OpenCloudOS-Kernel/fs/xfs/linux-2.6/xfs_super.c

1010 lines
22 KiB
C
Raw Normal View History

/*
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include "xfs_bit.h"
#include "xfs_log.h"
#include "xfs_clnt.h"
#include "xfs_inum.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_dir.h"
#include "xfs_dir2.h"
#include "xfs_alloc.h"
#include "xfs_dmapi.h"
#include "xfs_quota.h"
#include "xfs_mount.h"
#include "xfs_bmap_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_dir_sf.h"
#include "xfs_dir2_sf.h"
#include "xfs_attr_sf.h"
#include "xfs_dinode.h"
#include "xfs_inode.h"
#include "xfs_btree.h"
#include "xfs_ialloc.h"
#include "xfs_bmap.h"
#include "xfs_rtalloc.h"
#include "xfs_error.h"
#include "xfs_itable.h"
#include "xfs_rw.h"
#include "xfs_acl.h"
#include "xfs_cap.h"
#include "xfs_mac.h"
#include "xfs_attr.h"
#include "xfs_buf_item.h"
#include "xfs_utils.h"
#include "xfs_version.h"
#include <linux/namei.h>
#include <linux/init.h>
#include <linux/mount.h>
#include <linux/mempool.h>
#include <linux/writeback.h>
#include <linux/kthread.h>
STATIC struct quotactl_ops linvfs_qops;
STATIC struct super_operations linvfs_sops;
STATIC kmem_zone_t *xfs_vnode_zone;
STATIC kmem_zone_t *xfs_ioend_zone;
mempool_t *xfs_ioend_pool;
STATIC struct xfs_mount_args *
xfs_args_allocate(
struct super_block *sb)
{
struct xfs_mount_args *args;
args = kmem_zalloc(sizeof(struct xfs_mount_args), KM_SLEEP);
args->logbufs = args->logbufsize = -1;
strncpy(args->fsname, sb->s_id, MAXNAMELEN);
/* Copy the already-parsed mount(2) flags we're interested in */
if (sb->s_flags & MS_DIRSYNC)
args->flags |= XFSMNT_DIRSYNC;
if (sb->s_flags & MS_SYNCHRONOUS)
args->flags |= XFSMNT_WSYNC;
/* Default to 32 bit inodes on Linux all the time */
args->flags |= XFSMNT_32BITINODES;
return args;
}
__uint64_t
xfs_max_file_offset(
unsigned int blockshift)
{
unsigned int pagefactor = 1;
unsigned int bitshift = BITS_PER_LONG - 1;
/* Figure out maximum filesize, on Linux this can depend on
* the filesystem blocksize (on 32 bit platforms).
* __block_prepare_write does this in an [unsigned] long...
* page->index << (PAGE_CACHE_SHIFT - bbits)
* So, for page sized blocks (4K on 32 bit platforms),
* this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
* (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
* but for smaller blocksizes it is less (bbits = log2 bsize).
* Note1: get_block_t takes a long (implicit cast from above)
* Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
* can optionally convert the [unsigned] long from above into
* an [unsigned] long long.
*/
#if BITS_PER_LONG == 32
# if defined(CONFIG_LBD)
ASSERT(sizeof(sector_t) == 8);
pagefactor = PAGE_CACHE_SIZE;
bitshift = BITS_PER_LONG;
# else
pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift);
# endif
#endif
return (((__uint64_t)pagefactor) << bitshift) - 1;
}
STATIC __inline__ void
xfs_set_inodeops(
struct inode *inode)
{
switch (inode->i_mode & S_IFMT) {
case S_IFREG:
inode->i_op = &linvfs_file_inode_operations;
inode->i_fop = &xfs_file_operations;
inode->i_mapping->a_ops = &xfs_address_space_operations;
break;
case S_IFDIR:
inode->i_op = &linvfs_dir_inode_operations;
inode->i_fop = &xfs_dir_file_operations;
break;
case S_IFLNK:
inode->i_op = &linvfs_symlink_inode_operations;
if (inode->i_blocks)
inode->i_mapping->a_ops = &xfs_address_space_operations;
break;
default:
inode->i_op = &linvfs_file_inode_operations;
init_special_inode(inode, inode->i_mode, inode->i_rdev);
break;
}
}
STATIC __inline__ void
xfs_revalidate_inode(
xfs_mount_t *mp,
vnode_t *vp,
xfs_inode_t *ip)
{
struct inode *inode = LINVFS_GET_IP(vp);
inode->i_mode = ip->i_d.di_mode;
inode->i_nlink = ip->i_d.di_nlink;
inode->i_uid = ip->i_d.di_uid;
inode->i_gid = ip->i_d.di_gid;
switch (inode->i_mode & S_IFMT) {
case S_IFBLK:
case S_IFCHR:
inode->i_rdev =
MKDEV(sysv_major(ip->i_df.if_u2.if_rdev) & 0x1ff,
sysv_minor(ip->i_df.if_u2.if_rdev));
break;
default:
inode->i_rdev = 0;
break;
}
inode->i_blksize = xfs_preferred_iosize(mp);
inode->i_generation = ip->i_d.di_gen;
i_size_write(inode, ip->i_d.di_size);
inode->i_blocks =
XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks);
inode->i_atime.tv_sec = ip->i_d.di_atime.t_sec;
inode->i_atime.tv_nsec = ip->i_d.di_atime.t_nsec;
inode->i_mtime.tv_sec = ip->i_d.di_mtime.t_sec;
inode->i_mtime.tv_nsec = ip->i_d.di_mtime.t_nsec;
inode->i_ctime.tv_sec = ip->i_d.di_ctime.t_sec;
inode->i_ctime.tv_nsec = ip->i_d.di_ctime.t_nsec;
if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE)
inode->i_flags |= S_IMMUTABLE;
else
inode->i_flags &= ~S_IMMUTABLE;
if (ip->i_d.di_flags & XFS_DIFLAG_APPEND)
inode->i_flags |= S_APPEND;
else
inode->i_flags &= ~S_APPEND;
if (ip->i_d.di_flags & XFS_DIFLAG_SYNC)
inode->i_flags |= S_SYNC;
else
inode->i_flags &= ~S_SYNC;
if (ip->i_d.di_flags & XFS_DIFLAG_NOATIME)
inode->i_flags |= S_NOATIME;
else
inode->i_flags &= ~S_NOATIME;
vp->v_flag &= ~VMODIFIED;
}
void
xfs_initialize_vnode(
bhv_desc_t *bdp,
vnode_t *vp,
bhv_desc_t *inode_bhv,
int unlock)
{
xfs_inode_t *ip = XFS_BHVTOI(inode_bhv);
struct inode *inode = LINVFS_GET_IP(vp);
if (!inode_bhv->bd_vobj) {
vp->v_vfsp = bhvtovfs(bdp);
bhv_desc_init(inode_bhv, ip, vp, &xfs_vnodeops);
bhv_insert(VN_BHV_HEAD(vp), inode_bhv);
}
/*
* We need to set the ops vectors, and unlock the inode, but if
* we have been called during the new inode create process, it is
* too early to fill in the Linux inode. We will get called a
* second time once the inode is properly set up, and then we can
* finish our work.
*/
if (ip->i_d.di_mode != 0 && unlock && (inode->i_state & I_NEW)) {
xfs_revalidate_inode(XFS_BHVTOM(bdp), vp, ip);
xfs_set_inodeops(inode);
ip->i_flags &= ~XFS_INEW;
barrier();
unlock_new_inode(inode);
}
}
int
xfs_blkdev_get(
xfs_mount_t *mp,
const char *name,
struct block_device **bdevp)
{
int error = 0;
*bdevp = open_bdev_excl(name, 0, mp);
if (IS_ERR(*bdevp)) {
error = PTR_ERR(*bdevp);
printk("XFS: Invalid device [%s], error=%d\n", name, error);
}
return -error;
}
void
xfs_blkdev_put(
struct block_device *bdev)
{
if (bdev)
close_bdev_excl(bdev);
}
/*
* Try to write out the superblock using barriers.
*/
STATIC int
xfs_barrier_test(
xfs_mount_t *mp)
{
xfs_buf_t *sbp = xfs_getsb(mp, 0);
int error;
XFS_BUF_UNDONE(sbp);
XFS_BUF_UNREAD(sbp);
XFS_BUF_UNDELAYWRITE(sbp);
XFS_BUF_WRITE(sbp);
XFS_BUF_UNASYNC(sbp);
XFS_BUF_ORDERED(sbp);
xfsbdstrat(mp, sbp);
error = xfs_iowait(sbp);
/*
* Clear all the flags we set and possible error state in the
* buffer. We only did the write to try out whether barriers
* worked and shouldn't leave any traces in the superblock
* buffer.
*/
XFS_BUF_DONE(sbp);
XFS_BUF_ERROR(sbp, 0);
XFS_BUF_UNORDERED(sbp);
xfs_buf_relse(sbp);
return error;
}
void
xfs_mountfs_check_barriers(xfs_mount_t *mp)
{
int error;
if (mp->m_logdev_targp != mp->m_ddev_targp) {
xfs_fs_cmn_err(CE_NOTE, mp,
"Disabling barriers, not supported with external log device");
mp->m_flags &= ~XFS_MOUNT_BARRIER;
return;
}
if (mp->m_ddev_targp->bt_bdev->bd_disk->queue->ordered ==
QUEUE_ORDERED_NONE) {
xfs_fs_cmn_err(CE_NOTE, mp,
"Disabling barriers, not supported by the underlying device");
mp->m_flags &= ~XFS_MOUNT_BARRIER;
return;
}
error = xfs_barrier_test(mp);
if (error) {
xfs_fs_cmn_err(CE_NOTE, mp,
"Disabling barriers, trial barrier write failed");
mp->m_flags &= ~XFS_MOUNT_BARRIER;
return;
}
}
void
xfs_blkdev_issue_flush(
xfs_buftarg_t *buftarg)
{
blkdev_issue_flush(buftarg->bt_bdev, NULL);
}
STATIC struct inode *
linvfs_alloc_inode(
struct super_block *sb)
{
vnode_t *vp;
vp = kmem_zone_alloc(xfs_vnode_zone, KM_SLEEP);
if (unlikely(!vp))
return NULL;
return LINVFS_GET_IP(vp);
}
STATIC void
linvfs_destroy_inode(
struct inode *inode)
{
kmem_zone_free(xfs_vnode_zone, LINVFS_GET_VP(inode));
}
STATIC void
linvfs_inode_init_once(
void *vnode,
kmem_zone_t *zonep,
unsigned long flags)
{
if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
SLAB_CTOR_CONSTRUCTOR)
inode_init_once(LINVFS_GET_IP((vnode_t *)vnode));
}
STATIC int
xfs_init_zones(void)
{
xfs_vnode_zone = kmem_zone_init_flags(sizeof(vnode_t), "xfs_vnode_t",
KM_ZONE_HWALIGN | KM_ZONE_RECLAIM |
KM_ZONE_SPREAD,
linvfs_inode_init_once);
if (!xfs_vnode_zone)
goto out;
xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend");
if (!xfs_ioend_zone)
goto out_destroy_vnode_zone;
xfs_ioend_pool = mempool_create(4 * MAX_BUF_PER_PAGE,
mempool_alloc_slab, mempool_free_slab,
xfs_ioend_zone);
if (!xfs_ioend_pool)
goto out_free_ioend_zone;
return 0;
out_free_ioend_zone:
kmem_zone_destroy(xfs_ioend_zone);
out_destroy_vnode_zone:
kmem_zone_destroy(xfs_vnode_zone);
out:
return -ENOMEM;
}
STATIC void
xfs_destroy_zones(void)
{
mempool_destroy(xfs_ioend_pool);
kmem_zone_destroy(xfs_vnode_zone);
kmem_zone_destroy(xfs_ioend_zone);
}
/*
* Attempt to flush the inode, this will actually fail
* if the inode is pinned, but we dirty the inode again
* at the point when it is unpinned after a log write,
* since this is when the inode itself becomes flushable.
*/
STATIC int
linvfs_write_inode(
struct inode *inode,
int sync)
{
vnode_t *vp = LINVFS_GET_VP(inode);
int error = 0, flags = FLUSH_INODE;
if (vp) {
vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);
if (sync)
flags |= FLUSH_SYNC;
VOP_IFLUSH(vp, flags, error);
if (error == EAGAIN) {
if (sync)
VOP_IFLUSH(vp, flags | FLUSH_LOG, error);
else
error = 0;
}
}
return -error;
}
STATIC void
linvfs_clear_inode(
struct inode *inode)
{
vnode_t *vp = LINVFS_GET_VP(inode);
int error, cache;
vn_trace_entry(vp, "clear_inode", (inst_t *)__return_address);
XFS_STATS_INC(vn_rele);
XFS_STATS_INC(vn_remove);
XFS_STATS_INC(vn_reclaim);
XFS_STATS_DEC(vn_active);
/*
* This can happen because xfs_iget_core calls xfs_idestroy if we
* find an inode with di_mode == 0 but without IGET_CREATE set.
*/
if (vp->v_fbhv)
VOP_INACTIVE(vp, NULL, cache);
VN_LOCK(vp);
vp->v_flag &= ~VMODIFIED;
VN_UNLOCK(vp, 0);
if (vp->v_fbhv) {
VOP_RECLAIM(vp, error);
if (error)
panic("vn_purge: cannot reclaim");
}
ASSERT(vp->v_fbhv == NULL);
#ifdef XFS_VNODE_TRACE
ktrace_free(vp->v_trace);
#endif
}
/*
* Enqueue a work item to be picked up by the vfs xfssyncd thread.
* Doing this has two advantages:
* - It saves on stack space, which is tight in certain situations
* - It can be used (with care) as a mechanism to avoid deadlocks.
* Flushing while allocating in a full filesystem requires both.
*/
STATIC void
xfs_syncd_queue_work(
struct vfs *vfs,
void *data,
void (*syncer)(vfs_t *, void *))
{
vfs_sync_work_t *work;
work = kmem_alloc(sizeof(struct vfs_sync_work), KM_SLEEP);
INIT_LIST_HEAD(&work->w_list);
work->w_syncer = syncer;
work->w_data = data;
work->w_vfs = vfs;
spin_lock(&vfs->vfs_sync_lock);
list_add_tail(&work->w_list, &vfs->vfs_sync_list);
spin_unlock(&vfs->vfs_sync_lock);
wake_up_process(vfs->vfs_sync_task);
}
/*
* Flush delayed allocate data, attempting to free up reserved space
* from existing allocations. At this point a new allocation attempt
* has failed with ENOSPC and we are in the process of scratching our
* heads, looking about for more room...
*/
STATIC void
xfs_flush_inode_work(
vfs_t *vfs,
void *inode)
{
filemap_flush(((struct inode *)inode)->i_mapping);
iput((struct inode *)inode);
}
void
xfs_flush_inode(
xfs_inode_t *ip)
{
struct inode *inode = LINVFS_GET_IP(XFS_ITOV(ip));
struct vfs *vfs = XFS_MTOVFS(ip->i_mount);
igrab(inode);
xfs_syncd_queue_work(vfs, inode, xfs_flush_inode_work);
delay(msecs_to_jiffies(500));
}
/*
* This is the "bigger hammer" version of xfs_flush_inode_work...
* (IOW, "If at first you don't succeed, use a Bigger Hammer").
*/
STATIC void
xfs_flush_device_work(
vfs_t *vfs,
void *inode)
{
sync_blockdev(vfs->vfs_super->s_bdev);
iput((struct inode *)inode);
}
void
xfs_flush_device(
xfs_inode_t *ip)
{
struct inode *inode = LINVFS_GET_IP(XFS_ITOV(ip));
struct vfs *vfs = XFS_MTOVFS(ip->i_mount);
igrab(inode);
xfs_syncd_queue_work(vfs, inode, xfs_flush_device_work);
delay(msecs_to_jiffies(500));
xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
}
#define SYNCD_FLAGS (SYNC_FSDATA|SYNC_BDFLUSH|SYNC_ATTR)
STATIC void
vfs_sync_worker(
vfs_t *vfsp,
void *unused)
{
int error;
if (!(vfsp->vfs_flag & VFS_RDONLY))
VFS_SYNC(vfsp, SYNCD_FLAGS, NULL, error);
vfsp->vfs_sync_seq++;
wmb();
wake_up(&vfsp->vfs_wait_single_sync_task);
}
STATIC int
xfssyncd(
void *arg)
{
long timeleft;
vfs_t *vfsp = (vfs_t *) arg;
struct vfs_sync_work *work, *n;
LIST_HEAD (tmp);
timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
for (;;) {
timeleft = schedule_timeout_interruptible(timeleft);
/* swsusp */
try_to_freeze();
if (kthread_should_stop() && list_empty(&vfsp->vfs_sync_list))
break;
spin_lock(&vfsp->vfs_sync_lock);
/*
* We can get woken by laptop mode, to do a sync -
* that's the (only!) case where the list would be
* empty with time remaining.
*/
if (!timeleft || list_empty(&vfsp->vfs_sync_list)) {
if (!timeleft)
timeleft = xfs_syncd_centisecs *
msecs_to_jiffies(10);
INIT_LIST_HEAD(&vfsp->vfs_sync_work.w_list);
list_add_tail(&vfsp->vfs_sync_work.w_list,
&vfsp->vfs_sync_list);
}
list_for_each_entry_safe(work, n, &vfsp->vfs_sync_list, w_list)
list_move(&work->w_list, &tmp);
spin_unlock(&vfsp->vfs_sync_lock);
list_for_each_entry_safe(work, n, &tmp, w_list) {
(*work->w_syncer)(vfsp, work->w_data);
list_del(&work->w_list);
if (work == &vfsp->vfs_sync_work)
continue;
kmem_free(work, sizeof(struct vfs_sync_work));
}
}
return 0;
}
STATIC int
linvfs_start_syncd(
vfs_t *vfsp)
{
vfsp->vfs_sync_work.w_syncer = vfs_sync_worker;
vfsp->vfs_sync_work.w_vfs = vfsp;
vfsp->vfs_sync_task = kthread_run(xfssyncd, vfsp, "xfssyncd");
if (IS_ERR(vfsp->vfs_sync_task))
return -PTR_ERR(vfsp->vfs_sync_task);
return 0;
}
STATIC void
linvfs_stop_syncd(
vfs_t *vfsp)
{
kthread_stop(vfsp->vfs_sync_task);
}
STATIC void
linvfs_put_super(
struct super_block *sb)
{
vfs_t *vfsp = LINVFS_GET_VFS(sb);
int error;
linvfs_stop_syncd(vfsp);
VFS_SYNC(vfsp, SYNC_ATTR|SYNC_DELWRI, NULL, error);
if (!error)
VFS_UNMOUNT(vfsp, 0, NULL, error);
if (error) {
printk("XFS unmount got error %d\n", error);
printk("%s: vfsp/0x%p left dangling!\n", __FUNCTION__, vfsp);
return;
}
vfs_deallocate(vfsp);
}
STATIC void
linvfs_write_super(
struct super_block *sb)
{
vfs_t *vfsp = LINVFS_GET_VFS(sb);
int error;
if (sb->s_flags & MS_RDONLY) {
sb->s_dirt = 0; /* paranoia */
return;
}
/* Push the log and superblock a little */
VFS_SYNC(vfsp, SYNC_FSDATA, NULL, error);
sb->s_dirt = 0;
}
STATIC int
linvfs_sync_super(
struct super_block *sb,
int wait)
{
vfs_t *vfsp = LINVFS_GET_VFS(sb);
int error;
int flags = SYNC_FSDATA;
if (unlikely(sb->s_frozen == SB_FREEZE_WRITE))
flags = SYNC_QUIESCE;
else
flags = SYNC_FSDATA | (wait ? SYNC_WAIT : 0);
VFS_SYNC(vfsp, flags, NULL, error);
sb->s_dirt = 0;
if (unlikely(laptop_mode)) {
int prev_sync_seq = vfsp->vfs_sync_seq;
/*
* The disk must be active because we're syncing.
* We schedule xfssyncd now (now that the disk is
* active) instead of later (when it might not be).
*/
wake_up_process(vfsp->vfs_sync_task);
/*
* We have to wait for the sync iteration to complete.
* If we don't, the disk activity caused by the sync
* will come after the sync is completed, and that
* triggers another sync from laptop mode.
*/
wait_event(vfsp->vfs_wait_single_sync_task,
vfsp->vfs_sync_seq != prev_sync_seq);
}
return -error;
}
STATIC int
linvfs_statfs(
struct super_block *sb,
struct kstatfs *statp)
{
vfs_t *vfsp = LINVFS_GET_VFS(sb);
int error;
VFS_STATVFS(vfsp, statp, NULL, error);
return -error;
}
STATIC int
linvfs_remount(
struct super_block *sb,
int *flags,
char *options)
{
vfs_t *vfsp = LINVFS_GET_VFS(sb);
struct xfs_mount_args *args = xfs_args_allocate(sb);
int error;
VFS_PARSEARGS(vfsp, options, args, 1, error);
if (!error)
VFS_MNTUPDATE(vfsp, flags, args, error);
kmem_free(args, sizeof(*args));
return -error;
}
STATIC void
linvfs_freeze_fs(
struct super_block *sb)
{
VFS_FREEZE(LINVFS_GET_VFS(sb));
}
STATIC int
linvfs_show_options(
struct seq_file *m,
struct vfsmount *mnt)
{
struct vfs *vfsp = LINVFS_GET_VFS(mnt->mnt_sb);
int error;
VFS_SHOWARGS(vfsp, m, error);
return error;
}
STATIC int
linvfs_quotasync(
struct super_block *sb,
int type)
{
struct vfs *vfsp = LINVFS_GET_VFS(sb);
int error;
VFS_QUOTACTL(vfsp, Q_XQUOTASYNC, 0, (caddr_t)NULL, error);
return -error;
}
STATIC int
linvfs_getxstate(
struct super_block *sb,
struct fs_quota_stat *fqs)
{
struct vfs *vfsp = LINVFS_GET_VFS(sb);
int error;
VFS_QUOTACTL(vfsp, Q_XGETQSTAT, 0, (caddr_t)fqs, error);
return -error;
}
STATIC int
linvfs_setxstate(
struct super_block *sb,
unsigned int flags,
int op)
{
struct vfs *vfsp = LINVFS_GET_VFS(sb);
int error;
VFS_QUOTACTL(vfsp, op, 0, (caddr_t)&flags, error);
return -error;
}
STATIC int
linvfs_getxquota(
struct super_block *sb,
int type,
qid_t id,
struct fs_disk_quota *fdq)
{
struct vfs *vfsp = LINVFS_GET_VFS(sb);
int error, getmode;
getmode = (type == USRQUOTA) ? Q_XGETQUOTA :
((type == GRPQUOTA) ? Q_XGETGQUOTA : Q_XGETPQUOTA);
VFS_QUOTACTL(vfsp, getmode, id, (caddr_t)fdq, error);
return -error;
}
STATIC int
linvfs_setxquota(
struct super_block *sb,
int type,
qid_t id,
struct fs_disk_quota *fdq)
{
struct vfs *vfsp = LINVFS_GET_VFS(sb);
int error, setmode;
setmode = (type == USRQUOTA) ? Q_XSETQLIM :
((type == GRPQUOTA) ? Q_XSETGQLIM : Q_XSETPQLIM);
VFS_QUOTACTL(vfsp, setmode, id, (caddr_t)fdq, error);
return -error;
}
STATIC int
linvfs_fill_super(
struct super_block *sb,
void *data,
int silent)
{
vnode_t *rootvp;
struct vfs *vfsp = vfs_allocate();
struct xfs_mount_args *args = xfs_args_allocate(sb);
struct kstatfs statvfs;
int error, error2;
vfsp->vfs_super = sb;
LINVFS_SET_VFS(sb, vfsp);
if (sb->s_flags & MS_RDONLY)
vfsp->vfs_flag |= VFS_RDONLY;
bhv_insert_all_vfsops(vfsp);
VFS_PARSEARGS(vfsp, (char *)data, args, 0, error);
if (error) {
bhv_remove_all_vfsops(vfsp, 1);
goto fail_vfsop;
}
sb_min_blocksize(sb, BBSIZE);
#ifdef CONFIG_XFS_EXPORT
sb->s_export_op = &linvfs_export_ops;
#endif
sb->s_qcop = &linvfs_qops;
sb->s_op = &linvfs_sops;
VFS_MOUNT(vfsp, args, NULL, error);
if (error) {
bhv_remove_all_vfsops(vfsp, 1);
goto fail_vfsop;
}
VFS_STATVFS(vfsp, &statvfs, NULL, error);
if (error)
goto fail_unmount;
sb->s_dirt = 1;
sb->s_magic = statvfs.f_type;
sb->s_blocksize = statvfs.f_bsize;
sb->s_blocksize_bits = ffs(statvfs.f_bsize) - 1;
sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
sb->s_time_gran = 1;
set_posix_acl_flag(sb);
VFS_ROOT(vfsp, &rootvp, error);
if (error)
goto fail_unmount;
sb->s_root = d_alloc_root(LINVFS_GET_IP(rootvp));
if (!sb->s_root) {
error = ENOMEM;
goto fail_vnrele;
}
if (is_bad_inode(sb->s_root->d_inode)) {
error = EINVAL;
goto fail_vnrele;
}
if ((error = linvfs_start_syncd(vfsp)))
goto fail_vnrele;
vn_trace_exit(rootvp, __FUNCTION__, (inst_t *)__return_address);
kmem_free(args, sizeof(*args));
return 0;
fail_vnrele:
if (sb->s_root) {
dput(sb->s_root);
sb->s_root = NULL;
} else {
VN_RELE(rootvp);
}
fail_unmount:
VFS_UNMOUNT(vfsp, 0, NULL, error2);
fail_vfsop:
vfs_deallocate(vfsp);
kmem_free(args, sizeof(*args));
return -error;
}
STATIC struct super_block *
linvfs_get_sb(
struct file_system_type *fs_type,
int flags,
const char *dev_name,
void *data)
{
return get_sb_bdev(fs_type, flags, dev_name, data, linvfs_fill_super);
}
STATIC struct super_operations linvfs_sops = {
.alloc_inode = linvfs_alloc_inode,
.destroy_inode = linvfs_destroy_inode,
.write_inode = linvfs_write_inode,
.clear_inode = linvfs_clear_inode,
.put_super = linvfs_put_super,
.write_super = linvfs_write_super,
.sync_fs = linvfs_sync_super,
.write_super_lockfs = linvfs_freeze_fs,
.statfs = linvfs_statfs,
.remount_fs = linvfs_remount,
.show_options = linvfs_show_options,
};
STATIC struct quotactl_ops linvfs_qops = {
.quota_sync = linvfs_quotasync,
.get_xstate = linvfs_getxstate,
.set_xstate = linvfs_setxstate,
.get_xquota = linvfs_getxquota,
.set_xquota = linvfs_setxquota,
};
STATIC struct file_system_type xfs_fs_type = {
.owner = THIS_MODULE,
.name = "xfs",
.get_sb = linvfs_get_sb,
.kill_sb = kill_block_super,
.fs_flags = FS_REQUIRES_DEV,
};
STATIC int __init
init_xfs_fs( void )
{
int error;
struct sysinfo si;
static char message[] __initdata = KERN_INFO \
XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled\n";
printk(message);
si_meminfo(&si);
xfs_physmem = si.totalram;
ktrace_init(64);
error = xfs_init_zones();
if (error < 0)
goto undo_zones;
error = xfs_buf_init();
if (error < 0)
goto undo_buffers;
vn_init();
xfs_init();
uuid_init();
vfs_initquota();
error = register_filesystem(&xfs_fs_type);
if (error)
goto undo_register;
XFS_DM_INIT(&xfs_fs_type);
return 0;
undo_register:
xfs_buf_terminate();
undo_buffers:
xfs_destroy_zones();
undo_zones:
return error;
}
STATIC void __exit
exit_xfs_fs( void )
{
vfs_exitquota();
XFS_DM_EXIT(&xfs_fs_type);
unregister_filesystem(&xfs_fs_type);
xfs_cleanup();
xfs_buf_terminate();
xfs_destroy_zones();
ktrace_uninit();
}
module_init(init_xfs_fs);
module_exit(exit_xfs_fs);
MODULE_AUTHOR("Silicon Graphics, Inc.");
MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
MODULE_LICENSE("GPL");