \
.num_parents = ARRAY_SIZE(gcc_cxo), \
}, \
}
#define DEFINE_CLK_RPM_FIXED(_platform, _name, r_id, r) \
static struct clk_rpm _platform##_##_name = { \
.rpm_clk_id = (r_id), \
.rate = (r), \
.hw.init = &(struct clk_init_data){ \
.ops = &clk_rpm_fixed_ops, \
.name = #_name, \
.parent_data = gcc_pxo, \
.num_parents = ARRAY_SIZE(gcc_pxo), \
}, \
}
#define to_clk_rpm(_hw) container_of(_hw, struct clk_rpm, hw)
struct rpm_cc;
struct clk_rpm {
const int rpm_clk_id;
const int xo_offset;
const bool active_only;
unsigned long rate;
bool enabled;
bool branch;
struct clk_rpm *peer;
struct clk_hw hw;
struct qcom_rpm *rpm;
struct rpm_cc *rpm_cc;
};
struct rpm_cc {
struct qcom_rpm *rpm;
struct clk_rpm **clks;
size_t num_clks;
u32 xo_buffer_value;
struct mutex xo_lock;
};
struct rpm_clk_desc {
struct clk_rpm **clks;
size_t num_clks;
};
static DEFINE_MUTEX(rpm_clk_lock);
static int clk_rpm_handoff(struct clk_rpm *r)
{
int ret;
u32 value = INT_MAX;
/*
* The vendor tree simply reads the status for this
* RPM clock.
*/
if (r->rpm_clk_id == QCOM_RPM_PLL_4 ||
r->rpm_clk_id == QCOM_RPM_CXO_BUFFERS)
return 0;
ret = qcom_rpm_write(r->rpm, QCOM_RPM_ACTIVE_STATE,
r->rpm_clk_id, &value, 1);
if (ret)
return ret;
ret = qcom_rpm_write(r->rpm, QCOM_RPM_SLEEP_STATE,
r->rpm_clk_id, &value, 1);
if (ret)
return ret;
return 0;
}
static int clk_rpm_set_rate_active(struct clk_rpm *r, unsigned long rate)
{
u32 value = DIV_ROUND_UP(rate, 1000); /* to kHz */
return qcom_rpm_write(r->rpm, QCOM_RPM_ACTIVE_STATE,
r->rpm_clk_id, &value, 1);
}
static int clk_rpm_set_rate_sleep(struct clk_rpm *r, unsigned long rate)
{
u32 value = DIV_ROUND_UP(rate, 1000); /* to kHz */
return qcom_rpm_write(r->rpm, QCOM_RPM_SLEEP_STATE,
r->rpm_clk_id, &value, 1);
}
static void to_active_sleep(struct clk_rpm *r, unsigned long rate,
unsigned long *active, unsigned long *sleep)
{
*active = rate;
/*
* Active-only clocks don't care what the rate is during sleep. So,
* they vote for zero.
*/
if (r->active_only)
*sleep = 0;
else
*sleep = *active;
}
static int clk_rpm_prepare(struct clk_hw *hw)
{
struct clk_rpm *r = to_clk_rpm(hw);
struct clk_rpm *peer = r->peer;
unsigned long this_rate = 0, this_sleep_rate = 0;
unsigned long peer_rate = 0, peer_sleep_rate = 0;
unsigned long active_rate, sleep_rate;
int ret = 0;
mutex_lock(&rpm_clk_lock);
/* Don't send requests to the RPM if the rate has not been set. */
if (!r->rate)
goto out;
to_active_sleep(r, r->rate, &this_rate, &this_sleep_rate);
/* Take peer clock's rate into account only if it's enabled. */
if (peer->enabled)
to_active_sleep(peer, peer->rate,
&peer_rate, &peer_sleep_rate);
active_rate = max(this_rate, peer_rate);
if (r->branch)
active_rate = !!active_rate;
ret = clk_rpm_set_rate_active(r, active_rate);
if (ret)
goto out;
sleep_rate = max(this_sleep_rate, peer_sleep_rate);
if (r->branch)
sleep_rate = !!sleep_rate;
ret = clk_rpm_set_rate_sleep(r, sleep_rate);
if (ret)
/* Undo the active set vote and restore it */
ret = clk_rpm_set_rate_active(r, peer_rate);
out:
if (!ret)
r->enabled = true;
mutex_unlock(&rpm_clk_lock);
return ret;
}
static void clk_rpm_unprepare(struct clk_hw *hw)
{
struct clk_rpm *r = to_clk_rpm(hw);
struct clk_rpm *peer = r->peer;
unsigned long peer_rate = 0, peer_sleep_rate = 0;
unsigned long active_rate, sleep_rate;
int ret;
mutex_lock(&rpm_clk_lock);
if (!r->rate)
goto out;
/* Take peer clock's rate into account only if it's enabled. */
if (peer->enabled)
to_active_sleep(peer, peer->rate, &peer_rate,
&peer_sleep_rate);
active_rate = r->branch ? !!peer_rate : peer_rate;
ret = clk_rpm_set_rate_active(r, active_rate);
if (ret)
goto out;
sleep_rate = r->branch ? !!peer_sleep_rate : peer_sleep_rate;
ret = clk_rpm_set_rate_sleep(r, sleep_rate);
if (ret)
goto out;
r->enabled = false;
out:
mutex_unlock(&rpm_clk_lock);
}
static int clk_rpm_xo_prepare(struct clk_hw *hw)
{
struct clk_rpm *r = to_clk_rpm(hw);
struct rpm_cc *rcc = r->rpm_cc;
int ret, clk_id = r->rpm_clk_id;
u32 value;
mutex_lock(&rcc->xo_lock);
value = rcc->xo_buffer_value | (QCOM_RPM_XO_MODE_ON << r->xo_offset);
ret = qcom_rpm_write(r->rpm, QCOM_RPM_ACTIVE_STATE, clk_id, &value, 1);
if (!ret) {
r->enabled = true;
rcc->xo_buffer_value = value;
}
mutex_unlock(&rcc->xo_lock);
return ret;
}
static void clk_rpm_xo_unprepare(struct clk_hw *hw)
{
struct clk_rpm *r = to_clk_rpm(hw);
struct rpm_cc *rcc = r->rpm_cc;
int ret, clk_id = r->rpm_clk_id;
u32 value;
mutex_lock(&rcc->xo_lock);
value = rcc->xo_buffer_value & ~(QCOM_RPM_XO_MODE_ON << r->xo_offset);
ret = qcom_rpm_write(r->rpm, QCOM_RPM_ACTIVE_STATE, clk_id, &value, 1);
if (!ret) {
r->enabled = false;
rcc->xo_buffer_value = value;
}
mutex_unlock(&rcc->xo_lock);
}
static int clk_rpm_fixed_prepare(struct clk_hw *hw)
{
struct clk_rpm *r = to_clk_rpm(hw);
u32 value = 1;
int ret;
ret = qcom_rpm_write(r->rpm, QCOM_RPM_ACTIVE_STATE,
r->rpm_clk_id, &value, 1);
if (!ret)
r->enabled = true;
return ret;
}
static void clk_rpm_fixed_unprepare(struct clk_hw *hw)
{
struct clk_rpm *r = to_clk_rpm(hw);
u32 value = 0;
int ret;
ret = qcom_rpm_write(r->rpm, QCOM_RPM_ACTIVE_STATE,
r->rpm_clk_id, &value, 1);
if (!ret)
r->enabled = false;
}
static int clk_rpm_set_rate(struct clk_hw *hw,
unsigned long rate, unsigned long parent_rate)
{
struct clk_rpm *r = to_clk_rpm(hw);
struct clk_rpm *peer = r->peer;
unsigned long active_rate, sleep_rate;
unsigned long this_rate = 0, this_sleep_rate = 0;
unsigned long peer_rate = 0, peer_sleep_rate = 0;
int ret = 0;
mutex_lock(&rpm_clk_lock);
if (!r->enabled)
goto out;
to_active_sleep(r, rate, &this_rate, &this_sleep_rate);
/* Take peer clock's rate into account only if it's enabled. */
if (peer->enabled)
to_active_sleep(peer, peer->rate,
&peer_rate, &peer_sleep_rate);
active_rate = max(this_rate, peer_rate);
ret = clk_rpm_set_rate_active(r, active_rate);
if (ret)
goto out;
sleep_rate = max(this_sleep_rate, peer_sleep_rate);
ret = clk_rpm_set_rate_sleep(r, sleep_rate);
if (ret)
goto out;
r->rate = rate;
out:
mutex_unlock(&rpm_clk_lock);
return ret;
}
static long clk_rpm_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
/*
* RPM handles rate rounding and we don't have a way to
* know what the rate will be, so just return whatever
* rate is requested.
*/
return rate;
}
static unsigned long clk_rpm_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_rpm *r = to_clk_rpm(hw);
/*
* RPM handles rate rounding and we don't have a way to
* know what the rate will be, so just return whatever
* rate was set.
*/
return r->rate;
}
static const struct clk_ops clk_rpm_xo_ops = {
.prepare = clk_rpm_xo_prepare,
.unprepare = clk_rpm_xo_unprepare,
};
static const struct clk_ops clk_rpm_fixed_ops = {
.prepare = clk_rpm_fixed_prepare,
.unprepare = clk_rpm_fixed_unprepare,
.round_rate = clk_rpm_round_rate,
.recalc_rate = clk_rpm_recalc_rate,
};
static const struct clk_ops clk_rpm_ops = {
.prepare = clk_rpm_prepare,
.unprepare = clk_rpm_unprepare,
.set_rate = clk_rpm_set_rate,
.round_rate = clk_rpm_round_rate,
.recalc_rate = clk_rpm_recalc_rate,
};
/* MSM8660/APQ8060 */
DEFINE_CLK_RPM(msm8660, afab, QCOM_RPM_APPS_FABRIC_CLK);
DEFINE_CLK_RPM(msm8660, sfab, QCOM_RPM_SYS_FABRIC_CLK);
DEFINE_CLK_RPM(msm8660, mmfab, QCOM_RPM_MM_FABRIC_CLK);
DEFINE_CLK_RPM(msm8660, daytona, QCOM_RPM_DAYTONA_FABRIC_CLK);
DEFINE_CLK_RPM(msm8660, sfpb, QCOM_RPM_SFPB_CLK);
DEFINE_CLK_RPM(msm8660, cfpb, QCOM_RPM_CFPB_CLK);
DEFINE_CLK_RPM(msm8660, mmfpb, QCOM_RPM_MMFPB_CLK);
DEFINE_CLK_RPM(msm8660, smi, QCOM_RPM_SMI_CLK);
DEFINE_CLK_RPM(msm8660, ebi1, QCOM_RPM_EBI1_CLK);
DEFINE_CLK_RPM_FIXED(msm8660, pll4_clk, QCOM_RPM_PLL_4, 540672000);
static struct clk_rpm *msm8660_clks[] = {
[RPM_APPS_FABRIC_CLK] = &msm8660_afab_clk,
[RPM_APPS_FABRIC_A_CLK] = &msm8660_afab_a_clk,
[RPM_SYS_FABRIC_CLK] = &msm8660_sfab_clk,
[RPM_SYS_FABRIC_A_CLK] = &msm8660_sfab_a_clk,
[RPM_MM_FABRIC_CLK] = &msm8660_mmfab_clk,
[RPM_MM_FABRIC_A_CLK] = &msm8660_mmfab_a_clk,
[RPM_DAYTONA_FABRIC_CLK] = &msm8660_daytona_clk,
[RPM_DAYTONA_FABRIC_A_CLK] = &msm8660_daytona_a_clk,
[RPM_SFPB_CLK] = &msm8660_sfpb_clk,
[RPM_SFPB_A_CLK] = &msm8660_sfpb_a_clk,
[RPM_CFPB_CLK] = &msm8660_cfpb_clk,
[RPM_CFPB_A_CLK] = &msm8660_cfpb_a_clk,
[RPM_MMFPB_CLK] = &msm8660_mmfpb_clk,
[RPM_MMFPB_A_CLK] = &msm8660_mmfpb_a_clk,
[RPM_SMI_CLK] = &msm8660_smi_clk,
[RPM_SMI_A_CLK] = &msm8660_smi_a_clk,
[RPM_EBI1_CLK] = &msm8660_ebi1_clk,
[RPM_EBI1_A_CLK] = &msm8660_ebi1_a_clk,
[RPM_PLL4_CLK] = &msm8660_pll4_clk,
};
static const struct rpm_clk_desc rpm_clk_msm8660 = {
.clks = msm8660_clks,
.num_clks = ARRAY_SIZE(msm8660_clks),
};
/* apq8064 */
DEFINE_CLK_RPM(apq8064, afab, QCOM_RPM_APPS_FABRIC_CLK);
DEFINE_CLK_RPM(apq8064, cfpb, QCOM_RPM_CFPB_CLK);
DEFINE_CLK_RPM(apq8064, daytona, QCOM_RPM_DAYTONA_FABRIC_CLK);
DEFINE_CLK_RPM(apq8064, ebi1, QCOM_RPM_EBI1_CLK);
DEFINE_CLK_RPM(apq8064, mmfab, QCOM_RPM_MM_FABRIC_CLK);
DEFINE_CLK_RPM(apq8064, mmfpb, QCOM_RPM_MMFPB_CLK);
DEFINE_CLK_RPM(apq8064, sfab, QCOM_RPM_SYS_FABRIC_CLK);
DEFINE_CLK_RPM(apq8064, sfpb, QCOM_RPM_SFPB_CLK);
DEFINE_CLK_RPM(apq8064, qdss, QCOM_RPM_QDSS_CLK);
DEFINE_CLK_RPM_XO_BUFFER(apq8064, xo_d0_clk, 0);
DEFINE_CLK_RPM_XO_BUFFER(apq8064, xo_d1_clk, 8);
DEFINE_CLK_RPM_XO_BUFFER(apq8064, xo_a0_clk, 16);
DEFINE_CLK_RPM_XO_BUFFER(apq8064, xo_a1_clk, 24);
DEFINE_CLK_RPM_XO_BUFFER(apq8064, xo_a2_clk, 28);
static struct clk_rpm *apq8064_clks[] = {
[RPM_APPS_FABRIC_CLK] = &apq8064_afab_clk,
[RPM_APPS_FABRIC_A_CLK] = &apq8064_afab_a_clk,
[RPM_CFPB_CLK] = &apq8064_cfpb_clk,
[RPM_CFPB_A_CLK] = &apq8064_cfpb_a_clk,
[RPM_DAYTONA_FABRIC_CLK] = &apq8064_daytona_clk,
[RPM_DAYTONA_FABRIC_A_CLK] = &apq8064_daytona_a_clk,
[RPM_EBI1_CLK] = &apq8064_ebi1_clk,
[RPM_EBI1_A_CLK] = &apq8064_ebi1_a_clk,
[RPM_MM_FABRIC_CLK] = &apq8064_mmfab_clk,
[RPM_MM_FABRIC_A_CLK] = &apq8064_mmfab_a_clk,
[RPM_MMFPB_CLK] = &apq8064_mmfpb_clk,
[RPM_MMFPB_A_CLK] = &apq8064_mmfpb_a_clk,
[RPM_SYS_FABRIC_CLK] = &apq8064_sfab_clk,
[RPM_SYS_FABRIC_A_CLK] = &apq8064_sfab_a_clk,
[RPM_SFPB_CLK] = &apq8064_sfpb_clk,
[RPM_SFPB_A_CLK] = &apq8064_sfpb_a_clk,
[RPM_QDSS_CLK] = &apq8064_qdss_clk,
[RPM_QDSS_A_CLK] = &apq8064_qdss_a_clk,
[RPM_XO_D0] = &apq8064_xo_d0_clk,
[RPM_XO_D1] = &apq8064_xo_d1_clk,
[RPM_XO_A0] = &apq8064_xo_a0_clk,
[RPM_XO_A1] = &apq8064_xo_a1_clk,
[RPM_XO_A2] = &apq8064_xo_a2_clk,
};
static const struct rpm_clk_desc rpm_clk_apq8064 = {
.clks = apq8064_clks,
.num_clks = ARRAY_SIZE(apq8064_clks),
};
/* ipq806x */
DEFINE_CLK_RPM(ipq806x, afab, QCOM_RPM_APPS_FABRIC_CLK);
DEFINE_CLK_RPM(ipq806x, cfpb, QCOM_RPM_CFPB_CLK);
DEFINE_CLK_RPM(ipq806x, daytona, QCOM_RPM_DAYTONA_FABRIC_CLK);
DEFINE_CLK_RPM(ipq806x, ebi1, QCOM_RPM_EBI1_CLK);
DEFINE_CLK_RPM(ipq806x, sfab, QCOM_RPM_SYS_FABRIC_CLK);
DEFINE_CLK_RPM(ipq806x, sfpb, QCOM_RPM_SFPB_CLK);
DEFINE_CLK_RPM(ipq806x, nss_fabric_0, QCOM_RPM_NSS_FABRIC_0_CLK);
DEFINE_CLK_RPM(ipq806x, nss_fabric_1, QCOM_RPM_NSS_FABRIC_1_CLK);
static struct clk_rpm *ipq806x_clks[] = {
[RPM_APPS_FABRIC_CLK] = &ipq806x_afab_clk,
[RPM_APPS_FABRIC_A_CLK] = &ipq806x_afab_a_clk,
[RPM_CFPB_CLK] = &ipq806x_cfpb_clk,
[RPM_CFPB_A_CLK] = &ipq806x_cfpb_a_clk,
[RPM_DAYTONA_FABRIC_CLK] = &ipq806x_daytona_clk,
[RPM_DAYTONA_FABRIC_A_CLK] = &ipq806x_daytona_a_clk,
[RPM_EBI1_CLK] = &ipq806x_ebi1_clk,
[RPM_EBI1_A_CLK] = &ipq806x_ebi1_a_clk,
[RPM_SYS_FABRIC_CLK] = &ipq806x_sfab_clk,
[RPM_SYS_FABRIC_A_CLK] = &ipq806x_sfab_a_clk,
[RPM_SFPB_CLK] = &ipq806x_sfpb_clk,
[RPM_SFPB_A_CLK] = &ipq806x_sfpb_a_clk,
[RPM_NSS_FABRIC_0_CLK] = &ipq806x_nss_fabric_0_clk,
[RPM_NSS_FABRIC_0_A_CLK] = &ipq806x_nss_fabric_0_a_clk,
[RPM_NSS_FABRIC_1_CLK] = &ipq806x_nss_fabric_1_clk,
[RPM_NSS_FABRIC_1_A_CLK] = &ipq806x_nss_fabric_1_a_clk,
};
static const struct rpm_clk_desc rpm_clk_ipq806x = {
.clks = ipq806x_clks,
.num_clks = ARRAY_SIZE(ipq806x_clks),
};
static const struct of_device_id rpm_clk_match_table[] = {
{ .compatible = "qcom,rpmcc-msm8660", .data = &rpm_clk_msm8660 },
{ .compatible = "qcom,rpmcc-apq8060", .data = &rpm_clk_msm8660 },
{ .compatible = "qcom,rpmcc-apq8064", .data = &rpm_clk_apq8064 },
{ .compatible = "qcom,rpmcc-ipq806x", .data = &rpm_clk_ipq806x },
{ }
};
MODULE_DEVICE_TABLE(of, rpm_clk_match_table);
static struct clk_hw *qcom_rpm_clk_hw_get(struct of_phandle_args *clkspec,
void *data)
{
struct rpm_cc *rcc = data;
unsigned int idx = clkspec->args[0];
if (idx >= rcc->num_clks) {
pr_err("%s: invalid index %u\n", __func__, idx);
return ERR_PTR(-EINVAL);
}
return rcc->clks[idx] ? &rcc->clks[idx]->hw : ERR_PTR(-ENOENT);
}
static int rpm_clk_probe(struct platform_device *pdev)
{
struct rpm_cc *rcc;
int ret;
size_t num_clks, i;
struct qcom_rpm *rpm;
struct clk_rpm **rpm_clks;
const struct rpm_clk_desc *desc;
rpm = dev_get_drvdata(pdev->dev.parent);
if (!rpm) {
dev_err(&pdev->dev, "Unable to retrieve handle to RPM\n");
return -ENODEV;
}
desc = of_device_get_match_data(&pdev->dev);
if (!desc)
return -EINVAL;
rpm_clks = desc->clks;
num_clks = desc->num_clks;
rcc = devm_kzalloc(&pdev->dev, sizeof(*rcc), GFP_KERNEL);
if (!rcc)
return -ENOMEM;
rcc->clks = rpm_clks;
rcc->num_clks = num_clks;
mutex_init(&rcc->xo_lock);
for (i = 0; i < num_clks; i++) {
if (!rpm_clks[i])
continue;
rpm_clks[i]->rpm = rpm;
rpm_clks[i]->rpm_cc = rcc;
ret = clk_rpm_handoff(rpm_clks[i]);
if (ret)
goto err;
}
for (i = 0; i < num_clks; i++) {
if (!rpm_clks[i])
continue;
ret = devm_clk_hw_register(&pdev->dev, &rpm_clks[i]->hw);
if (ret)
goto err;
}
ret = of_clk_add_hw_provider(pdev->dev.of_node, qcom_rpm_clk_hw_get,
rcc);
if (ret)
goto err;
return 0;
err:
dev_err(&pdev->dev, "Error registering RPM Clock driver (%d)\n", ret);
return ret;
}
static int rpm_clk_remove(struct platform_device *pdev)
{
of_clk_del_provider(pdev->dev.of_node);
return 0;
}
static struct platform_driver rpm_clk_driver = {
.driver = {
.name = "qcom-clk-rpm",
.of_match_table = rpm_clk_match_table,
},
.probe = rpm_clk_probe,
.remove = rpm_clk_remove,
};
static int __init rpm_clk_init(void)
{
return platform_driver_register(&rpm_clk_driver);
}
core_initcall(rpm_clk_init);
static void __exit rpm_clk_exit(void)
{
platform_driver_unregister(&rpm_clk_driver);
}
module_exit(rpm_clk_exit);
MODULE_DESCRIPTION("Qualcomm RPM Clock Controller Driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:qcom-clk-rpm");