OpenCloudOS-Kernel/drivers/iio/adc/qcom-vadc-common.h

164 lines
5.0 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Code shared between the different Qualcomm PMIC voltage ADCs
*/
#ifndef QCOM_VADC_COMMON_H
#define QCOM_VADC_COMMON_H
#define VADC_CONV_TIME_MIN_US 2000
#define VADC_CONV_TIME_MAX_US 2100
/* Min ADC code represents 0V */
#define VADC_MIN_ADC_CODE 0x6000
/* Max ADC code represents full-scale range of 1.8V */
#define VADC_MAX_ADC_CODE 0xa800
#define VADC_ABSOLUTE_RANGE_UV 625000
#define VADC_RATIOMETRIC_RANGE 1800
#define VADC_DEF_PRESCALING 0 /* 1:1 */
#define VADC_DEF_DECIMATION 0 /* 512 */
#define VADC_DEF_HW_SETTLE_TIME 0 /* 0 us */
#define VADC_DEF_AVG_SAMPLES 0 /* 1 sample */
#define VADC_DEF_CALIB_TYPE VADC_CALIB_ABSOLUTE
#define VADC_DECIMATION_MIN 512
#define VADC_DECIMATION_MAX 4096
#define ADC5_DEF_VBAT_PRESCALING 1 /* 1:3 */
#define ADC5_DECIMATION_SHORT 250
#define ADC5_DECIMATION_MEDIUM 420
#define ADC5_DECIMATION_LONG 840
/* Default decimation - 1024 for rev2, 840 for pmic5 */
#define ADC5_DECIMATION_DEFAULT 2
#define ADC5_DECIMATION_SAMPLES_MAX 3
#define VADC_HW_SETTLE_DELAY_MAX 10000
#define VADC_HW_SETTLE_SAMPLES_MAX 16
#define VADC_AVG_SAMPLES_MAX 512
#define ADC5_AVG_SAMPLES_MAX 16
#define KELVINMIL_CELSIUSMIL 273150
#define PMIC5_CHG_TEMP_SCALE_FACTOR 377500
#define PMIC5_SMB_TEMP_CONSTANT 419400
#define PMIC5_SMB_TEMP_SCALE_FACTOR 356
#define PMI_CHG_SCALE_1 -138890
#define PMI_CHG_SCALE_2 391750000000LL
#define VADC5_MAX_CODE 0x7fff
#define ADC5_FULL_SCALE_CODE 0x70e4
#define ADC5_USR_DATA_CHECK 0x8000
/**
* struct vadc_map_pt - Map the graph representation for ADC channel
* @x: Represent the ADC digitized code.
* @y: Represent the physical data which can be temperature, voltage,
* resistance.
*/
struct vadc_map_pt {
s32 x;
s32 y;
};
/*
* VADC_CALIB_ABSOLUTE: uses the 625mV and 1.25V as reference channels.
* VADC_CALIB_RATIOMETRIC: uses the reference voltage (1.8V) and GND for
* calibration.
*/
enum vadc_calibration {
VADC_CALIB_ABSOLUTE = 0,
VADC_CALIB_RATIOMETRIC
};
/**
* struct vadc_linear_graph - Represent ADC characteristics.
* @dy: numerator slope to calculate the gain.
* @dx: denominator slope to calculate the gain.
* @gnd: A/D word of the ground reference used for the channel.
*
* Each ADC device has different offset and gain parameters which are
* computed to calibrate the device.
*/
struct vadc_linear_graph {
s32 dy;
s32 dx;
s32 gnd;
};
/**
* struct vadc_prescale_ratio - Represent scaling ratio for ADC input.
* @num: the inverse numerator of the gain applied to the input channel.
* @den: the inverse denominator of the gain applied to the input channel.
*/
struct vadc_prescale_ratio {
u32 num;
u32 den;
};
/**
* enum vadc_scale_fn_type - Scaling function to convert ADC code to
* physical scaled units for the channel.
* SCALE_DEFAULT: Default scaling to convert raw adc code to voltage (uV).
* SCALE_THERM_100K_PULLUP: Returns temperature in millidegC.
* Uses a mapping table with 100K pullup.
* SCALE_PMIC_THERM: Returns result in milli degree's Centigrade.
* SCALE_XOTHERM: Returns XO thermistor voltage in millidegC.
* SCALE_PMI_CHG_TEMP: Conversion for PMI CHG temp
* SCALE_HW_CALIB_DEFAULT: Default scaling to convert raw adc code to
* voltage (uV) with hardware applied offset/slope values to adc code.
* SCALE_HW_CALIB_THERM_100K_PULLUP: Returns temperature in millidegC using
* lookup table. The hardware applies offset/slope to adc code.
* SCALE_HW_CALIB_XOTHERM: Returns XO thermistor voltage in millidegC using
* 100k pullup. The hardware applies offset/slope to adc code.
* SCALE_HW_CALIB_PMIC_THERM: Returns result in milli degree's Centigrade.
* The hardware applies offset/slope to adc code.
* SCALE_HW_CALIB_PM5_CHG_TEMP: Returns result in millidegrees for PMIC5
* charger temperature.
* SCALE_HW_CALIB_PM5_SMB_TEMP: Returns result in millidegrees for PMIC5
* SMB1390 temperature.
*/
enum vadc_scale_fn_type {
SCALE_DEFAULT = 0,
SCALE_THERM_100K_PULLUP,
SCALE_PMIC_THERM,
SCALE_XOTHERM,
SCALE_PMI_CHG_TEMP,
SCALE_HW_CALIB_DEFAULT,
SCALE_HW_CALIB_THERM_100K_PULLUP,
SCALE_HW_CALIB_XOTHERM,
SCALE_HW_CALIB_PMIC_THERM,
SCALE_HW_CALIB_PM5_CHG_TEMP,
SCALE_HW_CALIB_PM5_SMB_TEMP,
SCALE_HW_CALIB_INVALID,
};
struct adc5_data {
const u32 full_scale_code_volt;
const u32 full_scale_code_cur;
const struct adc5_channels *adc_chans;
unsigned int *decimation;
unsigned int *hw_settle_1;
unsigned int *hw_settle_2;
};
int qcom_vadc_scale(enum vadc_scale_fn_type scaletype,
const struct vadc_linear_graph *calib_graph,
const struct vadc_prescale_ratio *prescale,
bool absolute,
u16 adc_code, int *result_mdec);
struct qcom_adc5_scale_type {
int (*scale_fn)(const struct vadc_prescale_ratio *prescale,
const struct adc5_data *data, u16 adc_code, int *result);
};
int qcom_adc5_hw_scale(enum vadc_scale_fn_type scaletype,
const struct vadc_prescale_ratio *prescale,
const struct adc5_data *data,
u16 adc_code, int *result_mdec);
int qcom_vadc_decimation_from_dt(u32 value);
#endif /* QCOM_VADC_COMMON_H */